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ABSTRACT

Colliding hypersonic flows play a decisive role in many astrophysical objects. They contribute, for example, to the molecular cloud
structure, the X-ray emission of O-stars, differentiation of galactic sheets, appearance of wind-driven structures, or, possibly, to the
prompt emission of γ-ray bursts. Our intention is thorough investigation of the turbulent interaction zone of such flows, the cold dense
layer (CDL). In this paper, we focus on the idealized model of a 2D plane parallel isothermal slab and on symmetric settings, where
both flows have equal parameters. We performed a set of high-resolution simulations with upwind Mach-numbers, 5 < Mu < 90.
We find that the CDL is irregularly shaped and has a patchy and filamentary interior. The size of these structures increases with ℓcdl,
the extension of the CDL. On average, but not at each moment, the solution is nearly self-similar and only depends on Mu. We
give the corresponding analytical expressions, with numerical constants derived from the simulation results. In particular, we find
the root-mean-square Mach-number to scale as Mrms ≈ 0.2 Mu. The mean density, ρm ≈ 30 ρu is independent of Mu. The fraction
feff of the upwind kinetic energy that survives shock passage scales as feff = 1 − M−0.6

rms . This dependence persists if the upwind
flow parameters differ from one side to the other of the CDL, indicating that the turbulence within the CDL and its driving are
mutually coupled. Another finding points in the same direction, namely that the auto-correlation length of the confining shocks and
the characteristic length scale of the turbulence within the CDL are proportional. Larger upstream Mach-numbers lead to a faster
expanding CDL, confining interfaces that are less inclined with respect to the upstream flow direction, more efficient driving, and
finer interior structure with respect to the extension of the CDL.
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1. Introduction

Supersonically turbulent, shock-bound interaction zones are
important for a variety of astrophysical objects. They con-
tribute, for example, to structure formation in molecular
clouds (Hunter et al. 1986; Ballesteros-Paredes et al. 1999a;
Hartmann et al. 2001; Hueckstaedt 2003; Heyer & Brunt 2004;
Vázquez-Semadeni 2004) and to galaxy formation (Anninos &
Norman 1996; Kang et al. 2005). They affect the X-ray emis-
sion of line-driven hot-star winds (Owocki et al. 1988; Feldmeier
et al. 1997; Feldmeier & Owocki 1998; Oskinova et al. 2004)
and contribute substantially to the physics and emitted spectrum
of colliding wind binaries (Stevens et al. 1992; Nussbaumer &
Walder 1993; Folini & Walder 2000; Marchenko et al. 2003;
Corcoran et al. 2005). The currently most promising model
for the prompt emission of γ-ray bursts is based on internal
shocks (Rees & Meszaros 1994; Panaitescu et al. 1999; Piran
2004; Fan & Wei 2004). A similar mechanism has been pro-
posed for micro-quasars (Kaiser et al. 2000), BL Lacs and
Blazars (Ghisellini et al. 2002; Mimica et al. 2004), and Herbig-
Haro objects (Matzner & McKee 1999).

So far, the shape and turbulent interior of shock-bound in-
teraction zones have been mostly studied separately. In this pa-
per we focus on the system as a whole, stressing that upwind

flows, confining interfaces of the interaction zone, and the in-
terior structure of this zone form a tightly coupled system. The
turbulence within the interaction zone affects the shape of the
confining shocks, which in turn determines how much energy is
thermalized at these shocks and how much energy remains avail-
able for driving the turbulence.

A variety of papers have been written on the shape and
stability of 2D interaction zones, of which we mention only a
few. Vishniac (1994) shows by analytical means that geometri-
cally thin, isothermal, 2D, planar, shock-bounded slabs are non-
linearly unstable, coining the term non-linear thin shell insta-
bility, or NTSI, for this instability. Blondin & Marks (1996)
essentially reproduce these analytical predictions numerically,
also mentioning the occurrence of supersonic turbulence within
the slab. Performing 2D radiative and isothermal simulations
of colliding molecular clouds, Klein et al. (1998) observe the
complex shaping and instability of the collision zone. The role
of a radiative cooling layer has been addressed by several au-
thors. Strickland & Blondin (1995) numerically investigated
flows against a wall in 2D, finding that an unstable cooling layer
introduces disturbances in the interface separating the cooling
layer from the cooled matter. Looking at colliding flows in-
stead of a flow against a wall, Walder & Folini (1998) show
that one unstable cooling layer is sufficient to destabilize both
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confining interfaces of the cooled matter. In addition, the
cooled matter becomes supersonically turbulent. If self-gravity
is included fragmentation of the interaction zone is observed
(Anninos & Norman 1996; Hunter et al. 1986).

An overwhelming amount of literature meanwhile exists on
supersonic turbulence. At least part of this attention arises be-
cause it is thought that supersonic turbulence can explain the
structuring and support of molecular clouds and thus that it plays
a decisive role in star formation. A comprehensive view of this
issue can be found in the recent reviews by Mac Low & Klessen
(2004), Elmegreen & Scalo (2004) and Scalo & Elmegreen
(2004). Of particular interest for the work we present here is
the paper by Mac Low (1999), where Fig. 4 shows that the wave
length of the driving is apparent in the spatial scale of the tur-
bulent structure for monochromatically driven turbulence in a
3D periodic box. The possible importance of the finite size of the
slab was recently pointed out by Burkert & Hartmann (2004).

We are trying to make four points with this paper. First, we
argue that, within the frame of isothermal Euler equations and
in infinite space, the solution may be self-similar and dependent
only on the upstream Mach-number, at least to first approxima-
tion. Based on this assumption, we give expressions for average
quantities of the slab. Second, we show that the numerical so-
lution, which is defined only on a finite computational domain
and includes (implicit) numerical dissipation, remains close to
self-similar, as long as the width of the slab is small and the root-
mean-square Mach-number larger than one. Third, we stress the
tight mutual coupling between the turbulence and its driving.
Fourth, we point out that spatial scales generally grow with ex-
tension ℓcdl of the interaction zone, but decrease with increasing
upstream Mach-number Mu.

Results are based on a set of simulations that differ only in
their upwind Mach-numbers. In this paper we restrict the analy-
sis of these simulations to the above-mentioned three objectives.
We postpone a more detailed analysis of the interior structure of
the interaction zone to a subsequent paper.

In the following, we first give the details of our physical
model and numerical method in Sect. 2. In Sect. 3 we derive the
self-similar scaling relations. The numerical results are present
in Sect. 4. Discussion follows in Sect. 5, and conclusions in
Sect. 6.

2. Physical model and numerical method

The numerical treatment of supersonic turbulence is an issue
in its own right, so we start this section with a brief summary
of some results that are relevant to the present work. We then
specify the physical model we consider, explain the numerical
method we use and the simulations we perform.

2.1. Simulating supersonic turbulence

The shock-compressed layer studied in this paper is superson-
ically turbulent with root-mean-square Mach-numbers between
about 1 and 10. An important fraction of the kinetic energy is
dissipated in shocks. Euler equations are sufficient for describ-
ing this part of the problem. A cascade transfers the remaining
energy to higher and higher wave numbers until it is finally de-
stroyed on the viscous dissipation scale. To also capture this
part of the problem, the compressible Navier-Stokes equations
should be used; however, the range of spatial scales associated

with the energy cascade exceeds the capacity of any computer
by far.

In subsonic turbulence, one way out is to use a suitable sub-
grid scale model. The model is used to compute an effective vis-
cosity coefficient, which should mimic the cascading between
the smallest scale still resolved by the numerical grid and the vis-
cous dissipation scale as precisely as possible. This coefficient is
then used in the Navier-Stokes equations instead of the physical
viscosity (Lesieur 1999). For the approach to work it is essen-
tial that the effective viscosity obtained from the sub-grid scale
model exceeds the (implicit) numerical viscosity of the overall
numerical scheme. This can be achieved in subsonic turbulence
by the use of low-dissipation schemes (Lele 1992).

In supersonic turbulence, explicit sub-grid scale modeling
so far does not exist in the above sense. The basic reason is
that the numerical treatment of supersonic turbulence requires
schemes that can treat shocks appropriately, such as the widely
used shock capturing schemes. The (implicit) numerical vis-
cosity of such schemes is, however, much too large to match
the above requirement, even if the schemes are of a high or-
der (Garnier et al. 1999; Porter et al. 1992). One strategy for
this case, the so called MILES approach (monotone integrated
large-eddy simulation), was proposed by Boris et al. (1992) and
further explored by Porter et al. (1992, 1994). The basic claim is
that the numerical viscosity inherent to shock capturing schemes
(Hirsch 1995; LeVeque 2002) acts already as a physically correct
sub-grid scale model. Solving the Euler equations by means of
a shock capturing scheme thus should yield the correct physical
answer.

The validity of the claim that implicit numerical viscos-
ity alone leads to a correct physical solution was investigated
by Garnier et al. (1999) for a selection of shock capturing
schemes, among them a MUSCL-scheme (monotone upwind
scheme for conservation laws) similar to the one we use (see
Sect. 2.3). For the cases considered (essentially decaying sub-
sonic), they find that the scheme indeed acts as a (very dissi-
pative) sub-grid scale model in that it preserves the flow from
energy accumulation on small spatial scales. However, they also
find that structures defined on less than 5 grid points are affected
by substantial numerical damping. Porter et al. (1994) find, in
addition, that the dissipation properties of their scheme (MUSCL
with PPM) are highly non-linear, and also they depend not only
on the grid spacing but also on the wave length of the flow struc-
ture. Structures on less than 32 grid points are affected by nu-
merical damping.

We rely on the MILES approach in this paper for the lack
of a better model, although, to our knowledge, the validity and
quality of the approach has never been tested for supersonic tur-
bulence. The numerical solutions we obtain are thus rather so-
lutions of the Navier-Stokes equations. Nevertheless, as dissipa-
tion in shocks by far dominates numerical dissipation, we expect
the “Euler character” of the solution to prevail.

2.2. The model problem

The model problem we consider consists of a 2D, plane-parallel,
infinitely extended, isothermal, shock compressed slab. A sketch
is given in Fig. 1. Two high Mach-number flows, oriented paral-
lel (left flow, subscript l) and anti-parallel (right flow, subscript r)
to the x-direction, collide head on. The resulting high-density
interaction zone, the shock compressed slab, is oriented in the
y-direction. We denote this interaction zone by CDL for “cold
dense layer” to remain consistent with notation used already
in Walder & Folini (1996, 1998). We investigated this system
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Fig. 1. Sketch of physical model problem. ρi, Mi, and si denote the
density, Mach-number, and confining shock of the left (i = l) and
right (i = r) flow. ρ and M denote the density and Mach-number of
the CDL. α is the absolute value of the angle between the x-axis and
the tangent to the shock. CDL is the shock-compressed interaction
zone. The dashed rectangle indicates the computational domain with
y-extension Y . Periodic boundary conditions in y-direction imply peri-
odic continuation of the solution (dotted continuation of left and right
shock).

within the frame of Euler equations (but see also Sect. 2.1),
together with a polytropic equation of state,

∂ρ

∂t
+ ∇ (ρu) = 0, (1)

∂ρu

∂t
+ ∇

(

ρu ⊗ u + p

µ
I

)

= 0, (2)

∂E

∂t
+ ∇(u (E + p)) = 0, (3)

e = p/(γ − 1). (4)

Here, ρ is the particle density, µ the average mass per particle,
u = (vx, vy) is the velocity vector, p thermal pressure, I the iden-

tity tensor, e the thermal energy density, and E = ρu2/2 + e
the total energy density. For the polytropic exponent, we choose
γ = 1.000001. This value guarantees that jump conditions and
wave speeds of a Mach-90 shock are within 0.01 per cent of the
isothermal values.

Within the frame of this paper we consider only symmetric
settings, where the left (subscript l) and right (subscript r) col-
liding flow have identical parameters (subscript u for upstream):
ρl = ρr ≡ ρu and |vl| = |vr| ≡ vu.

We look at the problem in a dimensionless form and express

velocities in units of the isothermal sound speed a =
√

TkB/µ,
with T the temperature and kB the Boltzmann constant. Densities
we express in terms of the upstream density ρu. Finally, we ex-
press lengths in units of Y0, the smallest y-extent of the compu-
tational domain we used. This artificial choice is necessary as
there is no natural time-independent length scale to the problem
(see Sect. 3).

2.3. Numerical method

Our results were obtained with the AMRCART-code1. We used
the multidimensional high-resolution finite-volume-integration
scheme developed by Colella (1990) on the basis of a Cartesian
mesh. Tests showed that this algorithm, compared to dimen-
sional splitting schemes, is significantly more accurate in captur-
ing flow features not aligned with the axis of the mesh. In all our
simulations we used a version of the scheme that is (formally)
second order accurate in space and in time for smooth flows.

We combine this integration scheme with the adaptive mesh
algorithm by Berger (1985). While a rather coarse mesh was suf-
ficient for the upwind flows, the turbulent CDL was resolved on
a much finer scale.

We found it useful to have our CDL moving in positive
x-direction at a speed of about Mach 20−40. If the CDL was
essentially stationary with respect to the computational grid, we
observed alignment effects of strong shocks that were nearly par-
allel to a cell interface (in y-direction). Through the global mo-
tion of the CDL, which implied supersonic motion of the con-
fining shocks with respect to the computational grid, we got rid
of this problem. We checked that this procedure introduced no
systematic effects into the solution. The problem of alignment
effects when dealing with high Mach-number flows, nearly sta-
tionary shocks, and high order upwind schemes is well known
and not particular to our scheme (Colella & Woodward 1984;
Quirk 1994; Jasak & Weller 1995). Other work arounds exist,
such as smoothing of interfaces by additional viscosity, which is
often applied in PPM implementations.

2.3.1. Numerical settings and integration time

In the x-direction, our computational domain extended over
200 Y0. The y-extent Y of our domain varied between simula-
tions, Y0 ≤ Y ≤ 6 Y0 (see Table B.1). Boundary conditions at the
left and right boundaries (x-direction) were “supersonic inflow”.
In the y-direction we had periodic boundary conditions. The cell
size at the coarsest level was 0.2 Y0. The cells at the finest level,
covering the CDL, were smaller by a factor 26 to 29, yielding be-
tween 320 and 2560 cells over a distance Y0 (depending on the
simulation, see Table B.1).

As will be shown, the relevant time-dependent quantity for
the evolution of CDL mean quantities is the average x-extension
of the CDL, ℓcdl. We defined it as ℓcdl ≡ V/Y, where V is the
2D volume of the CDL. For later use we also introduce the
volume integrated density mcdl ≡

∫

V
ρ, the mean density ρm ≡

mcdl/V , and the average column density N ≡ mcdl/Y = ρmℓcdl.
The last quantity was made dimensionless by division through
N0 ≡ ρuY0. We stopped most simulations at ℓcdl = Y/2.

2.3.2. Initial conditions

We investigated three different initial conditions, I = 0, 1, 2.

I = 0: No CDL exists at t = 0. The left and right flows
are initially separated by a single interface. The interface is wig-
gled with a single, sinusoidal mode of wave length 0.1 Y and
amplitude 0.0195 Y0 (about 3 to 25 grid cells, depending on the
discretization).

1 AMRCART is part of the A-MAZE code-package (Walder & Folini
2000a), which contains 3D adaptive MHD and radiative transfer codes.
The package, along with a brief description, is publicly available at
http://www.astro.phys.ethz.ch/staff/folini/folini.html

or http://www.astro.phys.ethz.ch/staff/walder/walder.html.
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I = 1: A CDL is present at time t = 0. It has a column den-
sity of N = 14 N0 and a thickness of 0.03125 Y0. The confining
shocks are both wiggled, with the same sinusoidal mode and am-
plitude as the interface in the case I = 0. The mass within the
CDL is at rest and of constant density, ρ = ρuM2

u , the density
the CDL would have in 1D. Note that this initialization implies
some violation of the Rankine-Hugoniot jump conditions at the
interfaces.

I = 2: A CDL is present at time t = 0, with column den-
sity N = 56 N0 and a thickness of 0.125 Y0. The right shock is
wiggled as for I = 1, the left shock is straight. The density and
velocity in the CDL are set as for I = 1.

We stress that the initial wiggling of the shocks is not com-
pelling. The only effect of this wiggling is to speed up the ini-
tial phase of the evolution. Test cases using another wiggling or
starting from straight shocks end up like the simulations we are
going to present in the following.

We would like to add a side note on this last point, from
our observation that the slab is also destabilized when bound
by straight shocks. This has already been reported by Blondin
& Marks (1996), who ascribed the destabilization to “numerical
noise”. Meanwhile, Robinet et al. (2000) have investigated what
is called the carbuncle phenomenon in some more detail. They
showed that – contrary to what has been believed so far – a single
straight shock is linearly unstable for exactly one mode associ-
ated to the upstream Mach-number of Mcrit = [(5+γ)/(3−γ)]1/2.

For isothermal conditions, this yields Mcrit =
√

3. They also
showed that this single unstable mode is sufficient for making
straight shocks aligned with the mesh numerically unstable at all
Mach-numbers if the computation is done with a low-viscosity,
high-order, shock-capturing scheme. To what degree this insta-
bility for a straight shock of any Mach-number is really physical
seems an open question to us.

2.4. The different runs

The runs we performed differ in their upwind Mach-numbers,
which lie in a range 5 <∼ Mu <∼ 90, as well as in their initializa-
tion, numerical discretization, and the y-extent of the domain.
The labels of the different runs are built up as M_I.R.Y. Here,
M is the upwind Mach-number, I the initialization (0, 1, or 2),
R gives the refinement of the spatial discretization, relative to the
coarsest grid simulation we performed (1, 2, 4, or 8). R = 1 cor-
responds to a finest cell size of about 3 × 10−3 Y0, R = 2 in-
dicates a twice smaller cell size. Y is the domain size (1, 2, 4,
or 6) in units of Y0. For example, R22_0.2.4 denotes a run with
Mu = 22, initialization I = 0, finest cell size about 1.5 × 10−3Y0,
and y-extent 4 Y0.

The runs we performed are listed in Table B.1. Individual
columns in Table B.1 contain (column number in square brack-
ets): label of run [1], following the scheme label=Mu_ I.R.Y,
where I is the initial condition, R the refinement factor such
that cell size = 3.125 × 10−3 Y0/R, and Y is the y-extension of
the computational domain in units of Y0; Mach-number of up-
stream flow, Mu [2]; stopping time of simulation in terms of ℓ(N)
[3]; y-averaged x-extension of CDL at stopping time, relative
to y-extent of computational domain, ℓcdl/Y [4]; average quan-
tities [5−8] of: rms Mach-number, Mrms [5]; mean density in
units of upstream density, ρm/ρu [6]; shock length in units of
y-domain, ℓsh/Y [7]; driving efficiency, feff [8]; averages taken
over 10 ≤ ℓ(N) ≤ 70 for I = 0 and over 60 ≤ ℓ(N) ≤ 120
for I = 1, for I = 2 we give the values at the end of the simula-
tion in parentheses instead.
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Fig. 2. The self-similar 1D solution of isothermal colliding supersonic
flows in density (top) and velocity (bottom). The interaction zone (la-
beled CDL) is bounded by two shocks, sl and sr, having speeds vs

l
and vsr

in the rest frame of the CDL. The density and velocity of the 1D inter-
action zone, we denote by ρ1d and v1d, respectively.

3. Scaling properties of the model problem

Within the frame of Euler equations and in infinite space, the
problem of isothermal supersonically colliding flows can be
solved analytically in 1D. The solution, sketched in Fig. 2 and
Sect. 3.1, is self-similar and depends only on two free param-
eters, the Mach-numbers of the left and right upwind flow.
In 2D the situation is more complicated: the solution is unsta-
ble (Vishniac 1994; Blondin & Marks 1996), the shocks confin-
ing the CDL are non-stationary and oblique, the interior of the
CDL is supersonically turbulent.

Nevertheless, in infinite space it seems reasonable to assume
that the solution, on average, may still evolve in a self-similar
manner. We base this assumption on the following two observa-
tions. First, the isothermal Euler equations are scale-free in infi-
nite space. Second, the free parameters of the problem (ρu, Mu,
and a) do not introduce any fixed length or time scale. Under
these conditions, it is possible that the solution also does not de-
pend on length or time separately, but only on their ratio. If so,
all length scales should evolve equally with time, which implies,
in particular, that the solution then should not depend on the ex-
tension of the CDL. We stress, however, that we have no proof
of the above assumption of self-similarity.

In the remainder of this section, we elaborate a bit further on
the implications of the assumed self-similarity. In Sect. 4 we will
see that the relations derived here give a good approximation of
the numerical results, but we stress already here three important
points. The numerical simulations are carried out in finite space
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(not infinite); numerical dissipation might play a role; and the
simulations are stopped for the most part while the CDL is still
small, about half the size of the y-extent of the computational
domain. Important aspects that can only be obtained from the
numerical solution include quantities related to the driving of the
turbulence, the values of proportionality constants, and the inte-
rior structure of the CDL. We neglect this last aspect, however,
in the current paper to focus on mean quantities instead.

3.1. Self-similar 1D solution

Denoting the density and velocity of the CDL by ρ1d and v1d, and
those of the left and right upwind flows by ρi and vi (i = l, r), the
solution in the rest frame of the CDL is given by

ρ1d/ρi = M2
i + 1 ≈ M2

i , (5)

v1d = 0, (6)

|vsi | = aMi/(M2
i − 1) ≈ a/Mi ≪ a. (7)

Here, vs
i

is the velocity of the confining shocks and a is again
the isothermal sound speed. The approximations hold for large
Mach-numbers. The self-similar character is apparent: the so-
lution is not a function of x and t but only a function of x/t
through vs

i
.

A relation between characteristic length and time scales of
the solution, the self-similarity variable κ1d, can be obtained as
follows. As a length scale, we take the spatial extension ℓ1d of
the CDL, and as a time scale the time τ needed to accumulate
the corresponding column density N1d. From the relations

N1d = ρ1dℓ1d. (8)

and

N1d = τ (ρlvl + ρrvr) (9)

and using ρl/ρr = M2
r /M

2
l

(see Eq. (5)), we obtain

κ1d ≡
ℓ1d

τ
= a

Ml + Mr

Ml · Mr

· (10)

Thus for strong shocks κ1d is nothing else than |vs
l
| + |vsr |.

Specializing to symmetric settings (l = r) yields ρ1d/ρu = M2
u

and κ1d = 2a/Mu.

3.2. Scaling properties of the 2D symmetric solution

In the following, we derive scaling relations for the 2D solution,
assuming self-similarity. We confront these relations with corre-
sponding numerical results in Sect. 4.

3.2.1. Density, Mach-number, self-similarity variable

In the following, all velocities are again given in the rest frame
of the CDL and we assume that a self-similar solution exists. A
natural choice for the (constant) self-similarity variable then is
again κ2d ≡ ℓcdl/τ. Using the definitions of Sect. 2.3.1 we must
have, as in the 1D case,

N = ρmℓcdl, (11)

N = 2τρuvu. (12)

Dividing the two equations through each other yields κ2d =

2ρuvu/ρm. As κ2d is a constant, the CDL mean density ρm must
be constant in time. The root-mean-square velocity v2rms then has
to be constant in time as well, at least if the CDL density and

velocity, ρ and v, are uncorrelated (in which case we can replace
the average over the product ρv2 by the product of the averages
of ρ and v2) and if kinetic pressure dominates over thermal pres-
sure. This can be seen from equating the total upwind pressure
with the total pressure within the CDL,

ρu(a2 + v2u) = ρm(a2 + v2rms). (13)

The simplest ansatz for ρm and vrms is that they only depend on
the upstream Mach-number,

ρm/ρu = η1M
β1

u , (14)

vrms/a = η2M
β2

u . (15)

Using the ansatz for ρm we obtain a first expression for κ2d from
Eqs. (11) and (12),

κ2d = 2aη−1
1 M

1−β1

u ∝ aM
1−β1

u . (16)

A second expression for κ2d, we obtain from Eq. (13)

ρua2(1 + M2
u) = ρm(a2 + v2rms) =

a2N

ℓcdl

(

1 + η2
2M

2β2

u

)

. (17)

Again using Eq. (12) to replace N, one obtains

κ2d = 2aMu

1 + η2
2
M

2β2

u

1 + M2
u

≈ 2aη2
2M

2β2−1
u ∝ aM

2β2−1
u . (18)

The approximation is good for high Mach-number flows, with

η2
2
M

2β2

u ≫ 1, and for β2 > 0, which is, however, to be expected
for supersonic turbulence. Comparing Eqs. (16) and (18) gives

β2 = 1 − β1/2, (19)

η−1
1 = η2

2. (20)

3.2.2. Driving energy

From energy conservation, we have Ėdiss = Ėdrv−Ėkin. Here Ėdrv

is the energy flux density entering the CDL per time and per unit
length in the y-direction, and Ėdiss denotes the energy density
dissipated per time within an average column of length ℓcdl of the
CDL. Finally, Ėkin is the change per time of the kinetic energy
contained within such an average column. We first turn to the
driving energy Ėdrv and come back to Ėdiss and Ėkin in Sect. 3.2.3.

Part of the total (left plus right) upwind kinetic energy flux
density, Fekin,u = ρuv

3
u, is thermalized at the shocks confining the

CDL. The remaining part, Ėdrv, drives the turbulence in the CDL.
We assume that Ėdrv and Fekin,u are related by a function of the
upwind Mach-number only,

Ėdrv = feff(Mu)Fekin,u. (21)

We call the function feff the driving efficiency. An expression
for feff can be derived by using the jump conditions for strong,
oblique shocks,

ρd = ρuM2
⊥,u = ρuM2

u sin2 α,

v⊥,d = v⊥,uM−2
⊥,u =

a

Mu sinα
,

v‖,d = v‖,u = aMu cosα. (22)

The subscript d denotes downstream quantities, right after
shock passage; the subscripts ⊥ and ‖ denote flow components
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perpendicular and parallel to the shock, respectively; and α is
given in Fig. 1. Using Eq. (22) we obtain

Ėdrv =
1

Y

∫

sl,r

ds
ρdv

2
d

2
v⊥,d

=
ρuv

3
u

2Y

∫

Yl,r

dy

(

1 − sin2 α +
1

M4
u sin2 α

)

, (23)

where the integral over sl,r and Yl,r runs over both shocks and
where it was used that sinα ds = dy. The last term on the right
hand side of Eq. (23) is omitted in the following. This is justified,
as the shocks we observe in our simulations fulfill sinα ≫ M−2

u

for the most part (see Sect. 4.2.2). For feff(Mu) we thus obtain

feff =
1

2Y

∫

Yl,r

dy(1 − sin2 α) ≡ 1 − sin2 αeff (24)

where we used the midpoint rule. The angle αeff can be inter-
preted as an average bending angle. As the ansatz for the Mach-
number dependence of feff we thus take

feff = 1 − sin2 αeff = 1 − η3M
β3

u . (25)

3.2.3. Energy dissipation

A first expression for the column-integrated dissipated energy
per time can be obtained from energy conservation, Ėdiss = Ėdrv−
Ėkin. For Ėdrv we just derived an expression, Eqs. (21) and (25).
For Ėkin we obtain, within the frame of self-similarity,

Ėkin =
ρmv

2
rms

2

dℓcdl

dt
= ρua3η2

2M
3−β1

u , (26)

where we used Eqs. (14), (15), and (18) to (20). Together we get

Ėdiss = ρua3M3
u

[

1 − η3M
β3

u − η2
2 M
−β1

u

]

. (27)

The energy dissipated per time within an average column of
length ℓcdl is thus independent of this length. If energy dissi-
pation occurs only (as within the frame of Euler equations) or
at least dominantly in shocks, this implies that the average dis-
tance between shocks increases and / or the average strength of
the shocks decreases as the CDL grows.

A second expression for Ėdiss can be obtained from dimen-
sional considerations. The energy dissipated per unit volume per
unit time must be proportional to ρdissv

3
diss
ℓ−1

diss
. Here, ρdiss, vdiss,

and ℓdiss are the characteristic density, velocity, and length scale
of the dissipation. The energy dissipation within an average col-
umn of length ℓcdl can thus be written as Ėdiss ∝ ρdissv

3
diss
ℓ−1

diss
ℓcdl.

As all length scales must evolve equally with time within the
frame of self-similarity, ℓcdl/ℓdiss must be constant, thus

Ėdiss ∝ ρdissv
3
diss. (28)

Comparison of Eqs. (27) and (28) suggests vdiss ∝ aMu and a
more complicated Mach-number dependence for ρdiss. As vrms

is the only velocity scale we have, it seems natural to assume
that vdiss ∝ vrms. It then follows that vrms ∝ aMu or β2 = 1 (and
β1 = 0). We note that Gammie & Ostriker (1996) even found
vdiss = vrms for a 1D case.

3.3. Summary of expected scaling relations

If a self-similar solution exists, we expect the following
dependencies:

ρm = η1ρu M
β1

u = η1ρu, (29)

Mrms = η2M
β2

u = η
−1/2

1
Mu, (30)

κ2d = ℓcdl/τ = 2η−1
1 aMu, (31)

Ėdrv = ρua3M3
u

(

1 − η3 M
β3

u

)

, (32)

Ėkin = ρua3M3
u η

2
2, (33)

Ėdiss = ρua3M3
u

(

1 − η3 M
β3

u − η2
2

)

. (34)

Note the differences to the 1D solution: Eq. (29) predicts the
CDL mean density to be independent of Mu and κ2d ∝ aMu, in
contrast to ρ1d ∝ M2

u and κ1d ∝ a/Mu.
In deriving the above relations, we made four basic assump-

tions: a) we have simple Mach-number dependencies of ρm, vrms,
and feff , Eqs. (14), (15), and (25); b) the CDL density and veloc-
ity are uncorrelated; c) we have high Mach-numbers in the sense

that η2
2
M

2β2

u ≫ 1 or M2
rms ≫ 1; d) vdiss ∝ vrms.

In Sect. 4 we are going to check the validity of these assump-
tions and confront Eqs. (29) to (34) with numerically obtained
values. We expect good agreement as long as Mrms ≫ 1, thus
dissipation in shocks likely dominates, and as long as ℓcdl ≪ Y.
The “Euler character” of the solution should prevail under these
conditions. We also determine those quantities that cannot be de-
rived analytically. These are, on the one hand, the coefficients η1

and η3, as well as the exponent β3. On the other hand, there are
quantities for which we have no analytical expression at all, like
the wiggling of the confining shocks, the associated distribution
of the angle α, or the Mach-number dependence of the length of
the confining shocks.

4. Numerical results

We now present our numerical results. After a brief phenomeno-
logical description of the solution in Sect. 4.1, we give quanti-
tative results for initial conditions I = 0 in Sect. 4.2. Results
for initial conditions I = 1 and I = 2 are given in Sect. 4.3,
and asymmetric settings are briefly addressed in Sect. 4.4.
Discretization and domain studies are the topic of Sect. 4.5.

4.1. Brief phenomenological description

We begin with a brief qualitative description of the CDL. As
an example, the density structure of run R22_1.2.2 is shown in
Fig. 3 for three different times.

A first characteristic is the local bending of the confining
shocks. The spatial scale of these wiggles increases linearly with
time, as the CDL accumulates more and more matter and gets
more and more extended. The inclination of the wiggles with
respect to the direction of the upstream flows decreases with in-
creasing upstream Mach-number (see Sect. 4.2.2). Occasionally,
we observe a superimposed “bending mode” (e.g. bottom panel
in Fig. 3), which in appearance is somewhat similar to the bend-
ing modes of the NTSI described by Vishniac (1994).

A second characteristic is the patchy appearance of the CDL.
The turbulent interior is organized in filaments and patches, re-
gions within which a flow variable remains more or less con-
stant. The spatial extension of these patches increases as well as
the CDL accumulates more and more matter. The flow variables
clearly mirror the supersonic character of the turbulence: the
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contrast between high-density filaments and extended patches
in Fig. 3 easily reaches two orders of magnitude, the root-mean-
square velocity is well above sound, and the mean density is
substantially reduced compared to the 1D case. Shocks within
the CDL are ubiquitous.

4.2. Settings without CDL at t = 0

For symmetric settings, and if there is no CDL at time t = 0, we
expect to see the self-similar relations we derived in Sect. 3.2.
We express the time evolution of the solution in terms of

ℓ(N) ≡ N/N0 =
ρmℓcdl

ρuY0

· (35)

This function monotonically increases at about the same rate as
the mean extension of the CDL, since ρm ≈ η1ρu (Eq. (29)). In
fact, ρm ≈ 30ρu (Sect. 4.2.1) and thus ℓ(N) = 60 corresponds
to ℓcdl ≈ 2Y0. For the symmetric case we consider in this pa-
per, ℓ(N) is proportional to the elapsed time. Using Eq. (12) to
express N, we can write

ℓ(N) ≡ N/N0 =
2τρuvu

ρuY0

= τ
2vu

Y0

, (36)

and ℓ(N) = 60 then corresponds to a time τ = 30Y0/vu. Or, if we
use vu ≈ 5vrms (Sect. 4.2.1) and Y0 ≈ ℓcdl/2 for ℓ(N) = 60, we
obtain τ ≈ 3ℓcdl/vrms.

Unless otherwise stated, averages and best fits in this section
are always taken over the interval 10 ≤ ℓ(N) ≤ 70 and over all
runs without CDL at time t = 0. The interval was chosen such
that initialization effects have died away and that domain effects
do not matter yet (Sect. 4.5.1).

We mention here already that the two most extreme simu-
lations in terms of Mu, R5_0.2.4 and R87_0.2.4, often differ
somewhat from the other simulations. In the case of R5_0.2.4,
we ascribe the deviation to the only subsonic turbulence and the
correlation of density and velocity (Mrms ≈ 0.9 and corr(ρ, v) ≈
−0.4, see Sect. 4.2.1). In the case of R87_0.2.4, the shocks be-
come sometimes too strongly inclined with respect to the com-
putational grid to be properly resolved by our numerical grid
(Sect. 4.2.2).

4.2.1. CDL mean quantities and correlations

We first turn to the correlation of ρ and v and the CDL mean
quantities ρm and Mrms, Eqs. (29) and (30). One of our ba-
sic assumptions in deriving these self-similar relations, namely
point b) that the CDL density and velocity are uncorrelated, we
find confirmed by our simulations. For nearly all symmetric sim-
ulations without initial CDL and for 10 ≤ ℓ(N) ≤ 70, we have
0.1 ≥ corr(ρ, v) ≥ −0.1. The only exceptions are the three low
Mach-number runs R11_0.2.4, R11_0.2.2, and R5_0.2.4 with
correlations of about −0.2, −0.2, and −0.4 respectively. The
top panel of Fig. 4 shows the time evolution of corr(ρ, v) for
five selected runs that differ only in their upwind Mach-number,
5 ≤ Mu ≤ 90.

In the middle and bottom panel of the the same figure, ρm/ρu

and Mrms/Mu are shown as a function of ℓ(N) for the same runs.
Two things are apparent. First, the ratios take similar values for
all five runs, indicating that indeed β1 ≈ 0 and β2 ≈ 1 for the
exponents in Eqs. (29) and (30). Second, the ratios are not con-
stant with ℓ(N), indicating that the numerical solution is indeed

Fig. 3. The interaction zone of run R22_1.2.2, shown in density (loga-
rithmic scale, in units of ρu, color bar from 0 to 4), for three different
times: ℓ(N) ≈ 34 (top), ℓ(N) ≈ 54 (middle), ℓ(N) ≈ 74 (bottom). The
spatial scale of patches, filaments, and wiggling of the confining shocks
increases with ℓ(N).

only approximately self-similar. We come back to this point in
Sect. 5.

To determine optimum exponents βi, i = 1, 2, we rewrite
Eqs. (29) and (30) as equations for η1 and η2 and minimize the
variance σ2(ηi). Considering all data points within 10 ≤ ℓ(N) ≤
70 of all runs without a CDL at t = 0, we find the smallest
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Fig. 4. Time evolution of corr(ρ, v) (top), ρm/ρu (middle), and Mrms/Mu

(bottom) for runs R5_0.2.4 (dotted, dark blue), R11_0.2.4 (dashed,
purple), R22_0.2.4 (solid, red), R33_0.2.4 (dash-dotted, orange),
R43_0.2.4 (dash-three-dots, green), and R87_0.2.4 (long dashes, pink).
For these runs, ℓ(N) = 60 corresponds to ℓcdl ≈ Y/2.

variances for β1 = 0 and for β2 = 1. The corresponding means
are µ(η1) ≈ 28 and µ(η2) ≈ 0.21. Although clearly identifi-
able, the minima of σ are relatively shallow. Changing β1 or β2

by ±0.1, or excluding the very low Mach-number case R5_0.2.4
(for which Mrms ≈ 0.9) changes σ by only about 5%. By re-
peating the analysis but allowing for a linear dependence of ηi

on ℓ(N), we obtain the same optimum values for β1 and β2 but
with considerably smaller variance. As ℓ(N) increases from 10
to 70, η1 rises by about 25% (from 25 to 31), while η2 decreases
by about 15% (from 0.22 to 0.19).

Part of our assumption a), namely the simple Mach-number
dependencies of ρm and Mrms, thus seems justified. With η2 =

0.21, assumption c), η2
2
M2

u ≫ 1, is also fulfilled for most of
our simulations. An exception is again run R5_0.2.4, for which
η2

2
M2

u ≈ 1.
In summary, the simulation results, ρm ≈ 28ρu and Mrms ≈

0.21Mu, essentially confirm the expected relations, Eqs. (29)

and (30). η
1/2

1
η2 = 1, predicted by Eq. (20), is fulfilled to

within 10% at any given time. The mean density is (nearly)
independent of Mu. As expected, the solution is only approx-
imately self-similar, Mrms decreases by about 15% as ℓ(N) in-
creases from 10 to 70.

4.2.2. Confining shocks

The turbulence within the CDL is driven by the upstream flows.
The confining shocks of the CDL affect this driving in two ways.
The less inclined the shocks are on average with respect to the
direction of the upstream flows (smaller angle αeff in Eq. (24)),
the more kinetic energy survives shock passage and is available

for driving the turbulence. The smaller the spatial scale on which
the angle α varies, the smaller the scale on which the energy
input changes. In the following, we analyze how these shock
properties depend on Mu and on ℓcdl.

For this purpose, we specify the following basic quantities.
The discrete x-position of the left and right shocks, sl and sr,
defined for each discrete y-position y j as the two cell boundaries
where the Mach-number drops for the first time from its upwind
value Mu to 0.8Mu. We determine the average extension of the
CDL, ℓcdl, as

ℓcdl =
1

J

J
∑

j=1

[sr(y j) − sl(y j)]. (37)

The length of the left and right shocks, ℓsh,l and ℓsh,r, are com-
puted as

ℓsh,i =

J
∑

j=1

[

(si(y j) − si(y j−1))2 + (y j − y j−1)2
]1/2
, (38)

where J is the number of cells in y-direction, and i = l, r. We
define the angle αl,r(y j) as the angle between the x-axis and the
tangent to the shock (see Fig. 1). Its numerical computation is
described in Appendix A. To obtain a number distribution, we
sort the values αl,r(y j) ∈ [0, π/2] into 60 bins. Finally, to obtain a
measure for the scale on which the shocks are wiggled, we look
at the auto-correlation functions Γl,r,

Γi(ycorr) =
〈[si(y j) − s̄i] · [si(y j + ycorr) − s̄i]〉

σ2
s

, (39)

where σ2
s is the variance of the shock position si, and 〈.〉 denotes

the mean over all discrete position y j. For each time, we deter-
mine ycorr0

such that Γi(ycorr0
) = 0.5. Averaging ycorr0

over both
shocks gives a mean auto-correlation length ℓcorr,

ℓcorr =
1

2

[

ycorr0
(sl) + ycorr0

(sr)
]

. (40)

A larger auto-correlation length ℓcorr then indicates that the
shocks are wiggled on a larger spatial scale, but it does not give
the scale of the wiggles in absolute units (see below).

All four quantities, CDL extension, number distribution of
angle α, shock length, and correlation length, are shown in
Fig. 5. The first panel of Fig. 5 shows the essentially linear
growth of the CDL with ℓ(N). The growth rate, however, slowly
decreases with increasing ℓ(N). The slope of a linear fit in the
range 40 < ℓ(N) < 70 is roughly 10% flatter than the slope ob-
tained in the range 10 < ℓ(N) < 40. This fits with the slight
increase in ρm, observable in the middle panel of Fig. 4. The
second panel of Fig. 5 shows that the average shock length ℓsh =

0.5(ℓsh,l+ℓsh,r) is fairly constant with respect to ℓ(N) but increases

with Mu. Assuming a dependence of the form ℓsh = ηshYM
βsh

u ,
the variance σ2(ηsh) becomes minimal for βsh = 0.8. As can be
seen, the two runs R5_0.2.4 and R87_0.2.4 again behave some-
what differently. If we neglect these two runs, βsh remains un-
changed but σ is reduced by about 40%. The third panel of
Fig. 5 shows that larger upwind Mach-numbers lead to less in-
clined shocks with respect to the direction of the upstream flows
(lower values of α). Shown is the number distribution of α, av-
eraged over 10 ≤ ℓ(N) ≤ 70. Individual runs show a slight shift
towards higher values of α as ℓ(N) increases. This shift is, how-
ever, small compared to the effect of Mu. The fourth panel of
Fig. 5 shows the auto-correlation length ℓcorr. It not only depends



D. Folini and R. Walder: Compressible turbulence in shock-bounded interaction zones. I. 9

Fig. 5. Quantities related to the confining shocks: average extension ℓcdl

of the CDL (first panel), total normalized shock length lsh/(Y M0.8
u ) (sec-

ond panel), number distribution (60 bins) of obliqueness angle α aver-
aged over 10 ≤ ℓ(N) ≤ 70 (third panel), auto-correlation length ℓcorr/Y0

(fourth panel), and scaled auto-correlation length ℓcorr/(ℓcdl M
−0.6
u ), (fifth

panel). Individual curves denote the same runs as in Fig. 4.

on Mu but is also proportional to ℓcdl. The best fit is found to be
ℓcorr ≈ 0.7ℓcdlM

−0.6
u . The fifth panel of Fig. 5 shows ℓcorr scaled

with this best fit. From these scaling properties of ℓcorr, we take
that higher values of Mu lead to smaller scale wiggling of the
shocks with respect to ℓcdl.

The absolute value of ℓcorr clearly depends on the choice of
the threshold value in our definition, Γ(ycorr) = 0.5. Figure 6 il-
lustrates the variation of Γl as a function of ycorr at the example
of run R43_0.2.4. The top panel of Fig. 6 shows that the initially
present sinusoidal wiggling of the confining shocks does not get
lost until about ℓ(N) = 15, which is rather late compared to the
other runs. Mode-like signatures again appear around ℓ(N) >∼ 50.
Our data give, however, no clear answer to how typical and

Fig. 6. Variation of Γl, color coded, as a function of ycorr for run
R43_0.2.4 (top panel). To allow for better display the color scale is
limited to a range −0.5 ≤ Γl ≤ +0.5. Lower or higher values of Γl are
uniformly colored in dark blue or red, respectively. For the same run, Γl

is shown as a function of ycorr for three selected times (bottom panel).
ℓ(N) = 30 (solid), ℓ(N) = 50 (dotted), ℓ(N) = 70 (dashed).

persistent such signatures are. A basic problem is that their wave
length soon becomes comparable (within a factor of 2 or so) to
the domain size in the y-direction, which may affect the signa-
tures. From the bottom panel of Fig. 6, on the other hand, it can
be taken that Γl essentially decreases linearly from 1 to about 0.2.
The other simulations show a similar behavior. Consequently,
the above scaling properties of ℓcorr should also be obtained if
smaller threshold values are used, down to about Γ(ycorr) = 0.2.

Figures 4 and 5 also allow some insight into why runs
R5_0.2.4 and R87_0.2.4 sometimes fit not so well. The third
panel of Fig. 5 shows that our spatial resolution is barely suf-
ficient for run R87_0.2.4, the largest upwind Mach-number we
have considered. The number distribution here peaks at around
α ≈ 0.1. In terms of discrete positions this means that the shock
position changes by about 15 cells in the x-direction as one
moves from y j to y j+1. Run R5_0.2.4, on the other hand, may
deviate just because of its low Mach-number. The turbulence
within its CDL is subsonic, Mrms ≈ 0.9; and with η2

2
M2

u ≈ 1.1
and corr(ρ, v) ≈ −0.4 (Fig. 4, top panel), it violates two of the
basic assumptions made when deriving the self-similar scaling
laws in Sect. 3.2.

In summary, as Mu increases, the bounding shocks become
less inclined with respect to the direction of the upstream flows
(smaller α), the fraction of upstream kinetic energy that sur-
vives the passage through the bounding shocks increases, and
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Fig. 7. Driving efficiency (top panel) and best fit η3 = (1 − feff)M0.7
u

(bottom panel). For details see text.

the bounding shocks themselves are wiggled on progressively
smaller scales (smaller ℓcorr/ℓcdl).

4.2.3. Energy balance

Energy input into the CDL occurs only at its confining interfaces.
Energy dissipation, on the other hand, occurs throughout the
CDL volume. Nevertheless, according to the analysis in Sect. 3.2
both Ėdrv and Ėdiss should be independent of the CDL extension
if dissipation is only due to shocks and if ℓcdl is small compared
to Y. The average distance between shocks must then increase
and/or the average strength of the shocks must decrease as the
CDL grows.

To determine Ėdrv we must compute the driving efficiency
feff = Ėdrv/Fekin,u. The corresponding integral in Eq. (24) is eval-
uated numerically, and the resulting driving efficiency is shown
in the top panel of Fig. 7. As can be seen, larger Mach-numbers
lead to more efficient driving, and a smaller part of the up-
stream kinetic energy is thermalized already at the confining
shocks. The driving efficiency feff increases by about a factor
of four between runs R5_0.2.4 and R87_0.2.4. Also notewor-
thy is that the absolute value of the driving power Ėdrv differs
by more than 4 orders of magnitude between runs R5_0.2.4 and
R87_0.2.4. The best fit for the assumed Mach-number depen-
dence (minimization of σ(η3) in Eq. (25)) yields β3 = −0.7. The
corresponding values of η3 = (1 − feff)M0.7

u are shown in the
bottom panel of Fig. 7. From the figure we take that the second
part of our assumption a), the simple Mach-number dependence
of feff , seems justified. The figure also shows that feff , and thus
the driving power Ėdrv, is not strictly independent of ℓcdl but de-
creases with increasing ℓ(N). Repeating the best fit analysis but
allowing for a linear dependence of η3 on ℓ(N) again leads to
β3 = −0.7, while η3 changes from 3.1 to 3.6 as ℓ(N) goes from 10
to 70. The average value of η3 is 3.3. Omission of the extreme
runs R5_0.2.4 and R87_0.2.4 does not change the result.

We determine the dissipated energy as Ėdiss = Ėdrv − Ėkin

(Sect. 3.2.2), where Ėkin is the change per time of the kinetic en-
ergy within an average column of the CDL, and Ėkin is directly
from our simulation data. Figure 8 shows the numerically ob-
tained value Ėdiss (top panel) and the theoretically expected value
(Eq. (34)) Ėth

diss
(middle panel), both in units of Fekin,u = ρuv

3
u, as

well as the ratio of the two (bottom panel). For better display, the
theoretical value, which must not depend on ℓ(N), is shown as a

Fig. 8. Numerically obtained (top panel) and theoretically expected
(middle panel) energy dissipation in units of the upstream kinetic en-
ergy flux density Fekin,u = ρuv

3
u. The constants in Eq. (34) were set to the

best fit values, η3 = 3.3, β3 = −0.7, and η2 = 0.21. We used η3 = 2.75
for run R5_0.2.4 (for details see text). The bottom panel shows the ra-
tio of the two quantities. Individual curves denote the same runs as in
Fig. 4. For better display, Ėdiss was smoothed using a running mean with
time window ∆ℓ(N) = ±1.

Fig. 9. Effect of smoothing Ėdiss with a running mean and window
∆ℓ(N) = ±1, illustrated by run R33_0.2.4. Shown is Ėdiss in units of
Fekin ,u = ρuv

3
u, before (dashed, black) and after (solid, red) smoothing,

in units of erg cm−3 s−1.

(constant) function of ℓ(N). For the constants in Eq. (34) we used
the numerically obtained average values, η3 = 3.3, β3 = −0.7,
and η2 = 0.21. We used η3 = 2.75 only for R5_0.2.4, in accor-
dance with the bottom panel of Fig. 7. The numerically obtained
value was smoothed for better display using a running mean with
window size ∆ℓ(N) = ±1. The effect of the smoothing is illus-
trated in Fig. 9 with the example of run R11_0.2.4.

Looking at the data of Ėdiss and Ėdrv, three points may be
stressed. First, Ėdiss (Fig. 8, top panel) mirrors Ėdrv = Fekin,u feff
(Fig. 7, top panel), and the values usually differ by less than 10%.
This is not surprising. It implies, however, that for larger up-
stream Mach-numbers, a larger fraction of the upstream kinetic
energy is thermalized only within the volume of CDL and not
already at its confining shocks. For Mu >∼ 20, the energy dis-
sipated within the CDL exceeds 50% of the upstream kinetic
energy (Fig. 8, top panel).
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Second, the bottom panel of Fig. 8 shows that Ėth
diss

and Ėdiss

agree to within 10% most of the time. Given the wide range cov-
ered (5 orders of magnitude in Ėdiss, a factor of 20 in Mu, and
an increase by a factor of 7 in ℓ(N)), we conclude that the self-
similar solution gives a good estimate.

Third, from the same figure it can be seen that Ėdiss gen-
erally decreases, except for run R5_0.2.4. Excluding R5_0.2.4,
a linear fit to Ėdiss/Ėth

diss
yields a decrease of 10% as ℓ(N) in-

creases from 10 to 70. A similar fit to Ėdrv/Ėth
drv

with Ėth
drv
=

ρuv
3
u(1−3.3M−0.7

u ) yields an even slightly larger decrease of 13%.

The net dissipation, Ėdiss/Ėdrv, in fact increases by 3%. Thus, as
the CDL size increases, the absolute dissipation within an aver-
age column decreases while the net dissipation increases.

In summary, the predicted scaling laws, Eqs. (32) to (34),
are – within the range of applicability – essentially confirmed by
the simulations. The fraction of upstream kinetic energy dissi-
pated only within the CDL, and not at the confining shocks, thus
increases with Mu. Best-fit analysis for the numerical constants
yields feff = 1 − 3.3 M−0.7

u . Both Ėdrv and Ėdiss decrease slightly

with increasing ℓcdl. The net dissipation rate Ėdiss/Ėdrv increases,
but only slightly (3% increase as ℓ(N) goes from 10 to 70).

4.2.4. Length scales of the turbulence

In Sect. 4.2.2 we looked at the scaling properties of the confining
shocks and pointed out that shorter auto-correlation lengths ℓcorr

imply smaller-scale wiggling, thus smaller scale changes of the
kinetic energy entering the CDL. In the following, we show that
the interface based quantity ℓcorr is proportional to the length
scale derived from the volume properties of the turbulence. We
take this as evidence of the tight coupling between volume and
interface properties, between the turbulence and its driving.

On dimensional grounds, we can define two length scales
based on volume properties of the turbulence,

ℓekin
≡

N−1/2E3/2

kin

Ėdiss

, (41)

ℓvrms
≡

Nv3rms

Ėdiss

, (42)

where Ekin =
ℓcdl

2V

∫

V
ρv2 is the average column integrated kinetic

energy density. Here V is again the 2D volume of the CDL, in-
troduced in Sect. 2.3.1. The two scales are equal up to a numeri-
cal constant if the density and velocity are uncorrelated, in which
case we can replace the average over the product ρv2 by the prod-
uct of the averages of ρ and v2, Ekin = ℓcdlρmv

2
rms = Nv2rms. As this

is the case in most of our simulations we look at only one of the
above quantities in the following, ℓekin

, shown in the top panel
of Fig. 10. For better display, as ℓekin

inherits the large time vari-

ability of Ėdiss, it is smoothed in the same way as Ėdiss in the
bottom panel of Fig. 8.

Assuming a relation of the form ℓekin
= αekin

ℓcorr, we obtain
optimal fits (minimum of σ2(αekin

)) for αekin
≈ 1.3. The fits be-

come only slightly better if a weak linear dependence of αekin

on ℓ(N) is allowed (13% change as ℓ(N) goes from 10 to 70).
ℓekin
/ℓcorr is shown in the middle panel of Fig. 10. Looking di-

rectly at the dependence of ℓekin
on ℓcdl and Mu, we find ℓekin

∝
ℓcdlM

−0.6
u . This is the same dependence we found for ℓcorr in

Sect. 4.2.2, ℓekin
scaled with this best fit is shown in the bottom

panel of Fig. 10.
With increasing upstream Mach-number the characteristic

length scale ℓekin
thus decreases with respect to the CDL exten-

sion. This is consistent with our observation that for the same ℓcdl

Fig. 10. Characteristic length ℓekin
of the turbulence (top), in units of ℓcorr

(middle), and scaled with best-fit ℓcdl M
0.6
u (bottom) as functions of ℓ(N).

Individual curves denote the same runs as in Fig. 4. For better display,
ℓekin was smoothed by a running mean with window ∆ℓ(N) = ±1.

the interior of the CDL shows finer structuring (patches, fila-
ments) for higher values of Mu. Figure 11 illustrates this ob-
servation with the example of runs R11_0.2.4 and R33_0.2.4.
Shown in the figure is div(u), as the flow patterns, especially
shocks, are better visible in this quantity than in density.

In summary, our simulations show that the inherent length
scale of the turbulence is proportional to the auto-correlation
length of the confining shocks, independent of Mu and ℓcdl.
With increasing Mu, both length scales decrease relative to the
CDL extension, ℓekin

/ℓcdl ∝ M−0.6
u . The appearance of the CDL,

the size of its patches and filaments, behaves similarly.

4.3. Settings with CDL at t = 0

We performed additional runs to study the influence of an ini-
tially present CDL. Figure 12 illustrates the results for some se-
lected quantities. Shown are all the runs we performed with ini-
tial condition I = 0 (no CDL at t = 0), I = 1 (moderate CDL at
t = 0), and I = 2 (massive CDL at t = 0).

Comparison of the I = 1 and I = 0 curves in Fig. 12 shows
that an initially present CDL of moderate column density (N =
14 N0) soon develops characteristics similar to those found in
simulations without initial CDL. A quasi-steady state is reached
for ℓ(N) >∼ 40. The I = 1 and I = 0 curves then agree to within
about a factor of two for volume quantities like ρm and Mrms

(first two panels in Fig. 12). Agreement seems slightly better for
interface related quantities. For (1− feff) M0.7, shown in the third
panel of Fig. 12, the I=1 and I=0 curves lie more or less on top
of each other. The same is true for ℓekin

/ℓcdl M0.6
u , shown in the

bottom panel of Fig. 12.

The situation is slightly different for runs with an initially
rather massive CDL (I = 2, with initially N = 56 N0). Also in
these simulations the CDL gets more and more turbulent. For
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Fig. 11. Plots of div(u) for two runs that are identical except for their
upstream Mach-number. Larger upstream Mach-numbers lead, on aver-
age, to finer structure within the CDL and smaller scale wiggling of the
confining shocks. Shown are runs R33_0.2.4 (top) and R11_0.2.4 (bot-
tom), both at a time when ℓcdl ≈ 2 Y0 = Y/2. Blue (dark lines) indicates
convergence, red (dark patches) divergence.

all the quantities shown in Fig. 12, the I = 2 curves approach
the I = 1 and I = 0 curves. However, it takes these runs much
longer to saturate. Only for ℓ(N) > 240 the curves finally seem
to saturate, at similar values as the I = 0 and I = 1 curves. That
saturation does indeed occur around that time is also supported
by Fig. 13. As can be seen, the average angle distribution of
the confining shocks for run R22_2.2.2 first shifts to higher and
higher values as ℓ(N) increases. It then stagnates for the last two
averaging periods, 190 < ℓ(N) < 250 and 250 < ℓ(N) < 310.

In summary, we conclude that our symmetric simulations all
end up in a similar quasi-steady final state. An initially present
CDL only delays the development. The incoming flows also
manage to generate (and sustain) a similar level of turbulence
also within an initially massive CDL.

Fig. 12. Comparing runs with and without an initial CDL. Shown are
ρm/ρu (first), Mrms/Mu (second), the scaled driving efficiency (1 −
feff)M0.7

u (third), and the scaled characteristic length of the turbulence
ℓekin
/ℓcdl · M0.6

u for all symmetric runs. Line styles and colors denote
initial conditions, 0 (solid line, blue), 1 (dashed line, red), and 2 (dash-
dotted line, orange).

Fig. 13. Time evolution of angle distribution for run R22_2.2.2. Shown
is the average angle distribution for 10 < ℓ(N) < 70 (dashed, blue), 70 <
ℓ(N) < 130 (dash-dotted, green), 130 < ℓ(N) < 190 (dash-three-dots,
orange), 190 < ℓ(N) < 250 (long dashes, purple), 250 < ℓ(N) < 310
(solid, red). Also shown are the distributions for run R5_0.2.4 (black
dots, right line) and for run R11_0.2.4 (black dots, left line), both aver-
aged over 10 < ℓ(N) < 70.

4.4. Asymmetric cases

We also computed a few asymmetric cases, where the two up-
wind Mach-numbers are different, Ml � Mr. For the same reason
as given in Sect. 3, we expect the solution to only depend on Ml

and Mr. These dependencies are more complicated than those
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Fig. 14. Average feff as a function of Mrms for all our symmetric simu-
lations (triangles). In addition, we included data from our asymmetric
runs (asterisks), for which 1.6 Mr ≤ Ml ≤ 64 Mr and which initially
have no CDL. Averages were taken over 10 ≤ ℓ(N) ≤ 70 for simu-
lations without initial CDL (blue triangles and green asterisks), over
40 ≤ ℓ(N) ≤ 70 for runs with a moderate initial CDL (red triangles),
and over 70 ≤ ℓ(N) ≤ 140 for runs with a massive initial CDL (or-
ange triangles). Lines show feff = 1 − M

ξ
rms with ξ = −0.6 (dashed) and

ξ = −0.6 ± 0.1 (dotted).

assumed in Sect. 3 as we now have two different upwind Mach-
numbers. The simple dependencies of Sect. 3 should, however,
be recovered in the limit Ml → Mr.

The basic physical reason for the more complicated depen-
dencies on the upwind Mach-numbers lies in the strong back
coupling between the turbulence within the CDL and the driving
of this turbulence by the upwind flows. Our asymmetric simula-
tions demonstrate clearly (much more clearly than the symmetric
simulations) that the turbulence crucially affects the driving: al-
though Ml and Mr are strongly different, the corresponding driv-
ing efficiencies are about equal, feff,l ≈ feff,r. Thus the efficiency
does not depend primarily on the upwind flow. In fact, Fig. 14
shows that for both symmetric and asymmetric runs feff (aver-
aged now over both shocks) can be described well by

feff = 1 − M−0.6
rms . (43)

The angle distribution of the two shocks behaves accordingly in
that it is similar for both shocks and determined by Mrms rather
than by either Ml or Mr.

A more detailed analysis of the asymmetric case, including
an approximate analytical solution, will be presented in a subse-
quent paper.

4.5. Grid and domain studies

The numerical results presented in Sect. 4.2 were all based on
simulations with a domain Y = 4Y0 and a discretization of 1.5 ×
10−3Y0 (R = 2) or 2560 cells in the y-direction. Here we want to
check whether these choices have any systematical effect on the
numerical results of Sect. 4.2.

4.5.1. Different y -extent

To check whether the size of the computational domain has any
systematic effect on the results of Sect. 4.2, we performed some
of the simulations again, but this time on smaller domains of
Y = 2Y0 and Y = Y0. We also performed one simulation on a
larger domain Y = 6Y0.

Figure 15 illustrates our findings for simulations on domains
Y = 2Y0 and Y = 4Y0. Mrms shows no systematic effect and is, as
such, representative of other volume-related quantities (Fig. 15,
top panel). As a typical representative for interface-related quan-
tities, feff also shows no clear overall effect of the domain size
(Fig. 15, middle panel). The quantity for which we find the most

Fig. 15. Comparing runs that differ only in the y-extent of the do-
main (Y = 2 Y0 and Y = 4 Y0). Shown are Mrms,2Y/Mrms,Y (top),
feff,2Y/ feff,Y (middle), and ℓcorr,2Y/ℓcorr,Y (bottom). Individual curves de-
note runs R11_0.2.* (dashed, purple), R22_0.2.* (solid, red), R33_0.2.*
(dash-dotted, orange), R43_0.2.* (dash-three-dots, green).

clear effect is the auto-correlation length ℓcorr (Fig. 15, bottom
panel). However, even for ℓcorr the effect sets in only for two of
the four runs and only for ℓ(N) >∼ 30, i.e. once the CDL extension
reaches about half the size of the smaller domain. For the numer-
ical results in Sect. 4.2, ℓcdl ≈ Y/2 corresponds to ℓ(N) = 60. We
conclude that the y-extent of the computational domain has no
apparent systematic effect on these results up to ℓ(N) <∼ 30 and
probably even up to ℓ(N) <∼ 60.

A systematic effect of the computational domain on the nu-
merical solution does become apparent if the simulations are car-
ried on much longer. One pair of runs, R22_0.2.2 and R22_0.2.6,
were carried on much longer, till ℓ(N) ≈ 200. For this pair of
runs, Fig. 16 shows the evolution of Mrms for each run, as well
as their ratio, Mrms,3y/Mrms,y. The run on the smaller domain ap-
parently shows a faster decay in Mrms after ℓ(N) ≈ 100. From
Fig. 17 we take that the behavior of this one pair of runs is most
likely the rule, and not the exception. The top panel of Fig. 17
shows ℓcorr, scaled, for all the symmetric runs we have performed
and whose domain has a y-extent ≤2Y0. The bottom panel of
Fig. 17 gives the same quantity for all the runs with a domain
extention ≥4Y0. Comparison of the two figures shows that runs
on a domain ≤2Y0 saturate around ℓcorrM

0.6
u ≈ 1.6Y0. For runs on

a domain ≥4Y0, ℓcorr reaches much higher values.

4.5.2. Different discretization

The results presented in Sect. 4.2 were all based on simulations
with a discretization of 1.5 × 10−3Y0 (R = 2) or 2560 cells
in the y-direction. To check the effect of the discretization
on our results, we repeated several simulations with coarser
and/or finer discretization. These simulations indeed reveal a
systematic effect of the discretization on the values of average
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Fig. 16. Comparison of runs R22_0.2.2 and R22_0.2.6, illustrating the
effect of a three-times larger y-extent of the computational domain on
long time scales. Shown are Mrms/Mu (top) for R22_0.2.2 (solid, light
blue) and R22_0.2.6 (dashed, dark red) and the ratio Mrms,3Y/Mrms,Y

(bottom).

Fig. 17. Scaled auto-correlation lengths of all symmetric simulations on
domains with a y-extent less or equal to 2 Y0 (top) and a y-extent greater
or equal to 4 Y0 (bottom).

quantities. Nevertheless, the general properties of the solution,
its approximate self-similarity and Mach-number dependences,
remain unaltered. Only the numerical constants ηi are affected.
The changes are, however, small when compared to the differ-
ences between the 1D and 2D solution (for example, ρm = η1ρu

in 2D, while ρm = M2
uρu in 1D).

We find that finer discretization generally leads to reduced
turbulence. Using finer meshes we obtained larger mean densi-
ties and lower values of Mrms, as shown in Fig. 18. The driv-
ing efficiency gets lower and the shocks become more inclined
with respect to the direction of the upstream flows, and the angle
distribution is shifted to lower values. The characteristic length
scale ℓekin

remains about constant if taken in units of ℓcdl.

A possible explanation for the reduction of turbulence
(smaller Mrms) on finer grids could be the dominance of shocks
for the energy dissipation in the CDL. On a coarser grid, the net-
work of shocks within the CDL is less dense. The divergence
plots shown in Fig. 19 illustrate this effect. A closer analysis of
this idea is, however, beyond the scope of the present paper.

Fig. 18. Comparison of Mrms for runs whose spatial resolution differs
by a factor of 2 (subscript c = coarse, f = fine). Shown are (giving
only the name of the finer run) runs R22_0.2.4 (solid, red), R22_0.4.4
(dash-three-dots, blue), R43_0.2.4 (long dashes, purple), and R11_0.2.4
(dash-dotted, orange).

Fig. 19. Plots of div(u) for two runs that are identical to run R11_0.2.4,
shown in Fig. 11, except for their discretization. The runs shown here
were computed with two times lower (top) and at four times lower
(bottom) resolution. Blue (dark lines) indicates convergence, red (dark
patches) divergence. As can be seen, the number of convergent regions
within an average CDL column decreases with decreasing resolution.
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We stress that, so far, no convergence has been reached in
our discretization studies. Looking at the comparison of the three
runs R22_0.1.4, R22_0.2.4, and R22_0.4.4 in Fig.18 shows that
each reduction of the cell size by a factor of two leads to a re-
duction of about 20% in Mrms. This indicates that the resolution
of 2560 cells in y-direction in our standard runs (R*_0.2.4) and
of 5120 cells in the y-direction in the refined runs is still not
sufficient. This should be kept in mind when interpreting these
results or any results on shock bound turbulent structures in 2D,
let alone 3D.

Also, no clear picture emerges regarding the deviation of
Mrms from the constant value predicted by Eq. (15). A lin-
ear fit to Mrms for 10 ≤ ℓ(N) ≤ 70 yields −12% for run
R22_0.2.4 and −23% for the two times coarser run R22_0.1.4.
For runs R43_0.*.4, the grid dependence is the other way round:
R43_0.2.4 shows a decrease of −25%, the twice coarser run
R43_0.1.4 decreases by only −15%.

5. Discussion

We want to address four points in this section. First, we sketch
possible reasons for the slight difference between the numeri-
cal solution and the relations we derived in Sect. 3. Second, we
look once more at the driving of the turbulence and, in particu-
lar, the back-coupling between interface and volume properties.
Third, we briefly consider our results in an astrophysical con-
text, in particular with regard to molecular clouds. Finally, based
on preliminary numerical results, we sketch the effect of some
additional physics.

5.1. The numerical solution versus the analytical solution

In Sect. 3.2 we suggested that a self-similar solution to our
2D model problem may still exist for the limiting case where
the system approaches infinity. The relations derived in that
section give a reasonable estimate for the numerical results of
Sect. 4. However, while Mrms is constant in Sect. 3.2, the nu-
merical simulations show a gradual decrease in Mrms already for
small CDLs, ℓcdl <∼ Y/2 (15% decrease of Mrms as ℓ(N) increases
from 10 to 70, Sect. 4.2). We have no firm explanation for this
difference. We sketch three possible effects in the following, but
stress that the available data do not allow us to clearly distinguish
between them.

A first, obvious reason could be the finite y-extent of the
computational domain, Y. It sets an upper limit on the total en-
ergy input into the CDL, thus on the amount of mass within the
CDL that can be driven. Once the CDL has accumulated too
much mass, the driving per unit mass weakens and the turbu-
lence starts to weaken. The spatial growth of the CDL slows
down while the average density increases. The following con-
siderations on time scales may illustrate this point further.

An upper limit to the time at which Y starts to affect the so-
lution is given by the time ty at which ℓcdl = Y. At later times
structures may still grow in the x-direction (up to ℓcdl at most)
but cannot grow any more in the y-direction (where Y sets an
upper limit). For the runs in Sect. 4.2, ℓcdl = Y corresponds
to ℓ(N) ≈ 120 or ty = 12Y0/vrms. A lower limit for the decay
time scale of the turbulence may be obtained as follows. For the
case of uniformly driven isothermal hydrodynamic turbulence in
a 3D periodic box, Mac Low (1999) has shown that the typical
decay time once the driving is turned off, t0, and the initial driv-
ing wave length, λdrv, are related by t0 ≈ λdrv/vrms. Assuming
that this result also holds for our slab, that λdrv = Y, and that

driving is turned off completely, it follows that t0 ≈ Y/vrms, or
t0 ≈ 4Y0/vrms for the runs in Sect. 4.2. However, driving contin-
ues in our simulations and so the effective decay time scale of
the turbulence is likely to be much longer than t0. Finally, for
the runs in Sect. 4.2, and a typical integration time of ℓ(N) = 60
corresponds to about τ = 6Y0/vrms, a typical turbulent crossing
time at ℓ(N) = 60) is τcross = ℓcdl/vrms ≈ 2Y0/vrms. Comparing
these different time scales makes it seem likely that at ℓ(N) = 60,
turbulence in the center of the CDL is still essentially driven, not
essentially decaying.

Our simulation data do not allow us to either clearly con-
firm or reject the hypothesis that the finite y-extent of the com-
putational domain is responsible for the slight decrease in Mrms

that we observe at early times, ℓ(N) <∼ 70. If the finite domain
size were responsible, Mrms should decay differently on different
domains. Comparison of simulations on different domains up to
ℓ(N) ≈ 70 (Sect. 4.5.1), however, gives no clear picture. The data
are rather noisy, and simulations on domains 2Y0 and 4Y0 show
no systematic differences as long as ℓ(N) <∼ 30 (ℓcdl < Y/2 on the
smaller domain). Only for much later times, ℓ(N) ≫ 70, well be-
yond the range for the results in Sect. 4.2, does Y have a clear
effect and Mrms decreases faster on smaller domains (Fig. 16).

A second, more speculative, reason might be numerical dis-
sipation, provided that its effect were to increase with ℓcdl. While
we have no evidence that the latter is really the case, it may
also be hasty to discard this possibility right away. Porter &
Woodward (1994) found, by observing how simple 2D hydro-
dynamical flows (shear flows and sound waves of definite wave
number, their Sect. 3.3) damp with time, that the decay rate due
to numerical dissipation alone is a non-linear function of the
wave number. Their results are certainly not directly applica-
ble to the present case. But in view of these results, and given
the change in structure size with ℓcdl as suggested by Fig. 3,
it might be possible that the effect of numerical dissipation in-
deed changes with ℓcdl. Note that this would also imply that the
MILES approach, outlined in Sect. 2.1, were not strictly valid
for the problem we consider. The currently available data do not
allow us to clearly reject or confirm the effect.

A third reason, or rather an amplifying mechanism, could be
back-coupling between Mrms and the driving efficiency. Once the
turbulence within the CDL is slightly reduced (for whatever rea-
son), the reduction is further amplified by the back-coupling be-
tween turbulence and driving, feff = (1−M−0.6

rms ). The decrease in
Mrms results in larger inclination of the shocks with respect to the
direction of the upstream flows, more energy is dissipated at the
confining shocks of the CDL, and less driving energy enters the
CDL. For the observed 15% reduction of Mrms, the reduced driv-
ing may, in fact, play a dominant role: as ℓ(N) increases from 10
to 70, Ėdrv/Ėth

drv
decreases by 13% (Sect. 4.2.3). But to really es-

timate the relative importance of the three effects just sketched,
further studies are certainly necessary.

Two more points seem noteworthy to us in this section. One
concerns the near independence of Ėdiss on ℓcdl. From Fig. 3 (in-
crease in structure size with increasing ℓcdl), we take that it is
rather the increasing average distance between shocks that al-
lows Ėdiss to be essentially independent of ℓcdl and not so much
the, on average, decreasing strength of shocks (Sect. 3.2.3).
Whether this is indeed true, only a closer analysis of the structure
within the CDL along the lines of Mac Low & Ossenkopf (2000)
can tell, which is, however, beyond the scope of the present pa-
per. Such an analysis could also shed light on whether (or in
which sense) ℓekin

(see Sect. 4.2.3) is indeed a measure of the av-
erage distance between shocks. It would also allow us to quantify
our impression that small scale structures are preferably located
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close to the confining interfaces. If true, this would fit with the
result by Smith et al. (2000) that the high-frequency part of the
shock spectrum is lost most efficiently.

The other point concerns run R5_0.2.4. With corr(ρ, v) ≈
−0.4 Mrms ≈ 0.9, it violates two of the basic assumptions we
made in Sect. 3.2. Its mean density is close to the isothermal
value for strong shocks, ρm ≈ 22ρu ≈ 0.9ρuM2

u . Both Ėdiss and

Ėdrv increase with ℓcdl. With these characteristics, R5_0.2.4 may
mark the transition from compressible supersonic turbulence, the
topic of this paper, to compressible subsonic turbulence.

5.2. CDL and confining shocks: a coupled system

The turbulence within the CDL is “naturally driven” in the sense
that we control neither what fraction of the total upstream ki-
netic energy, ρuM2

u , really enters the CDL nor the spatial scale
on which this energy input varies. Both are directly determined
by the confining shocks instead and indirectly depend on the
system as a whole. The driving efficiency at each confining
shock scales with Mrms, even for situations where Ml � Mr (see
Sect. 4.4). The auto-correlation length of the confining shocks
and the characteristic length scale of the turbulence within the
CDL are proportional to each other, both scaling as ℓcdlM

−0.6
u . We

take these facts as evidence that the CDL as a whole, its interface
and volume properties, forms a tightly coupled, quasi-stationary,
and self-regulating system. Back coupling between post shock
flow and shock is also described in other contexts, for example
by Foglizzo (2002) for the case of Bondi-Hoyle accretion.

An aspect that remained elusive in Sect. 4 is the spatial scale
on which the energy input varies, the energy injection scale. To
really tackle this issue, it would be necessary to analyze the en-
ergy spectrum of the CDL. This task requires, however, some
caution because of the highly irregular boundary of the CDL,
and we postpone it for the moment. Nevertheless, we would like
to present a few thoughts on the subject.

A first question is whether it is justified to speak at all of
only one injection scale, of monochromatic driving. The homo-
geneous upstream flow is modulated by the confining shocks.
These are wiggled on a variety of spatial scales at any given
moment. This strongly suggests that the kinetic energy in-
put into the CDL is most likely not monochromatic but oc-
curs at a whole spectral range instead. Consequences of such
non-monochromatic driving have been studied, for example,
by Norman & Ferrara (1996).

It also seems worthwhile to briefly look at
monochromatically-driven turbulence, in particular at the
numerical simulations by Mac Low (1999). For the case of
artificially, monochromatically driven hydrodynamic turbulence
in a 3D box with periodic boundaries, he found that the char-
acteristic length of the turbulence is proportional to the driving
wave length, independent of the Mach-number: λ/ℓ3d

ekin
= 1.42,

where λ is the (known) driving wave length and ℓ3d
ekin

is the
3D analogon of ℓekin

in Eq. (41). In addition, Mac Low (1999)
observed that ℓ3d

ekin
increases with λ, which is mirrored in the

apparent increase in the structure size (patches, filaments).

Although our setting clearly differs from that of Mac Low
(1999), two thoughts come to mind. The first is an actual ob-
servation, namely that we also observe an increase in struc-
ture size with ℓekin

. The second thought is more of a question
or speculation. Mac Low (1999) determines the proportionality
constant between the characteristic scale of the turbulence and
the monochromatic driving wave length. One may wonder about
the implications of this finding if not one driving wave length is

present but a whole spectrum. How will the characteristic length
scale of the turbulence, which can still be determined following
Eq. (41), depend on this spectrum? And, given our finding that
ℓekin
∝ ℓcorr, what does ℓcorr tell us about this spectrum? Both

questions should become tractable once the energy spectrum of
the CDL is determined.

5.3. A glimpse at astrophysics

With regard to astrophysics, the presented work basically sug-
gests that, within the frame of isothermal hydrodynamics and a
roughly plane parallel setting, larger Mach-numbers of the col-
liding flows results in a finer and finer network of higher and
higher density contrast within the interaction zone. In different
types of wind-driven structures, this connection between Mach-
number and structure may be directly observable.

For the clumping of line-driven hot-star winds, our results
suggest that the sheets or clumps formed by the instability of
the line-driving are not homogeneous but possess fine-scale sub-
structure with high density contrast.

Concerning molecular clouds, we first mention that re-
cent arguments support the idea, originally brought forward
by Hunter (1979) and Larson (1981), that molecular clouds
result from the collision of large-scale flows in the ISM.
Basu & Murali (2001) make the point that small-scale driv-
ing (≈0.1−1 pc) of molecular clouds is incompatible with
observed total luminosities, unless the energy dissipation
rates derived from MHD simulations are seriously overesti-
mated. Using a principal component analysis of 12CO (J =
1−0) emission, Brunt (2003) identifies large-scale flows of
atomic material in which the globally turbulent molecular
clouds are embedded. Similar observational results were re-
ported by Ballesteros-Paredes et al. (1999a).

Driven supersonic turbulence as a structuring agent for the
interior of molecular clouds was examined by many authors
(Hunter et al. 1986; Elmegreen 1993; Vazquez-Semadent et al.
1995; Mac Low et al. 1998; Ballesteros-Paredes et al. 1999a,b;
Mac Low 1999; Hartmann et al. 2001; Joung & Mac Low 2004;
Burkert & Hartmann 2004; Mac Low & Klessen 2004; Audit
& Hennebelle 2005; Heitsch et al. 2005; Kim & Ryu 2005;
Vázquez-Semadeni et al. 2006; Ballesteros-Paredes et al. 2006).
The driving wave length of the turbulence, and thus the largest
structure size (Mac Low 1999; Ballesteros-Paredes & Mac Low
2002), is usually a free parameter. Our results show instead that,
at least for the case of an isothermal, shock compressed, super-
sonically turbulent 2D slab, the structure size rather depends on
the size of the slab or cloud.

5.4. Additional physics: an outlook

The model presented in this paper covers only some very basic
physics. To obtain results with a more direct relation to reality,
additional physics must be included in the future, among these
the following. Strongly asymmetric flows, where Ml � Mr, lead
to more complicated dependences, as we will demonstrate in a
forthcoming paper. Inclusion of radiative cooling, instead of as-
suming isothermal conditions, can affect the problem in different
ways. Thermal instability can lead to additional dynamical ef-
fects (Chevalier & Imamura 1982; Gaetz et al. 1988; Strickland
& Blondin 1995; Walder & Folini 1996; Hennebelle & Pérault
1999, 2000; Vázquez-Semadeni et al. 2000; Koyama & Inutsuka
2002; Audit & Hennebelle 2005; Heitsch et al. 2005; Pittard
et al. 2005; Mignone 2005). Extended cooling layers, on the
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other hand, tend to act as a cushion. Simulations by Walder &
Folini (1999) and Walder & Folini (2000b), which include ra-
diative cooling but have otherwise similar parameters as some of
the simulations presented here, show comparatively more small
scale structure and even roll-ups at the interfaces confining the
CDL. The CDL as a whole evolves less violently, and mean den-
sities are about a factor of four to eight higher that what we
found here for the isothermal case. Strongly asymmetric flows,
where Ml � Mr, lead to a qualitatively different solution if ra-
diative cooling is included (Walder & Folini 1998) and to more
complicated dependences on the upwind Mach-numbers in the
isothermal case, as we will demonstrate in a forthcoming pa-
per. The role of thermal conduction has only been considered
by relatively few publications so far (Begelman & McKee 1990;
Myasnikov & Zhekov 1998; Koyama & Inutsuka 2004). Global
bending of the interaction zone affects the stability properties of
the interaction zone as a whole and thus probably also its inte-
rior properties. In colliding wind binaries, for example, matter is
transported out of the central part of the system and diluted in
the outer part. Simulations of bow shocks and colliding winds in
binaries show strong traveling waves, together with a systematic
change of the mean properties in the flow off from the stagna-
tion point (Stevens et al. 1992; Walder & Folini 1995; Blondin
& Koerwer 1998).

6. Summary and conclusions

We looked at symmetric, supersonic (5 <∼ Mu <∼ 90), isother-
mal, plane-parallel, colliding flows in 2D. The resulting shock-
confined interaction zone (CDL) is supersonically turbulent (1 <∼
Mrms <∼ 10). We investigated the CDL and its interplay with the
upstream flows by dimensional analysis and numerical simula-
tions. The latter we generally stopped when ℓcdl ≈ Y/2. The re-
sults are interesting not only with regard to flow collisions, but
also shed new light on the properties of supersonic turbulence in
general.

The numerical simulations show that the CDL has an irreg-
ular shape and a patchy, supersonically turbulent interior. The
driving of the turbulence is natural in that it depends on the shape
of the confining shocks. The dimensional analysis is based on
isothermal Euler equations in infinite space. Within this frame,
a self-similar solution may exist that would depend on Mu but
must not depend on ℓcdl. Relations for average quantities are ob-
tained under some further simplifying assumptions (Sect. 3.3).

Based on both the analytical and numerical results, we arrive
at the following conclusions.

1. Comparison of the numerical and the self-similar solution
shows generally good agreement if Mrms >∼ 1. The modest
deviation between the numerical and the self-similar solu-
tions increases with ℓcdl. We suggest some explanations for
the deviation, but our data do not allow any clear conclusions
on the issue. For Mrms <∼ 1, we have but one simulation. It
shows clear differences to the other runs and may be more
characteristic of compressible subsonic turbulence than of
supersonic turbulence;

2. The CDL is characterized by Mrms ≈ η−1/2

1
Mu and ρm ≈

η1ρu. The average compression ratio of the CDL is thus in-
dependent of Mu. This is in sharp contrast to the 1D case,
where ρm,1d = M2

uρu. From the numerical simulations, we
find η1 ≈ 30;

3. The turbulence within the CDL and the driving efficiency
are related by feff = 1 − M−0.6

rms . The relation also holds for
asymmetric settings, where Ml � Mr, emphasizing the mu-
tual coupling between volume and interface properties. For

larger upstream Mach-numbers, the shocks confining the in-
teraction zone are less strongly inclined with respect to the
direction of the upstream flows. The driving is more efficient,
a larger fraction of the upstream kinetic energy is dissipated
only within the CDL and not already at the confining shocks;

4. The characteristic length scale of the turbulence, ℓekin
, and the

auto-correlation length of the confining shocks, ℓcorr, are pro-
portional to each other. Both scale as ℓcdlM

−0.6
u , this although

the former is based on volume quantities while the latter is
derived from interface properties;

5. The separation of filaments and the size of patches within the
CDL both get larger as ℓcdl increases and/or Mu decreases.

For increasing upstream Mach-numbers in summary we thus ex-
pect a faster expanding CDL with less strongly inclined con-
fining interfaces with respect to the direction of the upstream
flows, similar mean density, finer interior structure relative to
the CDL size, and a gradual shift of the energy dissipation from
the confining shocks to internal shocks within the CDL. We ex-
pect to observe these general dependencies in real objects where
shock-confined slabs play a role, like molecular clouds, wind
driven structures, supernova remnants, or γ-ray bursts.
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Appendix A: numerical computation of obliqueness

angle

While shocks are smeared over approximately 3 grid cells in our
simulations, the confining shocks in our analysis are specified as
a series of discrete x, y-coordinate pairs only (see Sect. 4.2.2).
This information is sufficient to compute most shock-related
quantities to good accuracy, for example the shock length ℓsh.
The only quantity that requires a more careful proceeding is the
obliqueness angle α. If it were computed directly from the dis-
crete shock positions, only discrete values would be obtained,
for example 0◦, 45◦, 63.4◦ etc. for one-sided differences.

To compute the obliqueness angle αi(y j) (see Fig. 1 and
Sect. 4.2.2) at each position yj, 1 ≤ j ≤ J, of the left and
right shock (sl and sr), we proceed as follows. In a first step,
we use spline interpolation to double the number of points in the
y-direction along the shock front. Next, we smooth the shock
front slightly, using a running mean with an averaging win-
dow of ±5 points (this corresponds to an averaging window
of ±2.5 points in the original data. Then we compute the deriva-
tive at each point of this smoothed shock front, using a 3-point
Lagrangian interpolation. To avoid abrupt changes in the deriva-
tive from one point to the next, we smooth it again by a run-
ning mean with averaging window ±5 points. We finally obtain
the obliqueness angle αi(y j), 1 ≤ j ≤ 2J, as the arctan of the
derivative.

We checked that the size of the averaging window (±3 points
or ±7 points) has only a marginal effect on the angle distribution
and the driving efficiency. For the latter, which is an integral over
both shocks, tests show that α can even be computed directly
from the discrete positions.
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Appendix B: list of runs, their parameters, and naming schemes

Table B.1. List of performed simulations.

label Mu ℓ(N) ℓcdl/Y Mrms
ρm
ρu

ℓsh

Y
feff

Symmetric runs, no CDL at t = 0

R5_0.2.4 5.42 91 1.07 0.90 24 1.1 0.16

R11_0.2.4 10.85 88 0.59 2.2 33 1.5 0.35

R22_0.2.4 21.7 86 0.30 4.6 30 2.6 0.59

R33_0.2.4 32.4 86 0.50 6.9 26 3.6 0.70

R43_0.2.4 43.4 88 0.55 9.1 29 4.6 0.76

R87_0.2.4 86.8 105 0.82 15. 23 12.1 0.89

R22_0.4.4 21.7 41 0.25 4.3 35 2.3 0.55

R22_0.1.4 21.7 88 0.74 5.0 26 2.7 0.62

R43_0.1.4 43.4 90 0.59 8.9 32 4.1 0.76

R11_0.2.2 21.7 89 1.10 2.2 33 1.4 0.33

R22_0.2.2 21.7 307 0.79 4.7 28 2.6 0.59

R33_0.2.2 32.4 82 1.45 6.7 30 3.6 0.70

R43_0.2.2 43.4 73 1.09 9.4 27 4.7 0.76

R22_0.2.6 21.7 190 0.84 4.7 29 2.6 0.60

Symmetric runs, with CDL at t = 0

R22_1.2.2 21.7 87 0.83 3.3 61 1.9 0.50

R22_1.2.1 21.7 111 1.33 3.2 68 1.8 0.46

R22_1.4.4 21.7 199 0.72 3.4 59 1.9 0.49

R22_1.4.2 21.7 68 0.40 2.8 91 1.6 0.39

R22_1.1.2 21.7 115 1.21 3.9 42 2.4 0.59

R22_2.2.2 21.7 313 1.44 (2.4) (109) (1.5) (0.34)

R22_2.4.2 21.7 186 0.37 (1.8) (253) (1.2) (0.24)

R22_2.8.2 21.7 92 0.14 (1.4) (281) (1.2) (0.21)
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