
Mach Learn (2016) 102:349–391
DOI 10.1007/s10994-015-5528-6

Supersparse linear integer models for optimized medical

scoring systems

Berk Ustun1
· Cynthia Rudin2

Received: 1 February 2015 / Accepted: 5 August 2015 / Published online: 5 November 2015
© The Author(s) 2015

Abstract Scoring systems are linear classification models that only require users to add,

subtract and multiply a few small numbers in order to make a prediction. These models are in

widespread use by the medical community, but are difficult to learn from data because they

need to be accurate and sparse, have coprime integer coefficients, and satisfy multiple oper-

ational constraints. We present a new method for creating data-driven scoring systems called

a Supersparse Linear Integer Model (SLIM). SLIM scoring systems are built by using an

integer programming problem that directly encodes measures of accuracy (the 0–1 loss) and

sparsity (the ℓ0-seminorm) while restricting coefficients to coprime integers. SLIM can seam-

lessly incorporate a wide range of operational constraints related to accuracy and sparsity,

and can produce acceptable models without parameter tuning because of the direct control

provided over these quantities. We provide bounds on the testing and training accuracy of

SLIM scoring systems, and present a new data reduction technique that can improve scalabil-

ity by eliminating a portion of the training data beforehand. Our paper includes results from

a collaboration with the Massachusetts General Hospital Sleep Laboratory, where SLIM is

being used to create a highly tailored scoring system for sleep apnea screening.

Electronic supplementary material The online version of this article (doi:10.1007/s10994-015-5528-6)
contains supplementary material, which is available to authorized users.

Editors: Byron Wallace and Jenna Wiens.

B Berk Ustun
ustunb@mit.edu

Cynthia Rudin
rudin@mit.edu

1 Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA

2 Sloan School of Management and CSAIL, Massachusetts Institute of Technology, Cambridge, MA,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-015-5528-6&domain=pdf
http://dx.doi.org/10.1007/s10994-015-5528-6

350 Mach Learn (2016) 102:349–391

Keywords Medical scoring systems · Discrete linear classification · Integer programming ·
0–1 Loss · Sparsity · Interpretability · Sleep apnea · Supervised Classification

1 Introduction

Scoring systems are linear classification models that only require users to add, subtract and

multiply a few small numbers in order to make a prediction. These models are used to assess

the risk of numerous serious medical conditions since they allow physicians to make quick

predictions, without extensive training, and without the use of a computer (see e.g., Knaus

et al. 1991; Bone et al. 1992; Moreno et al. 2005). Many medical scoring systems that are

currently in use were hand-crafted by physicians, whereby a panel of experts simply agreed

on a model (see e.g., the CHADS2 score of Gage et al. 2001). Some medical scoring systems

are data-driven in the sense that they were created by rounding logistic regression coefficients

(see e.g., the SAPS II score of Le Gall et al. 1993). Despite the widespread use of medical

scoring systems, there has been little to no work that has focused on machine learning methods

to learn these models from data.

Scoring systems are difficult to create using traditional machine learning methods because

they need to be accurate, sparse, and use small coprime integer coefficients. This task is

especially challenging in medical applications because models also need to satisfy explicit

constraints on operational quantities such as the false positive rate or the number of features.

Such requirements represent serious challenges for machine learning. Current methods for

sparse linear classification such as the lasso (Tibshirani 1996) and elastic net (Zou and

Hastie 2005) control the accuracy and sparsity of models via approximations to speed

up computation, and require rounding to yield models with coprime integer coefficients.

Approximations such as convex surrogate loss functions, ℓ1-regularization, and rounding

not only degrade predictive performance but make it difficult to address operational con-

straints imposed by physicians. To train a model that satisfies a hard constraint on the false

positive rate, for instance, we must explicitly calculate its value, which is impossible when

we control accuracy by means of a surrogate loss function. In practice, traditional meth-

ods can only address multiple operational constraints through a tuning process that involves

high-dimensional grid search. As we show, this approach often fails to produce a model that

satisfies operational constraints, let alone a scoring system that is optimized for predictive

accuracy.

In this paper, we present a new method to create data-driven scoring systems called a Super-

sparse Linear Integer Model (SLIM). SLIM is an integer program that optimizes direct mea-

sures of accuracy (the 0–1 loss) and sparsity (the ℓ0-seminorm) while restricting coefficients to

a small set of coprime integers. In comparison to current methods for sparse linear classifica-

tion, SLIM can produce scoring systems that are fully optimized for accuracy and sparsity, and

that satisfy a wide range of complicated operational constraints without any parameter tuning.

The main contributions of our paper are as follows.

• We present a principled machine learning approach to learn scoring systems from data. This

approach can produce scoring systems that satisfy multiple operational constraints without

any parameter tuning. Further, it has a unique advantage for imbalanced classification

problems, where constraints on class-based accuracy can be explicitly enforced.

• We derive new bounds on the accuracy of discrete linear classification models. In particu-

lar, we present discretization bounds that guarantee that we will not lose training accuracy

when the size of the coefficient set is sufficiently large. In addition, we present general-

123

Mach Learn (2016) 102:349–391 351

ization bounds that relate the size of the coefficient set to a uniform guarantee on testing

accuracy.

• We develop a novel data reduction technique that can improve the scalability of supervised

classification algorithms by removing a portion of the training data beforehand. Further,

we show how data reduction can be applied directly to SLIM.

• We present results from a collaboration with the Massachusetts General Hospital (MGH)

Sleep Laboratory where SLIM is being used to create a highly tailored scoring system for

sleep apnea screening. Screening for sleep apnea is important: the condition is difficult

to diagnose, has significant costs, and affects over 12 million people in the United States

alone (Kapur 2010).

• We provide a detailed experimental comparison between SLIM and eight popular classifi-

cation methods on publicly available datasets. Our results suggest that SLIM can produce

scoring systems that are accurate and sparse in a matter of minutes.

The remainder of our paper is structured as follows. In the remainder of Sect. 1, we discuss

related work. In Sect. 2, we introduce SLIM and discuss its special properties. In Sect. 3,

we explain how SLIM can easily accommodate operational constraints that are important

for medical scoring systems to be used in practice. In Sect. 4, we present theoretical bounds

on the accuracy of SLIM scoring systems and other discrete linear classification models. In

Sect. 5, we present a data reduction technique to decrease the computation associated with

training SLIM scoring systems and other supervised classification models. In Sect. 6, we

discuss a collaboration with the MGH Sleep Laboratory where we used SLIM to create a

highly tailored scoring system for sleep apnea screening. In Sect. 7, we report experimental

results to show that SLIM can create scoring systems that are accurate and sparse in minutes.

In Sect. 8, we present two specialized extensions of SLIM.

1.1 Related work

Our work is related to several streams of research, namely: medical scoring systems; sparse

linear classification; discrete linear classification; and mixed-integer programming (MIP)

approaches for classification. In what follows, we discuss related work in each area separately.

1.1.1 Medical scoring systems

Some popular medical scoring systems include:

• SAPS I, II and III, to assess ICU mortality risk (Le Gall et al. 1984, 1993; Moreno et al.

2005);

• APACHE I, II and III, to assess ICU mortality risk (Knaus et al. 1981, 1985, 1991);

• CHADS2, to assess the risk of stroke in patients with atrial fibrillation (Gage et al. 2001);

• Wells Criteria for pulmonary embolisms (Wells et al. 2000); Wells Criteria for and deep

vein thrombosis (Wells et al. 1997);

• TIMI, to assess the risk of death and ischemic events (Antman et al. 2000);

• SIRS, to detect system inflammatory response syndrome (Bone et al. 1992);

All of the scoring systems listed above are sparse linear models with small coprime coeffi-

cients. The CHADS2 scoring system, for instance, uses 5 coefficients with values of 1 and 2.

Many medical scoring systems were constructed without optimizing for predictive

accuracy. In some cases, physicians built scoring systems by combining existing linear clas-

sification methods with heuristics. The SAPS II score, for instance, was constructed by

123

352 Mach Learn (2016) 102:349–391

rounding logistic regression coefficients: as Le Gall et al. (1993) write, “the general rule was

to multiply the β for each range by 10 and round off to the nearest integer.” This approach

is at odds with the fact that rounding is known to produce suboptimal solutions in the field

of integer programming. In other cases, scoring systems were hand-crafted by a panel of

physicians, and not learned from data at all. This appears to have been the case for CHADS2

as suggested by Gage et al. (2001): “To create CHADS2, we assigned 2 points to a history of

prior cerebral ischemia and 1 point for the presence of other risk factors because a history of

prior cerebral ischemia increases the relative risk (RR) of subsequent stroke commensurate

to 2 other risk factors combined. We calculated CHADS2, by adding 1 point each for each

of the following—recent CHF, hypertension, age 75 years or older, and DM—and 2 points

for a history of stroke or TIA.” Methods that can easily produce highly tailored prediction

models, such as SLIM, should eliminate the need for physicians to create models by hand.

In addition to the sleep apnea application that we present in Sect. 6, SLIM has also been

used to create medical scoring system for diagnosing cognitive impairments using features

derived from a clock-drawing test (Souillard-Mandar et al. 2015), and to create scoring

systems for recidivism prediction (Zeng et al. 2015).

1.1.2 Sparse linear classification models

In comparison to SLIM, the majority of current methods for sparse linear classification are

designed to fit models with real coefficients and would therefore require rounding to yield

scoring systems. In practice, rounding the coefficients of a linear model may significantly

alter its accuracy and sparsity, and may produce a scoring system that violates operational

constraints on these quantities. Further, many current methods also control accuracy and

sparsity by means of convex surrogate functions to preserve scalability (see e.g., Tibshirani

1996; Efron et al. 2004). As we show in Sects. 6 and 7, surrogate functions provide a poor

trade-off between accuracy and sparsity. Convex surrogate loss functions, for instance, pro-

duce models that do not attain the best learning-theoretic guarantee on predictive accuracy

and are not robust to outliers (Li and Lin 2007; Brooks and Lee 2010; Nguyen and Sanner

2013). Similarly, ℓ1-regularization is only guaranteed to recover the correct sparse solution

(i.e., the one that minimizes the ℓ0-norm) under restrictive conditions that are rarely satisfied

in practice (Zhao and Bin 2007; Liu and Zhang 2009). In fact, ℓ1-regularization may recover

a solution that attains a significant loss in predictive accuracy relative to the correct sparse

solution (see e.g., Lin et al. 2008, for a discussion). Sparse linear classifiers can also be

produced using feature selection algorithms (Guyon and Elisseeff 2003; Mao 2004), though

these algorithms cannot guarantee an optimal balance between accuracy and sparsity as they

typically rely on greedy optimization (with some exceptions, see e.g., Bradley et al. 1999).

1.1.3 Discrete linear classification models

SLIM is part of a recent stream of research on creating linear classifiers with discrete coeffi-

cients. Specifically, Chevaleyre et al. (2013) have considered training linear classifiers with

binary coefficients by rounding the coefficients of linear classifiers that minimize the hinge

loss. In addition, Carrizosa et al. (2013) have considered training linear classifiers with small

integer coefficients by using a MIP formulation that optimizes the hinge loss. The discretiza-

tion bounds and generalization bounds in Sect. 4 are a novel contribution to this body of

work and applicable to all linear models with discrete coefficients.

SLIM can reproduce the models proposed by Chevaleyre et al. (2013) and Carrizosa et al.

(2013) (see e.g., our formulation to create M-of-N rule tables in Sect. 8.2.1). The converse,

123

Mach Learn (2016) 102:349–391 353

however, is not necessarily true because the methods of Chevaleyre et al. (2013) and Carrizosa

et al. (2013) have the following weaknesses: (i) they optimize the hinge loss as opposed to

the 0–1 loss; and (ii) they do not include a mechanism to control sparsity. These differences

may result in better scalability compared to SLIM. However, they also eliminate the ability of

these methods to produce scoring systems that are sparse, that satisfy operational constraints

on accuracy and/or sparsity, and that can be trained without parameter tuning.

1.1.4 MIP approaches for classification

SLIM uses integer programming (IP) to achieve three distinct goals: (i) minimize the 0–1

loss; (ii) penalize the ℓ0-norm for feature selection; and (iii) restrict coefficients to a small set

of integers. MIP approaches have been used to tackle each of these goals, albeit separately.

MIP formulations to minimize the 0–1 loss, for instance, were first proposed in Liittschwa-

ger and Wang (1978) and Bajgier and Hill (1982), and later refined by Mangasarian (1994),

Asparoukhov and Stam (1997) and Glen (1999). Similarly, MIP formulations that penalize the

ℓ0-norm for feature selection were proposed in Goldberg and Eckstein (2010), Goldberg and

Eckstein (2012) and Nguyen and Franke (2012). To our knowledge, the only MIP formulation

to restrict coefficients to a small set of integers is proposed in Carrizosa et al. (2013).

SLIM has unique practical benefits in comparison to these MIP formulations since it

handles all three of these goals simultaneously. As we discuss in Sect. 2, the simultaneous

approach allows SLIM to train models parameter tuning, and make use of the variables that

encode the 0–1 loss and ℓ0-norm to accommodate important operational constraints. Further,

restricting coefficients to a discrete set that is finite leads to an IP formulation whose LP

relaxation is significantly tighter than other MIP formulations designed to minimize the 0–1

loss and/or penalize the ℓ0-norm.

The problem of finding a linear classifier that minimizes the 0–1 loss function is some-

times referred to as misclassification minimization for the linear discriminant problem in

the MIP community (see e.g., Rubin 2009; Lee and Wu 2009, for an overview). Seeing

how early attempts at misclassification minimization were only feasible for tiny datasets

with at most 200 examples (see e.g., Joachimsthaler and Stam 1990), a large body of work

has focused on improving scalability by using heuristics (Rubin 1990; Yanev and Balev

1999), decomposition procedures (Rubin 1997), cutting planes (Brooks 2011) and special-

ized branch-and-bound algorithms (Nguyen and Sanner 2013). The data reduction technique

we present in Sect. 5 is a novel contribution to this body of work, and addresses a need for

general methods to remove redundant data put forth by Bradley et al. (1999). We compare

and contrast data reduction to existing approaches in greater detail in Sect. 5.3.

2 Methodology

We start with a dataset of N i.i.d. training examples DN = {(xi , yi)}N
i=1 where each xi ∈

X ⊆ R
P+1 denotes a vector of features [1, xi,1, . . . , xi,P]T and each yi ∈ Y = {−1, 1}

denotes a class label. We consider linear classification models of the form ŷ = sign(λT x),

where λ ⊆ R
P+1 represents a vector of coefficients [λ0, λ1, . . . , λP]T and λ0 represents

an intercept term. We learn the values of the coefficients from the data DN by solving an

optimization problem of the form:

min
λ

Loss (λ; DN) + C · Φ(λ)

s.t. λ ∈ L.
(1)

123

354 Mach Learn (2016) 102:349–391

Here: the loss function, Loss (λ; DN) : R
P+1×(X ×Y)N → R, penalizes misclassifications;

the interpretability penalty, Φ(λ) : R
P+1 → R, induces soft qualities that are desirable but

may be sacrificed for greater accuracy; the interpretability set, L, encodes hard qualities that

are absolutely required; and the trade-off parameter, C , controls the balance between accuracy

and soft qualities. We assume: (i) the interpretability set contains the null vector so that 0 ∈ L;

(ii) the interpretability penalty is additively separable so that Φ(λ) =
∑P

j=0 Φ j (λ j); (iii) the

intercept is never penalized so that Φ0(λ0) = 0.

A Supersparse Linear Integer Model (SLIM) is a special case of the optimization problem

in (1):

min
λ

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0 + ǫ ‖λ‖1

s.t. λ ∈ L.

(2)

SLIM directly optimizes accuracy and sparsity by minimizing the 0–1 loss
1
N

∑N
i=1 1

[

yiλ
T xi ≤ 0

]

and ℓ0-norm ‖λ‖0 :=
∑P

j=1 1
[

λ j �= 0
]

respectively. The con-

straints usually restrict coefficients to a finite set of discrete values such as L =
{−10, . . . , 10}P+1, and may include additional operational constraints such as ‖λ‖0 ≤ 10.

SLIM includes a tiny ℓ1-penalty ǫ ‖λ‖1 in the objective for the sole purpose of restricting

coefficients to coprime values. 1 To be clear, the ℓ1-penalty parameter ǫ is always set to a

value that is small enough to avoid ℓ1-regularization (that is, ǫ is small enough to guarantee

that SLIM never sacrifices accuracy or sparsity to attain a smaller ℓ1-penalty).

SLIM is designed to produce scoring systems that attain a pareto-optimal trade-off between

accuracy and sparsity: when we minimize 0–1 loss and the ℓ0-penalty, we only sacrifice clas-

sification accuracy to attain higher sparsity, and vice versa. Minimizing the 0–1 loss produces

scoring systems that are completely robust to outliers and attain the best learning-theoretic

guarantee on predictive accuracy (see e.g., Brooks 2011; Nguyen and Sanner 2013). Simi-

larly, controlling for sparsity via ℓ0-regularization prevents the additional loss in accuracy

due to ℓ1-regularization (see Lin et al. 2008, for a discussion). We can make further use of

the variables that encode the 0–1 loss and ℓ0-penalty to formulate operational constraints

related to accuracy and sparsity (see Sect. 3).

One unique benefit in minimizing an approximation-free objective function over a finite

set of discrete coefficients is that the free parameters in the objective of (2) have special

properties.

Remark 1 If ǫ <
min (1/N ,C0)
maxλ∈L‖λ‖1

and L is a finite subset of Z
P+1 then the optimization of (2)

will produce a scoring system with coprime integer coefficients without affecting accuracy

or sparsity. That is,

argmin
λ∈L

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0 + ǫ ‖λ‖1 ⊆

argmin
λ∈L

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0

1 To illustrate the use of the ℓ1-penalty, consider a classifier such as ŷ = sign (x1 + x2). If the objective in
(2) only minimized the 0–1 loss and an ℓ0-penalty, then ŷ = sign (2x1 + 2x2) would have the same objective
value as ŷ = sign (x1 + x2) because it makes the same predictions and has the same number of non-zero
coefficients. Since coefficients are restricted to a finite discrete set, we add a tiny ℓ1-penalty in the objective
of (2) so that SLIM chooses the classifier with the smallest (i.e. coprime) coefficients, ŷ = sign (x1 + x2).

123

Mach Learn (2016) 102:349–391 355

and,

gcd({λ∗
j }P

j=0) = 1 for all λ∗ ∈ argmin
λ∈L

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0 + ǫ ‖λ‖1 .

Remark 2 The trade-off parameter C0 represents the maximum accuracy that SLIM will

sacrifice to remove a feature from the optimal scoring system.

Remark 3 If C0 < 1
N P

and ǫ <
min (1/N ,C0)
maxλ∈L‖λ‖1

= C0
maxλ∈L‖λ‖1

then the optimization of (2) will

produce a scoring system with coefficients λ ∈ L that attains the highest possible training

accuracy. That is,

argmin
λ∈L

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+C0 ‖λ‖0+ǫ‖λ‖1 ⊆ argmin
λ∈L

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

.

Remark 4 If C0 > 1 − 1
N

and ǫ <
min (1/N ,C0)
maxλ∈L‖λ‖1

= 1/N
maxλ∈L‖λ‖1

then the optimization of

(2) will produce a scoring system with coefficients λ ∈ L that attains the highest possible

sparsity. That is,

argmin
λ∈L

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0 + ǫ ‖λ‖1 ⊆ argmin
λ∈L

C0 ‖λ‖0 .

The aforementioned properties are only possible using the formulation in (2). In particular,

the properties in Remarks 2–4 require that we control accuracy using the 0–1 loss and control

sparsity using an ℓ0-penalty. In addition, the property in Remark 1 requires that we restrict

coefficients to a finite set of discrete values.

2.1 SLIM IP Formulation

We train SLIM scoring systems using the following IP formulation:

min
λ,ψ,Φ,α,β

1

N

N
∑

i=1

ψi +
P
∑

j=1

Φ j

s.t. Miψi ≥ γ −
P
∑

j=0

yiλ j xi, j i = 1,...,N 0-1 loss (3a)

Φ j = C0α j + ǫβ j j = 1,...,P int. penalty (3b)

− Λ jα j ≤ λ j ≤ Λ jα j j = 1,...,P ℓ0 -norm (3c)

− β j ≤ λ j ≤ β j j = 1,...,P ℓ1 -norm

λ j ∈ L j j = 0,...,P coefficient set

ψi ∈ {0, 1} i = 1,...,N loss variables

Φ j ∈ R+ j = 1,...,P penalty variables

α j ∈ {0, 1} j = 1,...,P ℓ0 variables

β j ∈ R+ j = 1,...,P ℓ1 variables (3d)

Here, the constraints in (3a) set the loss variables ψi = 1
[

yiλ
T xi ≤ 0

]

to 1 if a linear

classifier with coefficients λ misclassifies example i . This is a Big-M constraint for the

123

356 Mach Learn (2016) 102:349–391

0–1 loss that depends on scalar parameters γ and Mi (see e.g., Rubin 2009). The value

of Mi represents the maximum score when example i is misclassified, and can be set as

Mi = maxλ∈L(γ − yiλ
T xi) which is easy to compute since λ is restricted to a finite discrete

set. The value of γ represents the “margin” and should be set as a lower bound on yiλ
T xi .

When the features are binary, γ can be set to any value between 0 and 1. In other cases,

the lower bound is difficult to calculate exactly so we set γ = 0.1, which makes an implicit

assumption on the values of the features. The constraints in (3b) set the total penalty for each

coefficient to Φ j = C0α j + ǫβ j , where α j := 1
[

λ j �= 0
]

is defined by Big-M constraints

in (3c), and β j := |λ j | is defined by the constraints in (3d). We denote the largest absolute

value of each coefficient as Λ j := maxλ j ∈L j
|λ j |.

Restricting coefficients to a finite discrete set results in significant practical benefits for

the SLIM IP formulation, especially in comparison to other IP formulations that minimize

the 0–1-loss and/or penalize the ℓ0-norm. Many IP formulations compute the 0–1 loss and

ℓ0-norm by means of Big-M constraints that use on Big-M constants (see e.g., Wolsey 1998).

Restricting the coefficients to a finite discrete set allows us to bound Big-M constants that are

typically set heuristically to a large value. Specifically, the Big-M constant for computing the

0–1 loss in constraints (3a) is bounded as Mi ≤ maxλ∈L(γ − yiλ
T xi) (compare with Brooks

2011, where the same parameter has to be approximated by a “sufficiently large constant”).

Similarly, the Big-M constant used to compute the ℓ0-norm in constraints (3c) is bounded

at Λ j ≤ maxλ j ∈L j
|λ j | (compare with Guan et al. 2009, where this same parameter has

to be approximated by a “sufficiently large constant”). These differences lead to a tighter

LP relaxation, which narrows the integrality gap, and subsequently improves the ability of

commercial IP solvers to obtain a proof of optimality.

3 Operational constraints

In this section, we discuss how SLIM can accommodate a wide range of operational con-

straints related to the accuracy and sparsity of predictive models. The following techniques

provide users with a practical approach to create tailored prediction models. They are made

possible by the facts that: (i) the variables that encode the 0–1 loss and ℓ0-penalty in the SLIM

IP formulation can also be used to handle accuracy and sparsity; and (ii) the free parameters

in the SLIM objective can be set without tuning (see Remarks 2–4).

3.1 Loss constraints for imbalanced data

The majority of classification problems in the medical domain are imbalanced. Handling

imbalanced data is incredibly difficult for most classification methods since maximizing

classification accuracy often produces a trivial model (i.e., if the probability of heart attack

is 1 %, a model that never predicts a heart attack is still 99 % accurate).

SLIM has unique benefits when training scoring systems on imbalanced problems. Specif-

ically, it is the only method that can train a supervised classification model at any point on

the ROC curve without any parameter tuning. When physicians specify hard constraints on

sensitivity (or specificity), we can encode these as loss constraints into the IP formulation,

and solve the IP to obtain the least specific (or most sensitive) model without parameter

tuning. To train the most sensitive scoring system with a maximum error of γ ∈ [0, 1] on

negatively-labeled examples we solve an IP with the form:

123

Mach Learn (2016) 102:349–391 357

min
λ

W

N

+
∑

i∈I+
1

[

yiλ
T

xi ≤ 0
]

+ W

N

−
∑

i∈I−
1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0 + ǫ ‖λ‖1

s.t.
1

N−
∑

i∈I−
1

[

yiλ
T

xi ≥ 0
]

≤ γ

λ ∈ L. (4)

Here, we have used a weighted 0–1 loss function where W + and W − are weights that control

the accuracy on the N+ positively-labeled examples from the set I+ = {i : yi = +1}, and

N− negatively-labeled examples from the set I− = {i : yi = −1}, respectively. Assuming

that W + + W − = 1, we can set W + > N−
1+N− and W − = 1 − W + so that the optimization

aims to find a scoring system that classifies all of the positively-labeled examples correctly, at

the expense of misclassifying all of the negatively-labeled examples. Constraint (4) prevents

this from happening by limiting the error on negatively-labeled examples to γ . Thus, the

optimal scoring system attains the highest sensitivity among models with a maximum error

of γ on negatively-labeled examples.

3.2 Feature-based constraints for input variables

SLIM provides fine-grained control over the composition of input variables in a scoring sys-

tem by formulating feature-based constraints. Specifically, we can make use of the indicator

variables that encode the ℓ0-norm α j := 1
[

λ j �= 0
]

to formulate arbitrarily complicated log-

ical constraints between features such as “either-or” conditions or “if-then” conditions (see

e.g., Wolsey 1998). This presents a practical alternative to create classification models that

obey structured sparsity constraints (see e.g., Jenatton et al. 2011) or hierarchical constraints

(see e.g., Bien et al. 2013).

The indicator variables α j can be used to limit the number of input variables to at most

Θ by adding the constraint,

P
∑

j=1

α j ≤ Θ.

More complicated constraints include, for example, “if-then” constraints to ensure that a

model will include hypertension and heart_attack if it also includes stroke:

αheart_attack + αhypertension ≤ 2αstroke,

or hierarchical constraints to ensure that an input variable in the leaves can only be used when

all features above it in the hierarchy are also used:

αlea f ≤ αnode for all nodes above the leaf.

3.3 Feature-based preferences

Physicians often have soft preferences between different input variables. SLIM allows prac-

titioners to encode these preferences by specifying a distinct trade-off parameter for each

coefficient C0, j .

Explicitly, when our model should use feature j instead of feature k, we set C0,k = C0, j +δ,

where δ > 0 represents the maximum additional training accuracy that we are willing to

sacrifice in order to use feature j instead of feature k. Thus, setting C0,k = C0, j + 0.02

123

358 Mach Learn (2016) 102:349–391

would ensure that we would only be willing to use feature k instead of feature j if it yields

an additional 2 % gain in training accuracy over feature k.

This approach can also be used to handle problems with missing data. Consider training a

model where feature j contains M < N missing points. Instead of dropping these points, we

can impute the values of the M missing examples, and adjust the trade-off parameter C0, j

so that our model only uses feature j if it yields an additional gain in accuracy of more than

M examples:

C0, j = C0 + M

N
.

The adjustment factor is chosen so that: if M = 0 then C0, j = C0 and if M = N then

C0, j = 1 and the coefficient is dropped entirely (see Remark 4). This ensures that features

with lots of imputed values are more heavily penalized than features with fewer imputed

values.

4 Bounds on training and testing accuracy

In this section, we present bounds on the training and testing accuracy of SLIM scoring

systems.

4.1 Discretization bounds on training accuracy

Our first result shows that we can always craft a finite discrete set of coefficients L so that

the training accuracy of a linear classifier with discrete coefficients λ ∈ L (e.g. SLIM) is no

worse than the training accuracy of a baseline linear classifier with real-valued coefficients

ρ ∈ R
P (e.g. SVM).

Theorem 1 (Minimum margin resolution bound) Let ρ = [ρ1, . . . , ρP]T ∈ R
P denote

the coefficients of a baseline linear classifier trained using data DN = (xi , yi)
N
i=1. Let

Xmax = maxi ‖xi‖2 and γmin = mini
|ρT xi |
‖ρ‖2

denote the largest magnitude and minimum

margin achieved by any training example, respectively.

Consider training a linear classifier with coefficients λ = [λ1, . . . , λP]T from the set

L = {−Λ, . . . , Λ}P . If we choose a resolution parameter Λ such that:

Λ >
Xmax

√
P

2γmin
, (5)

then there exists λ ∈ L such that the 0–1 loss of λ is less than or equal to the 0–1 loss of ρ:

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

≤
N
∑

i=1

1

[

yiρ
T

xi ≤ 0
]

.

Proof See Appendix. ⊓⊔

The proof of Theorem 1 uses a rounding procedure to choose a resolution parameter Λ so

that the coefficient set L contains a classifier with discrete coefficients λ that attains the same

the 0–1 loss as the baseline classifier with real coefficients ρ. If the baseline classifier ρ is

obtained by minimizing a convex surrogate loss, then the optimal SLIM classifier trained

with the coefficient set from Theorem 1 may attain a lower 0–1 loss than 1
[

yiρ
T xi ≤ 0

]

because SLIM directly minimizes the 0–1 loss.

123

Mach Learn (2016) 102:349–391 359

The next corollary yields additional bounds on the training accuracy by considering pro-

gressively larger values of the margin. These bounds can be used to relate the resolution

parameter Λ to a worst-case guarantee on training accuracy.

Corollary 1 (kth margin resolution bound) Let ρ = [ρ1, . . . , ρP]T ∈ R
P denote the coef-

ficients of a linear classifier trained with data DN = (xi , yi)
N
i=1. Let γ(k) denote the value

of the kth smallest margin, I(k) denote the set of training examples with
|ρT xi |
‖ρ‖2

≤ γ(k), and

X(k) = maxi /∈I(k)
‖xi‖2 denote the largest magnitude of any training example xi ∈ DN for

i /∈ I(k).

Consider training a linear classifier with coefficients λ = [λ1, . . . , λP]T from the set

L = {−Λ, . . . , Λ}P . If we choose a resolution parameter Λ such that:

Λ >
X(k)

√
P

2γ(k)

,

then there exists λ ∈ L such that the 0–1 loss of λ and the 0–1 loss of ρ differ by at most

k − 1:

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

−
N
∑

i=1

1

[

yiρ
T

xi ≤ 0
]

≤ k − 1.

Proof The proof follows by applying Theorem 1 to the reduced dataset DN \I(k). ⊓⊔

We have now shown that good discretized solutions exist and can be constructed easily.

This motivates that optimal discretized solutions, which by definition are better than rounded

solutions, will also be good relative to the best non-discretized solution.

4.2 Generalization bounds on testing accuracy

According to the principle of structural risk minimization (Vapnik 1998), fitting a classifier

from a simpler class of models may lead to an improved guarantee on predictive accuracy.

Consider training a classifier f : X → Y with data DN = (xi , yi)
N
i=1, where xi ∈ X ⊆ R

P

and yi ∈ Y = {−1, 1}. In what follows, we provide uniform generalization guarantees

on the predictive accuracy of all functions, f ∈ F . These guarantees bound the true risk

Rtrue(f) = EX ,Y1 [f (x) �= y] by the empirical risk Remp(f) = 1
N

∑N
i=1 1 [f (xi) �= yi]

and other quantities important to the learning process.

Theorem 2 (Occam’s Razor) Let F denote the set of linear classifiers with coefficients

λ ∈ L:

F =
{

f : X → Y
∣

∣ f (x) = sign
(

λT
x

)

and λ ∈ L

}

.

For every δ > 0, with probability at least 1 − δ, every classifier f ∈ F obeys:

Rtrue(f) ≤ Remp(f) +
√

log(|L|) − log(δ)

2N
.

A proof of Theorem 2 can be found in Section 3.4 of Bousquet et al. (2004). The result that

more restrictive hypothesis spaces can lead to better generalization provides motivation for

using discrete models without necessarily expecting a loss in predictive accuracy. The bound

indicates that we include more coefficients in the set L as the amount of data N increases.

123

360 Mach Learn (2016) 102:349–391

In Theorem 3, we improve the generalization bound from Theorem 2 by exploiting the

fact that we can bound the number of non-zero coefficients in a SLIM scoring system in

terms of the value of C0.

Theorem 3 (Generalization of Sparse Discrete Linear Classifiers) Let F denote the set of

linear classifiers with coefficients λ from a finite set L such that:

F =
{

f : X → Y
∣

∣ f (x) = sign
(

λT
x

)}

λ ∈ argmin
λ∈L

1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0

For every δ > 0, with probability at least 1 − δ, every classifier f ∈ F obeys:

Rtrue(f) ≤ Remp(f) +
√

log(|HP,C0 |) − log(δ)

2N
.

where

HP,C0 =
{

λ ∈ L

∣

∣

∣ ‖λ‖0 ≤
⌊

1

C0

⌋}

.

Proof See Appendix. ⊓⊔

This theorem relates the trade-off parameter C0 in the SLIM objective to the generalization of

SLIM scoring systems. It indicates that increasing the value of the C0 parameter will produce

a model with better generalization properties.

In Theorem 4, we produce a better generalization bound by exploiting the fact that SLIM

scoring systems use coprime integer coefficients (see Remark 1). In particular, we express

the generalization bound from Theorem 2 using the P-dimensional Farey points of level Λ

(see Marklof 2012, for a definition).

Theorem 4 (Generalization of discrete linear classifiers with coprime coefficients) Let F

denote the set of linear classifiers with coprime integer coefficients, λ, bounded by Λ:

F =
{

f : X → Y
∣

∣ f (x) = sign
(

λT
x

)

and λ ∈ L

}

,

L =
{

λ ∈ Ẑ
P
∣

∣ |λ j | ≤ Λ for j = 1, . . . , P
}

,

Ẑ
P =

{

z ∈ Z
P
∣

∣ gcd(z) = 1
}

.

For every δ > 0, with probability at least 1 − δ, every classifier f ∈ F obeys:

Rtrue(f) ≤ Remp(f) +
√

log(|CP,Λ|) − log(δ)

2N
,

where CP,Λ denotes the set of Farey points of level Λ:

CP,Λ =
{

λ

q
∈ [0, 1)P : (λ, q) ∈ Ẑ

P+1 and 1 ≤ q ≤ Λ

}

.

123

Mach Learn (2016) 102:349–391 361

Fig. 1 Relative density of coprime integer vectors in Z
P (left), and the relative improvement in the general-

ization bound due to the use of coprime coefficients for δ = 0.01 (right)

The proof involves a counting argument over coprime integer vectors, using the definition of

Farey points from number theory.

In Fig. 1, we plot the relative density of coprime integer vectors in Z
P bounded by Λ (i.e.,

|CP,Λ|/(2Λ + 1)P) and the relative improvement in the generalization bound due to the use

of coprime coefficients. This shows that using coprime coefficients can significantly reduce

the number of classifiers based on the dimensionality of the data and the value of Λ. The

corresponding improvement in the generalization bound may be significant when the data

are high dimensional and Λ is small.

5 Data reduction

Data reduction is a technique that can decrease the computation associated with training a

supervised classification model by discarding redundant training data. This technique can be

applied to any supervised classification method where the training procedure is carried out

by solving an optimization problem. However, it is best suited for methods such as SLIM,

where the underlying optimization problem may be difficult to solve for large instances. In

this section, we first describe how data reduction works in a general setting, and then show

how it can be applied to SLIM.

5.1 Data reduction for optimization-based supervised classification

Consider training a classifier f : X → Y by solving a computationally challenging opti-

mization problem,

min
f

Z(f ; DN) s.t. f ∈ F . (6)

We refer to the optimization problem in (6) as the original problem. Here, F represents the

set of feasible classifiers and Z : F × (X × Y)N → R represents its objective function.

Data reduction aims to decrease the computation associated with solving the original

problem by removing redundant examples from DN = (xi , yi)
N
i=1 (i.e., data points that can

be safely discarded without changing the optimal solution to (6)). The technique requires users

to specify a surrogate problem that is considerably easier to solve. Given the initial training

data DN = (xi , yi)
N
i=1, and the surrogate problem, data reduction solves N + 1 variants

123

362 Mach Learn (2016) 102:349–391

of the surrogate problem to identify redundant examples. These examples are then removed

from the initial training data to leave behind a subset of reduced training data DM ⊆ DN

that is guaranteed to yield the same optimal classifier as DN . Thus, the computational gain

from data reduction comes from training a model with DM (i.e., solving an instance of the

original problem with N − M fewer examples).

We provide an overview of data reduction in Algorithm 1. To explain how the algorithm

works, let us denote the surrogate problem as:

min
f

Z̃(f ; DN) s.t. f ∈ F̃ . (7)

Here Z̃ : F̃ × (X × Y)N → R denotes the objective function of the surrogate problem,

and F̃ denotes its set of feasible classifiers. Data reduction can be used with any surrogate

problem so long as the ε-level set of the surrogate problem contains all optimizers to the

original problem. That is, we can use any feasible set F̃ and any objective function Z̃(.) as

long as we can specify a value of ε such that

Z̃(f ∗) ≤ Z̃(f̃ ∗) + ε ∀ f ∗ ∈ F∗ and f̃ ∗ ∈ F̃∗. (8)

Here, f ∗ denotes an optimal classifier to the original problem from the set F∗ =
argmin f ∈F Z(f), and f̃ ∗ denotes an optimal classifier to the surrogate problem from the set

F̃∗ = argmin f ∈F̃ Z̃(f). The width of the the surrogate level set ε is related to the amount of

data that will be removed. If ε is too large, the method will not remove very many examples

and will be less helpful for reducing computation (see Fig. 3).

In the first stage of data reduction, we solve the surrogate problem to: (i) compute the

upper bound on the objective value of classifiers in the surrogate level set Z̃(f̃ ∗) + ε; and

(ii) to identify a baseline label ỹi := sign
(

f̃ ∗(xi)

)

for each example i = 1, . . . , N . In the

second stage of data reduction, we solve a variant of the surrogate problem for each example

i = 1, . . . , N . The i th variant of the surrogate problem includes an additional constraint that

forces example i to be classified as −ỹi :

min
f

Z̃(f ; DN) s.t. f ∈ F̃ and ỹi f (xi) < 0 (9)

We denote the optimal classifier to the i th variant as f̃ ∗
-i . If f̃ ∗

-i lies outside of the surrogate

level set (i.e., Z̃(f̃ ∗
-i) > Z̃(f̃ ∗) + ε) then no classifier in the surrogate level set will label

example i as −ỹi . In other words, all classifiers in the surrogate level set must label this

example as ỹi . Since the surrogate level set contains the optimal classifiers to the original

problem by the assumption in (8), we can therefore remove example i from the reduced

dataset DM because we know that an optimal classifier to the original problem will label this

point as ỹi . We illustrate this situation in Fig. 2.

In Theorem 5, we prove that we obtain the same set of optimal classifiers if we train a

model with the initial data DN or the reduced data DM . In Theorem 6, we provide sufficient

conditions for a surrogate loss function to satisfy the level set condition in (8).

Theorem 5 (Equivalence of the Reduced Data) Consider an optimization problem to train

a classifier f ∈ F with data DN ,

min
f

Z(f ; DN) s.t. f ∈ F,

as well as a surrogate optimization problem to train a classifier f ∈ F̃ with data DN ,

min
f

Z̃(f ; DN) s.t. f ∈ F̃ .

123

Mach Learn (2016) 102:349–391 363

Fig. 2 We initialize data reduction with ε large enough so that Z̃(f ∗) < Z̃(f̃ ∗) + ε for all f ∗ ∈ F∗ and all

f̃ ∗ ∈ F̃∗. Here, f ∗ is the optimal classifer to the original problem from the set of optimal classifiers F∗, and

f̃ ∗ is the optimal classifier to the surrogate problem from the set of optimal classifiers F̃∗. Data reduction fits
a classifier f̃ ∗

-i for each example in the initial training data DN by solving a variant of the surrogate problem

with an additional constraint that forces f̃ ∗
-i to classify i in a different way than f̃ ∗. If Z̃(f̃ ∗

-i) > Z̃(f̃ ∗) + ε,

then we know the predicted class of example i under f ∗ and can remove it from the reduced training data DM

Algorithm 1 Data Reduction from DN to DM

Require: initial training data; DN = (xi , yi)
N
i=1

Require: surrogate problem, min Z̃(f ; DN) s.t. f ∈ F̃
Require: width of the surrogate level set, ε

Initialize: DM ←− ∅
f̃ ∗ ←− argmin f Z̃(f ;DN)

for i = 1, . . . , N do

ỹi ←− sign
(

f̃ ∗(xi)

)

f̃ ∗
-i ←− argmin Z̃(f ; DN) s.t. f ∈ F̃ and ỹi f (xi) < 0

if Z̃(f̃ ∗
-i ;DN) ≤ Z̃(f̃ ∗; DN) + ε then

DM ←− DM ∪ (xi , yi)

end if

end for

Ensure: DM , reduced training data

Let f ∗ ∈ F∗ := argmin f ∈F Z(f ; DN) and f̃ ∈ F̃∗ := argmin f ∈F̃ Z̃(f ; DN). If we choose

a value of ε so that

Z̃(f ∗; DN) ≤ Z̃(f̃ ∗; DN) + ε ∀ f ∗ ∈ F∗ and f̃ ∗ ∈ F̃∗, (10)

then Algorithm 1 will output a reduced dataset DM ⊆ DN such that

argmin f ∈F Z(f ; DN) = argmin f ∈F Z(f ; DM). (11)

Proof See Appendix.

Theorem 6 (Sufficient conditions to satisfy the level set condition) Consider an optimization

problem where the objective minimizes the 0–1 loss function Z01 : R
P → R,

min
λ∈RP

Z01 (λ) ,

123

364 Mach Learn (2016) 102:349–391

as well as a surrogate optimization problem where the objective minimizes a surrogate loss

function ψ : R
P → R,

min
λ∈RP

Zψ (λ) .

If the surrogate loss function ψ satisfies the following properties for all λ ∈ R
P , λ∗

01 ∈
argminλ∈RP Z01 (λ), and λ∗

ψ ∈ argminλ∈RP Zψ (λ):

I. Upper bound on the 0–1 loss: Z01 (λ) ≤ Zψ (λ)

II. Lipschitz near λ∗
01: ‖λ − λ∗

ψ‖ < A �⇒ Zψ (λ) − Zψ

(

λ∗
ψ

)

< L‖λ − λ∗
ψ‖

III. Curvature near λ∗
ψ : ‖λ − λ∗

ψ‖ > Cλ �⇒ Zψ (λ) − Zψ

(

λ∗
ψ

)

> Cψ

IV. Closeness of loss near λ∗
01: |Zψ

(

λ∗
01

)

− Z01

(

λ∗
01

)

| < ε

then it will also satisfy a level-set condition required for data reduction,

Zψ

(

λ∗
01

)

≤ Zψ

(

λ∗
ψ

)

+ ε ∀λ∗
01 and λ∗

ψ ,

whenever ε = LCλ obeys Cψ > 2ε.

Proof See Appendix. ⊓⊔

5.2 Off-the-shelf data reduction for SLIM

Data reduction can easily be applied to SLIM by using an off-the-shelf approach where we

use the LP relaxation of the SLIM IP as the surrogate problem.

When we use the LP relaxation to the SLIM IP as the surrogate problem, we can determine

a suitable width for the surrogate level set ε by using a feasible solution to the SLIM IP. To

see this, let us denote the SLIM IP as min f Z(f) s.t. f ∈ F , and denote its LP relaxation

as min f Z(f) s.t. f ∈ F̃ . In addition, let us denote the optimal solution to the SLIM IP

as f ∗ and the optimal solution to the LP relaxation as f̃ ∗. Since F ⊆ F̃ , we have that

Z(f̃ ∗) ≤ Z(f ∗). For any feasible solution to the SLIM IP f̂ ∈ F , we also have that

Z(f ∗) ≤ Z(f̂). Combining both inequalities, we see that,

Z(f̃ ∗) ≤ Z(f ∗) ≤ Z(f̂).

Thus, we can satisfy the level set condition (8) using a feasible solution to the SLIM IP f̂ ∈ F

by setting the width of the surrogate level set as,

ε(f̂) := Z(f̂) − Z(f̃ ∗).

In Fig. 3, we show much training data can be discarded using off-the-shelf data reduction when

we train a SLIM scoring system on the bankruptcy dataset (see Table 4). Specifically,

we plot the percentage of data removed by Algorithm 1 for values of ε ∈ [εmin, εmax] where

εmin and εmax represent the smallest and largest widths of the surrogate level set that could

be used in practice. In particular, εmin is computed using the optimal solution to the IP as:

εmin := Z(f ∗) − Z(f̃ ∗),

and εmax is computed using a feasible solution to the IP that can be guessed without any

computation (i.e., a linear classifier with coefficients λ = 0):

εmax := Z(0) − Z(f̃ ∗).

123

Mach Learn (2016) 102:349–391 365

0%

20%

40%

60%

80%

100%

1 2 3 4 5

ε

%
 D

a
ta

 F
ilt

e
re

d

Fig. 3 Proportion of training data filtered as a function of the width of the level set, ε for the bankruptcy
dataset. Here, the original problem is an instance of the SLIM IP with C0 = 0.01 and L = {−10, . . . , 10}P+1

In this case, we can discard over 40 % of the training data by using the trivial solution λ = 0,

and discard over 80 % of the training data by using a higher quality feasible solution.

5.3 Discussion and related work

Data reduction is a technique that can be applied to a wide range of supervised classification

methods, including methods that minimize the 0–1 loss function.

Data reduction is fundamentally different from many techniques for improving the scal-

ability of 0–1 loss minimization, such as oscillation heuristics (Rubin 1990), decomposition

(Rubin 1997), cutting planes (Brooks 2011) and specialized branch-and-bound algorithms

(Nguyen and Sanner 2013). In fact, data reduction is most similar to the scenario reduction

methods in the stochastic programming literature (see e.g., Dupačová et al. 2000, 2003). In

comparison to scenario reduction techniques, data reduction does not require the objective

function to satisfy stability or convexity assumptions, and is designed to recover the true

optimal solution as opposed to an ε-optimal solution.

Data reduction has the advantage that it easily be applied to SLIM by using SLIM’s LP

relaxation as the surrogate problem. This off-the-shelf approach may be used as a preliminary

procedure before the training process, or as an iterative procedure that is called by the IP

solver during the training process as feasible solutions are found. Off-the-shelf data reduction

makes use of the integrality gap to identify examples that have to be classified a certain

way. Accordingly, the effectiveness of this approach may be improved using techniques that

narrow the integrality gap—specifically by using higher quality feasible solutions and/or

strengthening SLIM’s LP relaxation (e.g., by using the cutting planes of Brooks 2011).

6 Application to sleep apnea screening

In this section, we discuss a collaboration with the MGH Sleep Laboratory where we used

SLIM to create a scoring system for sleep apnea screening (see also Ustun et al. 2015). Our

goal is to highlight the flexibility and performance of our approach on a real-world problem

that requires a tailored prediction model.

123

366 Mach Learn (2016) 102:349–391

6.1 Data and operational constraints

The dataset for this application contains N = 1922 records of patients and P = 33 binary

features related to their health and sleep habits. Here, yi = +1 if patient i has obstructive

sleep apnea (OSA), and there is significant class imbalance as Pr(yi = +1) = 76.9 %.

To ensure that the scoring system we produced would be used and accepted by physicians,

our collaborators specified three simple operational constraints:

1. Limited FPR The model had to achieve the highest possible true positive rate (TPR) while

maintaining a maximum false positive rate (FPR) of 20 %. This would ensure that the

model could diagnose as many cases of sleep apnea as possible but limit the number of

faulty diagnoses.

2. Limited model size The model had to be transparent and use at most 5 features. This

would ensure that the model was could be explained and understood by other physicians

in a short period of time.

3. Sign constraints The model had to obey established relationships between well-known

risk factors and the incidence of sleep apnea (e.g. it could not suggest that a patient with

hypertension had a lower risk of sleep apnea since hypertension is a positive risk factor

for sleep apnea).

6.2 Training setup and model selection

We trained a SLIM scoring system with integer coefficients between −10 and 10. We

addressed all operational constraints without parameter tuning or model selection, as follows:

• We added a loss constraint using the loss variables to limit the maximum FPR at 20 %. We

then set W + = N−/(1 + N−) to guarantee that the optimization would yield a classifier

with the highest possible TPR with a maximum FPR less than 20 % (see Sect. 3.1).

• We added a feature-based constraint using the loss variables to limit the maximum number

of features to 5 (see Sect. 3.2). We then set C0 = 0.9W −/N P so that the optimization

would yield a classifier that did not sacrifice accuracy for sparsity (see Remark 3).

• We added sign constraints to the coefficients to ensure that our model would not violate

established relationships between features and the predicted outcome (i.e., we set λ j ≥ 0 if

there had to be a positive relationship, and λ j ≤ 0 if there had to be a negative relationship).

With this setup, we trained 10 models with subsets of the data to assess predictive accuracy

via tenfold cross validation (10-CV), and 1 final model with all of data to hand over to our

collaborators. We solved each IP for 1 hour, in parallel, on 12-core 2.7 GHz machine with

48GB RAM. Thus, the training process for SLIM required 1 hour of computing time.

As a comparison, we trained models with 8 baseline classification methods shown in

Table 1. We dealt with the class imbalance by using a cost-sensitive approach, where we

used a weighted loss function and varied its sensitivity parameter W + across a large range.

When possible, we addressed the remaining operational constraints by searching over a

fine grid of free parameters. Model selection was difficult for baseline methods because

they could not accommodate operational constraints in the same way as SLIM. For each

baseline method, we chose the best model that satisfied all operational constraints by:

(i) dropping any instance of the free parameters where operational constraints were vio-

lated; (ii) choosing the instance that maximized the 10-CV mean test TPR. We ruled that

an instance of the free parameters violated an operational constraint if any of the follow-

ing conditions were met: (1) the 10-CV mean test FPR of the model produced with the

instance was greater than the 10-CV mean test FPR of the SLIM model (20.9 %); (2) the

123

Mach Learn (2016) 102:349–391 367

Table 1 Training setup for all methods

Method Controls # Instances Settings and free parameters

CART Max FPR 39 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}
Model Size

C5.0T Max FPR 39 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}

C5.0R Max FPR 39 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}
Model Size

Lasso Max FPR 39,000 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}× 1000 values
of λ chosen by glmnet

Model Size

Signs

Ridge Max FPR 39,000 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}× 1000 values
of λ chosen by glmnet

Signs

Elastic Net Max FPR 975,000 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}× 1000 values of λ

chosen by glmnet × 19 values of α ∈ {0.05, 0.10, . . . , 0.95}
Model Size

Signs

SVM Lin. Max FPR 975 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}× 25 values of
C ∈ {10−3, 10−2.75, . . . , 103}

SVM RBF Max FPR 975 39 values of W+ ∈ {0.025, 0.05, . . . , 0.975}× 25 values of
C ∈ {10−3, 10−2.75, . . . , 103}

SLIM Max FPR 1 W+ = N−/(1 + N−), C0 = 0.9W−/N P ,
λ0 ∈ {−100, . . . , 100}, λ j ∈ {−10, . . . , 10}

Model Size

Signs

An instance is a unique combination of free parameters. Controls refer to operational constraints that we expect
each method to handle. We include further details on methods and software packages in Table 5

model size 2 of the final model produced with the instance was greater than 5; (3) the

final model produced did not obey sign constraints. This model selection procedure may

have biased the results in favor of the baseline methods because we mixed testing and

training data by looking at the final model to ensure that operational constraints were satis-

fied.

6.3 Results and observations

In what follows, we report our observations related to operational constraints, predictive

performance and interpretability. We show the performance of the best model from each

method in Table 2, and summarize the operational constraints they satisfied in Table 3.

2 Model size represents the number of coefficients for linear models (Lasso, Ridge, Elastic Net, SLIM, SVM
Lin.), the number of leaves for decision tree models (C5.0T, CART), and the number of rules for rule-based
models (C5.0R). For completeness, we set the model size for black-box models (SVM RBF) to the number
of features in each dataset.

123

368 Mach Learn (2016) 102:349–391

T
a

b
le

2
T

P
R

,
F

P
R

an
d

m
o

d
el

si
ze

fo
r

al
l

m
et

h
o

d
s

O
b
je

ct
iv

e
C

o
n
st

ra
in

ts
O

th
er

in
fo

rm
at

io
n

M
et

h
o
d

C
o
n
st

ra
in

ts
sa

ti
sfi

ed
T

es
t

T
P

R
(%

)
T

es
t

F
P

R
(%

)
F

in
al

M
o
d
el

S
iz

e
M

o
d
el

S
iz

e
T

ra
in

T
P

R
(%

)
T

ra
in

F
P

R
(%

)
F

in
al

T
ra

in
T

P
R

(%
)

F
in

al
T

ra
in

F
P

R
(%

)

S
L

IM
A

ll
6

1
.4

2
0

.9
5

5
6

2
.4

1
9

.7
6

2
.0

1
9

.6

5
5

.5
–

6
8

.8
1

5
.0

–
3

0
.4

–
5

-5
6

1
.0

–
6

4
.2

1
9

.3
–

2
0

.0
–

–

L
as

so
A

ll
2
9
.3

8
.6

3
3

2
8
.7

7
.2

2
2
.1

3
.8

1
9

.2
–

6
0

.0
0

.0
–

3
3

.3
–

3
–

6
2

1
.4

–
5

4
.6

3
.5

–
2

0
.5

–
–

E
la

st
ic

N
et

A
ll

4
4
.2

1
8
.8

3
3

4
5
.6

1
7
.4

5
4
.3

2
0
.7

0
.0

–
6

4
.1

0
.0

–
3

7
.0

–
3

–
6

0
.0

–
6

6
.5

0
.0

–
3

6
.4

–
–

R
id

g
e

M
ax

F
P

R
6

6
.0

2
0

.6
3

0
3

0
6

6
.4

1
8

.9
6

6
.0

1
8

.9

6
0

.5
–

6
8

.5
8

.6
–

3
2

.6
–

3
0

–
3

0
6

4
.0

–
6

8
.9

1
7

.3
–

2
1

.5
–

–

S
V

M
R

B
F

M
ax

F
P

R
6
4
.3

2
0
.8

3
3

3
3

6
7
.9

1
2
.2

6
7
.8

1
2
.4

5
9

.2
–

7
1

.1
1

0
.0

–
3

0
.4

–
3

3
–

3
3

6
6

.5
–

7
0

.0
1

1
.1

–
1

3
.3

–
–

S
V

M
L

in
.

M
ax

F
P

R
6
2
.7

1
9
.8

3
1

3
1

6
3
.7

1
7
.0

6
3
.1

1
7
.1

5
7

.9
–

6
9

.0
7

.5
–

2
8

.6
–

3
1

–
3

1
6

1
.5

–
6

6
.1

1
5

.6
–

1
8

.5
–

–

C
5

.0
R

N
o

n
e

8
4

.0
4

3
.0

2
6

2
3

8
6

.1
3

3
.8

8
5

.5
3

2
.9

7
8

.9
–

8
7

.7
3

2
.6

–
5

4
.2

–
1

8
–

3
0

8
4

.2
–

8
8

.5
3

0
.9

–
3

8
.2

–
–

C
5

.0
T

N
o

n
e

8
1

.3
4

2
.9

3
9

4
2

8
5

.3
2

9
.5

8
4

.5
2

8
.4

7
7

.4
–

8
4

.8
2

9
.6

–
6

2
.5

–
3

9
–

5
0

8
2

.6
–

8
8

.6
2

4
.6

–
3

3
.7

–
–

C
A

R
T

N
o

n
e

9
3

.0
7

0
.4

8
9

9
5

.2
6

6
.8

9
5

.9
7

3
.9

8
8

.8
–

9
6

.1
6

1
.1

–
8

3
.3

–
4

–
1

2
9

3
.1

–
9

7
.2

5
5

.0
–

7
6

.0
–

–

W
e

re
p

o
rt

th
e

1
0

-C
V

m
ea

n
T

P
R

an
d

F
P

R
,

an
d

th
e

1
0

-C
V

m
ed

ia
n

fo
r

th
e

m
o

d
el

si
ze

.
T

h
e

ra
n

g
es

in
ea

ch
ce

ll
re

p
re

se
n

t
th

e
1

0
-C

V
m

in
im

u
m

an
d

m
ax

im
u

m

123

Mach Learn (2016) 102:349–391 369

Table 3 Percentage of instances that fulfilled operational constraints

% of Instances

Method Max FPR Max FPR & Model Size Max FPR, Model Size & Signs

SLIM 100.0 100.0 100.0

Lasso 19.6 4.8 4.8

Elastic Net 18.3 1.0 1.0

Ridge 20.9 0.0 0.0

SVM Lin 18.7 0.0 0.0

SVM RBF 15.8 0.0 0.0

C5.0R 0.0 0.0 0.0

C5.0T 0.0 0.0 0.0

CART 0.0 0.0 0.0

Each instance is a unique combination of free parameters

6.3.1 On the difficulties of handling operational constraints

Among the 9 classification methods that we used, only SLIM, Lasso and Elastic Net could

produce a model that satisfied all of operational constraints given to us by physicians. Tree

and rule-based methods such as CART, C5.0 Tree and C5.0 Rule were unable to produce a

model with a maximum FPR of 20 % (see Fig. 4). Methods that used ℓ2-regularization such

as Ridge, SVM Lin. and SVM RBF were unable to produce a model with the required level of

sparsity. While we did not expect all methods to satisfy all of the operational constraints, we

included them to emphasize the following important points. Namely, state-of-the-art methods

for applied predictive modeling do not:

• Handle simple operational constraints that are crucial for models to be used and accepted.

Implementations of popular classification methods do not have a mechanism to adjust

important model qualities. That is, there is no mechanism to control sparsity in C5.0T

(Kuhn et al. 2012) and no mechanism to incorporate sign constraints in SVM (Meyer

et al. 2012). Finding a method with suitable controls is especially difficult when a model

has to satisfy multiple operational constraints.

• Have controls that are easy-to-use and/or that work correctly. When a method has suitable

controls to handle operational constraints, producing a model often requires a tuning

process over a high-dimensional free parameter grid. Even after extensive tuning, however,

it is possible to never find a model that satisfies all operational constraints (e.g. CART,

C5.0R, C5.0T for the Max FPR constraint in Fig. 4).

• Allow tuning to be portable when the training set changes. Consider a standard K-CV

model selection procedure where we choose free parameters to maximize predictive accu-

racy. To adapt this procedure on a problem with operational constraints, we would train

models on K validation folds for each instance of the free parameters, choose an instance

of the free parameters that maximizes the mean K-CV test accuracy among the instances

that satisfied all operational constraints, and train a “final model” for this instance. Unfor-

tunately, there is no guarantee that the final model will obey all operational constraints.

123

370 Mach Learn (2016) 102:349–391

0%

20%

40%

60%

80%

100%

0.0 0.4 0.8 1.2 1.6 2.0

W+

1
0

−
C

V
 M

e
a

n
 T

e
s
t

F
P

R

C5.0R
C5.0T
CART

Fig. 4 10-CV mean test FPR for models trained with CART, C5.0, C5.0T across the full range of W+. These
methods cannot produce a model that satisfies the max FPR ≤ 20 % constraint

6.3.2 On the sensitivity of acceptable models

Among the three methods that produced acceptable models, the scoring system produced

by SLIM had significantly higher sensitivity than the linear models produced by Lasso and

Elastic Net—a result that we expected given that SLIM minimizes the 0–1 loss and an ℓ0-

penalty while Lasso and Elastic Net minimize convex surrogates of these quantities. This

result held true even when we relaxed various operational constraints. In Fig. 5, for instance,

we plot the sensitivity and sparsity of models that satisfied the max FPR and sign constraints.

Here, we see that Lasso and Elastic Net need at least 8 coefficients to produce a model with

the same degree of sensitivity as SLIM. In Fig. 6, we plot the TPR and FPR of models that

satisfied the sign and model size constraints. As shown, SLIM scoring systems dominate

Lasso and Elastic Net models across the entire ROC curve. These sensitivity advantages are

also evident in Table 2: in particular, SLIM yields a model with a similar level of sensitivity

and specificity as Ridge and SVM Lin. even as it is fitting models from a far smaller hypothesis

space (i.e. linear classifiers with 5 features, sign constraints and integer coefficients vs. linear

classifiers with real coefficients).

Fig. 5 Sensitivity and model
size of Lasso and Elastic Net
models that satisfy the sign and
FPR constraints. For each
method, we plot the instance that
attains the highest 10-CV mean
test TPR at model sizes between
0 and 8. Lasso and Elastic Net
need at least 8 coefficients to
produce a model with the same
sensitivity as SLIM 20%

30%

40%

50%

60%

0 2 4 6 8

Model Size

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Elastic Net
Lasso
SLIM

123

Mach Learn (2016) 102:349–391 371

Fig. 6 ROC curve for SLIM,
Lasso and Elastic Net instances
that satisfy the sign and model
size constraints. For each method,
we plot the instance that attains
the highest 10-CV mean test TPR
for 10-CV mean FPR values of
5, 10, . . . , 95 %. Note that we had
to train 19 additional instances of
SLIM to create this plot

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False Positive Rate
T
ru

e
 P

o
s
it
iv

e
 R

a
te

Elastic Net
Lasso
SLIM

6.3.3 On the usability and interpretability of acceptable models

We include a head-to-head comparison between the most sensitive models that satisfied all

operational constraints in Fig. 7 and show the SLIM model as a scoring system in Fig. 8.

Our collaborators commented that all three models were, in theory, usable by physicians

because they were aligned with domain knowledge. Specifically, all models obeyed sign

constraints and had large coefficients for well-known risk factors for sleep apnea such as

bmi, female, age, snoring and/or hypertension. Unfortunately, the Lasso and Elastic Net

models could not realistically be used as screening tools due to their poor sensitivity (29.3 %

for Lasso and 44.2 % for Elastic Net). This was not the case for the SLIM model, which had

a much higher sensitivity (61.4 %).

Our results highlight some of the unique interpretability benefits of SLIM scoring

systems—that is, their ability to provide “a qualitative understanding of the relationship

between joint values of the input variables and the resulting predicted response value”

(Hastie et al. 2009). SLIM scoring systems are well-suited to provide this kind of qualitative

SLIM 4 age ≥ 60 + 4 hypertension + 2 bmi ≥ 30 + 2 bmi ≥ 40 − 6 female − 1

Lasso 0.13 snoring + 0.12 hypertension − 0.26 female − 0.17

Elastic Net 0.03 snoring + 0.02 hypertension − 0.09 female − 0.02

Fig. 7 Score functions of the most sensitive predictive models that satisfied all three operational constraints.
The baseline models have very poor sensitivity as shown in Table 2

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1. age ≥ stniop406 · · · · · ·
2. hypertension 4 points + · · · · · ·
3. body mass index ≥ stniop203 + · · · · · ·
4. body mass index ≥ stniop204 + · · · · · ·
5. female -6 points + · · · · · ·

ADD POINTS FROM ROWS 1 – 5 SCORE = · · · · · ·

Fig. 8 SLIM scoring system for sleep apnea screening. This model achieves a 10-CV mean test TPR/FPR of
61.4/20.9 %, obeys all operational constraints, and was trained without parameter tuning. It also generalizes
well due to the simplicity of the hypothesis space: here the training TPR/FPR of the final model is 62.0/19.6 %

123

372 Mach Learn (2016) 102:349–391

understanding due to their high level of sparsity and small integer coefficients. These quali-

ties help users gauge the influence of each input variable with respect to the others, which is

especially important because humans can only handle a few cognitive entities at once (7 ± 2

according to Miller 1984), and are seriously limited in estimating the association between

three or more variables (Jennings et al. 1982). Accordingly, these qualities may also help

users gauge the influence Sparsity and small integer coefficients also allow users to make

quick predictions without a computer or a calculator, which may help them understand how

the model works by actively using it to classify prototypical examples. Here, this process

helped our collaborators come up with the following simple rule-based explanation for our

model predicted that a patient has OSA (i.e., when SCORE > 1): “if the patient is male,

predict OSA if age ≥ 60 OR hypertension OR bmi ≥ 30; if the patient is female, predict OSA

if bmi ≥ 40 AND (age ≥ 60 OR hypertension).”

7 Numerical experiments

In this section, we present numerical experiments to compare the accuracy and sparsity of

SLIM scoring systems to other popular classification models. Our goal is to illustrate the

off-the-shelf performance of SLIM and show that we can train accurate scoring systems for

real-sized datasets in minutes.

7.1 Experimental setup

Datasets: We ran numerical experiments on 8 datasets from the UCI Machine Learning

Repository (Bache and Lichman 2013) summarized in Table 4. We chose these datasets to

explore the performance of each method as we varied the size and nature of the training

data. We processed each dataset by binarizing all categorical features and some real-valued

Table 4 Datasets used in the numerical experiments

Dataset Source N P Classification task

adult Kohavi (1996) 32561 36 Predict if a U.S. resident
earns more than $50,000

breastcancer Mangasarian et al. (1995) 683 9 Detect breast cancer using a
biopsy

bankruptcy Kim and Han (2003) 250 6 Predict if a firm will go
bankrupt

haberman Haberman (1976) 306 3 Predict 5-year survival after
breast cancer surgery

heart Detrano et al. (1989) 303 32 Identify patients a high risk of
heart disease

mammo Elter et al. (2007) 961 12 Detect breast cancer using a
mammogram

mushroom Schlimmer (1987) 8124 113 Predict if a mushroom is
poisonous

spambase Cranor and LaMacchia (1998) 4601 57 Predict if an e-mail is spam

123

Mach Learn (2016) 102:349–391 373

Table 5 Training setup for classification methods used for the numerical experiments

Method Acronym Software Settings and free parameters

CART Decision Trees CART rpart

(Therneau et al. 2012)
default settings

C5.0 Decision Trees C5.0T c50

(Kuhn et al. 2012)
default settings

C5.0 Rule List C5.0R c50

(Kuhn et al. 2012)
default settings

Log. Reg. + ℓ1 penalty Lasso glmnet

(Friedman et al. 2010)
1000 values of λ chosen by glmnet

Log. Reg. + ℓ2 penalty Ridge glmnet

(Friedman et al. 2010)
1000 values of λ chosen by glmnet

Log. Reg. + ℓ1/ℓ2 penalty Elastic Net glmnet

(Friedman et al. 2010)
1000 values of λ chosen by glmnet

× 19 values of α ∈ {0.05, 0.10,

. . . , 0.95}

SVM + Linear Kernel SVM Lin. e1071

(Meyer et al. 2012)
25 values of

C ∈ {10−3, 10−2.75, . . . , 103}

SVM + RBF Kernel SVM RBF e1071

(Meyer et al. 2012)
25 values of

C ∈ {10−3, 10−2.75, . . . , 103}

SLIM Scoring Systems SLIM CPLEX 12.6.0.0 6 values of C0 ∈ {0.01, 0.075, 0.05,

0.025, 0.001, 0.9/N P} with
λ j ∈ {−10, . . . , 10};
λ0 ∈ {−100, . . . , 100}

features. For the purposes of reproducibility, we include all processed datasets in Online

Resource 1.

Methods: We summarize the training setup for each method in Table 5. We trained SLIM

scoring systems using the CPLEX 12.6.0.0 API and models with baseline methods using

publicly available packages in R 3.1.1 (R Core Team 2014). For each method, each dataset,

and each unique combination of free parameters, we trained 10 models using subsets of the

data to estimate predictive accuracy via tenfold cross-validation (10-CV), and 1 final model

using all of the data to assess sparsity and interpretability. We ran all baseline methods without

time constraints over a large grid of free parameters. We produced an ℓ0-regularization path

for SLIM by solving 6×11 IPs for each dataset (6 values of C0 × 11 training runs per C0). We

allocated at most 10 min to solve each IP, and solved 12 IPs in parallel on a 12-core 2.7 GHz

machine with 48 GB RAM. Thus, it took at most 1 hour to train SLIM scoring systems for

each dataset. Since the adult and haberman datasets were imbalanced, we trained all

methods on these datasets with a weighted loss function where we set W + = N−/N and

W − = N+/N .

7.2 Results and observations

We summarize the results of our experiments in Table 6 and Figs. 13, 14. We report the

sparsity of models using a metric that we call model size. Model size represents the number

of coefficients for linear models (Lasso, Ridge, Elastic Net, SLIM, SVM Lin.), the number

123

374 Mach Learn (2016) 102:349–391

T
a

b
le

6
A

cc
u
ra

cy
an

d
sp

ar
si

ty
o
f

al
l

m
et

h
o
d
s

o
n

al
l

d
at

as
et

s

D
at

as
et

D
et

ai
ls

M
et

ri
c

S
L

IM
L

as
so

R
id

g
e

E
la

st
ic

N
et

C
5
.0

R
C

5
.0

T
C

A
R

T
S

V
M

L
in

.
S

V
M

R
B

F

a
d
u
l
t

N
3
2
5
6
1

T
es

t
E

rr
o
r

1
7
.4

±
1
.4

%
1
7
.3

±
0
.9

%
1
7
.6

±
0
.9

%
1
7
.4

±
0
.9

%
2
6
.4

±
1
.8

%
2
6
.3

±
1
.4

%
7
5
.9

±
0
.0

%
1
6
.8

±
0
.8

%
1
6
.3

±
0
.5

%

P
3
7

T
ra

in
E

rr
o
r

1
7
.5

±
1
.2

%
1
7
.2

±
0
.1

%
1
7
.6

±
0
.1

%
1
7
.4

±
0
.1

%
2
5
.3

±
0
.4

%
2
4
.9

±
0
.4

%
7
5
.9

±
0
.0

%
1
6
.7

±
0
.1

%
1
6
.3

±
0
.1

%

P
r(

y
=

+
1
)

2
4

%
M

o
d
el

S
iz

e
1
8

1
4

3
6

1
7

4
1

8
7

4
3
6

3
6

P
r(

y
=

−
1
)

7
6

%
M

o
d
el

R
an

g
e

7
–
2
6

1
3
–
1
4

3
6
–
3
6

1
6
–
1
8

3
8
–
4
6

7
8
–
9
9

4
–
4

3
6
–
3
6

3
6
–
3
6

b
r
e
a
s
t
c
a
n
c
e
r

N
6
8
3

T
es

t
E

rr
o
r

3
.4

±
2
.0

%
3
.4

±
2
.2

%
3
.4

±
2
.0

%
3
.1

±
2
.1

%
4
.3

±
3
.3

%
5
.3

±
3
.4

%
5
.6

±
1
.9

%
3
.1

±
2
.0

%
3
.5

±
2
.5

%

P
1
0

T
ra

in
E

rr
o
r

3
.2

±
0
.2

%
2
.9

±
0
.3

%
3
.0

±
0
.3

%
2
.8

±
0
.3

%
2
.1

±
0
.3

%
1
.6

±
0
.4

%
3
.6

±
0
.3

%
2
.7

±
0
.2

%
0
.3

±
0
.1

%

P
r(

y
=

+
1
)

3
5

%
M

o
d
el

S
iz

e
2

9
9

9
8

1
3

7
9

9

P
r(

y
=

−
1
)

6
5

%
M

o
d
el

R
an

g
e

2
–
2

8
–
9

9
–
9

9
–
9

6
–
9

7
–
1
6

3
–
7

9
–
9

9
–
9

b
a
n
k
r
u
p
t
c
y

N
2
5
0

T
es

t
E

rr
o
r

0
.8

±
1
.7

%
0
.0

±
0
.0

%
0
.4

±
1
.3

%
0
.0

±
0
.0

%
0
.8

±
1
.7

%
0
.8

±
1
.7

%
1
.6

±
2
.8

%
0
.4

±
1
.3

%
0
.4

±
1
.3

%

P
7

T
ra

in
E

rr
o
r

0
.0

±
0
.0

%
0
.0

±
0
.0

%
0
.4

±
0
.1

%
0
.4

±
0
.7

%
0
.4

±
0
.2

%
0
.4

±
0
.2

%
1
.6

±
0
.3

%
0
.4

±
0
.1

%
0
.4

±
0
.1

%

P
r(

y
=

+
1
)

5
7

%
M

o
d
el

S
iz

e
3

3
6

3
4

4
2

6
6

P
r(

y
=

−
1
)

4
3

%
M

o
d
el

R
an

g
e

2
–
3

3
–
3

6
–
6

3
–
3

4
–
4

4
–
4

2
–
2

6
–
6

6
–
6

h
a
b
e
r
m
a
n

N
3
0
6

T
es

t
E

rr
o
r

2
9
.2

±
1
4
.0

%
4
2
.5

±
1
1
.3

%
3
6
.9

±
1
5
.0

%
4
0
.9

±
1
4
.0

%
4
2
.7

±
9
.4

%
4
2
.7

±
9
.4

%
4
3
.1

±
8
.0

%
4
5
.3

±
1
4
.7

%
4
7
.5

±
6
.2

%

P
4

T
ra

in
E

rr
o
r

2
9
.7

±
1
.5

%
4
0
.6

±
1
.9

%
4
1
.0

±
9
.7

%
4
5
.1

±
1
2
.0

%
4
0
.4

±
8
.5

%
4
0
.4

±
8
.5

%
3
4
.3

±
2
.8

%
4
6
.0

±
3
.6

%
5
.4

±
1
.5

%

P
r(

y
=

+
1
)

7
4

%
M

o
d
el

S
iz

e
3

2
3

1
3

3
9

3
4

P
r(

y
=

−
1
)

2
6

%
M

o
d
el

R
an

g
e

2
–
3

2
–
2

3
–
3

1
–
1

0
–
3

1
–
3

4
–
9

3
–
3

4
–
4

123

Mach Learn (2016) 102:349–391 375

T
a

b
le

6
co

n
ti

n
u

ed

D
at

as
et

D
et

ai
ls

M
et

ri
c

S
L

IM
L

as
so

R
id

g
e

E
la

st
ic

N
et

C
5
.0

R
C

5
.0

T
C

A
R

T
S

V
M

L
in

.
S

V
M

R
B

F

m
a
m
m
o

N
9
6
1

T
es

t
E

rr
o
r

1
9
.5

±
3
.0

%
1
9
.0

±
3
.1

%
1
9
.2

±
3
.0

%
1
9
.0

±
3
.1

%
2
0
.5

±
3
.3

%
2
0
.3

±
3
.5

%
2
0
.7

±
3
.9

%
2
0
.3

±
3
.0

%
1
9
.1

±
3
.1

%

P
1
5

T
ra

in
E

rr
o
r

1
8
.3

±
0
.3

%
1
9
.3

±
0
.3

%
1
9
.2

±
0
.4

%
1
9
.2

±
0
.3

%
1
9
.8

±
0
.3

%
1
9
.9

±
0
.3

%
2
0
.0

±
0
.6

%
2
0
.3

±
0
.4

%
1
8
.2

±
0
.4

%

P
r(

y
=

+
1
)

4
6

%
M

o
d
el

S
iz

e
9

1
3

1
4

1
4

5
5

5
1
4

1
4

P
r(

y
=

−
1
)

5
4

%
M

o
d
el

R
an

g
e

9
–
1
1

1
2
–
1
3

1
4
–
1
4

1
3
–
1
4

3
–
5

4
–
6

3
–
5

1
4
–
1
4

1
4
–
1
4

h
e
a
r
t

N
3
0
3

T
es

t
E

rr
o
r

1
6
.5

±
7
.8

%
1
5
.2

±
6
.3

%
1
4
.9

±
5
.9

%
1
4
.5

±
5
.9

%
2
1
.2

±
7
.5

%
2
3
.2

±
6
.8

%
1
9
.8

±
6
.5

%
1
5
.5

±
6
.5

%
1
5
.2

±
6
.0

%

P
3
3

T
ra

in
E

rr
o
r

1
4
.9

±
1
.1

%
1
4
.0

±
1
.0

%
1
3
.1

±
0
.8

%
1
3
.2

±
0
.6

%
1
0
.0

±
1
.8

%
8
.5

±
2
.0

%
1
4
.3

±
0
.9

%
1
3
.6

±
0
.5

%
1
0
.4

±
0
.8

%

P
r(

y
=

+
1
)

4
6

%
M

o
d
el

S
iz

e
3

1
2

3
2

2
4

7
1
6

6
3
1

3
2

P
r(

y
=

−
1
)

5
4

%
M

o
d
el

R
an

g
e

3
–
3

1
0
–
1
3

3
0
–
3
2

2
2
–
2
7

9
–
1
7

1
2
–
2
7

6
–
8

2
8
–
3
2

3
2
–
3
2

m
u
s
h
r
o
o
m

N
8
1
2
4

T
es

t
E

rr
o
r

0
.0

±
0
.0

%
0
.0

±
0
.0

%
1
.7

±
0
.3

%
0
.0

±
0
.0

%
0
.0

±
0
.0

%
0
.0

±
0
.0

%
1
.2

±
0
.6

%
0
.0

±
0
.0

%
0
.0

±
0
.0

%

P
1
1
4

T
ra

in
E

rr
o
r

0
.0

±
0
.0

%
0
.0

±
0
.0

%
1
.7

±
0
.0

%
0
.0

±
0
.0

%
0
.0

±
0
.0

%
0
.0

±
0
.0

%
1
.1

±
0
.3

%
0
.0

±
0
.0

%
0
.0

±
0
.0

%

P
r(

y
=

+
1
)

4
8

%
M

o
d
el

S
iz

e
7

2
1

1
1
3

1
0
8

8
9

7
9
8

1
1
3

P
r(

y
=

−
1
)

5
2

%
M

o
d
el

R
an

g
e

7
–
7

1
9
–
2
3

1
1
3
–
1
1
3

1
0
6
–
1
0
8

8
–
8

9
–
9

6
–
8

9
8
–
1
0
8

1
1
3
–
1
1
3

s
p
a
m
b
a
s
e

N
4
6
0
1

T
es

t
E

rr
o
r

6
.3

±
1
.2

%
1
0
.0

±
1
.7

%
2
6
.3

±
1
.7

%
1
0
.0

±
1
.7

%
6
.6

±
1
.3

%
7
.3

±
1
.0

%
1
1
.1

±
1
.4

%
7
.8

±
1
.5

%
1
3
.7

±
1
.4

%

P
5
8

T
ra

in
E

rr
o
r

5
.7

±
0
.3

%
9
.5

±
0
.3

%
2
6
.1

±
0
.2

%
9
.6

±
0
.2

%
4
.2

±
0
.3

%
3
.9

±
0
.3

%
9
.8

±
0
.3

%
8
.1

±
0
.8

%
1
.3

±
0
.1

%

P
r(

y
=

+
1
)

3
9

%
M

o
d
el

S
iz

e
3
4

2
8

5
7

2
8

2
9

7
3

7
5
7

5
7

P
r(

y
=

−
1
)

6
1

%
M

o
d
el

R
an

g
e

2
8
–
4
0

2
8
–
2
9

5
7
–
5
7

2
8
–
2
9

2
3
–
3
1

5
6
–
7
8

6
–
1
0

5
7
–
5
7

5
7
–
5
7

H
er

e
T
es

t
E

rr
o

r
re

fe
rs

to
th

e
1

0
-C

V
m

ea
n

te
st

er
ro

r
±

th
e

1
0

-C
V

st
an

d
ar

d
d

ev
ia

ti
o

n
in

te
st

er
ro

r;
T

ra
in

E
rr

o
r

re
fe

rs
to

th
e

1
0

-C
V

m
ea

n
tr

ai
n

in
g

er
ro

r
±

th
e

1
0

-C
V

st
an

d
ar

d
d

ev
ia

ti
o

n
in

tr
ai

n
in

g
er

ro
r;

M
o

d
el

S
iz

e
re

fe
rs

to
th

e
fi

n
al

m
o

d
el

si
ze

;
an

d
M

o
d

el
R

a
n

g
e

re
fe

rs
to

th
e

1
0

-C
V

m
in

im
u

m
an

d
m

ax
im

u
m

m
o

d
el

si
ze

.
T

h
e

re
su

lt
s

re
fl

ec
t

th
e

m
o

d
el

s
p

ro
d

u
ce

d
b

y
ea

ch
m

et
h

o
d

w
h

en
fr

ee
p

ar
am

et
er

s
ar

e
ch

o
se

n
to

m
in

im
iz

e
th

e
1

0
-C

V
m

ea
n

te
st

er
ro

r.
W

e
re

p
o

rt
th

e
1

0
-C

V
w

ei
g

h
te

d
te

st
an

d
tr

ai
n

in
g

er
ro

r
fo

r
a
d
u
l
t

an
d

h
a
b
e
r
m
a
n

123

376 Mach Learn (2016) 102:349–391

of leaves for decision tree models (C5.0T, CART), and the number of rules for rule-based

models (C5.0R). For completeness, we set the model size for black-box models (SVM RBF)

to the number of features in each dataset.

We show the accuracy and sparsity of all methods on all dataset in Figs. 13 and 14. For each

dataset, and each method, we plot a point at the 10-CV mean test error and final model size,

and surround this point with an error bar whose height corresponds to the 10-CV standard

deviation in test error. In addition, we include ℓ0-regularization paths for SLIM and Lasso

on the right side of Figs. 13 and 14 to show how the test error varies at different levels of

sparsity for sparse linear models.

7.2.1 On accuracy, sparsity, and computation

Our results show that many methods are unable to produce models that attain the same levels

of accuracy and sparsity as SLIM. As shown in Figs. 13 and 14, SLIM always produces a

model that is more accurate than Lasso at some level of sparsity, and sometimes more accu-

rate at all levels of sparsity (e.g., spambase, haberman, mushroom, breastcancer).

Although the optimization problems we solved to train SLIM scoring systems were NP-

hard, we did not find any evidence that computational issues hurt the performance of SLIM

on any of the datasets. We obtained accurate and sparse models for all datasets in 10 minutes

using CPLEX 12.6. Further, the solver provided a proof of optimality (i.e. a relative MIP-

GAP of 0.0 %) for all scoring systems we trained for mammo, mushroom, bankruptcy,

breastcancer.

7.2.2 On the regularization effect of discrete coefficients

We expect that methods that directly optimize accuracy and sparsity will achieve the best

possible accuracy at every level of sparsity (i.e. the best possible trade-off between accuracy

and sparsity). SLIM directly optimizes accuracy and sparsity. However, it may not necessarily

achieve the best possible accuracy at each level of sparsity because it restricts coefficients to

a finite discrete set L.

By comparing SLIM to Lasso, we can identify a baseline regularization effect due to this

L set restriction. In particular, we know that when Lasso’s performance dominates that of

SLIM, it is very arguably due to the use of a small set of discrete coefficients. Our results

show that this tends to happen mainly at large model sizes (see e.g., the regularization path

for breastcancer, heart, mammo). This suggests that the L set restriction has a more

noticeable impact on accuracy at larger model sizes.

One interesting effect of the L set restriction is that the most accurate SLIM scoring system

may not use all of the features in the dataset. In our experiments, we always trained SLIM with

C0 = 0.9/N P to obtain a scoring system with the highest training accuracy among linear

models with coefficients in λ ∈ L (see Remark 3). In the bankruptcy dataset, for example,

we find that this model only uses 3 out of 6 features. This is due to the L set restriction: if

the L restriction were relaxed, then the method would use all features to improve its training

accuracy (as is the case with Ridge or SVM Lin.).

7.2.3 On interpretability

To discuss interpretability, we focus on the mushroom dataset, which provides a nice basis

for comparison as many methods produce a model that attains perfect predictive accuracy.

123

Mach Learn (2016) 102:349–391 377

PREDICT MUSHROOM IS POISONOUS IF SCORE > 3

1. spore print color = green 4 points · · · · · ·
2. stalk surface above ring = grooves 2 points + · · · · · ·
3. population = clustered 2 points + · · · · · ·
4. gill size = broad -2 points + · · · · · ·
5. odor ∈ {none, almond, anise} -4 points + · · · · · ·

ADD POINTS FROM ROWS 1–5 SCORE = · · · · · ·

Fig. 9 SLIM scoring system for mushroom. This model has a 10-CV mean test error of 0.0 ± 0.0 %

10.86 spore print color = green + 4.49 gill size = narrow + 4.29 odor = foul

+ 2.73 stalk surface below ring = scaly + 2.60 stalk surface above ring = grooves + 2.38 population = clustered

+ 0.85 spore print color = white + 0.44 stalk root = bulbous + 0.43 gill spacing = close

+ 0.38 cap color = white + 0.01 stalk color below ring = yellow − 8.61 odor = anise

− 8.61 odor = almond − 8.51 odor = none − 0.53 cap surface = fibrous

− 0.25 population = solitary − 0.21 stalk surface below ring = fibrous − 0.09 spore print color = brown

− 0.00 cap shape = convex − 0.00 gill spacing = crowded − 0.00 gill size = broad

+ 0.25

Fig. 10 Lasso score function for mushroom. This model has a 10-CV mean test error of 0.0 ± 0.0 %

odor = none

odor = almond

poisonousodor = anise

poisonoussafe

spore print color = green

poisonousstalk surface below ring = scaly

gill size = narrow

poisonoussafe

gill size = narrow

safe bruises = true

poisonoussafe

NO

YESNO

YESNO

YES

YESNO

YES

YESNO

NO

NO YES

YESNO

Fig. 11 C5.0 decision tree for mushroom. This model has a 10-CV mean test error of 0.0 ± 0.0 %

Rule Confidence Support Lift

odor = none ∧ gill size �= narrow ∧ spore print color �= green =⇒ safe 1.000 3216 1.9

bruises = false ∧ odor = none ∧ stalk surface below ring �= scaly =⇒ safe 0.999 1440 1.9

odor = almond =⇒ safe 0.998 400 1.9

odor = anise =⇒ safe 0.998 400 1.9

odor �= almond ∧ odor �= anise ∧ odor �= none =⇒ poisonous 1.000 3796 2.1

spore print color = green =⇒ poisonous 0.986 72 2.9

gill size = narrow ∧ stalk surface below ring = scaly =⇒ poisonous 0.976 40 2.0

Fig. 12 C5.0 rule list for mushroom. This model has a 10-CV mean test error of 0.0 ± 0.0 %

In Figs. 9, 10, 11 and 12, we show the sparsest models that achieve perfect predictive accu-

racy on the mushroom dataset. We omit models from some methods because they do not

attain perfect accuracy (CART) or use far more features (Ridge, SVM Lin, SVM RBF)

(Figs. 13, 14).

In this case, the SLIM scoring system uses 7 integer coefficients. However, it can be

expressed as a 5 line scoring system due to the fact that odor=none, odor=almond, and

odor=anise are mutually exclusive variables that all use the same coefficient. The model

benefits from the fact that it not only allows users make predictions by hand but uses a linear

form that helps users to gauge the influence of each input variable with respect to the others.

We note that only some of these qualities are found in other models. The Lasso model,

123

378 Mach Learn (2016) 102:349–391

 C5.0R C5.0T CART Elastic Net Lasso

 Ridge SLIM SVM Lin. SVM RBF

adult

15%

20%

25%

30%

0 20 40 60 80

Model Size

W
e

ig
h

te
d

 T
e

s
t

E
rr

o
r

16%

18%

20%

22%

0 10 20 30

Model Size

W
e

ig
h

te
d

 T
e

s
t

E
rr

o
r

breastcancer

0%

2%

4%

6%

8%

5 10

Model Size

T
e

s
t

E
rr

o
r

0%

5%

10%

15%

20%

2 4 6 8

Model Size

T
e

s
t

E
rr

o
r

bankruptcy

0%

1%

2%

3%

4%

5%

1 2 3 4 5 6 7

Model Size

T
e

s
t

E
rr

o
r

0%

2%

4%

6%

8%

10%

2 4 6 8

Model Size

T
e

s
t

E
rr

o
r

haberman

20%

40%

60%

80%

0 2 4 6 8

Model Size

W
e

ig
h

te
d

 T
e

s
t

E
rr

o
r

20%

30%

40%

50%

60%

70%

80%

1 2 3

Model Size

W
e

ig
h

te
d

 T
e

s
t

E
rr

o
r

Fig. 13 Accuracy and sparsity of all classification methods on all datasets. For each dataset, we plot the
performance of models when free parameters are set to values that minimize the 10-CV mean test error (left),
and plot the performance of SLIM and Lasso across the full ℓ0-regularization path (right)

123

Mach Learn (2016) 102:349–391 379

 C5.0R C5.0T CART Elastic Net Lasso

 Ridge SLIM SVM Lin. SVM RBF

mammo

16%

18%

20%

22%

24%

6 8 10 12 14

Model Size

T
e
s
t
E

rr
o
r

20%

30%

40%

50%

0 5 10

Model Size

T
e
s
t
E

rr
o
r

heart

10%

15%

20%

25%

30%

5 10 15 20 25 30

Model Size

T
e
s
t
E

rr
o
r

10%

20%

30%

40%

50%

0 5 10 15 20 25 30

Model Size

T
e
s
t
E

rr
o
r

mushroom

0.0%

0.5%

1.0%

1.5%

2.0%

20 40 60 80 100

Model Size

T
e
s
t
E

rr
o
r

0%

2%

4%

6%

8%

10%

12%

0 5 10 15 20 25

Model Size

T
e
s
t
E

rr
o
r

spambase

0%

5%

10%

15%

20%

25%

30%

20 40 60 80

Model Size

T
e
s
t
E

rr
o
r

10%

20%

30%

40%

0 10 20 30 40

Model Size

T
e
s
t
E

rr
o
r

Fig. 14 Accuracy and sparsity of all classification methods on all datasets. For each dataset, we plot the
performance of models when free parameters are set to values that minimize the 10-CV mean test error (left)
and plot the performance of SLIM and Lasso across the full ℓ0-regularization path (right)

123

380 Mach Learn (2016) 102:349–391

for instance, has a linear form but uses far more features. Similarly, the C5.0 models allow

users to make predictions by hand, but use a hierarchical structure that makes it difficult to

assess the influence of each input variable with respect to the others (see Freitas 2014, for a

discussion).

We believe that these qualities represent “baseline” interpretability benefits of SLIM scor-

ing systems. In practice, interpretability is a subjective and multifaceted notion (i.e., it depends

on who will be using the model but also depends on multiple model qualities as discussed

by Kodratoff 1994; Pazzani 2000; Freitas 2014). In light of this fact, SLIM has the unique

benefit in that it allows practitioners to work closely with the target audience and directly

encode all interpretability requirements by means of operational constraints.

8 Specialized models

In this section, we present three specialized models related to SLIM. These models are all

special instances of the optimization problem in (1).

8.1 Personalized models

A Personalized Integer Linear Model (PILM) is a generalization of SLIM that provides soft

control over the coefficients in a scoring system. To use this model, users define R + 1

interpretability sets,

Lr = {lr,1, . . . , lr,Kr } for r = 0, . . . , R,

as well as a “personalized” interpretability penalty,

Φ j (λ j) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C0 i f λ j ∈ L0

...

CR i f λ j ∈ LR .

In order to penalize coefficients from less interpretable sets more heavily, we need that: (i)

L1, . . . , LR are mutually exclusive; (ii) Lr is more interpretable than Lr+1; (iii) the trade-off

parameters are monotonically increasing in r , so that C0 < · · · < CR . The values of the

parameters Cr can be set as the minimum gain in training accuracy required for the optimal

classifier to use a coefficient from Lr .

As an example, consider training a PILM scoring system with the penalty:

Φ j (λ j) =

⎧

⎪

⎨

⎪

⎩

C0 = 0.00 if λ j ∈ 0

C1 = 0.01 if λ j ∈ ±{1, . . . , 10}
C2 = 0.05 if λ j ∈ ±{11, . . . , 100}.

Here, the optimal classifier will use a coefficient from L1 if it yields at least a 1% gain in

training accuracy, and a coefficient from L2 if it yields at least a 5% gain in training accuracy.

123

Mach Learn (2016) 102:349–391 381

We can train a PILM scoring system by solving the following IP:

min
λ,ψ,Φ,u

1

N

N
∑

i=1

ψi +
P
∑

j=1

Φ j

s.t. Miψi ≥ γ −
P
∑

j=0

yiλ j xi, j i = 1,...,N 0-1 loss (12a)

Φ j =
R
∑

r=0

Kr
∑

k=1

Cr u j,k,r j = 1,...,P int. penalty (12b)

λ j =
R
∑

r=0

Kr
∑

k=1

lr,ku j,k,r j = 0,...,P coefficient values (12c)

1 =
R
∑

r=0

Kr
∑

k=1

u j,k,r j = 0,...,P 1 int. set per coef. (12d)

ψi ∈ {0, 1} i = 1,...,N loss variables

Φ j ∈ R+ j = 1,...,P int. penalty variables

u j,r,k ∈ {0, 1} j = 0,...,P r = 0,...,R k = 1,...,Kr coef. value variables

Here, the loss constraints and Big-M parameters in (12a) are identical to those from the

SLIM IP formulation in Sect. 2. The u j,k,r are binary indicator variables that are set to

1 if λ j is equal to lk,r . Constraints (12d) ensure that each coefficient uses exactly one

value from one interpretability set. Constraints (12c) ensure that each coefficient λ j is

assigned a value from the appropriate interpretability set Lr . Constraints (12b) ensure

that each coefficient λ j is assigned the value specified by the personalized interpretability

penalty.

8.2 Rule-based models

SLIM can be extended to produce specialized “rule-based” models when the training data

are composed of binary rules. In general, any real-valued feature can be converted into a

binary rule by setting a threshold (e.g., we can convert age into the feature age ≥ 25 :=
1 [age ≥ 25]). The values of the thresholds can be set using domain expertise, rule mining,

or discretization techniques (Liu et al. 2002).

In what follows, we assume that we train models with a binarized dataset that contains

T j binary rules h j,t ∈ {0, 1}N for each feature x j ∈ R
N in the original dataset. Thus, we

consider models with the form:

ŷ = sign

⎛

⎝λ0 +
P
∑

j=1

T j
∑

t=1

λ j,t h j,t

⎞

⎠ .

123

382 Mach Learn (2016) 102:349–391

Fig. 15 M-of-N rule table for the breastcancer dataset for C0 = 0.9/N P . This model has 8 rules and a
10-CV mean test error of 4.8 ± 2.5%. We trained this model with binary rules hi, j := 1

[

xi, j ≥ 3
]

We make the following assumptions about the binarization process. If x j is a binary variable,

then it is left unchanged so that T j = 1 and h j,T j
:= x j . If x j is a categorical variable

x j ∈ {1, . . . , K }, the binarization yields a binary rule for each category so that T j = K and

h j,t := 1
[

x j = k
]

for t = 1, . . . , K . If x j is a real variable, then the binarization yields

T j binary rules 3 of the form h j,t := 1
[

x j ≥ v j,t

]

where v j,t denotes the t th threshold for

feature j .

8.2.1 M-of-N rule tables

M-of-N rule tables are simple rule-based models that, given a set of N rules, predict ŷ = +1

if at least M of them are true (see e.g., Fig. 15). These models have the major benefit that

they do not require the user to compute a mathematical expression. M-of-N rule tables were

originally proposed as auxiliary models that could be extracted from neural nets (Towell and

Shavlik 2013) but can also be trained as stand-alone discrete linear classification models as

suggested by Chevaleyre et al. (2013).

We can produce a fully optimized M-of-N rule table by solving an optimization problem

of the form:

min
λ

N
∑

i=1

1
[

yi ŷi ≤ 0
]

+ C0 ‖λ‖0

s.t. λ0 ∈ {−P, . . . , 0}
λ j,t ∈ {0, 1} j = 1,...,P t = 1,...,T j .

The coefficients from this optimization problem yield an M-of-N rule table with M = λ0 +1

and N =
∑P

j=1

∑T j

t=1 λ j,t . Here, we can achieve exact ℓ0-regularization using an ℓ1-penalty

since
∥

∥λ j,t

∥

∥

0
=
∥

∥λ j,t

∥

∥

1
for λ j,t ∈ {0, 1}. Since we use the 0–1 loss, the trade-off parameter

C0 can be set as minimum gain in training accuracy required to include a rule in the optimal

table.

3 While there exists an infinite number of thresholds for a real-valued feature, we only need consider at most
N − 1 thresholds (i.e. one threshold placed each pair of adjacent values, x(i), j < v j,t < x(i+1), j). Using
additional thresholds will produce the same set of binary rules and the same rule-based model.

123

Mach Learn (2016) 102:349–391 383

We can train an M-of-N rule table by solving the following IP:

min
λ,ψ,Φ

1

N

N
∑

i=1

ψi +
P
∑

j=1

Φ j

s.t. Miψi ≥ γ −
P
∑

j=0

T j
∑

t=1

yiλ j,t hi, j,t i = 1,...,N 0-1 loss (13a)

Φ j,t = C0λ j,t j = 1,...,P t = 1,...,T j int. penalty

λ0 ∈ {−P, . . . , 0} intercept value

λ j,t ∈ {0, 1} j = 1,...,P t = 1,...,T j coefficient values

ψi ∈ {0, 1} i = 1,...,N 0-1 loss indicators

Φ j,t ∈ R+ j = 1,...,P t = 1,...,T j int. penalty values (13b)

Here, the loss constraints and Big-M parameters in (13a) are identical to those from the SLIM

IP formulation in Sect. 2. Constraints (13b) define the penalty variables Φ j,t as the value of

the ℓ0-penalty.

8.2.2 Threshold-rule models

A Threshold-Rule Integer Linear Model (TILM) is a scoring system where the input variables

are thresholded versions of the original feature set (i.e. decision stumps). These models are

well-suited to problems where the outcome has a non-linear relationship with real-valued

features. As an example, consider the SAPS II scoring system of Le Gall et al. (1993), which

assesses the mortality of patients in intensive care using thresholds on real-valued features

such as blood_pressure > 200 and heart_rate < 40. TILM optimizes the binarization

of real-valued features by using feature selection on a large (potentially exhaustive) pool

of binary rules for each real-valued feature. Carrizosa et al. (2010), Belle et al. (2013) and

Goh and Rudin (2014) take different but related approaches for constructing classifiers with

binary threshold rules.

We train TILM scoring systems using an optimization problem of the form:

min
λ

1

N

N
∑

i=1

1
[

yi ŷi ≤ 0
]

+ C f · Features + Ct · Rules per Feature + ǫ ‖λ‖1

s.t. λ ∈ L,

T j
∑

t=1

1
[

λ j,t �= 0
]

≤ Rmax for j = 1, . . . , P,

sign
(

λ j,1

)

= · · · = sign
(

λ j,T j

)

for j = 1, . . . , P.

TILM uses an interpretability penalty that penalizes the number of rules used in the classifier

as well as the number of features associated with these rules. The small ℓ1-penalty in the

objective restricts coefficients to coprime values as in SLIM. Here, C f tunes the number of

features used in the model, Ct tunes the number of rules per feature, and ǫ is set to a small

value to produce coprime coefficients. TILM includes additional hard constraints to limit the

number of rules per feature to Rmax (e.g., Rmax = 3), and to ensure that the coefficients for

binary rules from a single feature agree in sign (this ensures that each feature maintains a

strictly monotonically increasing or decreasing relationship with the outcome).

123

384 Mach Learn (2016) 102:349–391

We can train a TILM scoring system by solving the following IP:

min
λ,ψ,Φ,τ ,ν,δ

1

N

N
∑

i=1

ψi +
P
∑

j=1

Φ j

s.t. Miψi ≥ γ −
P
∑

j=0

T j
∑

t=1

yiλ j,t hi, j,t i = 1,...,N 0-1 loss (14a)

Φ j = C f ν j + Ctτ j + ǫ

T j
∑

t=1

β j,t j = 1,...,P int. penalty (14b)

T j ν j =
T j
∑

t=1

α j,t j = 1,...,P feature use (14c)

τ j =
T j
∑

t=1

α j,t − 1 j = 1,...,P threshold/feature (14d)

τ j ≤ Rmax + 1 j = 1,...,P max thresholds

− Λ j α j,t ≤ λ j,t ≤ Λ j α j,t j = 1,...,P t = 1,...,T j ℓ0 norm

− β j,t ≤ λ j,t ≤ β j,t j = 1,...,P t = 1,...,T j ℓ1 norm (14e)

− Λ j (1 − δ j) ≤ λ j,t ≤ Λ j δ j j = 1,...,P t = 1,...,T j agree in sign (14f)

λ j,t ∈ L j j = 0,...,P t = 1,...,T j coefficient values

ψi ∈ {0, 1} i = 1,...,N 0–1 loss indicators

Φ j ∈ R+ j = 1,...,P int. penalty variables

α j ∈ {0, 1} j = 1,...,P ℓ0 variables

β j ∈ R+ j = 1,...,P ℓ1 variables

ν j ∈ {0, 1} j = 1,...,P feature use indicators

τ j ∈ Z+ j = 1,...,P threshold/feature variables

δ j ∈ {0, 1} j = 1,...,P sign indicators (14g)

Here, the loss constraints and Big-M parameters in (14a) are identical to those from the

SLIM IP formulation in Sect. 2. Constraints (14b) set the interpretability penalty for each

coefficient as Φ j = C f ν j + Ctτ j + ǫ
∑

β j,t . The variables in the interpretability penalty

include: ν j , which indicate that we use at least one threshold rule from feature j ; τ j , which

count the number of additional binary rules derived from feature j ; and β j,t := |λ j,t |. The

values of ν j and τ j are set using the indicator variables α j,t := 1
[

λ j,t �= 0
]

in constraints

(14c) and (14d). Constraints (14e) limit the number of binary rules from feature j to Rmax .

Constraints (14g) ensure that the coefficients of binary rules derived from feature j agree in

sign; these constraints are encoded using the variables δ j := 1
[

λ j,t ≥ 0
]

.

9 Conclusion

In this paper, we introduced a new method for creating data-driven medical scoring systems

which we refer to as a Supersparse Linear Integer Model (SLIM). We showed how SLIM

can produce scoring systems that are fully optimized for accuracy and sparsity, that can

123

Mach Learn (2016) 102:349–391 385

accommodate multiple operational constraints, and that can be trained without parameter

tuning.

The major benefits of our approach over existing methods come from the fact that we

avoid approximations that are designed to achieve faster computation. Approximations such

as surrogate loss functions and ℓ1-regularization hinder the accuracy and sparsity of models

as well as the ability of practitioners to control these qualities. Such approximations are

no longer needed for many datasets, since using current integer programming software, we

can now train scoring systems for many real-world problems. Integer programming soft-

ware also caters to practitioners in other ways, by allowing them to choose from a pool of

models by mining feasible solutions and to seamlessly benefit from periodic computational

improvements without revising their code.

Acknowledgments We thank the editors and reviewers for valuable comments that helped improve this
paper. In addition, we thank Dr. Matt Bianchi and Dr. Brandon Westover at the Massachusetts General Hospital
Sleep Clinic for providing us with data used in Sect. 5. We gratefully acknowledge support from Siemens and
Wistron.

A Proofs of Theorems

Proof of Theorem 1 (Minimum margin resolution bound)

Proof We use normalized versions of the vectors, ρ/ ‖ρ‖2 and λ/Λ because the 0–1 loss is

scale invariant:

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

=
N
∑

i=1

1

[

yi

λT xi

Λ
≤ 0

]

,

N
∑

i=1

1

[

yiρ
T

xi ≤ 0
]

=
N
∑

i=1

1

[

yi

ρT xi

‖ρ‖2

≤ 0

]

.

We set Λ > Xmax

√
P

2γmin
as in (5). Using Λ, we then define λ/Λ element-wise so that λ j/Λ is

equal to ρ j/ ‖ρ‖2 rounded to the nearest 1/Λ for j = 1, . . . , P .

We first show that our choice of Λ and λ ensures that the difference between the margin

of ρ/ ‖ρ‖2 and the margin of λ/Λ on all training examples is always less than the minimum

margin of ρ/ ‖ρ‖2, defined as γmin = mini
|ρT xi |
‖ρ‖2

. This statement follows from the fact that,

for all i :
∣

∣

∣

∣

∣

λT xi

Λ
− ρT xi

‖ρ‖2

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

λ

Λ
− ρ

‖ρ‖2

∥

∥

∥

∥

2

‖xi‖2

=

⎛

⎝

P
∑

j=1

∣

∣

∣

∣

λ j

Λ
− ρ j

‖ρ‖2

∣

∣

∣

∣

2
⎞

⎠

1/2

‖xi‖2 (15)

≤

⎛

⎝

P
∑

j=1

1

(2Λ)2

⎞

⎠

1/2

‖xi‖2

=
√

P

2Λ
Xmax (16)

123

386 Mach Learn (2016) 102:349–391

<

√
P Xmax

2

(

Xmax

√
P

2 mini
|ρT xi |
‖ρ‖2

) (17)

= min
i

|ρT xi |
‖ρ‖2

. (18)

Here, the inequality in (15) uses the Cauchy–Schwarz inequality; the inequality in (16) is due

to the fact that the distance between ρ j/ ‖ρ‖2 and λ j/Λ is at most 1/2Λ; and the inequality

in (17) is due to our choice of Λ.

Next, we show that our choice of Λ and λ ensures that ρ/ ‖ρ‖2 and λ/Λ classify each

point in the same way. We consider three cases: first, the case where xi lies on the margin;

second, the case where ρ has a positive margin on xi ; and third, the case where ρ has a

negative margin on xi . For the case when xi lies on the margin, mini |ρT xi | = 0 and the

theorem holds trivially. For the case where ρ has positive margin, ρT xi > 0, the following

calculation using (18) is relevant:

ρT xi

‖ρ‖2

− λT xi

Λ
≤
∣

∣

∣

∣

∣

λT xi

Λ
− ρT xi

‖ρ‖2

∣

∣

∣

∣

∣

< min
i

|ρT xi |
‖ρ‖2

.

We will use the fact that for any i
′
, by definition of the minimum:

0 ≤
|ρT x

i
′ |

‖ρ‖2

− min
i

|ρT xi |
‖ρ‖2

,

and combine this with a rearrangement of the previous expression to obtain:

0 ≤ |ρT xi |
‖ρ‖2

− min
i

|ρT xi |
‖ρ‖2

= ρT xi

‖ρ‖2

− min
i

|ρT xi |
‖ρ‖2

<
λT xi

Λ
.

Thus, we have shown that λT xi > 0 whenever ρT xi > 0.

For the case where ρ has a negative margin on xi , ρT xi < 0, we perform an analogous

calculation:

λT xi

‖λ‖2
− ρT xi

‖ρ‖2

≤
∣

∣

∣

∣

∣

λT xi

Λ
− ρT xi

‖ρ‖2

∣

∣

∣

∣

∣

< min
i

|ρT xi |
‖ρ‖2

.

and then using that ρT xi < 0,

0 ≤ |ρT xi |
‖ρ‖2

− min
i

|ρT xi |
‖ρ‖2

= −ρT xi

‖ρ‖2

− min
i

|ρT xi |
‖ρ‖2

< −λT xi

Λ
.

Thus, we have shown λT xi < 0 whenever ρT xi < 0.

Putting both the positive margin and negative margin cases together, we find that for all

i ,

1

[

yiρ
T

xi ≤ 0
]

= 1

[

yiλ
T

xi ≤ 0
]

.

Summing over i yields the statement of the theorem. ⊓⊔

123

Mach Learn (2016) 102:349–391 387

Proof of Theorem 3 (Generalization of sparse discrete linear classifiers)

Proof Let Z(λ; DN) = 1
N

∑N
i=1 1

[

yiλ
T xi ≤ 0

]

+ C0 ‖λ‖0 . Note that λ = 0 is a fea-

sible solution since we assume that 0 ∈ L. Since λ = 0 achieves an objective value of

Z(0; DN) = 1, any optimal solution, λ ∈ argminλ∈L Z(λ; DN), must attain an objective

value Z(λ; DN) ≤ 1. This implies

Z(λ; DN) ≤ 1,

C0 ‖λ‖0 ≤ 1

N

N
∑

i=1

1

[

yiλ
T

xi ≤ 0
]

+ C0 ‖λ‖0 ≤ 1,

‖λ‖0 ≤ 1

C0
,

‖λ‖0 ≤
⌊

1

C0

⌋

.

The last line uses that ‖λ‖0 is an integer.

Thus, HP,C0 is large enough to contain all minimizers of Z(·; DN) for any DN . The

statement of the theorem follows from applying Theorem 2. ⊓⊔

Proof of Theorem 5 (Equivalence of the reduced data)

Proof Let us denote the set of classifiers whose objective value is less or equal to Z̃(f̃ ∗; DN)

as

F̃ε =
{

f ∈ F̃

∣

∣

∣ Z̃(f ; DN) ≤ Z̃(f̃ ; DN) + ε

}

.

In addition, let us denote the set of points that have been removed by the data reduction

algorithm

S = DN \ DM .

By definition, data reduction only removes an example if its sign is fixed. This means

that sign (f (xi)) = sign
(

f̃ (xi)

)

for all i ∈ S and f ∈ F̃ε. Thus, we can see that for all

classifiers f ∈ F̃ε,

Z(f ; DN) = Z(f ; DM) +
∑

i∈S

1 [yi f (xi) ≤ 0] = Z(f ; DM)

+
∑

i∈S

1

[

yi f̃ (xi) ≤ 0
]

= Z(f ; DM) + C. (19)

We now proceed to prove the statement in (11). When S = ∅, then DN = DM , and (11)

follows trivially. When, S �= ∅, we note that

F∗ = argmin f ∈F Z(f ; DN) = argmin f ∈F Z(f ; DM ∪ S),

= argmin f ∈F Z(f ; DM) + Z(f ; S),

= argmin f ∈F Z(f ; DM) + C, (20)

= argmin f ∈F Z(f ; DM).

Here, the statement in (20) follows directly from (19). ⊓⊔

123

388 Mach Learn (2016) 102:349–391

Proof of Theorem 6 (Sufficient conditions to satisfy the level set condition)

Proof We assume that we have found a surrogate function, ψ , that satisfies conditions I–IV

and choose Cψ > 2ε.

Our proof uses the following result: if ‖λ∗
01 − λ∗

ψ‖ > Cλ then λ∗
01 cannot be a minimizer

of Z01 (λ) because this would lead to a contradiction with the definition of λ∗
01. To see that

this result holds, we use condition III with λ = λ∗
01 to see that ‖λ∗

01 − λ∗
ψ‖ > Cλ implies

Zψ

(

λ∗
01

)

− Zψ

(

λ∗
ψ

)

> Cψ . Thus,

Zψ

(

λ∗
ψ

)

+ Cψ < Zψ

(

λ∗
01

)

Zψ

(

λ∗
ψ

)

+ Cψ < Z01

(

λ∗
01

)

+ ε (21)

Zψ

(

λ∗
ψ

)

+ Cψ − ε < Z01

(

λ∗
01

)

Zψ

(

λ∗
ψ

)

+ Cψ − ε < Zψ

(

λ∗
01

)

(22)

Zψ

(

λ∗
ψ

)

+ ε < Zψ

(

λ∗
01

)

. (23)

Here the inequality in (21) follows from condition IV, the inequality in (22) follows from

condition I, and the inequality in (23) follows from our choice that Cψ > 2ε.

We proceed by looking at the LHS and RHS of (23) separately. Using condition I on the

LHS of (23) we get that:

Z01

(

λ∗
ψ

)

+ ε ≤ Zψ

(

λ∗
ψ

)

+ ε. (24)

Using condition IV on the RHS of (23) we get that:

Zψ

(

λ∗
01

)

≤ Z01

(

λ∗
01

)

+ ε. (25)

Combining the inequalities in (23), (24) and (25), we get that:

Z01

(

λ∗
ψ

)

< Z01

(

λ∗
01

)

. (26)

The statement in (26) is a contradiction of the definition of λ∗
01. Thus, we know that our

assumption was incorrect and thus ‖λ∗
01 − λ∗

ψ‖ ≤ Cλ. We plug this into the Lipschitz

condition II as follows:

Zψ

(

λ∗
01

)

− Zψ

(

λ∗
ψ

)

≤ L‖λ∗
01 − λ∗

ψ‖ < LCλ,

Zψ

(

λ∗
01

)

< LCλ + Zψ

(

λ∗
ψ

)

.

Thus, we have satisfied the level set condition with ε = LCλ. ⊓⊔

References

Antman, E. M., Cohen, M., Bernink, P. J. L. M., McCabe, C. H., Horacek, T., Papuchis, G., et al. (2000).
The TIMI risk score for unstable angina/non-ST elevation MI. The Journal of the American Medical

Association, 284(7), 835–842.
Asparoukhov, O. K., & Stam, A. (1997). Mathematical programming formulations for two-group classification

with binary variables. Annals of Operations Research, 74, 89–112.
Bache, K., & Lichman, M. (2013). UCI machine learning repository

123

Mach Learn (2016) 102:349–391 389

Bajgier, S. M., & Hill, A. V. (1982). An experimental comparison of statistical and linear programming
approaches to the discriminant problem. Decision Sciences, 13(4), 604–618.

Bien, J., Taylor, J., Tibshirani, R., et al. (2013). A lasso for hierarchical interactions. The Annals of Statistics,
41(3), 1111–1141.

Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., et al. (1992). American
college of chest physicians/society of critical care medicine consensus conference: Definitions for sepsis
and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine,
20(6), 864–874.

Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning theory. In Advanced

lectures on machine learning. Springer, pp. 169–207
Bradley, P. S., Fayyad, U. M., & Mangasarian, O. L. (1999). Mathematical programming for data mining:

Formulations and challenges. INFORMS Journal on Computing, 11(3), 217–238.
Brooks, J. P. (2011). Support vector machines with the ramp loss and the hard margin loss. Operations Research,

59(2), 467–479.
Brooks, J. P., & Lee, E. K. (2010). Analysis of the consistency of a mixed integer programming-based multi-

category constrained discriminant model. Annals of Operations Research, 174(1), 147–168.
Carrizosa, E., Martín-Barragán, B., & Morales, D. R. (2010). Binarized support vector machines. INFORMS

Journal on Computing, 22(1), 154–167.
Carrizosa, E., Nogales-Gómez, A., & Morales, D. R. (2013). Strongly agree or strongly disagree? Rating

features in support vector machines. Technical report, Saïd Business School, University of Oxford, UK
Chevaleyre, Y., Koriche, F. , & Zucker, J.-D. (2013). Rounding methods for discrete linear classification. In

Proceedings of the 30th international conference on machine learning (ICML-13) , pp. 651–659.
Cranor, L. F., & LaMacchia, B. A. (1998). Spam!. Communications of the ACM, 41(8), 74–83.
Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J.-J., Sandhu, S., et al. (1989). International

application of a new probability algorithm for the diagnosis of coronary artery disease. The American

journal of cardiology, 64(5), 304–310.
Dupačová, J., Consigli, G., & Wallace, S. W. (2000). Scenarios for multistage stochastic programs. Annals of

operations research, 100(1–4), 25–53.
Dupačová, J., Gröwe-Kuska, N., & Römisch, W. (2003). Scenario reduction in stochastic programming.

Mathematical programming, 95(3), 493–511.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics,

32(2), 407–499.
Elter, M., Schulz-Wendtland, R., & Wittenberg, T. (2007). The prediction of breast cancer biopsy outcomes

using two cad approaches that both emphasize an intelligible decision process. Medical Physics, 34(11),
4164–4172.

Freitas, A. A. (2014). Comprehensible classification models: A position paper. ACM SIGKDD Explorations

Newsletter, 15(1), 1–10.
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via

coordinate descent. Journal of Statistical Software, 33(1), 1–22.
Gage, B. F., Waterman, A. D., Shannon, W., Boechler, M., Rich, M. W., & Radford, M. J. (2001). Validation of

clinical classification schemes for predicting stroke. The Journal of the American Medical Association,
285(22), 2864–2870.

Glen, J. J. (1999). Integer programming methods for normalisation and variable selection in mathematical
programming discriminant analysis models. Journal of the Operational Research Society, 50, 1043–
1053.

Goh, S. T., & Rudin, C. (2014). Box drawings for learning with imbalanced data. In Proceedings of the 20th

ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp. 333–342.
Goldberg, N., & Eckstein, J. (2010). Boosting classifiers with tightened l0-relaxation penalties. In Proceedings

of the 27th International Conference on Machine Learning (ICML-10), pp. 383–390.
Goldberg, N., & Eckstein, J. (2012). Sparse weighted voting classifier selection and its linear programming

relaxations. Information Processing Letters, 112, 481–486.
Guan, W., Gray, A., & Leyffer, S. (2009). Mixed-integer support vector machine. In NIPS workshop on

optimization for machine learning.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine

Learning Research, 3, 1157–1182.
Haberman, S. J. (1976). Generalized residuals for log-linear models. In Proceedings of the 9th international

biometrics conference, Boston, pp. 104–122.
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., & Tibshirani, R. (2009). The elements of

statistical learning (Vol. 2). New York: Springer.

123

390 Mach Learn (2016) 102:349–391

Jenatton, R., Audibert, J.-Y., & Bach, F. (2011). Structured variable selection with sparsity-inducing norms.
The Journal of Machine Learning Research, 12, 2777–2824.

Jennings, D., Amabile, TM., & Ross, L. (1982). Informal covariation assessment: Data-based vs. theory-based
judgments. Judgment under uncertainty: Heuristics and biases, pp. 211–230

Joachimsthaler, E. A., & Stam, A. (1990). Mathematical programming approaches for the classification prob-
lem in two-group discriminant analysis. Multivariate Behavioral Research, 25(4), 427–454.

Kapur, V. K. (2010). Obstructive sleep apnea: Diagnosis, epidemiology, and economics. Respiratory Care,
55(9), 1155–1167.

Kim, M.-J., & Han, I. (2003). The discovery of experts’ decision rules from qualitative bankruptcy data using
genetic algorithms. Expert Systems with Applications, 25(4), 637–646.

Knaus, W. A., Zimmerman, J. E., Wagner, D. P., Draper, E. A., & Lawrence, D. E. (1981). APACHE-acute
physiology and chronic health evaluation: a physiologically based classification system. Critical Care

Medicine, 9(8), 591–597.
Knaus, W. A., Draper, E. A., Wagner, D. P., & Zimmerman, J. E. (1985). APACHE II: a severity of disease

classification system. Critical Care Medicine, 13(10), 818–829.
Knaus, W. A., Wagner, D. P., Draper, E. A., Zimmerman, J. E., Bergner, M., Bastos, P. G., et al. (1991). The

APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults.
Chest Journal, 100(6), 1619–1636.

Kodratoff, Y. (1994). The comprehensibility manifesto. KDD Nugget Newsletter, 94, 9.
Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In KDD, pp.

202–207.
Kuhn, M., Weston, S., & Coulter, N. (2012). C50: C5.0 Decision trees and rule-based models, 2012. C code

for C5.0 by R. Quinlan. R package version 0.1.0-013.
Le Gall, J.-R., Loirat, P., Alperovitch, A., Glaser, P., Granthil, C., Mathieu, D., et al. (1984). A simplified acute

physiology score for icu patients. Critical Care Medicine, 12(11), 975–977.
Le Gall, J.-R., Lemeshow, S., & Saulnier, F. (1993). A new simplified acute physiology score (SAPS II) based

on a european/north american multicenter study. The Journal of the American Medical Association,
270(24), 2957–2963.

Lee, E. K., & Wu, T.-L. (2009). Classification and disease prediction via mathematical programming. In
Handbook of optimization in medicine. Springer, pp. 1–50.

Li, L., & Lin, H.-T. (2007). Optimizing 0/1 loss for perceptrons by random coordinate descent. In International

joint conference on neural networks, 2007. IJCNN 2007. IEEE, pp. 749–754.
Light, R. W., Macgregor, M. I., Luchsinger, P. C., & Ball, W. C. (1972). Pleural effusions: The diagnostic

separation of transudates and exudates. Annals of Internal Medicine, 77(4), 507–513.
Liittschwager, J. M., & Wang, C. (1978). Integer programming solution of a classification problem. Manage-

ment Science, 24, 1515–1525.
Lin, D., Pitler, E., Foster, D. P., & Ungar, L. H. (2008). In defense of l0. In Workshop on feature selection

(ICML 2008).
Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data Mining and

Knowledge Discovery, 6, 393–423.
Liu, H., & Zhang, J. (2009). Estimation consistency of the group lasso and its applications. In Proceedings of

the twelfth international conference on artificial intelligence and statistics.
Mangasarian, O. L. (1994). Misclassification minimization. Journal of Global Optimization, 5(4), 309–323.
Mangasarian, O. L., Street, W. N., & Wolberg, W. H. (1995). Breast cancer diagnosis and prognosis via linear

programming. Operations Research, 43(4), 570–577.
Mao, K. Z. (2004). Orthogonal forward selection and backward elimination algorithms for feature subset

selection. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), 629–634.
Marklof, J. (2012, July). Fine-scale statistics for the multidimensional Farey sequence. ArXiv e-prints, July

2012.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2012). e1071: Misc functions of the

department of statistics (e1071), TU Wien, 2012. R package version 1.6-1.
Miller, A. J. (1984). Selection of subsets of regression variables. Journal of the Royal Statistical Society Series

A (General), 47, 389–425.
Moreno, R. P., Metnitz, P. G. H., Almeida, E., Jordan, B., Bauer, P., Campos, R. A., et al. (2005). SAPS

3—From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a
prognostic model for hospital mortality at icu admission. Intensive Care Medicine, 31(10), 1345–1355.

Nguyen, H. T., & Franke, K. (2012). A general lp-norm support vector machine via mixed 0-1 programming.
In Machine learning and data mining in pattern recognition. Springer, pp. 40–49.

Nguyen, T., & Sanner, S. (2013). Algorithms for direct 0–1 loss optimization in binary classification. In
Proceedings of the 30th international conference on machine learning (ICML-13), pp. 1085–1093.

123

Mach Learn (2016) 102:349–391 391

Pazzani, M. J. (2000). Knowledge discovery from data? IEEE Intelligent Systems and Their Applications,
15(2), 10–12.

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

Ranson, J. H., Rifkind, K. M., Roses, D. F., Fink, S. D., Eng, K., Spencer, F. C., et al. (1974). Prognostic signs
and the role of operative management in acute pancreatitis. Surgery, Gynecology & Obstetrics, 139(1),
69.

Rubin, P. A. (1990). Heuristic solution procedures for a mixed-integer programming discriminant model.
Managerial and Decision Economics, 11, 255–266.

Rubin, P. A. (1997). Solving mixed integer classification problems by decomposition. Annals of Operations

Research, 74, 51–64.
Rubin, P. A. (2009). Mixed integer classification problems. In Encyclopedia of optimization. Springer, pp.

2210–2214.
Schlimmer, J. C. (1987). Concept acquisition through representational adjustment.
Souillard-Mandar, W., Davis, R., Rudin, C., Au, R., Libon, D. J., Swenson, R., et al. (2015) Learning Clas-

sification Models of Cognitive Conditions from Subtle Behaviors in the Digital Clock Drawing Test.
Machine Learning. Accepted

Therneau, T., Atkinson, B., & Ripley, B. (2012). rpart: Recursive Partitioning, 2012. URL http://CRAN.
R-project.org/package=rpart. R package version 4.1-0.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society

Series B (Methodological), 58, 267–288.
Towell, G. G., & Shavlik, J. W. (1993). Extracting refined rules from knowledge-based neural networks.

Machine Learning, 13, 71–101.
Ustun, B., Westover, M. B., Rudin, C., & Bianchi, M. T. (2015). Clinical Prediction Models for Sleep Apnea:

The Importance of Medical History over Symptoms. Journal of clinical sleep medicine: JCSM: official

publication of the American Academy of Sleep Medicine.
Van Belle, V., Neven, P., Harvey, V., Van Huffel, S., Suykens, J. A. K., & Boyd, S. (2013). Risk group detection

and survival function estimation for interval coded survival methods. Neurocomputing, 112, 200–210.
Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.
Wells, P. S., Anderson, D. R., Bormanis, J., Guy, F., Mitchell, M., Gray, L., et al. (1997). Value of assessment

of pretest probability of deep-vein thrombosis in clinical management. Lancet, 350(9094), 1795–1798.
Wells, P. S., Anderson, D. R., Rodger, M., Ginsberg, J. S., Kearon, C., Gent, M., et al. (2000). Derivation of a

simple clinical model to categorize patients probability of pulmonary embolism-increasing the models
utility with the SimpliRED D-dimer. Thrombosis and Haemostasis, 83(3), 416–420.

Wolsey, L. A. (1998). Integer programming (Vol. 42). New York: Wiley.
Yanev, N., & Balev, S. (1999). A combinatorial approach to the classification problem. European Journal of

Operational Research, 115(2), 339–350.
Zhao, P., & Bin, Y. (2007). On model selection consistency of lasso. Journal of Machine Learning Research,

7(2), 25–41.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.
Zeng, J., Ustun, B., & Rudin, C. (2015). Interpretable Classification Models for Recidivism Prediction. arXiv

preprint arXiv:1503.07810.

123

http://www.R-project.org/
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://arxiv.org/abs/1503.07810

	Supersparse linear integer models for optimized medical scoring systems
	Abstract
	1 Introduction
	1.1 Related work
	1.1.1 Medical scoring systems
	1.1.2 Sparse linear classification models
	1.1.3 Discrete linear classification models
	1.1.4 MIP approaches for classification

	2 Methodology
	2.1 SLIM IP Formulation

	3 Operational constraints
	3.1 Loss constraints for imbalanced data
	3.2 Feature-based constraints for input variables
	3.3 Feature-based preferences

	4 Bounds on training and testing accuracy
	4.1 Discretization bounds on training accuracy
	4.2 Generalization bounds on testing accuracy

	5 Data reduction
	5.1 Data reduction for optimization-based supervised classification
	5.2 Off-the-shelf data reduction for SLIM
	5.3 Discussion and related work

	6 Application to sleep apnea screening
	6.1 Data and operational constraints
	6.2 Training setup and model selection
	6.3 Results and observations
	6.3.1 On the difficulties of handling operational constraints
	6.3.2 On the sensitivity of acceptable models
	6.3.3 On the usability and interpretability of acceptable models

	7 Numerical experiments
	7.1 Experimental setup
	7.2 Results and observations
	7.2.1 On accuracy, sparsity, and computation
	7.2.2 On the regularization effect of discrete coefficients
	7.2.3 On interpretability

	8 Specialized models
	8.1 Personalized models
	8.2 Rule-based models
	8.2.1 M-of-N rule tables
	8.2.2 Threshold-rule models

	9 Conclusion
	Acknowledgments
	A Proofs of Theorems
	Proof of Theorem 1 (Minimum margin resolution bound)
	Proof of Theorem 3 (Generalization of sparse discrete linear classifiers)
	Proof of Theorem 5 (Equivalence of the reduced data)
	Proof of Theorem 6 (Sufficient conditions to satisfy the level set condition)

	References

