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Abstract

Recent advances in single particle tracking and supercomputing techniques demonstrate the

emergence of normal or anomalous, viscoelastic diffusion in conjunctionwith non-Gaussian

distributions in soft, biological, and activematter systems.Wehere formulate a stochasticmodel based

on a generalised Langevin equation inwhich non-Gaussian shapes of the probability density function

and normal or anomalous diffusion have a common origin, namely a randomparametrisation of the

stochastic force.We perform a detailed analysis demonstrating how various types of parameter

distributions for thememory kernel result in exponential, power law, or power-log law tails of the

memory functions. The studied system is also shown to exhibit a further unusual property: the velocity

has aGaussian one point probability density but non-Gaussian joint distributions. This behaviour is

reflected in the relaxation from aGaussian to a non-Gaussian distribution observed for the position

variable.We show that our theoretical results are in excellent agreementwith stochastic simulations.

1. Introduction

At the beginning of 20th century theworks of Einstein, Smoluchowski, Langevin andWiener [1–4] opened a

new chapter of quantitative understanding of physics, chemistry, andmathematics by laying down the

foundations forwhat we now call the theory of stochastic processes. Their goal was to provide descriptions of

various aspects of diffusivemotion, whichwere observed even in ancient times, for instance, by Roman poet

Lucretius [5]. However, it was the groundbreaking experiments of Brown in the 19th century [6] that brought

this topic to serious scientific attention.

Two fundamental properties are commonly encountered in observed diffusivemotion: (i) themean squared

displacement (MSD) of the particle positionX grows linearly with time,

t X t Dt2 , 1X
2 2d =( ) ≔ [ ( ) ] ( )

the slope of thisMSDbeing determined by the diffusion coefficientD. (ii)The randompositionX is distributed

according toGaussian statistics with the probability density

p x t
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From a randomwalk perspective these properties emerge from the central limit theorem for theweakly

dependent, identically distributed randomvariables [7]3. Properties (1) and (2) can be readily obtained from the

stochastic equation [3]
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X t V t mV t V t k T t, 3Bl lx= = - +˙ ( ) ( ) ˙ ( ) ( ) ( ) ( )

introduced by Langevin, which describes the dynamics of the velocity processV of a particle ofmassm in a

thermal bath of temperatureT, where kB is Boltzmann’s constant andλ the damping coefficient. Equation (3)

models the interaction of the Brownian particle with the surroundingmedium: theGaussianwhite noise term

k T tB l x ( ) corresponds to the rapid exchange ofmomentumbetween the test particle and the environment.

ThemotionX is considered slow in comparison to individual bombardments by bath particles. The term

V tl- ( ) represents the viscosity of the surroundingmedium, its exactmagnitude determined by the properties

of the liquid and the particle shape, and thus stands for energy dissipation. Solving the Langevin equation (3) and

comparing the stationary value of themean squared velocity with the thermal energy due to the equipartition

theorem,we obtain the Einstein–Smoluchowski relation D k T mB l= ( ) [8].

However, inmodern experiments deviations fromboth of these properties are quite commonly observed. In

particular, anomalous diffusion exhibiting power-law forms of theMSD,

t Dt2 4X
2d ~ a( ) ( )

was reported fromvarious physical systems [9–12]4.Wedistinguish twocases: subdiffusion for 0 1a< < , observed

in the cytoplasmof livingbiological cells [13–18], various crowdedfluids in vitro [19–22] and lipidbilayermembrane

systems [12, 23–27]; and superdiffusion for1 2a< < which is related to active biological transport [28–31]or

turbulence [32–35]. These anomalousdiffusionphenomena cannot be explained solely basedon theLangevin

equation (3), whichhas a too simple structureofmemory: a velocity increment at time tdepends exclusively on the

present value ofV(t) and thewhite noise tx ( ), which is independentof thedynamics in thepast. Therefore the future

evolutionofV is also independentof all but itsmost recent value, inotherwordsV is aMarkovprocess [36].

There exist several approaches to anomalous diffusion, which introduce various degrees ofmemory [37]. An

important extension of the Langevin equation (3), the generalised Langevin equation (GLE), was promoted in

the famouswork of Kubo [38] andwidely applied in chemical physics [39, 40]. TheGLE is an integro-differential

equation of the form [40–45]

mV t V K t td 5
t

ò t t t x= - - +
-¥

˙ ( ) ( ) ( ) ( ) ( )

inwhich themore complexdependence is reflectedboth in thememory integral (of convolution form)with the

kernelK, and in the stochastic force ξ, which is nowdescribedby the covariance function r t t x t x t= +x ( ) [ ( ) ( )].
For apower-lawkernel the solutionof theGLE is an antipersistentmotionwhichmodels subdiffusion [41, 42, 46]

and canbewritten in termsof a fractional order Langevin equation [37, 47, 48].

TheGLEhas a somewhat special status among stochasticmodels of anomalousdiffusion, as it canbe strictly

derived fromstatisticalmechanics.Themost general approach is theprojection-operator formalism [40]but

additional physical insight canbe gained frommore specificderivations, for instance, from theKac–Zwanzigmodel of

adegreeof freedom interactingwith aheatbathofharmonicoscillators [49, 50], a test particle interactingwith a

continuousfield [51, 52], or aRousemodeldescribing the conformational dynamicsof amonomer in apolymeric

bead springmodelofmasspoints connectedbyharmonic springs [53, 54]. TheGLEwithpower-lawkernel also

emerges fromaharmonisationof a singlefile systemof interactinghard coreparticles [55]. It follows fromthis

derivation that ξ is a stationaryGaussianprocess, that is, every vector t t t, , , n1 2x t x t x t+ + ¼ +[ ( ) ( ) ( )]has ann-

dimensionalGaussiandistribution,whichdoesnotdependon the time shiftτ.Notably, thekernelK and the stochastic

force are relatedby the famedKubofluctuation–dissipation theorem t k T K tB x t x t + = ´[ ( ) ( )] ( ) [38, 56].

Physically, theGLEwithpower-lawkernel is related toviscoelastic systems, andwas identified as theunderlying

stochastic processdriving the subdiffusionof submicron tracers in cells, crowded liquids, and lipiddiffusion in simple

bilayermembranes [13, 19, 22, 23, 26, 29].

1.1. Non-Gaussian diffusion processes

However, an additional phenomenonwas unveiled in a range of experiments recently. Namely, not only the

assumption of normal diffusion is no longer generally valid, numerous experiments have shown a new class of

diffusive dynamics inwhich the fundamental Gaussian property (2) is violated [57–60]; see also the additional

references in [61]. Inmany of these observations theMSD is still linear, of the form (1), however, the probability

density function has the exponential shape (often called Laplace distribution) [57, 62, 63]

p x t
Dt

x

Dt
,

1

4
exp . 6X = -

⎛

⎝
⎜

⎞

⎠
⎟( )

∣ ∣
( )

Howcan such observations be explained physically?One of the approaches allowing to explain the emergence of

the Laplace distribution is that themeasured particlemotion does not correspond to samples of the distribution

(2), but to amixture of individual Gaussian processes with different values of the diffusivitiesD. In statistics such

4
For anomalous diffusionD becomes the generalised diffusion coefficient of dimension cm sec2 a .
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an object is called a compound ormixture distribution [64]; in the analysis of diffusion processes this type of

model is called superstatistical [65] (which stands for ‘superposition of statistics’) or ‘doubly stochastic’ [66],

which is a term for stochasticmodels generalised by replacing some parameter, for instance,D, by a random

process. The observations of the Laplace distribution (6) can be justified by assuming that the diffusion

coefficientD is a randomvariable with exponential distribution. Every single trajectory is still Gaussian, but the

probability density calculated from thewhole ensemble is a compound distribution, in this case exactly the

Laplace distribution [57].

There are a few physical interpretations that explain the randomness ofD. The particles that we observemay

not be identical and their different shapes and interactionswith the surroundings could and should affect how

quickly they diffuse. The environmentmay also be inhomogeneous, which is an expected property ofmany

complex systems, especially biological ones, such as cellmembranes. In this situation the diffusion coefficient is

local and position dependent D D x= ( ) [67, 68]. If the particle ismoving along a trajectoryX(t) the effective

diffusivity felt is indirectly time-dependent, D t D X t=( ) ( ( )). The time dependence can also be direct

(D D t X t,= ( ( ))) if the environment is changing, e.g., because of themotion of other particles. Often an

approximation is used inwhichD is assumed to evolve independently fromX. This is a ‘diffusing diffusivity’

approach proposed byChubinsky and Slater [69], which is currently being actively developed [61, 70, 71].

According to the superstatistics approach [65] thedifferent diffusivities correspond to themotionof one given

particle in one specific regionwith a givenD-value.At sufficiently short time scales the observedparticles are relatively

localised in such a region, andD canbe considered tobe constant for each trajectory.Thewhole ensemble of particles

behaves as a systemwith randomDwith adistributionofD-valuesmirroring the spacial and temporal dispersionof

D t x,( ) [72]. Beckproposed that in turbulentmedia one could consider theLangevin equation (3) to be valid,

however, the effective temperature is randomsuch that k TB
1-( ) is distributed according to 2c statistics [65, 73, 74].

We note here that viscoelastic anomalous diffusionwith Laplace shape of the probability density function

was observed for themotion ofmessenger RNAmolecules in the cytoplasmof bacteria and yeast cells [75], while

stretchedGaussian shapeswere unveiled in themotion of lipids in protein-crowded lipid bilayer systems [58].

Inwhat followswe study a natural extension of this idea: what if not the temperature, but the properties of

the stochastic force in equations (3) and (5) is random? Such an assumptionmay be justified in the sameway as

the randomness ofD. Namely, this situation can be realised in an ensemble of particles with varying systems

parameters, or in inhomogeneousmedia. This approach resembles to some degreemodels such as theGLEwith

kernels, that are amixture ofmore elementary functions [44, 76]. Similar ideas appear infinancialmodelling

with the ‘gamma-mixedOrnstein–Uhlenbeck process’ [77]. However, in thesemodels the observed trajectories

are not examples of compound distributions but result fromdeterministic dynamics, which can be interpreted

as an average over random local dynamical laws. In our approach the studied processes are truly superstatistical

and represent a newphysical approach to non-Gaussian stochastic processes.

The paper is structured as follows. In section 2we introduce theGLEwith randomparameters and discuss its

elementary properties. Section 3 then considers the concrete case of a compoundOrnstein–Uhlenbeck process

within the superstatistical approach. In section 4more complex types ofmemory are proposed and studied,

including oscillatory regimes. Our findings are discussed in section 5. In the appendix somemore technical

details are presented.

2.Generalised Langevin equationwith randomparameters

Our starting point is theGLE assumed to depend on some parameter c, whichmay describe the type of diffusing

particle and/or the local properties of its environment. The parameter c can, in principle, be a number or a

vector. In theGLE the stochastic force then also becomes parametrised by c, cx x= . Due to their coupling via the

Kubofluctuation–dissipation relation, also thememory kernel depends on c, K Kc= (see below). The solution

of theGLE, the velocity and position processes can then also be considered to be functions of this parameter,

V Vc= , X Xc= . These phase space coordinates thus solve the set of equations

mV V K t

X V

d ,

. 7

c

t

c c c

c c

ò t t t x=- - - +

=
-¥

˙ ( ) ( )

˙ ( )

The constant k TB and themassm actually only rescale the solutions. Considering c dependentmassm and

temperatureTwould result in a c dependent diffusion constantDc. This type of influencewas extensively studied

before [65, 73, 74, 78, 79], and therefore wewill omit this ramification in our analysis and assume m k T 1B= =
inwhat follows.We note that equation (7)was introduced previously and analysed for an exponentialmemory

kernel [80].

In the above definitionwe tacitly assumed that the introduction of the parameter c does not change the

spatially local structure of theGLE, andwe assume that the fluctuation–dissipation theorem remains valid in the

3
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form

t k T K t . 8c c B c x t x t + =[ ( ) ( )] ( ) ( )

Indeed, the variableX interacts with the heat bath only in its neighbourhood. The bath degrees of freedom

themselves do not interact with each other directly, which prohibits spatial long-range correlations. Long-time

correlations can still be present, but they result from the interactions betweenX and the bath degrees of freedom,

which ‘store’ thememory structure for a long time, but do so only locally. Thatmeans for eachfixed value c the

fluctuation–dissipation theorem should still hold.

For every c, theGLE can be solved using theGreen’s function formalism. The stationary solution of

equation (7) is given by

V t G t d , 9c

t

c cò x t t t= -
-¥

( ) ( ) ( ) ( )

where theGreen’s functionG solves the equation

G t G K t td . 10c

t

c c
0
ò t t t d= - - +˙ ( ) ( ) ( ) ( ) ( )

Equivalently,Gc is the inverse Laplace transformof

G s
s K s

1
, 11c

c

=
+

~
~( )

( )
( )

where by G sc
~

( )wedenote the Laplace transformofGc(t).

Generally the superstatistical solutionVC andXC of theGLE emerges when the parameter c is drawn from

some distribution, whichwe denote by substituting a big letterC for it. In order to get a better feeling, as a

guiding example let us consider the simple case of a discrete set of local environments or types of particles.We

number themby c 1, 2, 3,= ¼. The random variableCwith distribution P C k pk= =( ) then describes how
many trajectories are evolving in each environment or correspond to each particle type.With probability pk the

observed trajectory evolved according to theGLE (7)with kernelKk and stochastic force kx . In generalCmay not

be discrete, but can be a continuous parameter. The latter case ismore complex and interesting, allowing to

model awider range of phenomena, and this will be ourmain point of interest in the following.

Whenwe consider the solutions of the superstatistical GLE (that is equation (7) together with amodel

distribution forC)we are interested in two types of observables: ensemble and time averages. Ensemble averages

correspond to quantities relevant when an experiment averages overmany particles, as in the pioneering

experiments of Perrin [81, 82]. Single particle tracking experiments with sufficiently long individual particle

traces, as those introduced byNordlund [83], are typically evaluated by time averages [84]. For the case of

ensemble averages the situation is simple, these quantities can be calculated using the so-called ‘tower property’,

which can be applied to any random function f (X)

f X f X C P c P x f xd d . 12X C X C C X c   ò ò= =[ ( )] [ [ ( )∣ ]] ( ) ( ) ( ) ( )∣ ∣

Inwhat followswe omit the subscripts in the notation 
·( ) and use the convention that the variables will always

be averagedwith respect to their natural distribution. In order to calculate ensemble averages ofVC andXCwe

simply need to calculate ensemble averages ofV X,c c forfixed c and average themover the distribution ofC. In

particular, ifC andXchave the probability density (PDF) pC and pXc
, the density ofXC becomes

p x t p x t C p c p x t c, , , d . 13X X C XC C c
 ò= =( ) [ ( ∣ )] ( ) ( ) ( )

For the time averages, themost commonly used quantity is the time averagedMSD,which for a trajectory of

length  (observation time) reads [11, 37, 84]

t
t

X t X

t
V

;
1

d

1
d d . 14

t

C C

t t

C

2

0

2

0

2










ò

ò ò

d t t t

t t t

-
+ -

=
-

¢ ¢
t

t

-

- +
⎜ ⎟
⎛

⎝

⎞

⎠

( ) ≔ ( ( ) ( ))

( ) ( )

The last form stresses that t ;2 d ( ) can be viewed as a function of the velocityVC, which here is a stationary

process. In this workwewill bemostly interested in the limit   ¥ for which one can omit subtracting t and

use the simpler average lim d
1

0
 


ò t¥ ·( ) , typically used in statisticalmechanics, and determine it using tools

from ergodic theory. For every choice of c the stochastic force cx is stationary andGaussian, and its covariance

function decays to zero, r t 0
c

x ( ) as t  ¥. The famousMaryuama theorem [85, 86] guarantees that in such a
case the process ismixing, in particular, it is ergodic. So the stationary solutionVc of theGLE (7)must bemixing

and ergodic, as well, for every choice of c [87]. Any time average coincides with the ensemble average, that is, for

4
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every function of state f 5

f V f V f Vlim
1

d 0 . 15c c c
0


ò t t =

¥
( ) ≔ ( ( )) [ ( ( ))] ( )

However, the superstatistical solutionVC cannot be ergodic as averaging over one trajectory one cannot gain

insight into the distribution ofC. But, the processVC is still stationary, as, for every c,Vc is stationary. In such a

case the behaviour of the time averages is determined by Birkhoff’s theorem [86, 88]which guarantees that

f V f V f Vlim
1

d 0 . 16C C C
0





ò t t= =

¥
( ) ( ( )) [ ( ( ))∣ ] ( )

All time averages converge to a randomvariable f V 0C [ ( ( ))∣ ], which is an expected value conditioned by
summarising all constants ofmotion ofVC. For isolated systemswould correspond to the energy, total

momentum and similar quantities. In our case here every trajectoryVc itself is ergodic, so it has no internal

constants ofmotion. Therefore the only constants ofmotion are the local states of the environment, denoted by

C. This statement is intuitively reasonable: given a trajectory evolvingwithC=c all time averaged statistics

converge to the values corresponding to the solution of theGLEwithKc and cx , which, due to the ergodic
theorem (15) are exactly the conditional expected values f V C c f V0 0C c = =[ ( ( ))∣ ] [ ( ( ))]. For theMSD this

means that

t t X t C t Clim ; , 17C X
2 2 2 2

C



d d d= =

¥
( ) ≔ ( ) [ ( ) ∣ ] ( ∣ ) ( )

which is a function of the randomparameterC and time t. One consequence of this is that the ergodicity

breaking parameter,measuring the variance of amplitude fluctuations between individual realisations of the

stochastic process [37, 89, 90], never equals zero and does not converge to zero even in the asymptotic limit

t  ¥,

t
t

t

t C

t C
EB 1 1 0, 18

X

X

2 2

2 2

2 2

2 2

C

C







d
d

d

d
- = - ¹( ) ≔

[ ( ) ]

[ ( )]

[( ( ∣ )) ]

[ ( ∣ )]
( )

for any t 0¹ , as themean of a square equals the square of amean only for non-random variables.

The ensemble averagedMSD can be directly obtained from theGreen’s functionGc(t). Namely, proposition

1 in the appendix proves that the covariance function ofVc equals theGreen’s function, r GV cc
= such that the

ensemble averagedMSDofXc reads
6

t G2 d d . 19X

t

c
2

0
1

0
2 2c

1

ò òd t t t=
t

( ) ( ) ( )

Moreover, asGc is a covariance function, it is bounded, G G0 0 1c c =∣ ( )∣ ( ) . Thus, from relation (19)we see
that t t 2X

2 2
c

d ( ) , so theMSD is alwaysfinite and themotion governed by the superstatistical GLE is sub-
ballistic. The result for theMSD assumes a particularly simple form in Laplace space,

s s G s s r s2 2 . 20X C V
2 2 2

C C
d = = ~~~

- -( ) [ ( )] ( ) ( )

Note that G 0 1c =( ) also implies that t 1V
2

c
d =( ) . For any t the valueVC(t) is not superstatistical, it is simply a

Gaussian variable with unit variancewhich is the same as forVc(t)with any c. At the same time the covariance

function rVC
is decaying as amixture of decaying functions rVc

.Without careful consideration thismay seem

contradictory: theMaryuama theorem states that if a stationaryGaussian process has a decaying covariance

function, it ismixing and ergodic, butVC is stationary, Gaussian at every t, has a decaying covariance function,

and is non-ergodic!

The solution to this seeming contradiction is the fact that whileVC is Gaussian at every instant of time t, it is

itself not aGaussian process. For a stochastic process to beGaussian, it is not sufficient that is has aGaussian

marginal distribution but also aGaussian joint distribution. The solutionVC is an interesting physical example

of an object witch hasGaussianmarginals, but non-Gaussianmemory structure. Such processes are well-known

to exist: it is enough to take some non-Gaussian processX(t) and transform it using its own cumulative

distribution function, Y t F X t F x X t x, Pt t= = <( ) ( ( )) ( ) ( ( ) ). The resulting processY(t) has uniform

distribution for every t, and it is enough to transform it a second time using a normal quantile function to obtain

a process withGaussian PDF, yet a complicated and particularly non-Gaussian type of dependence. However

this construction can be considered artificial andwithout physicalmeaning. The unusual non-Gaussianity ofVC

here arises naturally from the physicalmodel. The processVC could be verymisleading during the analysis of

measured data: using only basic statisticalmethods it will seemGaussian.Wewill show techniqueswhich can be

used to unveil its non-Gaussianity in the next section for specific examples.

5
Note, however, that generally a process described by theGLE can be transiently non-ergodic and ageing, as shown in [22, 91, 92].

6
Without the rescaling m k T 1B= = , rVc it equals k Tm GB c

1- .
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3. CompoundOrnstein–Uhlenbeck process

3.1.Overview of themodel

The classical Langevin equation can be considered as an approximation of theGLE inwhich the covariance

function rξ decays very rapidly on the relevant time scale. The solution of the Langevin equation exhibitsmany

properties typical to theGLE in general.We fix themass of the particle and the bath temperature, so equation (3)

is governed solely by the parameterλ. The superstatistical solution is thusVΛ, where 0L > is a randomvariable,

which can be interpreted as a local viscosity value. The Langevin equation can be solved using the integrating

factor texp L( ), which yields the stationary solution

V t e d . 21
t

tò x t t= L t
L

-¥

-L -( ) ( ) ( )( )

The solutionVλ forfixedλ is often calledOrnstein–Uhlenbeck process, soVΛmay be called a compound

Ornstein–Uhlenbeck process. It can also be represented in Fourier space. Calculating the Fourier transformof

equation (3) demonstrates that

V t
i

e d , 22tiò x w
w

w=
L
+ L

w
L

-¥

¥ ( ) ( ) ( )

wherewe note that the Fourier transformofGaussianwhite noise x is anotherGaussianwhite noise. Another
useful representation is the recursive formula, which is fulfilled by the process at discretised timemoments. If we

solve the Langevin equation (3) using the integrating factor texp L( ) but integrate from time k tD to k t1+ D( )

we obtain

V k t V k t Z

Z

1 e

e d
1

2
1 e , 23

t
k

k
k t

k t
k t d t

k

1
1 2ò x t t x

+ D = D +

= L = -t

L
-D L

L

D

+ D
-L + D - - D L

(( ) ) ( )

( ) ( )
( )

(( ) )

where the noiseZk has the same distribution as aGaussian discrete white noise kx multiplied by a random
constant. The seriesZk is, conditionally onΛ, independent frompast valuesV j tDL( ), with j k< . Such a process

is called a random-coefficient autoregressive process of order 1, in short AR(1) [93, 94]with autoregressive

coefficient texp -D L( ).When there are only few distinct populations andΛ has only few possible values, they

can even be recognised on the phase plot of y V k t1= + DL(( ) ) versus x V k t= DL( ), see figure 1. There, the

two distinct populationswith different autoregressive coefficients can be distinguished. Both haveGaussian

distribution, but each one has a distinct elliptical shape. The total distribution, as amixture of two ellipsoids,

however, is notGaussian, nor even elliptical. The projection of the joint distribution on x or y axis are the PDF of

V tL( ) and areGaussian, thus, one needs at least a two-dimensional phase plot to reveal the non-Gaussianity of

Figure 1.Phase plot of the compoundOrnstein–Uhlenbeck process with P P1 10 2 1 2L = = L = =( ) ( ) .We took t 1D = . Solid
lines correspond to 95% conditional quantiles of the noiseZk in both populations.
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VΛ. For a larger number of populations the phase plot would bemuch less clear, but the huge advantage of this

method is that it works even for trajectories of very short length.

The situation becomesmore complex and interestingwhenΛ assumes a continuous distribution. The

covariance function of theOrnstein–Uhlenbeck process is

r t
1

2
e . 24V

t= l-
l( ) ( )

Here some care needs to be taken, as the factor 1/2 differs from the covariance of the solution of theGLE for

which generally r 0 1V =( ) (this is due to the fact that it corresponds to a degenerate Dirac delta kernel). IfΛ has

the PDF pΛ, the covariance function ofVΛ is

r t p
1

2
e d , 25V

t

0
ò l l= l
¥

L
-

L( ) ( ) ( )

so it is the Laplace transformof pΛ: in probabilistic language this quantity would be called amoment generating

function of the variable-L. For instance, ifΛ is a stable subordinatorwith index 0 1a< < [95] the covariance

function is the stretched exponent

r t
1

2
e , 26V

t= s- a
a

L( ) ( )

which is a common relaxationmodel [96–100], sometimes referred to as Kohlrausch–Williams–Watts

relaxation [101, 102].

IfΛ can be decomposed into a sumof two independent random variables 1 2L = L + L , the corresponding

covariance function is a product,

r t r t r t2 . 27V V V1 2
=L L L( ) ( ) ( ) ( )

Therefore, in thismodel various kinds of truncations of the kernel correspond to a decomposition ofΛ, for

instance, if lL = + L¢with deterministic 0l > , the covariance function rVLwill be truncated by texp l-( ).

Some general observations about the behaviour of rVL can bemade.WhenΛ has a distribution supported on

an interval, such as 1 2l l< L < , and its PDFhas no singularity, it is necessarily bounded, that is,

m p M lL( ) . In this case,

m
r t

M

2
e d

2
e d . 28t

V
t

1

2

1

2 ò òl l
l

l
l

l

l
l- -

L( ) ( )

The integrals on the left and right have asymptotics of the form

t t
e d

1
e e

1
e . 29t t t t

1

2
1 2 1ò l = - ~

l

l
l l l l- - - -( ) ( )

Herewe introduce the notation of an asymptotic inequality, whichwill be useful later on.Wewrite f g if
f h g~ for some function h7. Using this notionwe canwrite the above results as

m

t
r t

M

t2
e

2
e . 30t

V
t1 1 l l- -

L( ) ( )

This equation proves that c t r t c te et
V

t
1

1
2

11 1 l l- - - -
L( ) for some constants c c0 1 2< < . Further onwewill

denote this property by r t eV
t1 1 l- -

L
8.WhenΛ is distributed uniformly, m M 2 1

1l l= = - -( ) , and the

asymptotic©becomes stronger, that is, r t t2 eV
t

2 1
1 1l l~ - l- -

L( ) ( ( ) ) . This distribution ofΛ is important from

a practical standpoint, because it is amaximal entropy distribution supported on the interval ,1 2l l[ ], so it can be

interpreted as the choice taken using theweakest possible assumptions.

Heavier tails of rVLmay be observed onlywhen the distribution ofΛ is concentrated around 0+.Themost

significant case of such a distribution is a power law of the form p 1l l~ a
L

-( ) , with 0l  + and 0a > . For
any distribution of this type Tauberian theorems guarantee that the tail of the covariance has a power law form

[103, 104]

r t t t
2

, . 31V
a

~
G

 ¥a-
L( )

( )
( )

For 1a < the processVΛ exhibits a longmemory. This observation can be refined as follows. In proposition 2

(i)wepresent a generalised Tauberian theorem, which states that if the PDF ofΛ contains a slowly-varying factor

L, then the tail of the covariance contains the factor L t 1-( ). One example of such a slowly-varying factor is
ln , 0l b >b∣ ( )∣ , so heavy tails of the covariance of the power law form t tlna b- ( ) can also be present for

compoundOrnstein–Uhlenbeck process if the distribution ofΛ exhibits a logarithmic behaviour at 0+. This

7
This is similar to the Landau- notation, but whenwewritewe also include the value of the constant factor whichwould be omitted

writing r t eV
t1 1= l- -

L ( ).
8
The same situation is sometimes denoted in terms of the ‘large theta’notation, that is r t eV

t1 1= Q l- -
L ( ).
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observation proves that this equation can also describe ultra-slowdiffusion and can be considered as an

alternative tomore complexmodels based on distributed order fractional derivatives [76, 105].

In section 2we noted that the superstatistical solutions of the Langevin equations are notGaussian, however,

they can be easilymistaken to beGaussian. Themarginal distributions ofVΛ areGaussian at any time t, only the

joint distributions are not. Thismeans that themultidimensional PDF of the variablesV t V t V t, , , n1 2 ¼L L L( ) ( ) ( )

does not have aGaussian shape. This fact is easy to observe studying the characteristic function of the two point

distribution, which is a Fourier transformof the two-point PDF. Let usfixV tL( ),V tt +L( ) and define the two-

point characteristic function as

t, e , , . 32V V ti
1 2

1 2q qf q qº =q t q t
L

+ +L L( ) [ ] [ ] ( )( ( ) ( ))

For any deterministicλ this function is determined by the covariancematrix tS of the pairV V t,t t +l l( ) ( ),

t, e ,
1

2

1, e

e , 1
, 33t

t

t
t

1
2

Tqf = S =q q
l

l

l
- S

-

-

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

so in the superstatistical case the characteristic function reads

t t, , e e e . 34e t1
4 1

2 1
4 2

2 1
2 1 2 q qf f= L = q q q q

L L
- - - -L

( ) [ ( ∣ )] [ ] ( )

Aswe argued, themarginal factors exp 4 , exp 41
2

2
2q q- -( ) ( ) are indeedGaussian, but the cross factor

describing the interdependence is not. The function fL would describe aGaussian distribution if and only if the
factor exp e 2t

1 2 q q -L[ ( )]had the form aexp 1 2q q( ). But we see that it is in fact amoment generating function of

the variable texp -L( ) at point 21 2q q , which is an exponential if and only ifΛ equals one fixed valuewith

probability unity. The compoundOrnstein–Uhlenbeck is never Gaussian for non-deterministicΛ.

This property is also evident if we calculate the conditionalMSDofXΛ,

t t
1

2

1

2
e 1 . 35X

t2

2
d L =

L
+

L
--L

L
( ∣ ) ( ) ( )

At short times t this approximately is t 42 , so the distribution is nearly Gaussian and themotion is ballistic.

However at long t the dominating term is t2 1L -( ) , sowe see that if 1 L < ¥-[ ] , the integrated compound

Ornstein–Uhlenbeck process describes normal diffusionwith randomdiffusion coefficient D 4 1= L -( ) . Such a

situation occurs when the distributionΛ is not highly concentrated around 0+.WhenΛ has a power-law

singularity as in (31), that is 1la- at 0+, 0 1a< < , this condition is not fulfilled: 1 L = ¥-[ ] . But in this

situation the assumptions required for the Tauberian theoremhold andwe can apply it twice: first for relation

(31), to show that r s s s2 1 , 0V
1 1a a~ G G - ~ a- - +

L ( ) ( ) ( ) and the second time for relation (20), to prove that

t t t
2

1 2
, . 36X

2 2d
a

a a
~

G
- -

 ¥a-
L
( )

( )

( )( )
( )

In this regime the system is superdiffusive. The transition from superdiffusion (0 1a< < ) to normal diffusion

(1  a) is unusual among diffusionmodels. Fractional Brownianmotion and fractional Langevin equation

motion [42, 47, 106] undergo transitions from super- to subdiffusion at a critical point of the control parameter.

This is so as in thesemodels the change of the diffusion type is caused by the change of thememory type from

persistent to antipersistent. But theOrnstein–Uhlenbeck processmodels only persistent dependence, so the

mixture of suchmotions also inherits this property. For 1  a (and any other case when 1 L < ¥-[ ] ) this

dependence is weak enough for the process to be normally diffusive, for smaller values ofα it induces

superdiffusion.

In the introductionwe alreadymentioned that it is commonly observed that the distribution of the position

process is double exponential, see equation (6) and references below. This exact distribution is observedwhenD

has an exponential distribution  b( )with PDF

p d e . 37D
db= b-( ) ( )

For the corresponding compoundOrnstein–Uhlenbeck process the distribution ofΛ is given by D4 1L = -( )

and for such a choice the processmodels normal diffusionwith a Laplace PDF.Moreover the covariance

function of the velocity process is
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r t

d

t

d
d

t
K t

1

2
e

2
e e d

8
e

1
d

2
, 38

V

d

t
d

d
d t d

0

4

0

4
2

1

D

t
D

t
d

4
1 4

4

1



ò

ò

b

b

b
b

=

=

=

=

b

b

-

¥
- -

 ¥
- -

-

-

( ) [ ]

( ) ( )

( )

( )

wherewe used one of the integral representations of themodified Bessel function of the second kindK1 (see

[107], formula (10.32.10)). This function has the asymptotic K z z z2 exp1
1 2p~ - -( ) ( ) , z  ¥ [107,

formula (10.40.2)], so the covariance function behaves like

r t t t
8

e , . 39V
t1 4

D4
1

p
b~  ¥b-

- ( ) ( ) ( )
( )

This behaviour is shown infigure 2, wherewe present the covariance function corresponding to the Laplace

distributed X tL( )with randomdiffusion coefficient D 2
d
= ( ).We do not present the Bessel function (38), as it

appears to be indistinguishable from the result of theMonte Carlo simulation. Figure 2 also shows how to

distinguish this behaviour from an exponential decay on a semi-logarithmic scale: the covariance function and

its asymptotic are concave, which ismostly visible for short times t.

Analysing the shape of the covariance function can serve as amethod to distinguish between a superstatistic

introduced by a local effective temperature and the distribution ofmass from superstatistics caused by the

randomness of the viscosityΛ. In the former case the resulting decay is exponential (as in the non-

superstatistical Langevin equation) or even zero for a free Brownian particle, in the latter case it is given by

relation (38).

3.2. GammadistributedΛ

In order to better understand the superstatistical Langevin equationwewill consider a simplemodel with one

particular choice for the distributionΛ. After going through this explicit example wewill come back to the

general case at the end of this section.

A generic choice for theΛ distribution is theGammadistribution , a b( )with the PDF

p e , , 0. 401l
b
a
l a b=

G
>

a
a bl

L
- -( )

( )
( )

This corresponds to a power law at 0+which is truncated by an exponential. As the conditional covariance
function is an exponential, too,many integrals which in general would be hard to calculate, in this present case

turn out to be surprisingly simple.

TheGammadistribution is also a convenient choice becausemany of its special cases are well established in

physics. The Erlang distribution is the special case of expression (40)whenα is a natural number. An Erlang

variable with ka = andβ can be represented as the sumof k independent exponential variables  b( ), in

particular, for k=1 it is the exponential distribution itself. TheChi-square distribution k2c ( ) is also a special

Figure 2.Covariance function fromMonteCarlo simulations for a systemwith Laplace PDF of the position process, together with the

theoretical asymptotics. The sample size is 106, 2 1
d1 L =-( ) ( ). The covariance is shown in normal and semi-logarithmic scale. The

convergence to the predicted asymptotic behaviour is excellent. The full solution (38) is not shown, it fully overlaps with the
simulations results.
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case of expression (40)where k 2, 1 2a b= = . TheMaxwell–Boltzmann distribution corresponds to the

square root of 32c ( ), and the Rayleigh distribution to the square root of 22c ( ).
Wealreadyknowfromrelation (31) that rVL has apower tail t2 1b~ a a- - ,more specifically, direct integrationyields

r t
t

1

2

1

1
. 41V

b
=

+ aL( )
( )

( )

This is solely a function of the ratio t b which suggests that the parameterβ changes the time scale of the

process. Indeed, for anyλ the processV btl ( ) is equivalent toV tbl ( ), because theGaussian process is determined

by its covariance function, which in both cases is the same. Therefore, also the compound processV btL( ) is

equivalent toV tbL( ) and bL has the distribution b, a b( ).

The function (41)would be observed if we calculated the ensemble average ofV V tt t +L L( ) ( ) for some τ. If

instead the covariance functionwould be estimated as a time average over individual trajectories, the Birkhoff

theoremdetermines that the result would be a randomvariable, equal to the conditional covariance

r t V V t r tlim
1

d
1

2
e . 42V V

t

0



ò t t tº + = L =
¥

L L
-L

L L( ) ( ) ( ) ( ∣ ) ( )

It is straightforward to calculate the PDF of this distribution,

p x t t x x x,
2

ln 2 2 , 0 1 2. 43r
t1 1

V a
b=

G
< <a a b- -

L
( )

( )
( ) ∣ ( )∣ ( ) ( )

Themean value of this quantity is given by result (41). This PDF is zero in the point x 1 2= if 1a > but has a

logarithmic singularity at x 1 2= -( ) if 1a < (that is, in the long-memory case). It is zero in x=0 for t b< as

in expression (43) any power law dominates any power of the logarithm. For t b> there is a singularity at

x 0= +which approaches the asymptotics x xln1 1a- -∣ ∣ as t  ¥. This behaviour can be observed infigure 3,

illustrating how the probabilitymassmoves from 1 2 -( ) to 0+ as time increases.

Aswe already know, the compoundOrnstein–Uhlenbeck process is non-Gaussian. Let us follow up on this

property inmore detail. To study the characteristic functionwe need to calculate the average in equation (34),

which is actually themoment generating function for the randomvariable texp -L( ). Some approximations can

bemade. First, let us assume that tL is small in the sense that the probability that this variable is larger than some

small 0 > is negligible. In this regimewe can approximate t texp 1-L » - L( ) and find

t

t
t

, e e e

e e

e
1

1 2
, 0 . 44

t

t

1
4

1
2

1

1 2

1
2 1

4 2
2

1 2

1
4 1 2

2 1
2 1 2

1
4 1 2

2




qf

q q b

»

=

=
-



q q q q

q q q q

q q
a

L
- - - -L

- + L

- + +

( ) [ ]

[ ]

( ( ))
( )

( )

( )

( )

Thefirst factor describes a distribution ofV V tt t= +L L( ) ( ). So in our approximationwe assume that the

values in the process between short time delays are nearly identical and themultiplicative correction

t1 21 2q q b- a-( ( )) is non-Gaussian.

Figure 3.Twenty PDFs of the covariance function t2 exp , ,
d1  a b-L L =- ( ) ( ) for time t changing linearly in the shortmemory (top)

and longmemory (bottom) regimes.

10

New J. Phys. 20 (2018) 023026 JŚlęzak et al



The second type of approximation can bemade for long times twhen texp 0-L »( ) . In this case

t

t
t

, e e 1
1

2
e

e e 1 e

e e 1
2 1

, . 45

t

t

1 2

1

2 1 2

1 2

1
4 1

2 1
4 2

2

1
4 1

2 1
4 2

2

1
4 1

2 1
4 2

2





qf q q

q q

q q
b

» -

= -

= -
-

 ¥

q q

q q

q q
a

L
- - -L

- - -L

- -

⎡
⎣⎢

⎤
⎦⎥

⎛

⎝
⎜

⎞

⎠
⎟

( )

( )

[ ]

( )
( )

Nowwe treat the valuesV tL( ) andV tt +L( ) as nearly independent, the small correction is once again non-

Gaussian. Apart from the approximations, the exact formula for fL can be provided using the series

k k kt
e

1

2
e

1

2

1

1
, 46

k

k

k
k k t

k

k

k
ke

0

1 2

0

1 2
t1

2 1 2 å åq q q q
b

=
-

=
-

+
q q

a
-

=

¥
- L

=

¥
-L

[ ]
( )

!
( ) [ ]

( )

!
( )

( )
( )

which is absolutely convergent.

Note that for the specific choice 1q q= , 2q q= - the function fL is a Fourier transformof the probability

density of the increment V t V V t,t t tD - +L L L( ) ≔ ( ) ( ), which therefore equals

p
k kt

e
2

1

1
. 47V t

k

k

k,
0

22

2 åq
q

b
=

+t aD
-

=

¥
q

L
 ( )

! ( )
( )( )

Clearly, any increment ofVΛ is non-Gaussian. This is demonstrated infigure 4, wherewe show

pln V ,1 q- tD L
( ( ))( ) on the y-axis. In this choice of scaleGaussian distributions are represented by straight lines.

The concave shape of the empirical estimator calculated usingMonte Carlo simulation shows that the process

VΛ is indeed non-Gaussian. In the same plot we present the two types of approximations of p V ,1tD L


( ): for t 0 +

wehave equation (44), which reflects well the tails q  ¥, and for t  ¥we see that with several terms of

the series (47) a goodfit for 0q » is obtained.

Itmay appear counter-intuitive that the valuesV tL( ), which are all exactly Gaussian, are sums of non-

Gaussian variables. If the increments were independent that would be impossible, here their non-ergodic

dependence structure allows for this unusual property to emerge.However, they are still conditionally Gaussian

with variance

V t, 1 e . 48t2 tD L = -L
-L[ ( ) ∣ ] ( ) ( )

The non-Gaussianity is prominent for short times t. As t increases, the distribution of V t,tD L( ) converges to a

Gaussianwith unit variance.

The non-Gaussianmemory structure of the velocityVΛ affects also the distribution of the positionXΛ,

which, using result (35), for large t becomes

Figure 4.Empirical characteristic function (solid black line) calculated fromMonteCarlo simulated for V , 1 , 1 2, 1 ;
d
tD L =L( ) ( )

sample size was 106. The red dashed line represents approximation (44), the blue dotted lines are the approximations based on
equation (47) for K 0, 1, ,= ¼ where 20 terms in the Taylor series were taken along.
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e e d
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For 1 2a = and long t the position processXΛ is approximately Cauchy distributed. For short t it is nearly

Gaussian distributedwith variance t 42 . In general the above formula is a PDF of the Student’s T-distribution

type, although unusual in the sense thatmost often it arises in statistics where it is parametrised only by positive

integer values ofα. The parameterα in the above expression determines the decay of the tails of the PDF,which,

as we can see, scale like x 2 1a- -∣ ∣ : the parameterβ rescales time, but in an inversemanner compared to its action

onVΛ.

Itmay therefore seem that for 1 2a the processXΛmaynot have afinite secondmoment, however, this

is not true. In section 2wemade the general remark that theMSDof the superstatistical GLE is necessarily finite,
see the comments below equation (19). In our current case tX

2d
l
( ) is given in expression (35), and thus

t t tlim 4, lim 0. 50X X
0

2 2 2d d= =
l l ¥l l+

( ) ( ) ( )/

This is indeed a bounded function of control parameterλ, and theMSDofXΛmust befinite for any distribution

ofΛ.Moments of higher even order can be expressed as

X t k t2 1 , 51n

k

n

X
n2

2

2  d= - ´ LL
=

L
[ ( ) ] ( ) [( ( ∣ )) ] ( )

so they are all alsofinite. Integrating twice relation (41) forGammadistributedΛ it can be shown that

t t
t t

2

1 2 1

1 2
. 52X X

2 2
2 2

d d
b b a b

a a
= L =

+ + - -
- -

a-

L L
( ) [ ( ∣ )]

( ) ( )

( )( )
( )

This describes superdiffusion for 0 1a< < and normal diffusion for1  a in agreement with themore

general theory discussed below equation (35).

Similar, a somewhat longer calculation yields

t

t t

t t t t
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which determines the asymptotics of the ergodicity breaking parameter (18)

tEB

2 10 2 , 1

10 2 2 , 1 2

, 2

54

t

t

1 2

4 3
4

1

4 3 2
4

2

1

2

a a

a a

a

~

- + <

- - < <

<

a a
a a

a
b

a

a
a a a

a
b

a

a

- -
- -

-

-
- - -

-
-

-

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )( )

( )

( ) ( )

( )( )

( )( )

( )

( )( )( )

at t  ¥. This result demonstrates that, indeed, individual realisations of this process never become fully

reproducible, as observed inmany cases in experiment and simulations [11, 37, 84]. Additionally, in thismodel it

is easy to check that t3 EB 1´ +( ( ) ) is the kurtosis of X tL( ), that is X t X t4 2 2 L L[ ( ) ] ( [ ( ) ]) . This is one of the

measures of the thickness of the tails of a distributionwhich for any one-dimensional Gaussian distribution

equals 3 in one dimension.Here, the distribution is clearly non-Gaussian, but it is hard to judge the tail

behaviour using the kurtosis. This is due to the fact that pXL
converges to a power-law, yet according to result

(51) the tails of pXL
must decay faster than any power, symbolically p x t x,X = -¥

L
( ) ( ) for any t. Therefore the

PDF’s tails are always truncated, but is not noticeable observingmoments, which are affected by the finite range

inwhich the PDF becomes close to the power law.

The asymptotical properties of X tL( ) are illustrated infigure 5, wherewe show the PDFs of the rescaled

position position X t tL( ) simulatedwith 1 2, 1a b= = and calculated using a kernel density estimator. In

agreementwith result (49), the limiting distribution is of Cauchy type. At the same time for allfinite t the tails of

the PDF remain truncated: as time increases this truncation ismovedmore away into x = ¥, and as a result

theMSD increases as t 2 a- .

This is an illustration of amore general rule: equation (49) is a Laplace transformof L , so anyΛwith

power law p , 01l l l~ a
L

- +( ) will result in a power law x 2 1a- - as limiting distribution ofXΛ. But at the
same time the superstatistical Langevin equation preserves the finiteness ofmoments, which stems from the

Hamiltonian derivation of theGLE. Therefore thismodel reconciles power law tails of the observed distribution

with afinite secondmoment by naturally introducing truncationmoving to¥ as t  ¥.
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4.More complexmemory types

Wehere analyse the behaviour of the superstatistical GLE (7), which is non-Markovian andmay be used to

modelmore complex types ofmemory structure.We study the two important cases of exponential and power

law shapes for the kernel.

4.1. Exponential kernel GLE

The covariance function for an exponential kernel GLE has the conditional form

r t A B B A B, e , , 0. 55At2 2
A B,

= >x
-( ∣ ) ( )

This particular parametrisation is chosen for convenience, it will simplify the formulas later. The stochastic

force A B,x in thismodel is the compoundOrnstein–Uhlenbeck process considered in section 3, additionally
rescaled by random coefficientB2. Itmay be represented in time space or Fourier space as

t B
B

A
e d

i 2
e d . 56A B

t
A t t

,
2 2

2
iò òx x t t x w

w
w= =

+
t w

-¥

- -

-¥

¥ ( ) ( ) ( ) ( )( )

Wefirst solve the corresponding deterministicmodel. The Laplace transformof theGreen’s function can be

easily obtained in the form

G s A B
s

s A

s A A B
,

1 2
. 57A B

B

s A

,

2

2 2 22
=

+
=

+
+ - -

+

 ( ∣ )
( ) ( )

( )

Its Laplace inverse is a conditional covariance function, which is the sumof two exponential functions,

r t A B
A

A B

A

A B

,
1

2
1 e

1

2
1 e . 58

V
A A B t

A A B t

2 2

2 2

A B,

2 2

2 2

= -
-

+ +
-

- + -

- - -

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( ∣ )

( )

( )

( )

In the caseA=B a division by 0 appears, so the above formula should be understood as a limit A B . In any

case we can calculate theMSDusing relation (19) and obtain

Figure 5.Kernel density of variables X t tL( ) estimated for t 5, 10, , 100= ¼ (solid lines) and 1 2, 1
d
L = ( ) versus theCauchy

PDF (dashed line). Sample sizewas 106. Both convergence toCauchy distribution (49) and the x -¥( ) truncation of the tails (51) can
be observed.

13

New J. Phys. 20 (2018) 023026 JŚlęzak et al



t A B
A

B
t

A B

A B A

A A B

A B A

A A B

A

B
B

, 4

1
e e e

8
2 . 59

X

At A B t A B t

2

2

2 2

2 2

2 2 2

2 2

2 2 2

2

4
2

A B,

2 2 2 2

d =

+
-

- -

+ -
+

- +

- -

- +

- - - -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ∣ )

( ) ( )

( )

Aswe can see the asymptotical behaviour of theMSD at t 0= + and t = ¥ is very similar to that of the

compoundOrnstein–Uhlenbeck process. For A B2 < ¥[ ] this GLEmodels normal diffusionwith a random

diffusion coefficient.When this condition is not fulfilled itmaymodel superdiffusion determined by the power-

law tails of the covariance function, compare relation (20) and the discussion below.

The behaviour of this system greatly depends onwhether A B A B,< = or A B> . All ensemble averages

can be separated between these three classes

A B A B A B A B A B A BP P P , 60   = < < + = = + > >· · · ·[ ] [ ∣ ] ( ) [ ∣ ] ( ) [ ∣ ] ( ) ( )

so even if all three regimes can be present in a physical system,we canmodel them separately and average the

results at the end.We start the analysis with the simplest case.

4.1.1. Critical regimeA=B

Taking the limit A B in expression (58) or calculating the inverse Laplace transform from equation (57)with

A=Bwe determine the formof the conditional covariance within this critical regime,

r t A At1 e . 61V
At

A
= + -( ∣ ) ( ) ( )

The behaviour of the resulting solutionVA is very similar to that of the compoundOrnstein–Uhlenbeck process.

The differences aremostly technical. For example, if A A A1 2= + for some independentA1 andA2, then

r t r t r t tA tAe e . 62V V V
A t A t

1 2A A A A1 2 1 2
1 2 = - - -

+ ( ) ( ) ( ) [ ] [ ] ( )

Therefore, for instance if A a0> we canwrite A A a A, 00= ¢ + ¢ > and the covariance function becomes

truncated by a t a texp0 0-( ).

The formula for rVA
consists of two terms: the function At Atexp -( ) has a thicker tail, but the asymptotic

behaviour of rVA
is determined by the distribution of small values A 0» , so it is not clear which term ismost

important in that regard. If we assume p a aA
1~ a-( ) then

r t t t t t1 1 , 63V
1

A
a a a a~ G + G + = + Ga a a- - - -( ) ( ) ( ) ( ) ( ) ( )

so actually both terms have comparable influence over the resulting tails of the covariance.

4.1.2. Exponential decay regime A B>
In this case the covariance function is a sumof two decaying exponentials. Because of this A a0> results in an

exponential truncation by a texp 0-( ) of the associated covariance, but this time there is no simple rule to

determine the behaviour of this function for A A A1 2= + . Instead let us analyse expression (58) inmore detail.

Thefirst exponential has a negative amplitude, the second one a positive amplitude. In additional the second

exponential always has a heavier tail, as its exponent includes the difference of positive terms, A A B2 2- - ,

whereas the other exponent includes a sum. Thuswe expect that the exponentwith A A B2 2+ - cannot lead

to a slower asymptotics than the one containing A A B2 2- - .

Given this reasoning let us change the variables in the form

A A A B
B

A A B
A

B A

A
,

2
. 642 2

2

2 2

2 2

¢ = - - =
+ -

=
+ ¢
¢

( )

The newparameter A¢ attains the value A B¢ = forA=B and decaysmonotonically to 0 as A  ¥. Note that

for small values of A¢, A B A22¢ » ( ), so the tail behaviour ofA determines the distribution of A¢ at 0 ;+ in

particular, a power law shape of the former is equivalent to a power law shape of the latter. Using the parameters

A¢ andB the covariance function can be expressed as

r t A B
B

B A

A

B A
, e e . 65V

A t t
2

2 2

2

2 2A B

B
A

,

2

¢ =
- ¢

-
¢
- ¢

- ¢ -
¢ ¢( ∣ ) ( )

As A B¢ < the variables A¢ andB cannot be independent unlessB is deterministic. In that latter caseB=b and
for A¢ concentrated around 0+wehave that
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r t
b

b A
p a

b

b a
ae e d , 66V

A t
b

A
at

2

2 2 0

2

2 2A b,
 ò~

- ¢
=

-
- ¢

¢
-

¢

⎡

⎣
⎢

⎤

⎦
⎥( ) ( ) ( )

so the asymptotical behaviourof thismodel is again in analogy to that of the compoundOrnstein–Uhlenbeckprocess.

Inparticular, p a aA
1~ a

¢
-( ) , when a 0 + (equivalently p a a2A

1~ a- -( ) for a  ¥) implies the emergence of a
power law, r t tVA b,

a~ G a-
¢ ( ) ( ) . This asymptotic doesnotdependon the exact choice ofb, whichmeans that the scale

of the stochastic force doesnot affect the tails of thememory and the influenceof bonlymatters at short times.

When both A¢ andB are random their dependencemay potentially be quite complex and influence the tails

of the covariance in unpredictable ways. It can only be studied under some simplifying assumptions.Wewant to

require some sort of independence between A¢ andB for small values of A¢, which determine the asymptotics of

Atexp -( ). So, let us denote B A B¢ ¢≔ , which is a randomvariable thatmust be less than 1, butmay be
supposed to be independent from A¢. Using variables A¢ and B¢ the covariance function can be transformed into

r t A B
B

,
1

1
e e . 67V

A t B

B

t

2 1A B

A

B
,

2

2

2¢ ¢ =
- ¢

- ¢- ¢ ¢
- ¢

-
¢ ¢

¢

( ∣ ) ( )

In this form the influence of A¢ and B¢ ismostly factorised, the only remainder is A B 2¢ ¢ in the second exponent.
This leads to some immediate consequences. If the PDF of A¢ is supported on the interval a a,1 2[ ], and

m p a MA ¢ ( ) , then straightforward integration yields

B

m

t
r t

B

M

t

1

1
e

1

1
e . 68a t

V
a t

2 2A B
1

,
1   

- ¢ - ¢
- -

¢ ¢

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

Power law tails appear when p a a a, 0A
1~ a

¢
- +( ) . The conditional asymptotics then reads

r t B
B

t
B

B

t

B

1

1 1
, 69V 2

2

2 2A B,
a a¢ ~

- ¢
G -

¢
- ¢

G
¢

a
a

-
-

¢ ¢
⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ ) ( ) ( ) ( )

so for the unconditional covariance we have

r t
B

B
t

1

1
. 70V

2 2

2A B,
a~ G

- ¢
- ¢

a
a

+
-

¢ ¢

⎡

⎣
⎢

⎤

⎦
⎥( ) ( ) ( )

Both types of asymptotics are similar to the behaviour of the compoundOrnstein–Uhlenbeck process, only with

different scaling. For the same reason r tVA B,¢ ¢ ( ) is truncated under the same conditions as before if it is a sumof

independent A1¢ and A2¢,

r t r t r t tconst , , 71V V VA B A B A B, 1, 2,
~ ´  ¥¢ ¢ ¢ ¢ ¢ ¢( ) ( ) ( ) ( )

where the constant depends on the distribution of A¢ and B¢.

4.1.3. Oscillatory decay regime A B<
When the square root A B2 2- is imaginary we can express the covariance function as

r t A B B A t
A

B A
B A t, cos sin e . 72V

At2 2

2 2

2 2
A B,

= - +
-

- -
⎛

⎝
⎜

⎞

⎠
⎟( ∣ ) ( ) ( ) ( )

This represents a trigonometric oscillation truncated by the factor Atexp -( ).When calculating the

unconditional covariance, this function acts as an integral kernel on the distribution ofA andB. The exponential

factor acts similarly to the Laplace transform, but oscillations introduce Fourier-like behaviour of this

transformation. It can be observed in the solutions of the correspondingGLE,whichwewill show below.

Tauberian theorems can be applied for the bound of the covariance, given by the inequality

r t A B,
1

1

e , 73V
A

B

At

2
A B,


-

-

( )
∣ ( ∣ )∣ ( )

whichwe prove in proposition 3 in the appendix, together with other asymptotic properties. As a general rule it

can be said that solutions of theGLE in this regime have a covariancewhich decays no slower than the covariance

of the compoundOrnstein–Uhlenbeck process with the same distribution. For example, for independentA and

B, when the PDF ofA is bounded and supported on some interval a a,1 2[ ],
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and for a power law at a1
+, that is A a A1= + ¢with p a aA

1~ a
¢

+( ) at a 0 +, the covariance is bounded by

r t t t
1

1

e , . 75V
a

B

a t
A B,

1
2

2

1  a
-

G  ¥a- -

⎡

⎣

⎢
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⎢

⎤

⎦

⎥
⎥
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∣ ( )∣ ( ) ( )

The scaling constants depend on the distance between the distributions ofA andB: the closer they are the larger
is themultiplicative factor. If A B 1 » - it is roughly 1 2- .

The question remains if this constraint is reached. The answer is yes, the oscillations of r t A B,VA B,
( ∣ ) are

asymptotically regular, that is, their frequency becomes constant (exactly equal toB) at t  ¥. Because of this

they are not influenced by averaging overA, so ifB is deterministicB=b andA has power law

p a a a, 0A
1~ a- +( ) , we observe that

r t bt t tcos , . 76VA b,
a~ G  ¥a-( ) ( ) ( ) ( )

This behaviour can be seen infigure 6which demonstrates that the convergence is relatively fast. During the

Monte Carlo simulation the parameterBwas fixed as B p= andAwas taken from gammadistribution

1 2, 1( ). For this distribution there exists a 98.8% chance that A Bp< = and the system is in the oscillatory

regime, so it is indeed dominating the result, as demonstrated infigure 6.

4.2. Power lawkernel GLE

Our last example is the superstatistical GLE inwhich the force has a power law covariance function, namely

r t H Z
Z

H
t H,

2 1
, 0 1. 77H2 2

H Z,
=
G -

< <x
-( ∣ )

( )
( )

The force process H Z,x is a fractional Brownian noise with random indexH, rescaled by the random coefficient
Z. The factor H1 2 1G -( ) is added for convenience and simplifies the formulas, however, its presence does not

change the outcome of our analysis.

TheGreen’s function of this GLE is given by

G s H Z
s Zs

s

Z s
,

1
. 78H Z H

H

H, 1 2

2 1

2
=

+
=

+
~

-

-
( ∣ ) ( )

In the last formwe recognise the Laplace transformof a function from theMittag-Leffler class [108]. The

asymptotic of the conditional covariance can be derived fromTauberian theorems or analysing theMittag-

Leffler function directly [108, 109]

r t H Z E Zt
Z H

t t,
1

1 2
, . 79V H

H H
2

2 2
H Z,

= - ~
G -

 ¥-( ∣ ) ( )
( )

( )

From this formula we see that the distribution ofZ should not have an influence on the covariance asymptotics.

Further onwewill assume thatZ is independent fromH and Z 1 < ¥-[ ] . In the simple case when

h H h0 1 2< < < andH has a bounded PDF, that is m p MH  , one can show that following bound holds

Figure 6.Covariance function of theGLE (solid line) calculated usingMonte Carlo simulation, the sample size was 106. Parameters

are B p= , A 1 2, 1= ( ), the theoretical bounds are t 1 2 - (dashed lines) as given in (76).
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Therefore r t tlnV
h2 1

H Z,
1 - -( ) . Theproof is given inproposition 4 (i) in the appendix.Asusual,whenHhasuniform

distributionon h h,1 2[ ] the asymptotics is stronger, r ZV
1

H Z,
~ -[ ] h h h2 1 2 1 2 1

1G - - -( ( )( )) t tlnh2 11- -( ) .
Amore interesting situation occurs whenH is distributed according to a power law.Noting that

t eH H t2 2 ln=- - ( ) onemay suspect that the resulting covariancewould exhibit power-log tails. This intuition is

indeed true.Wewill analyse the case thewhen the index is H H h h p h h, 0, H0 0
1= ¢ + > ~ a

¢
-( ) . By imposing

h 00 > we prohibit a situationwhen values ofH are arbitrarily close to 0+ because theMittag-Leffler function

diverges in this limit, otherwise it is a continuous function ofH. This problem corresponds to the fact that for

smallH the trajectories of H Z,x become very irregular and as H 0 + the solution ofGLE is not well-defined.

We show in the appendix that under these assumptions the asymptotics indeed has power-log factor

r t
Z

h
t t

2 1 2
ln . 81V

h
1

0

2
H Z,

0
 a

~
G

G -a
a

-
- -( )

[ ] ( )

( )
( ) ( )

Becausewe can take h0 arbitrarily close to 0+ in thismodel we can obtain tails which are very close to pure

power-log shape.

Tofinish this section let us also comment on the properties of the position process. Equation (19) describes

theMSDas a second derivative of theGreen’s function, so using its simple form (20) in Laplace space, we find

s H Z
s

Z s
, . 82X

H

H

2
2 3

2H Z,
d =

+

~ -
( ∣ ) ( )

The inverse transform can be found using tables of two-parameterMittag-Leffler function, which also

determines its asymptotics [108, 109]

t H Z t E Zt
Z H

t t,
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3 2
, . 83X H

H H2 2
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2 2 2
H Z,
d = - ~
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( )
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The presence of the factor Z1 means that this superstatistical GLE canmodel anomalous diffusionwith non-

Gaussian PDF’s. This dependence onZ is the same as for the parameterΛ of the compoundOrnstein–Uhlenbeck

process, so both exponential and power law tails can be present in thismodel in an analogousway.
As for the asymptotic of tX

2
H Z,
d ( ), the identical argument as for the covariance can be used, so in thismodel

theMSDof the form

t
Z

h
t t

2 3 2
ln 84X

h2
1

0

2 2
H Z,

0


d
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~
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G -a
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-
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( )
( ) ( )

is present for h0 10< < and 0 1a< . A numerical evaluation of this behaviour is shown infigure 7where

we have taken the subdiffusive case H H3 10= + ¢, with p h h5H
1a= a a

¢
- -( ) and 3 4a = , H0 1 5< ¢ < .

The factor t2 in expression (84) does not depend on the particular formof the dynamics, sowe divided all shown

Figure 7.MSD fromMonteCarlo simulations (solid blue lines) for power lawGLEwith fixedZ=1 and H0.3 0.5< < which has
the power law form p h h0.3 constH

1+ ~ ´ a-( ) with 3 4a = . The sample size was 103. The result is shown on different scales,

together with the asymptotic (81) (dashed lines) and the same asymptotics without the factor tln 3 4-( ) (dotted lines).
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functions by this factor to highlight the influence ofH. Aswe can see the convergence to the asymptotic

behaviour ismuch slower than in the previous examples, which stems from the fact that theMittag-Leffler

function converges slowly to the power law

E Zt
t

Z H
t

3 2
. 85H

H
H

H
2 ,3

2
2

4- =
G -

+
-

-( )
( )

( ) ( )

The inclusion of the log power law is significant, butmay be difficult to determine on the log log scale. It is

demonstrated in the two lower panels infigure 7. The asymptoticMSD is concave on the log log scale, but the

effect is not very prominent, and for theMSD estimated fromMonteCarlo simulations can be detected only on

very long time scales. The difference from a power law ismore visible if the lines are shownwithout the factor
t h2 0- (bottompanel), but h0may not be easy to estimate for real systems. This comparison shows that different

possible forms of decay can be easilymistaken, so one should exert cautionwhen analysing data suspected to

stem from such systems.

5. Conclusions

Wehere studied the properties of the solutions of the superstatistical generalised Langevin equation. This is

based on theGaussianGLE, but includes randomparameters determining the stochastic force. This new type of

process has a number of properties that are unusual among the various existingmodels of diffusion. Firstly, the

velocity is a stationary but non-ergodic process. The behaviour of its time-averages can be studied, for instance,

using the time averaged covariance function (42), see alsofigure 3. The resulting process ismoreover not

Gaussian. At every point of time it has aGaussian distribution but exhibits a non-Gaussian structure of the

memory, see equations (44) and (46). One consequence of this is that it has non-Gaussian increments (47), also

shown infigure 4.

Secondly, the position process at small times has a PDFwhich is approximately Gaussian, but as time

increases it converges to a non-Gaussian PDF, as demonstrated infigure 5. This limit distribution can exhibit

commonly observed exponential tails but also power-law tails (49). Evenwhen the limiting distribution does not

have afinite secondmoment, at any given finite time t the position process does have afiniteMSD. The observed

PDFs are always truncated. For shortmemoryGLE, theMSDof the position process is normal or superdiffusive,

see equation (35) and the discussion below. For power lawmemorymodels, anomalous diffusionwith

additional log-power law of the form (84)may be observed.

Various kinds of theGLE, distributions of shape parameters and the resulting asymptotic properties of the

covariance function rV based on themodel developed herein, are shown in table 1. The notation is chosen as

follows: f t g t~( ) ( )when f t g t 1( ) ( ) , f t g t( ) ( )when f t h t g t ~( ) ( ) ( ), and f t g t( ) ( )when
c g t f t c g t1 2 ( ) ( ) ( ) for some constants c c0 1 2< < . Themiddle and left columns can be slightly generalised

if the distribution of shape parameters contains a slowly varying factor, see proposition 2.

We see ourwork as a part of the development of the superstatical approach to themodelling of diffusive

processes in complexmedia. The assumption that the stochastic force driving theGLE can change its properties

fromone localised trajectory to another appears quite natural.Moreover, the superstatistical GLE can

simultaneously explain the presence of non-Gaussian distributions and normal or anomalous types of diffusion.

The properties of the solutions listed above are specific enough to clearly distinguish thismodel frompossible

alternatives, in particular, from the presence of non-Gaussian PDFs caused by random rescaling of the process,

which does not change the type ofmemory that is observed in the system.We showhow in ourmodel the

ensembles of shortmemory trajectories can, concertedly, give rise to a longmemory. This dependence is highly

Table 1.Different asymptotics of the covariance function rV for different GLE:memoryless, exponential kernel in decay regime (under
convenient parametrisation), exponential kernel in oscillating exponential decay regime, and power law.Different distributions of the shape
parameters A A H, , ,L ¢ are considered.

Shape parameter distribution

rξ Bounded on interval Power law at 0+ Power law+ c, c 1<

tdL ( ) ©exponent
t

1´ (30) ∼pow. law (31) ∼pow. law× exponent (27)

e t
A

A
1

2¢- +
¢

©exponent
t

1´ (68) ∼pow. law (70) ∼pow. law× exponent (71)

e At2- exponent
t

1´ (74) ∼osc. pow. law (76) pow. law× exponent (75)

t H2 2-
©pow. law

t

1

ln
´

( )
(80) ill-defined ∼pow. law×pow.-log law (81)
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non-Gaussian despite theGaussian PDFof the velocity process. The presence of such peculiar phenomena in a

physicalmodel is an interesting theoretical finding in its own right. Itsmain relevance, however, lies in the

description of stochastic data, highlighting the importance of comprehensive Gaussianity checks in data

analysis.

We also note that the classical Langevin equation, considered in section 3, exhibitsmost of the properties

specific for superstatistical GLE—even the presence of power-log tails. Thismodel has a very simple form and at

the same time allows for the derivation of not only asymptotic results, but alsomany exact ones, given the

distribution of the damping coefficient or the viscosity. Itsmost significant limitation is that it cannotmodel

subdiffusion. As such it should be considered a simple yet robustmodel for data with linear or superdiffusive

MSD, power law or log-power law covariance function and non-Gaussian PDFs.

Finally, let us add a caveat. Of course, any locally diffusing particle will eventually reach the border of its

domain characterised by a specific set of diffusion parameters. For time rangesmuch longer than this

dissociation time, first a coarse-graining of the diffusion parameters will arise, and eventually the diffusionwill

be governed by aGaussian diffusion process with a single, effective diffusion coefficient, similar to the

observations in the diffusing diffusivitymodel [61]. Formany experimental and simulations analyses, however,

the accessible time ranges are limited, and thus the superstatistical treatment remains fully justified.We are

confident that this work represents a relevant contribution to the active current discussion of diffusion processes

with randomparameters, and to superstatistics in particular.
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Appendix. Proofs

Wehere provide several propositions with proofs, needed in the development of the theory in themain body of

the paper.

Proposition 1.The covariance function of any stationary solutionV of theGLE (5) equals

r t G t t, 0, 86V =( ) ( ) ( )

whereG is the corresponding Green’s function of theGLE, and theMSD of the position process X t V td
t

0ò t=( ) ( )

is

t G2 d d . 87X

t
2

0
1

0
2 2

1

ò òd t t t=
t

( ) ( ) ( )

Proof.Wewill assume that theGreen’s functionG and kernelK are functions on  for which G t 0=( ) and

K t 0=( ) for t 0< (such functions are called ‘casual’). Using this notation all integrals are defined on , which
simplifies calculations.

The solution of theGLE is stationary and has zeromean, sowe can take t 0> and calculate the covariance

function as

r t V V t G G t

r G G t

0 d d

d d . 88

1 1 1 2 2 2

1 2 2 1 1 2

 
 

 

ò ò

ò ò

t x t t t x t t

t t t t t t

= = - -

= - - -

x

x

⎡
⎣⎢

⎤
⎦⎥

( ) [ ( ) ( )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

The covariance function rξ is not casual, but it is symmetric, so it can be represented as r K Kt t t= + -x ( ) ( ) ( ).
This formula fails only at 0t = , but it does not affect result of integration. The integral separates into two parts,

thefirst being
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I K G G t

G K t G

G G t

d d

d d

d , 89

1 1 2 2 1 1 2

1 1 2 1 2 2

1 1 1

 

 



ò ò
ò ò
ò

t t t t t t

t t t t t t

t t t

= - - -

= - ¢ - - ¢ ¢

= - - -

( ) ( ) ( )

( ) ( ) ( )

( ) ˙ ( ) ( )

wherewe used relation (10) in the interior of support ofG. Similarly, for the second integral,

I K G G t

G t K G

G t G

d d

d d

d . 90

2 1 2 1 2 1 2

2 2 1 2 1 1

2 2 2

 

 



ò ò
ò ò
ò

t t t t t t

t t t t t t

t t t

= - - -

= - ¢ - - ¢ ¢

= - - -

( ) ( ) ( )

( ) ( ) ( )

( ) ˙ ( ) ( )

In I1 and I2we can substitute 1t t- = and 2t t- = . In their sumwe recognise the formula for integration by

parts, which yields

r t G t G k TG t G G t0 . 91V B0t t= - + = =t
t
=
=¥ +

+( ) ( ) ( )∣ ( ) ( ) ( ) ( )

Now, for the position process wefind

t r G Gd d d d . 92X

t t

V

t t
2

0
1

0
2 2 1

0
1

0
2 2 1 1 2ò ò ò òd t t t t t t t t t t= - = - + -( ) ( ) ( ( ) ( )) ( )

Because of the symmetry between 1t and 2t the integral is twice the termwith G 1 2t t-( ), after substitution
01 2 2t t t- = ¢ > we get

t G G2 d d 2 d d . 93X

t t t
2

0
1

0
2 1 2

0
1

0
2 2

1

ò ò ò òd t t t t t t t= - = ¢ ¢
t

( ) ( ) ( ) ( )

+

Proposition 2. If L is a slowly varying function at 0+, that is

L x

L
xlim 1 for any 0, 94

0

l
l

= >
l +

( )

( )
( )

then

(i) A distribution of the form

p L , 0 951l l l l~ a
L

- +( ) ( ) ( )

implies that themean value of the exponential satisfies

t L t te , . 96t 1 a~ G  ¥a-L - -[ ] ( ) ( ) ( )

(ii) A distribution of H of the form H h H1= + ¢with h 01 >

p h h L h h, 0 97H
1~ a

¢
- +( ) ( ) ( )

implies that themean value of a power law satisfies

t t L t t t
2

ln ln , . 98H h2 2 11 a
~
G

 ¥
a

a- - - -[ ]
( )

( ( ) ) ( ) ( )

Proof.Wewill only show (ii), as the proof of (i) is similar and simpler.Wewrite the integral for t h H2 1 - + ¢[ ]( ) ,

reformulate it as a Laplace transformusing t eH H t2 2 ln=- ¢ - ¢ ( ), change variables and calculate the limit

t

t L t t t L t t
p h t h

ln ln

1

ln ln
d 99

h H

h h

h

H
h h

2

2 1 2 1 0

1
2

1

1 1

1
1


ò=

a a

- + ¢

- - - - - -

-
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( )
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p h

L t t
h
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L t t
h

h h

ln ln
e d

ln ln
e d

e d
2

. 100

h
H h t

t h H
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t h

t
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0

1

1
2 ln

0

ln 1
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1 1
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1 2

1 1
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ò
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a a

a
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-
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-
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+
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Proposition 3. Let rVA B,
be a covariance function corresponding to the solution of a GLEwith an exponential kernel in

the oscillatory regime,

r t A B B A t
A

B A
B A t, cos sin e . 101V

At2 2

2 2

2 2
A B,

= - +
-

- -
⎛

⎝
⎜

⎞

⎠
⎟( ∣ ) ( ) ( ) ( )

Then the following asymptotical properties hold:

(i) For A with bounded PDF p MA  supported on the interval a a,1 2[ ], a B2 < and independent of B, there exists
the asymptotic bound

r t
M

t
t

1

1

e , . 102V
a

B

a t
A B,

2
2

2

1 
-

 ¥-

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∣ ( )∣ ( )

(ii) If additionally A exhibits a power law behaviour at a1
+, that is, A a A p a a, A1

1= + ¢ ~ a
¢

+( ) for a 0 +, the
asymptotic bound can be refined to

r t M t
1

1

e . 103V
a

B

a t
A B,

1
2

2

1  a
-

G a- -

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∣ ( )∣ ( ) ( )

(iii) For p a aA
1~ a+( ) at a 0 + and deterministic B=b the asymptotic limit of covariance function is

r t bt t tcos , , 104VA b,
a~ G  ¥a-( ) ( ) ( ) ( )

which holds for all sequences of tk  ¥which do not target zeros of btcos( ), that is bt l 2k p p- + >∣ ∣ for

all k l, Î and some 0 > .

Proof.We start from the simple inequality

r t A B
A

B
B A t

A

B
B A t

B A t
A

B

, 1 cos sin

1

1

e

cos arcsin
1

1

e

1

1

e . 105

V
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At
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2 2 2 2

2

2 2

2

2

A B,



= - - + -

´
-

= - -
-

-

-

-

-
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⎛
⎝

⎞
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⎛

⎝
⎜

⎛
⎝

⎞
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⎞

⎠
⎟
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( )

( )

∣ ( ∣ )∣ ( ) ( )

( )

This allows us to prove (i), namely:

r t B M a
M

a
M

t

1

1

e d

1

e d

1

1
e . 106V

a

a

a

B

at

a

B
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1
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2
2
2

2

1 2
2

2

1 ò ò
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¥

- -∣ ( ∣ )∣ ( )

Averaging overB yields the result. ForBwith a distribution concentrated at a2
+ itmay happen that

1

1

107
a

B

2
2

2


-

= ¥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )

and in this case point (i) is a trivial statement. However, it is sufficient that B a , 02  > + > for this average to

befinite and 2  .
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Proof of point (ii) is similar,

r t B M
p a

a
M

t

1

e d

1

e . 108V
A

a a

B

a a t

a

B

a t

0
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2
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a
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~

G

-

a
¥

¢
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- + - -∣ ( ∣ )∣
( ) ( )

( )
( )

( )

Proving (iii) requires amore delicate reasoning.Wewrite r tVA b,
( ) as an integral and change variables at a ,

so that

r t p a b a t
a

b a
b a t a

t
p

a

t
b t a

a

b t a
b t a a

cos sin e d

1
cos sin e d . 109

V A
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⎠
⎟

( ) ( ) ( ) ( )

( ) ( ) ( )

After change of variables the Fourier oscillations depend on the variable b t a2 2 2- . In the limit t  ¥ they

converge to oscillations with frequency b,

b t a bt
a

b t a bt
0. 110

t
2 2 2

2

2 2 2
- - =

- +

¥
∣ ∣ ⟶ ( )

It is crucial that this frequency does not depend on a. The cosine function also converges to a cosine with

frequency b,

b t a

bt

b t a bt bt

bt

b t a bt bt b t a bt bt

bt

bt bt

cos

cos

cos

cos

cos cos sin sin

cos

cos 0 1 sin 0 tan 1, tan
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. 111
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⟶ ( ) ( ) ( ) ∣ ( )∣ ( )

Substituting this result into the integral for rVA b,
we obtain the asymptotic
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t
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Proposition 4. LetH andZ be independent, Z 1 < ¥-[ ] and 1b . Then the following asymptotic properties of
E ZtH

H
2 ,

2 -b[ ( )]hold

(i) If H is supported on h h,1 2[ ]with h h0 11 2 < < and its PDF is bounded, m p h MH ( ) , then

m Z

h
t t E Zt

M Z

h
t t

2 2
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2 2
ln . 113h

H
H h
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1

2 1
2 ,

2
1

1
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b

-
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( ) [ ( )]

[ ]

( )
( ) ( )

(ii) If additionally H exhibits a power law behaviour at h1
+, that is, H h H1= + ¢, p h hH

1~ a
¢

+( ) with h 0 +, a
much stronger asymptotic property holds,

E Zt
Z

h
t t t

2 2
ln , . 114H

H h
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2
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Proof.Because

E Zt
Z H

t
1

2
115H

H H
2 ,

2 2

b
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G -
b

-( )
( )

( )

the left-hand side is a functionwitch has constant sign. For some small 0 > and large enough twe observe the

inequality

m
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Nowwe check the asymptotics of the integral above,
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Taking the limit 0  and averaging overZ proves point (i).

For (ii) let usfirst study the behaviour of the power law asymptotic itself,
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Now, because of asymptotic (115) for every 0 > there exist aTH such that for t TH>
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This inequality holds for anyH in a closed interval h h,1 2[ ] and fixedZ. As theMittag-Leffler function and the

power function are continuouswith respect toH in this range, we canfindT sufficiently large such that this

inequality will hold for t T> and all H h h,1 2Î [ ] simultaneously. Otherwise we could takeTk  ¥ and

corresponding H h h,k 1 2Î [ ] for which it does not hold and obtain a contradictionwith continuity of

H E ZtH
H

2 ,
2-b ( ) or asymptotic (115) at an accumulation point of the sequenceHk.

Wemay divide (119) by
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and consider some large t T> in order to obtain
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Taking the limit 0  and averaging overZ yields the desired asymptotic
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