AD-A083 297

AD

MEMORANDUM REPORT ARBRL-MR-02991

SUPERSONIC WIND TUNNEL MEASUREMENTS OF STATIC AND MAGNUS AERODYNAMIC COEFFICIENTS FOR PROJECTILE SHAPES WITH TANGENT AND SECANT OGIVE NOSES

Charles J. Nietubicz Klaus O. Opalka

February 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT ARBRL-MR-02991	
4. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
SUPERSONIC WIND TUNNEL MEASUREMENTS OF STATIC AND MAGNUS AERODYNAMIC COEFFICIENTS FOR PROJECTILE	Final
SHAPES WITH TANGENT AND SECANT UGIVE NOSES	
7. AUTHOR(#)	8. CONTRACT OR GRANT NUMBER(.)
Charles J. Nietubicz Klaus O. Opalka	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLL) Aberdeen Proving Ground, Maryland 21005	RDT&E 1L662618AH80
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Armament Research & Development Command	FEBRUARY 1980
(ATTN: DRDAR-BL) Abordoon Proving Ground MD 21005	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
· ·	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr	om Report)
	· · · · · · · · · · · · · · · · · · ·
10. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse eids if necessary and identify by block number)
Aerodynamic coefficients, Magnus data, Supersonic v Revolution.	vind tunnel tests, Bodies of
22. ABSTRACT (Continue on reverse side if necessary and identify by block number, Wind tunnel tests have been conducted for a se configurations. The shapes tested include a three three caliber tangent ogive nose configuration. Th fixed at 6 calibers for all configurations tested. aerodynamics coefficient data were obtained at Mach angles of attack up to 10.0°. The data are present with tabulations of the summary data.	eries of projectile caliber secant ogive nose and e overall model length was Static and Magnus numbers 2.0, 3.0 and 4.0 for ed in graphical form along

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT. (continued)

The tangent ogive nose produced a slight increase in the Magnus moment coefficient when compared to similar secant ogive configurations. The boattail configuration, when compared to the cylinder shapes, were found to increase the Magnus moment, however, this effect was shown to decrease with increasing Mach number.

TABLE OF CONTENTS

	Page	2
	LIST OF ILLUSTRATIONS	
	LIST OF TABLES	
I.	INTRODUCTION	
II.	EXPERIMENTAL INVESTIGATION	
	A. Test Conditions	
	B. Equipment	
	C. Model Details	
III.	RESULTS	
	A. Data Reduction	
	B. Data Presentation	
	C. Discussion	
	D. Conclusions	
	LIST OF SYMBOLS	
	APPENDIX A	
	APPENDIX B	
	DISTRIBUTION LIST	

LIST OF ILLUSTRATIONS

Figure		Page
1	Model Details	13
2	Mach Number Effect on Magnus Moment Coefficient, Secant- Ogive-Cylinder with Boattail	15
3	Boattail Effect on Magnus Moment Coefficient, $M = 2.0$	16
4	Boattail Effect on Magnus Moment Coefficient, $M = 3.0$	17
5	Boattail Effect on Magnus Moment Coefficient, $M = 4.0$	18
6	Ogive Effect on Magnus Moment Coefficient, $M = 2.0$	19
7	Ogive Effect on Magnus Moment Coefficient, M = 3.0	20
8	Magnus Moment Coefficient Slope vs Mach Number	21

LIST OF TABLES

Table		Page
I	Test Conditions	8
II	Model Configurations	9
III	Secant-Ogive-Cylinder and Secant-Ogive-Cylinder with Boat tail Tabulated Pitch-Plane Force and Moment Data	- • 22
IV	Secant-Ogive-Cylinder and Secant-Ogive-Cylinder with Boat tail Tabulated Magnus Data	. 23
V	Tangent-Ogive-Cylinder and Tangent-Ogive-Cylinder with Bo tail Tabulated Pitch-Plane Force and Moment Data	at- . 25
VI	Tangent-Ogive-Cylinder and Tangent-Ogive-Cylinder with Bo tail Tabulated Magnus Data	at- . 26

I. INTRODUCTION

A research effort to develop advanced numerical codes for computing aerodynamic forces acting on spinning slender bodies of revolution at angle of yaw is presently in progress at the Ballistic Research Laboratory. Computation of the Magnus force, which results from the combined high spin rate, and angle of yaw, is of particular interest. Experimental studies are being carried out in order to provide data for comparison to the numerical computations.^{1,2,3} In this report, the results of a series of wind tunnel tests are reported in which measurements of pitch plane and Magnus effects have been measured for several slender bodies of revolution. A complete tabulation of the experimental data is provided in order to facilitate comparison to theoretical computations.

II. EXPERIMENTAL INVESTIGATION

A. Test Conditions

The wind tunnel test program was conducted for a series of ogivecylinder-boattail shapes. The test was performed at free-stream Mach numbers, M_{m} , of 2.0, 3.0, and 4.0. The models, with boundary-layer

trip, were tested at angles of attack ranging from +10° to -4°. Magnus force was measured at spin rates, Pd/V, ranging from 0 to 0.4 at angles of attack, α , of 10°, 6°, 4°, 2°, 1°, 0, -2°, and -4°. The test conditions are summarized in Table I.

- W. B. Sturek, et al, "Computations of Turbulent Boundary Layer Development Over a Yawed, Spinning Body of Revolution With Application to the Magnus Effect," BRL Report No. 1985, May 1977, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A041338.
- H. A. Dwyer, "Three Dimensional Flow Studies Over a Spinning Cone at Angle of Attack," BRL Contract Report No. 137, February 1974, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD 774795.
- 3. H. A. Dwyer and B. R. Sanders, "Magnus Forces on Spinning Supersonic Cones. Part I: The Boundary Layer," BRL Contract Report No. 248, July 1975, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A013518. Also, <u>AIAA Journal</u>, Vol 14, No. 4, April 1976, p. 498.

	Table I.	Test Conditions	
Mach Number, $M_{_{\infty}}$	2.0	3.0	4.0
Supply Pressure, P _o			
mm Hg	1600	2250	3800
psia	30.79	43.30	73.12
MPa (MegaPascal)	.2123	.2985	.5041
Reynolds Number,	8.505	7.317	7.425

 $Re_{\rho} \times 10^{\circ}$

B. Equipment

The Ballistic Research Laboratory Supersonic Wind Tunnel No. 1^4 ,* had a flexible, two-dimensional nozzle that was calibrated for fifteen Mach numbers between 1.5 and 5.0 with an accuracy of 0.01 absolute value. The air density could be varied to cover a Reynolds number range from 4×10^6 to 30×10^6 per meter. The supply pressure was variable from 0.033 MPa to 6.67 MPa (MegaPascal) in continuous operation. (NOTE: l atm \equiv 0.101325 MPa). The test section measured 381 mm high and 330 mm wide, and allowed testing of models of 50 mm diameter and 250 mm length at the most critical Mach number of 1.50. The angle of attack range was from -10 to +15 degrees.

C. Model Details

The basic model tested was an ogive-cylinder-boattail. The configurations for which data have been obtained are:

J. C. McMullen, "Wind Tunnel Testing Facilities at the Ballistic Research Laboratories," BRL Memorandum Report No. 1292, July 1960, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD 244180.

^{*} The BRL Wind Tunnel Facilities are no longer operational.

TABLE II. MODEL CONFIGURATIONS

Model Description	Configuration Number
Secant-Ogive-Cylinder (SOC)	1.0
Secant-Ogive-Cylinder With Boattail (SOCBT)	3.0
Tangent-Ogive-Cylinder (TOC)	5.0
Tangent-Ogive-Cylinder With Boattail (TOCBT)	7.0

Both the secant and tangent ogive nose are 3 calibers in length. The cylinder section is 3 calibers with the exception of the boattail configuration. When the 1 caliber 7.0° boattail is added the cylinder length is shortened to 2 calibers, thus, always maintaining a 6 caliber total length model.

The reference diameter is 57.15 mm ($2\frac{1}{4}$ inches). The radius of the secant ogive and tangent ogive is 1079.0 mm (42.48 inches) and 528.86 mm, respectively. A mechanical boundary-layer trip was installed on the ogive 40.6 mm (1.60 inches) from the nose. It consists of three contoured rings of 1.52 mm width per ring. The height of the trip is 0.508 mm. The general dimensions of the two basic models are given in Figure 1.

The outer shell of the model is free to rotate about its longitudinal axis by means of two ball bearing mounts. The inner races of the ball bearings are mounted on a non-rotating sleeve that fits over the free end of the balance-strut assembly. The model is driven by an air turbine which is installed on the strut behind the balance. The air leaving the turbine blows against a ring of turbine blades which are installed at the base of the model shell, and causes the model to rotate.

The model is mounted on the free end of the balance-strut assembly which forms a cantilevered beam with the wind tunnel angle of attack system. The aerodynamic forces acting on the model are transmitted through the balance into the wind tunnel structure. A six-component, strain-gage balance was used to measure the aerodynamic forces and moments. The balance has the following capacities (with references to the balance center located between gages).

Normal Force	180 N	Pitching Moment	5.20 N•m
Side Force	90 N	Yawing Moment	2.60 N•m
Axial Force	90 N	Roll Moment	2.26 N•m

The distance between forward and rear gages measures 58.42 mm.

The model underwent a static-force (polar) test without spin. The angle of attack was varied from $+10^{\circ}$ to -4° . A sample reading was taken automatically by the Data Acquisition System⁵ every two seconds, which corresponds to an approximate change of 0.25 degree in angle of attack.

Additionally, the model was subjected to a spin test to measure the Magnus force and the Magnus moment. Data were obtained for all runs over a spin range of 30,000 RPM. The model was spun up to 35,000 RPM and data were taken while the model was coasting down in spin rate.

III. RESULTS

A. Data Reduction

The raw data were reduced to coefficient form on the BRL computer using our standard program. The angles of attack were corrected for strut deflections due to aerodynamic loads and for the flow inclination in the wind tunnel. The derivatives of the normal force and of the pitching moment near zero angle of attack were obtained from a linear regression of eleven test points in the α -range from -1.5 to +1.5 degrees.

A translational correction was applied to the side-force and yawing-moment data such that all curves would pass through the origin of the graph.

B. Data Presentation

The reduced static force data are presented in non-dimensional form and include plots of C_N , C_M , and C_A versus angle of attack. These basic plots are located in the Appendix which is divided into two sections. Appendix A contains data for the SOC and SOCBT configuration while Appendix B contains the TOC and TOCBT data.

The aerodynamic coefficient data are presented in tabular form in Tables III, IV and V, VI for the Secant-Ogive and Tangent-Ogive configuration respectively. These tabulations include the normal force

^{5.} L. D. Kayser, "The BRL Wind Tunnel High Speed Analog to Digital Data Acquisition System," BRL Memorandum Report No. 2142, December 1971, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD 737180.

and pitching moment slopes $(C_{N_{\alpha}}, C_{M_{\alpha}})$, the Magnus force and moment coefficients $(C_{N_{p}}, C_{M_{p}})$ and the tunnel operating conditions.

C. Discussion

A linear fit, of the side force and yawing moment data over the full spin range, was performed for the SOC and SOCBT configurations. The resultant slopes (C_N, C_M) are tabulated in Table IV. Additionally, p p g similar fits were performed for the TOC and TOCBT configurations with the exception that the range of fit was limited to Pd/V \leq .20. These data are found in Table VI.

Summary plots were developed to show the variation in Magnus moment coefficient for changes in ogive shape, Mach number, and the addition of a boattail as a function of angle of attack. The moment was referenced to a point located at 63% of the model length as measured from the nose.

Figure 2 shows the Mach number effect on ${\rm C}_{\mathop{\rm M}
olimits{M}}{p}$ for the SOCBT p

configuration. The decrease in Magnus moment with increasing Mach number is typical of all configurations tested. The increase in the Magnus moment due to the addition of the boattail can be seen in Figure 3 at M = 2. However, as the Mach number increases (Figures 4 and 5) the difference in the Magnus moment between the SOC and SOCBT shapes becomes less. This is also true for the TOC and TOCBT configurations.

A change in the nose shape from a secant to a tangent ogive is found to produce an increase in the Magnus moment coefficient as shown in Figure 6 for M = 2 and Figure 7 for M = 3.

As a final analysis of the data, a linear fit of the Magnus moment data was performed for an angle of attack range of -3° to $+3^{\circ}$. The resultant plot is shown in Figure 8 for the SOC and SOCBT configuration. The Magnus moment slope is shown to decrease with increasing Mach number; the boattail effect is also shown to be less apparent with increasing Mach number.

D. Conclusions

A series of wind tunnel tests have been run for models with secant and tangent ogives and having cylindrical and boattailed afterbodies. The tests were conducted at M = 2, 3 and 4 to determine both pitch plane and Magnus aerodynamic coefficient data. A summary of the findings of this study indicate: (1) $C_{\mbox{M}}$ decreases with increasing Mach number for all configura- $p_{\mbox{\alpha}}$

tions.

(2) Boattail configurations increased the Magnus moment coefficient at M = 2.0. The difference at M = 3 and 4 was negligible.

(3) The effect of the tangent ogive is to increase the Magnus moment when compared to similar secant-ogive configurations.

Configuration 1.0. Secant-Ogive-Cylinder

Configuration 3.0. Secant-Ogive-Cylinder with Boattail

Figure 1. Model Details

Configuration 5.0. Tangent-Ogive-Cylinder

Configuration 7.0. Tangent-Ogive-Cylinder with Boattail

Figure 1. Continued

Secant-Ogive-Cylinder and Secant-Ogive-Cylinder with Boattail Tabulated Pitch-Plane Force and Moment Data Table III.

TABULATEO PITCH-PLANE FORCE AND MOMENT DATA

							W MODEL LENGTH (MEGAPASCAL)	BASEO ON PRESSURE	NUMBER =	REYNOLOS	EGENO:	
3	.0331	.1527	2.4420	0000	-1.229-01	0.000	5.032-02	309.5	• 2009	7.1585	••00	286
5	• 0 4 0 2	.1746	2,3730	0.000	-1.199-01	00000	5.054-02	309.8	.2976	7.2502	2.99	204
3 SOCBT	.0531	.2214	1.9950	0.000	-8.767-02	0.000	4.394-02	316.4	.2130	8.3827	1.99	274
1	• 0 + 63	.1500	2.6860	000.0	-1.453-01	00000	5.410-02	307.1	.5041	7.3158	•••0	123
1	.0691	.1791	2.6130	0.000	-1.410-01	00000	5.396-02	309.7	•2976	7.1878	3 • 00	104
1 500	.1074	.2326	2.3220	0.000	-1.135-01	0000	4.886-02	306.2	.2126	46434	2.00	32
CONFIGURATION	COEFFS CAB	AXL FC CA	CPN Fr Nose	COEFFS B2	PITCHING MMT B1	COEFFS A2	NORMAL-FORCE A1	T-ZERO DEG K	P-ZERO MP	REYNOLOS NO+10E-6	MACH NO.	RUN NO.

T-ZERO = SUPPLY TEMPERATURE (OEGREES KELVIN) T-ZERO = SUPPLY TEMPERATURE (OEGREES KELVIN)

CN = A1*ALPHA+A2*ALPHA**2, NORMAL-FORCE COEFFICIENT CM = B1*ALPHA+R2*ALPHA**2, PITCHING-MOMENT COEFFICIENT CPN= NORMAL-FORCE, CENTER-OF-PRESSURE LOCATION, CPN= 00RMAL-FORCE, CENTER-OF-PRESSURE LOCATION, CA = 101AL, MANUAL NOGEL LENGTH CA = TOTAL, MANUALPHORE COEFFICIENT AT ZERO ANGLE OF ATTACK CAB= BASE-PRESSURE COEFFICIENT AT ZERO ANGLE OF ATTACK

MOMENTS ARE REFERENCED TO THE MODEL NOSE

. ~

• --

Secant-Ogive-Cylinder and Secant-Ogive-Cylinder with Boattail Tabulated Magnus Data Table IV.

TABULATEO MAGNUS AND BOUNDARY-LAYER TRANSITION DATA

CONFIGURATION	soc	1 SOC	Sociality
451710N WIND	.1184 .1184 .1184 .1184 .1184 .1184 .1184 .1184	.1184 .1184 .1184 .1184 .1184 .1184 .1184	•1184 •1184 •1184 •1184 •1184 •1184
8-L TRAI LEE	.1184 .1184 .1184 .1184 .1184 .1184	.1184 .1184 .1184 .1184 .1184 .1184 .1184	.1184 .1184 .1184 .1184 .1184 .1184 .1184
CPY FR NOSE	5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.04000 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.0400 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.04000 5.040000 5.040000 5.0400000000000000000000000000000000000	4.7400 5.0300 4.9800 4.8200 5.2800 4.1700 4.1700 4.1700	4.6700 4.8100 5.230600 5.2300 4.0100 4.7700
CDEFFS B2			
MAGNUS MMT 81	.565900 .304400 .177900 .082330 .048950 .048950 .020570 073620	<pre>.327500 .218600 .129800 .056770 .026800 .026800 .04437 .069600 .141700</pre>	.178400 .151300 .101000 .040960 .016060 007247 110700
COEFF5 A2		000000 000000 000000 000000 000000 00000	
MAGNUS FC Al	113600 113600 035920 016450 016450 015980 .015980 .034700	068820 066820 026470 011470 001470 005314 .000963 .014480 .029240	037860 031080 020590 020590 007972 002996 .012996 .012650 .023290
AL PHA DEGRS	10.81 6.55 2.18 2.18 1.08 1.08 1.08 1.08 1.08	10.40 6.28 6.28 6.28 7.00 1.00 7.00 1.00 1.00 1.00 1.00 1.00	10.28 6.20 6.20 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.0
T-ZERO DEG K	306 306 306 306 306 306 306 306 306 306	310.9 311.1 311.1 311.1 311.2 311.5 311.5	306.6 307.4 307.4 307.4 307.4 307.5 307.5 307.5 307.5
P-ZERO MP	2128 2130 2128 2119 2127 2122 2122 2122	.2972 .2973 .2975 .2975 .2975 .2975 .2975 .2975 .2975	
REYNOLOS No+10E-6	8.6591 8.6591 8.65480 8.62460 8.6206 8.6204 8.6204 8.6204 8.6204 8.6204 8.6204	7.1374 7.1320 7.1320 7.1370 7.1370 7.1370 7.1357 7.1357	7.3234 7.3240 7.3177 7.3085 7.3085 7.3018 7.2018 7.2833 7.2833
MACH NO.	00000000000000000000000000000000000000	000000000 000000000 0000000000 00000000	*******
NO.	91-8000-N 6666444	1111 1113 1113 1116 1117 1117 1118 1119 1119	131 132 134 136 136 136

LEGEND:

REYNOLOS NUMBER = BASEO ON MOOEL LENGTH P-ZERO = SUPPLY PRESSURE (MEGAPASCAL) T-ZERO = SUPPLY TEMPERATURE (OEGREES KELVIN) ALPHA = ANGLE DF ATTACK (OEGREES)

CY = A1*(PO/V)+A2*(PD/V)**2, SIOE-FORCE COEFFICIENT CYM = B1*(PD/V)+82*(PD/V)**2, YAWING-MOHENT COEFFICIENT CY = MAGNUS-FORCE, CENTER-OF-PRESSURE LOCATION. 015TANCE FROM MOOEL NOSE OIVIDED BY WDDEL LENGTH 015TANCE FROM MODEL NOSE OIVIDED BY B-L TRANSITION = 015TANCE FROM MODEL NDSE DIVIDED BY MODEL LENGTH FOR LEE AND WIND SIDES OF THE MDDEL! EQUALS TRIP LOCATION FOR TRIPPED BOUNDARY-LAYER CONDITION MOMENTS ARE REFERENCED TO THE MODEL NOSE

Table IV. (continued)

TABULATEO MAGNUS AND BOUNDARY-LAYER TRANSITION DATA

CONFIGURATION	ы 8 80CBT 3 3 3 3 3 80CBT 9 3 3 3 3 3 3 5 80CBT 9 3 3 3 3 3 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	освт з м	о N N N N N N N N N N N N N N N N N N N
UNITION UNINU	.1184 .1184 .1184 .1184 .1184 .1184	.1184 .1184 .1184 .1184 .1184 .1184	.1184 .1184 .1184 .1184 .1184 .1184 .1184
8-L TR/ LEE	.1184 .1184 .1184 .1184 .1184 .1184	.1184 .1184 .1184 .1184 .1184 .1184	.1184 .1184 .1184 .1184 .1184 .1184 .1184
CPY FR NOSE	4.850 5.0100 5.0100 4.0400 4.1200 4.0400 4.1200	<pre>4.5800 4.900 4.9400 4.9400 4.9400 4.9400 4.9400 4.9500 5.0900 5.0900 5.0900</pre>	4.5500 4.7100 5.1100 5.1200 5.1200 5.1100 5.1100 5.1100
r coeffs 82			
MAGNUS MM	.654800 .378800 .230600 .110900 .069990 .000214 .088870	.323200 .233100 .154900 .068530 .035730 082750 163100	.168100 .155100 .15500 .054830 .028549 000078 056170
COEFFS			
MAGNUS FC	134700 074730 045160 021790 021790 014990 018480 .040740	069790 047650 031040 013380 016850 .016890 .016890	036690 032220 032220 010800 0108721 005721 005721 0011470 023160
ALPHA DEGRS	11.65 7.05 2.34 2.34 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	10.97 6.60 6.60 2.18 1.07 1.07 1.07 1.07	10.69 6.42 6.42 7.13 7.13 7.05 1.05 7.01 7.01 7.05
T-ZERO DEG K	314.3 315.7 315.6 315.6 315.6 315.6 315.6 315.6 315.6 315.0 315.0 315.0 315.0 315.0 315.0 315.0 315.0 316.0 316.0 316.0 316.0 316.0 316.0 316.0 316.0 316.0 315.0	2009 2009 2009 2009 2009 2009 2009 2009	311.6 312.0 308.0 309.5 310.2 310.2
P-ZERO MP	.2128 .2126 .2126 .2126 .2128 .2128 .2128 .2128	.2971 .2976 .2976 .2976 .2975 .2975 .2975 .2979	.5016 .5016 .5025 .5031 .5031 .5031 .5033
REYNOLOS NO+10E-6	8.3475 8.3293 8.3179 8.3179 8.3079 8.2994 8.2992 8.2932 8.2932 8.2742	7.1820 7.1866 7.1866 7.2013 7.2013 7.2032 7.2032 7.2047 7.2104	7.1141 7.1005 7.2313 7.2313 7.2313 7.2313 7.1055 7.1554 7.1712
MACH NO.	000000000 000000000 000000000000000000		
RUN NO.	278 282 282 285 285 285 283 283	205 207 208 208 207 208 212 212 213	288 298 298 298 298 298 298 298 298 298

REYNOLDS NUMBER = 8ASED ON MODEL LENGTH P-ZERO = SUPPLY PRESSURE (MEGAPASCAL) T-ZERO = SUPPLY TEMPERATURE (DEGREES KELVIN) ALPHA = ANGLE OF ATTACK (DEGREES)

LEGENO:

CY = A1+(PO/V)+A2+(PO/V)+*2, SIDE-FORCE COEFFICIENT CYM = B1+(PO/V)+82+(PD/V)+*2, YAWING-MOMENT COFFICIENT CPY = MAGNUS-FORCE, CENTER-OF-PRESSURE LOCATION, DISTANCE FROM MODEL NOSE DIVIDED AY MODEL LENGTH B-L TRANSITION = DISTANCE FROM MODEL NOSE DIVIDED BY MODEL LENGTH FOR LEE AND MIND SIDES OF THE MODEL! FQUALS TRIP LOCATION FOR TRIPPED BOUNDARY-LAVER CONDITION MOMENTS ARE REFERENCE() TO THE MODEL NOSE

•--

• •

.

Tangent-Ogive-Cylinder and Tangent-Ogive-Cylinder with Boattail Tabulated Pitch-Plane Force and Moment Data Table V.

				TABUL	ATEO PITCH-PLAN	E FORCE A	NO MOMENT OATA					
RUN.	MACH NO.	REYNOLOS NO+10E-6	P-ZERO MP	T-2ER0 0EG K	NORMAL-FORCE A1	COEFFS A2	PITCHING MMT BI	COEFFS B2	CPN FR NOSE	AXL FC CA	COEFFS CAB	CONFIGURATION
19	3.00	7.2427	.2973	308.5	5.673-02	0 • 0 0 0	-1.309-01	0.000	2.3070	.2291	• 0966	5 100
ES	2.00	8.6080	•1114	309.0	5,293-02	0000	-9.910-02	000*0	1.9720	.2849	.1360	5 TOC
79	3.00	7.2751	.2961	309.9	5.331-02	00000	-1.110-01	0.000	2.0830	.1988	•0398	7 TOCBT
LE	GENO:	REYNOLOS P-ZERO = T-ZERO =	NUMBER ₌ SUPPLY SUPPLY	EBASEO OF PRESSURE TEMPERATI	M MOOEL LENGTH (megapascal) Jre (oegrees ke	(NIN)						
		CN = A1*A CPN = B1*A CPN = NORM OIST CAB = TOIA CAB = BASE	LPHA+A2* LPHA+B2* AL-FORCE ANCE FRO ANCE FRO L+ AXIAL -PRESSUR	ALPHA**2 ALPHA**2 CENTER- M MODEL N M MODEL N COEFFIG	 NORMAL-FORCE PITCHING-MOME OF-PRESSURE LG OF-PRESSURE LG OFEFICIENT AT Z DIENT AT ZERO A 	COEFFICIE NT COEFFI Cation. Model Le Ero Angle NGLE OF A	NT CIENT NGTH OF ATTACK TIACK					

MOMENTS ARE REFERENCED TO THE MODEL NOSE

Tangent-Ogive-Cylinder and Tangent-Ogive-Cylinder with Boattail Tabulated Magnus Data Table VI.

TABULATED MAGNUS AND BOUNDARY-LAYER TRANSITION DATA

	184 5 TOC	184 5	.184 5	.184 5	5 5	184 5	. 184 5	184 5 TOC	184 5	.184 5	5 5	.184 5	.184 5	184 5	.184 5	184 7 TOCBT	1184 7	1164	184 7	7 7	7 7	1184 7	.184 7	
	.1184 .1	•1184 •1	.1184 .1	.1184 .l	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1184 .1	.1164 .1	
FR NOSE	4.6500	4.8300	4.7500	4.8000	4.9700	5.2500	4.8500	4.7600	4.9000	4.8500	4.8500	4.6000	2.7600	4.7000	4°1300	4.5500	4.8000	4.7700	4.9100	4.6600	4.9400	5.3500	5.2700	
82	.000000	.000000	.000000	.000000	.000000	.000000	.00000	.00000	.000000	.000000	.000000	.000000	.000000	.000000	• 000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000	
81	.395800	.226000	.173700	.080600	006928	101300	195200	.750100	.416800	.318700	.231100	.103500	000681	094990	216200	.376800	.282600	.237500	.181600	.082400	004000	106900	198800	
AZ	.000000	000000	.000000	.000000	.000000	.000000	• 000000	• 000000	.000000	.000000	000000	.000000	000000	.000000	•000000	.000000	• 000000	.000000	.000000	.000000	.000000	.000000	.00000	
IV	084770	047140	035970	016520	.001395	.021200	.040910	157300	085740	066180	048250	021630	.000246	.021250	.046190	082070	058920	049400	036660	016760	.001395	.021610	• 040560	
OEGRS	11.11	5.59	4.45	2.24	00-	-2.26	-4.51	11.85	7.20	6.04	4.81	2.41	00.	-2.40	-4.82	11.18	6.70	5.62	4.48	2.22	• 00	-2.30	-4.53	
0EG K	306.1	307.1	307.1	307.5	305.3	307.9	308.0	309.4	309.4	309.5	309.2	309.1	\$*60E	309.1	309.0	309.6	309.60	309.5	309.5	309.6	309.5	309.5	309.5	
d I	.2970	.2970	.2968	• 2969	1795.	.2985	• 2969	.2108	.2108	.2108	.2115	.2115	.2119	+2115	.2113	.2969	.2970	.2970	.2967	.2968	.2970	.2968	-2967	
N0+10E-6	7.3035	7.2674	7.2648	7.2503	7.3332	7.2364	7.2372	8.4555	8.4568	8.4510	8.4900	8.4936	8.4946	8.4944	8.4943	7.1849	7.1833	7.1848	7.1796	7.1767	7.1898	7.1835	7.1840	
.0N	3.00	3.00	3.00	3.00	3.00	3.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3*00	00°E	3.00	3.00	00°E	3°00	3.00	3.00	
.0N	23	25	26	27	22	28	29	62	61	60	58	57	54	56	55	82	83	48	87	88	85	89	06	

REYNOLDS NUMBER = BASEO ON MODEL LENGTH P-ZERD = SUPPLY PRESSURE (MEGAPASCAL) T-ZERO = SUPPLY TEMPERATURE (OEGREES KELVIN) ALPHA = ANGLE OF ATTACK (OEGREES) LEGENO:

CY = A1*(PD/V)+A2*(PD/V)+*2, SIDE-FORCE COEFFICIENT CYM = B1*(PO/V)+82*(PD/V)+*2, YAWING-MOMENT COEFFICIENT CYM = B1*(PO/V)+82*(PD/V)+*2, YAWING-MOMENT COEFFICIENT CPY = MAGNUS-FORCE, CENTER-OF-PRESSURE LDCATIDN. 01STANCE FROM MDOEL NOSE OIVIDEO BY B-L TRANSITIDN = 01STANCE FROM MDOEL NDSE OIVIDEO BY MODEL LENGTH FOR LEF AND WIND SIDES OF THE MDEL! EQUALS TRIP LOCATIDN FOR TRIPPED BDUNDARY-LAYER CDNOITION MOMENTS ARE REFERENCEU TO THE MOOEL NOSE

,

۰ _

Table VI. (continued)

~ .

TARULATED MAGNUS AND BOUNDARY-LAYER TRANSITION DATA

CONFIGURATIO	7 TOC	
RANSITION WINO	.]]84 .]]84 .]]84 .]]84 .]]84 .]]84	
8-L TI LEE	.1184 .1184 .1184 .1184 .1184	
CPY FR NOSE	<pre>% * * * * * * * * * * * * * * * * * * *</pre>	
COEFFS 82		
MAGNUS MMT B1	.367200 .277400 .129600 .070260 002401 25900	
COEFFS A2		
MAGNUS FC Al	073600 055580 025790 013900 013900 .02724 .022170	LENGTH Scal) Rees Kelvin S)
ALPHA Degrs	6.11 2.64 2.64 2.64 2.64 2.00 2.00 2.00 2.62	N MODEL (MEGAPA URE (OEG (OEGREE
T-ZERO Deg k	00000000000000000000000000000000000000	EBASEO C PRESSURE TEMPERAT
P-ZERO MP	2117 2117 2117 2117 2115 2115	NUMBER = SUPPLY SUPPLY
REYNOLOS N0*10E-6	8.5095 8.5117 8.5117 8.5212 8.5218 8.5250 8.5250	REYNOLOS P-ZERO * T-ZERO = ALPHA =
MACH NO.	0000000 0000000 0000000	EGENO:
RUN NO.	124 127 128 128 128 129 129	Ļ

CY = A1*(PO/V)+A2*(PO/V)+*2, SIOE-FORCE COEFFICIENT CYM = B1*(PO/V)+B2*(PD/V)+*2, YAWING-MOMENT COEFFICIENT CPY = MAGNUS-FORCE, CENTER-OF-PRESSURE LOCATION, OISTANCE FROM MODEL NOSE OIVIOEO 8Y B-L TRANSITION = OISTANCE FROM MODEL NOSE DIVIOED 8Y MODEL LENGTH FOR LEE ANO MINO SIOES OF THE MODEL3 MODEL LENGTH FOR LEE ANO MINO SIOES OF THE MODEL3 MODEL LENGTH FOR LEE ANO MINO SIOES OF THE MODEL3 MODEL REFERENCEO TO THE MODEL NOSE

LIST OF SYMBOLS

C _A	axial-force coefficient, F _A / (qS)
C _{Ab}	base-axial-force coefficient, $(p - p_b) S_b/(qS)$
C _n	yawing moment coefficient, yawing moment/qSd, reference at the nose of model
C _M	<pre>pitching-moment coefficient, pitching moment/(qSd), reference at the nose of the model</pre>
с _м р	Magnus-moment coefficient, $\partial C_n/\partial (Pd/V)$
C _M Pα	slope of the Magnus-moment coefficient, $\partial C_{M} / \partial \alpha$
C _{Ma}	slope of the pitching-moment curve, $\partial C_M^{\prime}/\partial \alpha$, for -1.5 $\leq \alpha \leq 1.5$
C _N	normal-force coefficient, $F_N^{/}(qS)$
C _{Na}	slope of the normal-force curve, $\partial C_N / \partial \alpha$, for $-1.5 \leq \alpha \leq 1.5$
C _Y	side-force coefficient, F _Y /(qS)
d	reference diameter, 57.15 mm
d _b	diameter of the model base
FA	axial force
F _N	normal force
FY	side force
M _∞	Mach number
р	free-stream static pressure
Р	spin rate (Rad/Sec)
р _b	base pressure

LIST OF SYMBOLS (Continued)

Pd/V	non-dimens	ional	spin	rate

- q free-stream dynamic pressure
- Re Reynolds number, based on free-stream conditions and total model length
- S reference area, $\pi d^2/4$
- S_{b} area of the model base, $\pi d_{b}^{2}/4$
- V free-stream velocity

α angle of attack

APPENDIX A

Magnus and Pitch Data

for

SOC

SOCBT

Secant-Ogive-Cylinder and Secant-Ogive-Cylinder with Boattail

Figure		Page
A1	Normal Force Coefficient, C_{N} , Versus Angle of Attack	35
	a. Secant-Ogive-Cylinder	35
	b. Secant-Ogive-Cylinder with Boattail	36
A2	Pitching Moment Coefficient, C_M , Versus Angle of Attack .	37
	a. Secant-Ogive-Cylinder	37
	b. Secant-Ogive-Cylinder with Boattail	38
A3	Axial Force Coefficient, C_A , Versus Angle of Attack	39
	a. Secant-Ogive-Cylinder	39
	b. Secant-Ogive-Cylinder with Boattail	40
A4	Side Force Coefficient, C _Y , Versus Spin Rate, Pd/V -	.11
		41
	a. $M = 2.0$	41 .12
	c. $M = 4.0$	43
A5	Side Force Coefficient, C _v , Versus Spin Rate, P d /V -	
	Secant-Ogive-Cylinder with Boattail	44
	a. M = 2.0	44
	b. $M = 3.0$	45
	c. $M = 4.0$	46
A6	Yawing Moment Coefficient, C , Versus Spin Rate, Pd/V - n	
	Secant-Ogive-Cylinder	47
	a. M = 2.0	47
	b. $M = 3.0$	48
	c. $M = 4.0$	49

SOC AND SOCBT (Continued)

Figure																												Page
A7	Yaw	ing	g N	lomen	nt	C	oei	Ef	ici	ier	nt,	, (n,	, \	/eı	ระ	ıs	S	piı	n l	Rat	te,	, I	Pd,	/V	~		
	S	eca	ant	t-0g:	iv	e-1	Cy]	liı	nde	er	W	itl	n I	308	att	taj	1	•	•	•	•	•	•	٠	. •	•	٠	50
	a.	М	=	2.0	٠	•	•	•	•	٠	•	•		•	•	•	•	•	•		•	•	•	•	•	•	٠	50
	b.	М	=	3.0		•	•	•	•	•	•	•	•				•			•	•	•		•	•	•	•	51
	с.	М	Ξ	4.0																								52

۰.

Figure Al. Normal Force Coefficient, C_N , Versus Angle of Attack

a. Secant-Ogive-Cylinder

a. Secant-Ogive-Cylinder

a. M = 2.0

Figure A4. Continued

b. M = 3.0

Figure A4. Continued

. 1

c. M = 4.0

Figure A5. Side Force Coefficient, C_{γ} , Versus Spin Rate, Pd/V - Secant-Ogive-Cylinder with Boattail

Figure A5. Continued

b. M = 3.0

Figure A5. Continued

c. M = 4.0

Figure A6. Yawing Moment Coefficient, C_n, Versus Spin Rate, Pd/V - Secant-Ogive-Cylinder

b. M = 3.0

Figure A7. Yawing Moment Coefficient, C_n , Versus Spin Rate, Pd/V - Secant-Ogive-Cylinder with Boattail

```
a. M = 2.0
```


b. M = 3.0

c. M = 4.0

APPENDIX B

Magnus and Pitch Data

for

TOC

TOCBT

Tangent-Ogive-Cylinder and Tangent-Ogive-Cylinder with Boattail

Figure		Page
B1	Normal Force Coefficient, C_N , Versus Angle of Attack	56
	a. Tangent-Ogive-Cylinder	56
	b. Tangent-Ogive-Cylinder with Boattail	57
B2	Pitching Moment Coefficient, C_M , Versus Angle of Attack .	58
	a. Tangent-Ogive-Cylinder	58
	b. Tangent-Ogive-Cylinder with Boattail	59
В3	Axial Force Coefficient, C_A , Versus Angle of Attack	60
	a. Tangent-Ogive-Cylinder	60
	b. Tangent-Ogive-Cylinder with Boattail	5 1
B4	Side Force Coefficient, C _v , Versus Spin Rate, Pd/V -	
	Tangent-Ogive-Cylinder \ldots	6 2
	a. M = 2.0	6 2
	b. $M = 3.0$	63
B5	Side Force Coefficient, C _v , Versus Spin Rate, Pd/V -	
	Tangent-Ogive-Cylinder with Boattail	64
	a. M = 2.0	64
	b. M = 3.0	б5
B6	Yawing Moment Coefficient, C., Versus Spin Rate, Pd/V -	
	Tangent-Ogive-Cylinder	6 6
	a. M = 2.0	3 6
	b. M = 3.0	67
B7	Yawing Moment Coefficient, C , Versus Spin Rate, Pd/V -	
	Tangent-Ogive-Cylinder with Boattail	68
	a. M = 2.0	68
	b. M = 3.0	69

a. Tangent-Ogive-Cylinder

a. Tangent-Ogive-Cylinder

a. Tangent-Ogive-Cylinder

Figure B4. Side Force Coefficient, C_{γ} , Versus Spin Rate, Pd/V - Tangent-Ogive-Cylinder

a. M = 2.0

Figure B4. Continued

b. M = 3.0

Figure B5. Side Force Coefficient, $C_{\gamma},$ Versus Spin Rate, Pd/V - Tangent-Ogive-Cylinder with Boattail

a. M = 2.0

b. M = 3.0

Figure B6. Yawing Moment Coefficient, C_n, Versus Spin Rate, Pd/V - Tangent-Ogive-Cylinder

b. M = 3.0

Figure B7. Yawing Moment Coefficient, C_n , Versus Spin Rate, Pd/V - Tangent-Ogive-Cylinder with Boattail

a. M = 2.0

b. M = 3.0

DISTRIBUTION LIST

No. of Copies	f organization	No. o: Copies	f organization
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	1	Director US Army Air Mobility Research and Development Command Ames Research Center Moffett Field, CA 94035
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Communications Research & Development Command ATTN: DRDCO-PPA- SA Fort Monmouth, NJ 07703
8	Commander US Army Armament Research & Development Command ATTN: DRDAR-TSS (2 cys) DRDAR-LCA-F Mr. D. Mertz Mr. E. Falkowski Mr. A. Loeb Mr. R. Kline Mr. S. Kahn Mr. S. Wasserman Dover, NJ 07801	1	Commander US Army Electronics Research & Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703 Commander US Army Missile Command ATTN: DRSMI-R DRSMI-RDK Mr. R. Deep
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299	1	Mr. R. Becht Redstone Arsenal, AL 35809 Commander US Army Tank Automotive Research & Development Command
1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	1	AIIN: DRDIA-UL Warren, MI 48090 Commander US Army Research Office P.O. Box 12211 Research Triangle Park
1	Commander US Army Aviation Research & Developlment Command ATTN: DRSAV-E P.O. Box 209 St. Louis, MO 61366 71	1	NC 27709 Director US Army TRADOC Systems Ananlysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002

~ .

DISTRIBUTION LIST

No. of Copies Organization

No. of Copies

1 Commander Naval Air Systems Command ATTN: AIR-604 Washington, DC 20360

- 2 Commander David W. Taylor Naval Ship Research & Development Ctr ATTN: Dr. S. de los Santos Mr. Stanley Gottlieb Bethesda, Maryland 20084
- 4 Commander Naval Surface Weapons Center ATTN: Dr. T. Clare, Code DK20 Dr. P. Daniels Mr. D.A. Jones III Mr. L. Mason Dahlgren, VA 22448
- 3 Commander Naval Surface Weapons Center ATTN: Code 312 Mr. F. Regan Mr. J. Knott Mr. R. Schlie Silver Spring, MD 20910
- Commander 1 Naval Weapons Center ATTN: Technical Library China Lake, CA 93555
- 2 Director NASA Ames Research Center ATTN: MS-202, Tech Lib MS-227-8, Dr. L.B. Schiff Moffett Field, CA 94035
- 1 Director NASA Langley Research Center ATTN: MS-185, Tech Lib Langley Station Hampton, VA 23365

Organization

- 1 Arnold Research Organization. INC. von Karman Gas Dynamics Facility ATTN: Dr. John C. Adams, Jr. Aerodynamics Division Projects Branch Arnold AFS, TN 37389
- 1 Flow Simulations, Inc. ATTN: Dr. J. Steger 735 Alice Avenue Mountain View, CA 94041
- 1 Sandia Laboratories ATTN: Division No. 1331 Mr. H.R. Vaughn P.O. Box 580 Albuquerque, NM 87115
- 2 Massachusetts Institute of Technology ATTN: Prof. E. Covert Prof. C. Haldeman 77 Massachusetts Avenue Cambridge, MA 02139
- 1 Virginia Polytechnic Institute and State University Department of Aerospace and Ocean Engineering ATTN: Prof. George R. Inger Blacksburg, VA 24061
- 1 University of Delaware Mechanical and Aerospace Engineering Department ATTN: Dr. James E. Danberg Newark, DE 19711

DJSTRIBUTION LIST

Organization

Aberdeen Proving Ground

Director, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen

Cdr, USATECOM ATTN: DRSTE-TO-F

Dir, Wpns Sys Concepts Team Bldg E3516, EA ATTN: DRDAR-ACW Mr. M. Miller Mr. A. Flatau

Dir, CSL Bldg. E3160, EA ATTN: Dr. W. Sacco

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number_____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)_____

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name:_____

Telephone Number:_____

Organization Address:_____