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Abstract

Recent advances in single particle tracking and supercomputing techniques demonstrate the
emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian
distributions in soft, biological, and active matter systems. We here formulate a stochastic model based
on a generalised Langevin equation in which non-Gaussian shapes of the probability density function
and normal or anomalous diffusion have a common origin, namely a random parametrisation of the
stochastic force. We perform a detailed analysis demonstrating how various types of parameter
distributions for the memory kernel result in exponential, power law, or power-log law tails of the
memory functions. The studied system is also shown to exhibit a further unusual property: the velocity
has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is
reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position
variable. We show that our theoretical results are in excellent agreement with stochastic simulations.

1. Introduction

At the beginning of 20th century the works of Einstein, Smoluchowski, Langevin and Wiener [1-4] opened a
new chapter of quantitative understanding of physics, chemistry, and mathematics by laying down the
foundations for what we now call the theory of stochastic processes. Their goal was to provide descriptions of
various aspects of diffusive motion, which were observed even in ancient times, for instance, by Roman poet
Lucretius [5]. However, it was the groundbreaking experiments of Brown in the 19th century [6] that brought
this topic to serious scientific attention.

Two fundamental properties are commonly encountered in observed diffusive motion: (i) the mean squared
displacement (MSD) of the particle position X grows linearly with time,

§%(t) = B[X(1)’] = 2Dx, €]

the slope of this MSD being determined by the diffusion coefficient D. (ii) The random position X is distributed
according to Gaussian statistics with the probability density

1 x?
Px(x t) = We){p(_ﬁ)' 2

From a random walk perspective these properties emerge from the central limit theorem for the weakly
dependent, identically distributed random variables [7]”. Properties (1) and (2) can be readily obtained from the
stochastic equation [3]

We here develop our theory in the one-dimensional case. Generalisation to higher dimensions is straightforward by choosing independent
directions.
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X)) =V(®), mVE)=—-AV(E) + JkeTAE®R) 3)

introduced by Langevin, which describes the dynamics of the velocity process V of a particle of mass min a
thermal bath of temperature T, where kg is Boltzmann’s constant and A the damping coefficient. Equation (3)
models the interaction of the Brownian particle with the surrounding medium: the Gaussian white noise term
ks TAE () corresponds to the rapid exchange of momentum between the test particle and the environment.
The motion X is considered slow in comparison to individual bombardments by bath particles. The term
— AV () represents the viscosity of the surrounding medium, its exact magnitude determined by the properties
of the liquid and the particle shape, and thus stands for energy dissipation. Solving the Langevin equation (3) and
comparing the stationary value of the mean squared velocity with the thermal energy due to the equipartition
theorem, we obtain the Einstein—Smoluchowski relation D = kg T /(Am) [8].

However, in modern experiments deviations from both of these properties are quite commonly observed. In
particular, anomalous diffusion exhibiting power-law forms of the MSD,

6% (t) ~ 2Dt” 4)

was reported from various physical systems [9-12]". We distinguish two cases: subdiffusion for 0 < o < 1, observed
in the cytoplasm of living biological cells [13—18], various crowded fluids in vitro [19-22] and lipid bilayer membrane
systems [12, 23-27]; and superdiffusion for 1 < « < 2 which is related to active biological transport [28-31] or
turbulence [32-35]. These anomalous diffusion phenomena cannot be explained solely based on the Langevin
equation (3), which has a too simple structure of memory: a velocity increment at time ¢ depends exclusively on the
present value of V(¥) and the white noise £ (¢), which is independent of the dynamics in the past. Therefore the future
evolution of Vis also independent of all but its most recent value, in other words V'is a Markov process [36].

There exist several approaches to anomalous diffusion, which introduce various degrees of memory [37]. An
important extension of the Langevin equation (3), the generalised Langevin equation (GLE), was promoted in
the famous work of Kubo [38] and widely applied in chemical physics [39, 40]. The GLE is an integro-differential
equation of the form [40—45]

mV (t) = —fj V(K@ — ndr + £(¢t) 5)

in which the more complex dependence is reflected both in the memory integral (of convolution form) with the
kernel K, and in the stochastic force &, which is now described by the covariance function ¢ (t) = E[{ (7 + t){(7)].
For a power-law kernel the solution of the GLE is an antipersistent motion which models subdiffusion [41, 42, 46]
and can be written in terms of a fractional order Langevin equation [37, 47, 48].

The GLE has a somewhat special status among stochastic models of anomalous diffusion, as it can be strictly
derived from statistical mechanics. The most general approach is the projection-operator formalism [40] but
additional physical insight can be gained from more specific derivations, for instance, from the Kac—Zwanzig model of
adegree of freedom interacting with a heat bath of harmonic oscillators [49, 50], a test particle interacting with a
continuous field [51, 52], or a Rouse model describing the conformational dynamics of a monomer in a polymeric
bead spring model of mass points connected by harmonic springs [53, 54]. The GLE with power-law kernel also
emerges from a harmonisation of a single file system of interacting hard core particles [55]. It follows from this
derivation that & is a stationary Gaussian process, that is, every vector [ (f; + T), £(t, + T) ..., £(t, + 7)1 hasann-
dimensional Gaussian distribution, which does not depend on the time shift 7. Notably, the kernel K and the stochastic
force are related by the famed Kubo fluctuation—dissipation theorem E[£ (T)E (T + )] = \/kB_T x K (t)[38,56].
Physically, the GLE with power-law kernel is related to viscoelastic systems, and was identified as the underlying
stochastic process driving the subdiffusion of submicron tracers in cells, crowded liquids, and lipid diffusion in simple
bilayer membranes [13, 19, 22, 23, 26, 29].

1.1. Non-Gaussian diffusion processes

However, an additional phenomenon was unveiled in a range of experiments recently. Namely, not only the
assumption of normal diffusion is no longer generally valid, numerous experiments have shown a new class of
diffusive dynamics in which the fundamental Gaussian property (2) is violated [57—60]; see also the additional
references in [61]. In many of these observations the MSD is still linear, of the form (1), however, the probability
density function has the exponential shape (often called Laplace distribution) [57, 62, 63]

I S By
Px(x t) = Nrvor exp[ \/;) (6)

How can such observations be explained physically? One of the approaches allowing to explain the emergence of
the Laplace distribution is that the measured particle motion does not correspond to samples of the distribution
(2), but to a mixture of individual Gaussian processes with different values of the diffusivities D. In statistics such

For anomalous diffusion D becomes the generalised diffusion coefficient of dimension cm?/ sec® .
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an object is called a compound or mixture distribution [64]; in the analysis of diffusion processes this type of
model is called superstatistical [65] (which stands for ‘superposition of statistics’) or ‘doubly stochastic’ [66],
which is a term for stochastic models generalised by replacing some parameter, for instance, D, by a random
process. The observations of the Laplace distribution (6) can be justified by assuming that the diffusion
coefficient D is a random variable with exponential distribution. Every single trajectory is still Gaussian, but the
probability density calculated from the whole ensemble is a compound distribution, in this case exactly the
Laplace distribution [57].

There are a few physical interpretations that explain the randomness of D. The particles that we observe may
not be identical and their different shapes and interactions with the surroundings could and should affect how
quickly they diffuse. The environment may also be inhomogeneous, which is an expected property of many
complex systems, especially biological ones, such as cell membranes. In this situation the diffusion coefficient is
local and position dependent D = D(x) [67, 68]. If the particle is moving along a trajectory X(¢) the effective
diffusivity felt is indirectly time-dependent, D () = D (X (t)). The time dependence can also be direct
(D = D(t, X (t)))ifthe environment is changing, e.g., because of the motion of other particles. Often an
approximation is used in which D is assumed to evolve independently from X. This is a ‘diffusing diffusivity’
approach proposed by Chubinsky and Slater [69], which is currently being actively developed [61, 70, 71].

According to the superstatistics approach [65] the different diffusivities correspond to the motion of one given
particle in one specific region with a given D-value. At sufficiently short time scales the observed particles are relatively
localised in such a region, and D can be considered to be constant for each trajectory. The whole ensemble of particles
behaves as a system with random D with a distribution of D-values mirroring the spacial and temporal dispersion of
D(t, x) [72]. Beck proposed that in turbulent media one could consider the Langevin equation (3) to be valid,
however, the effective temperature is random such that (kz T)~! is distributed according to 2 statistics [65, 73, 74].

We note here that viscoelastic anomalous diffusion with Laplace shape of the probability density function
was observed for the motion of messenger RNA molecules in the cytoplasm of bacteria and yeast cells [75], while
stretched Gaussian shapes were unveiled in the motion oflipids in protein-crowded lipid bilayer systems [58].

In what follows we study a natural extension of this idea: what if not the temperature, but the properties of
the stochastic force in equations (3) and (5) is random? Such an assumption may be justified in the same way as
the randomness of D. Namely, this situation can be realised in an ensemble of particles with varying systems
parameters, or in inhomogeneous media. This approach resembles to some degree models such as the GLE with
kernels, that are a mixture of more elementary functions [44, 76]. Similar ideas appear in financial modelling
with the ‘gamma-mixed Ornstein—Uhlenbeck process’ [77]. However, in these models the observed trajectories
are not examples of compound distributions but result from deterministic dynamics, which can be interpreted
as an average over random local dynamical laws. In our approach the studied processes are truly superstatistical
and represent a new physical approach to non-Gaussian stochastic processes.

The paper is structured as follows. In section 2 we introduce the GLE with random parameters and discuss its
elementary properties. Section 3 then considers the concrete case of a compound Ornstein—Uhlenbeck process
within the superstatistical approach. In section 4 more complex types of memory are proposed and studied,
including oscillatory regimes. Our findings are discussed in section 5. In the appendix some more technical
details are presented.

2. Generalised Langevin equation with random parameters

Our starting point is the GLE assumed to depend on some parameter ¢, which may describe the type of diffusing
particle and/or the local properties of its environment. The parameter c can, in principle, be a number or a
vector. In the GLE the stochastic force then also becomes parametrised by ¢, £ = £_. Due to their coupling via the
Kubo fluctuation—dissipation relation, also the memory kernel depends on ¢, K = K, (see below). The solution
of the GLE, the velocity and position processes can then also be considered to be functions of this parameter,

V = V,, X = X_. These phase space coordinates thus solve the set of equations

mii=— [ VK- ndr+ g,
o=V %

The constant m and the mass m actually only rescale the solutions. Considering c dependent mass # and
temperature T'would result in a c dependent diffusion constant D.. This type of influence was extensively studied
before [65, 73,74, 78, 79], and therefore we will omit this ramification in our analysis and assume m = kzyT = 1
in what follows. We note that equation (7) was introduced previously and analysed for an exponential memory
kernel [80].

In the above definition we tacitly assumed that the introduction of the parameter ¢ does not change the
spatially local structure of the GLE, and we assume that the fluctuation—dissipation theorem remains valid in the
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form

BlE(ME (T + D] = VksTKc (D). ®)

Indeed, the variable X interacts with the heat bath only in its neighbourhood. The bath degrees of freedom
themselves do not interact with each other directly, which prohibits spatial long-range correlations. Long-time
correlations can still be present, but they result from the interactions between X and the bath degrees of freedom,
which ‘store’ the memory structure for along time, but do so only locally. That means for each fixed value c the
fluctuation—dissipation theorem should still hold.

For every ¢, the GLE can be solved using the Green’s function formalism. The stationary solution of
equation (7) is given by

t
v = [ &@G-nadr, ©)
where the Green’s function G solves the equation
t
Gty = = [ GDIK(t = ) + 8(0). (10)
0

Equivalently, G, is the inverse Laplace transform of
1

Ge(s) = ———,
s+ K. (s)

an
where by 6: (s) we denote the Laplace transform of G(¢).

Generally the superstatistical solution Vand X of the GLE emerges when the parameter cis drawn from
some distribution, which we denote by substituting a big letter Cfor it. In order to get a better feeling, as a
guiding example let us consider the simple case of a discrete set of local environments or types of particles. We
number themby ¢ = 1, 2, 3, .... The random variable Cwith distribution P(C = k) = p, then describes how
many trajectories are evolving in each environment or correspond to each particle type. With probability py the
observed trajectory evolved according to the GLE (7) with kernel K} and stochastic force &, . In general C may not
be discrete, but can be a continuous parameter. The latter case is more complex and interesting, allowing to
model a wider range of phenomena, and this will be our main point of interest in the following.

When we consider the solutions of the superstatistical GLE (that is equation (7) together with a model
distribution for C) we are interested in two types of observables: ensemble and time averages. Ensemble averages
correspond to quantities relevant when an experiment averages over many particles, as in the pioneering
experiments of Perrin [81, 82]. Single particle tracking experiments with sufficiently long individual particle
traces, as those introduced by Nordlund [83], are typically evaluated by time averages [84]. For the case of
ensemble averages the situation is simple, these quantities can be calculated using the so-called ‘tower property’,
which can be applied to any random function f(X)

Ex[f ()] = EclBxcl f(0ICN = [dPe(e) [Py f o). (12)

In what follows we omit the subscripts in the notation E., and use the convention that the variables will always
be averaged with respect to their natural distribution. In order to calculate ensemble averages of Vcand X we
simply need to calculate ensemble averages of V;, X, for fixed c and average them over the distribution of C. In
particular, if Cand X, have the probability density (PDF) pcand py , the density of Xcbecomes

Pro6 ) = Blpy, (5, AC)] = [pc(@py (x nde. (13)

For the time averages, the most commonly used quantity is the time averaged MSD, which for a trajectory of
length 7 (observation time) reads [11, 37, 84]
[ 1 T—t
FGD=—— [ Xelr+ 0 = Xe(r)dr
T—tJdo
2

T—t T+t
_ Ti tfo (f VC(T/)dT/) dr. (14)

The last form stresses that §2(¢; 7') can be viewed as a function of the velocity Vi, which here is a stationary
process. In this work we will be mostly interested in the limit 7 — oo for which one can omit subtracting t and

use the simpler average limyz-, % fo ’ (+)dr, typically used in statistical mechanics, and determine it using tools
from ergodic theory. For every choice of c the stochastic force £, is stationary and Gaussian, and its covariance
function decays to zero, re (t) — Oast — oo. The famous Maryuama theorem [85, 86] guarantees thatin such a
case the process is mixing, in particular, it is ergodic. So the stationary solution V. of the GLE (7) must be mixing
and ergodic, as well, for every choice of ¢ [87]. Any time average coincides with the ensemble average, that is, for

4
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every function of state f~

—— .1 7T

0 = lim — [ f(V.()dr = BLS (V). (1)
T-o0T Jo

However, the superstatistical solution V cannot be ergodic as averaging over one trajectory one cannot gain
insight into the distribution of C. But, the process Vis still stationary, as, for every ¢, V,is stationary. In such a

case the behaviour of the time averages is determined by Birkhoft’s theorem [86, 88] which guarantees that
AT .1 pT
T = lim — [ f(Ve(r))dr = BL (Ve(0) M. (16)
T-o00T Jo

All time averages converge to a random variable E[ f (Vz(0))| M], which is an expected value conditioned by M
summarising all constants of motion of V. For isolated systems M would correspond to the energy, total
momentum and similar quantities. In our case here every trajectory V. itself is ergodic, so it has no internal
constants of motion. Therefore the only constants of motion are the local states of the environment, denoted by
C. This statement is intuitively reasonable: given a trajectory evolving with C = call time averaged statistics
converge to the values corresponding to the solution of the GLE with K. and £, which, due to the ergodic
theorem (15) are exactly the conditional expected values E[ f (V-(0))|C = c] = E[ f (V.(0))]. For the MSD this
means that

82 (t) = lim 625 7) = BIXc(t)IC] = 8% (0), (17)

which is a function of the random parameter C and time ¢. One consequence of this is that the ergodicity
breaking parameter, measuring the variance of amplitude fluctuations between individual realisations of the
stochastic process [37, 89, 90], never equals zero and does not converge to zero even in the asymptotic limit
r— o0,

BIE® _, _ Bl @O

EB = — —
® E[6%(1)]? E[6%, (HIO)1

=0, (18)

forany ¢t = 0, as the mean of a square equals the square of a mean only for non-random variables.

The ensemble averaged MSD can be directly obtained from the Green’s function G(f). Namely, proposition
1 in the appendix proves that the covariance function of V. equals the Green’s function, r, = G, such that the
ensemble averaged MSD of X, reads’

6 (1) =2 j; dn fo " dn Gu(n). (19)

Moreover, as G, is a covariance function, it is bounded, |G, (0)| < G.(0) = 1. Thus, from relation (19) we see
that 6% (t) < t2/2,s0 the MSD is always finite and the motion governed by the superstatistical GLE is sub-
ballistic. The result for the MSD assumes a particularly simple form in Laplace space,

5%: (s) = 25 *EB[Gc (5)] = 25 2R7 (). (20)

Note that G, (0) = 1also implies that 6%,[ (t) = 1. Forany tthe value V(#) is not superstatistical, it is simply a
Gaussian variable with unit variance which is the same as for V(f) with any c. At the same time the covariance
function 1y, is decaying as a mixture of decaying functions r,. Without careful consideration this may seem
contradictory: the Maryuama theorem states that if a stationary Gaussian process has a decaying covariance
function, it is mixing and ergodic, but Vis stationary, Gaussian at every t, has a decaying covariance function,
and is non-ergodic!

The solution to this seeming contradiction is the fact that while V- is Gaussian at every instant of time £, it is
itself not a Gaussian process. For a stochastic process to be Gaussian, it is not sufficient that is has a Gaussian
marginal distribution but also a Gaussian joint distribution. The solution Vis an interesting physical example
of an object witch has Gaussian marginals, but non-Gaussian memory structure. Such processes are well-known
to exist: it is enough to take some non-Gaussian process X(f) and transform it using its own cumulative
distribution function, Y (t) = F(X(t)), F,(x) = P(X(¢#) < x). Theresulting process Y(¢) has uniform
distribution for every , and it is enough to transform it a second time using a normal quantile function to obtain
a process with Gaussian PDF, yet a complicated and particularly non-Gaussian type of dependence. However
this construction can be considered artificial and without physical meaning. The unusual non-Gaussianity of V¢
here arises naturally from the physical model. The process V¢ could be very misleading during the analysis of
measured data: using only basic statistical methods it will seem Gaussian. We will show techniques which can be
used to unveil its non-Gaussianity in the next section for specific examples.

> Note, however, that generally a process described by the GLE can be transiently non-ergodic and ageing, as shown in [22, 91, 92].
6 Without the rescaling m = kg T = 1, ry, itequals kg Tm™'G..
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Va((k + 1)At)

3 I I I I I

0
VA(kAt)

Figure 1. Phase plot of the compound Ornstein—Uhlenbeck process with P(A = 1/10) = P(A = 2) = 1/2.Wetook At = 1. Solid
lines correspond to 95% conditional quantiles of the noise Z; in both populations.

3. Compound Ornstein—Uhlenbeck process

3.1. Overview of the model

The classical Langevin equation can be considered as an approximation of the GLE in which the covariance
function r¢ decays very rapidly on the relevant time scale. The solution of the Langevin equation exhibits many
properties typical to the GLE in general. We fix the mass of the particle and the bath temperature, so equation (3)
is governed solely by the parameter . The superstatistical solution is thus V4, where A > 0is arandom variable,
which can be interpreted as a local viscosity value. The Langevin equation can be solved using the integrating
factor exp(At), which yields the stationary solution

i = V& [ emeendr, 1)

The solution V/, for fixed A is often called Ornstein—Uhlenbeck process, so V, may be called a compound
Ornstein—Uhlenbeck process. It can also be represented in Fourier space. Calculating the Fourier transform of
equation (3) demonstrates that
00 . A .
V) = f §(w) .Le‘“”dw, (22)
—o0 iw+ A

where we note that the Fourier transform of Gaussian white noise Z is another Gaussian white noise. Another
useful representation is the recursive formula, which is fulfilled by the process at discretised time moments. If we
solve the Langevin equation (3) using the integrating factor exp(A¢) but integrate from time kAt to (k + 1) At
we obtain

Va((k + DAL = e 2AV (KAL) + Z
(k+1)At
7 = \/Kf £(r)e ME+DA=D 47 4 % [1 — e 28ihe (23)

kAt

where the noise Z; has the same distribution as a Gaussian discrete white noise £, multiplied by arandom
constant. The series Z; is, conditionally on A, independent from past values Vy(jA?), with j < k.Such aprocess
is called a random-coefficient autoregressive process of order 1, in short AR(1) [93, 94] with autoregressive
coefficient exp(—AtA). When there are only few distinct populations and A has only few possible values, they
can even be recognised on the phase plotof y = Vi ((k + 1)At) versus x = Vj(kAt), see figure 1. There, the
two distinct populations with different autoregressive coefficients can be distinguished. Both have Gaussian
distribution, but each one has a distinct elliptical shape. The total distribution, as a mixture of two ellipsoids,
however, is not Gaussian, nor even elliptical. The projection of the joint distribution on x or y axis are the PDF of
Vi (t) and are Gaussian, thus, one needs at least a two-dimensional phase plot to reveal the non-Gaussianity of
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V. For alarger number of populations the phase plot would be much less clear, but the huge advantage of this
method is that it works even for trajectories of very short length.

The situation becomes more complex and interesting when A assumes a continuous distribution. The
covariance function of the Ornstein—Uhlenbeck process is

1
T'\/A(t) = Eei/\t. (24)

Here some care needs to be taken, as the factor 1/2 differs from the covariance of the solution of the GLE for
which generally i, (0) = 1 (this is due to the fact that it corresponds to a degenerate Dirac delta kernel). If A has
the PDF p,, the covariance function of V is

1 o0
() = - fo Ve Nd, (25)

soitis the Laplace transform of p»: in probabilistic language this quantity would be called a moment generating
function of the variable — A. For instance, if A is a stable subordinator withindex 0 < o < 1[95] the covariance
function is the stretched exponent

1 o
() = Ee*""t , (26)

which is a common relaxation model [96—100], sometimes referred to as Kohlrausch—Williams—Watts
relaxation[101, 102].

If A can be decomposed into a sum of two independent random variables A = A; + Ay, the corresponding
covariance function is a product,

TV\(t) = ZrV\l(t)rV\z(t). (27)

Therefore, in this model various kinds of truncations of the kernel correspond to a decomposition of A, for

instance,if A = X + A’ with deterministic A > 0, the covariance function ry, will be truncated by exp(— At).
Some general observations about the behaviour of i, can be made. When A has a distribution supported on

aninterval, suchas ;; < A < )y, and its PDF has no singularity, it is necessarily bounded, that is,

m < py(A) < M. Inthis case,

by A
M endy <) < X f e Mg, (28)
2 Al 2 Al
The integrals on the left and right have asymptotics of the form
LY | W Lo
f e Md\ = —(e7 Nt — em M) v —eT N, (29)
Al t t

Here we introduce the notation of an asymptotic inequality, which will be useful later on. We write f < g if
f~ h < g for some function h’. Using this notion we can write the above results as

Me-ne < <M i
2te S () S 2te . (30)
This equation proves that gt ~le=* < 1, (t) < gt~ e~ for some constants 0 < ¢ < ¢. Further on we will
denote this property by ry;, < t~'e "', When A is distributed uniformly, m = M = (\, — A))"!,and the
asymptotic < becomes stronger, thatis, ry,(f) ~ (2(Ay — A)t)~'e~*. This distribution of A is important from
a practical standpoint, because it is a maximal entropy distribution supported on the interval [\, A;], soit canbe
interpreted as the choice taken using the weakest possible assumptions.

Heavier tails of r, may be observed only when the distribution of A is concentrated around 0. The most
significant case of such a distribution is a power law of the form p, (A\) ~ X*~!,with A — 0" and & > 0.For
any distribution of this type Tauberian theorems guarantee that the tail of the covariance has a power law form
[103,104]

ry(t) ~ ?tw, t — oo. (31)
For a < 1the process V} exhibits along memory. This observation can be refined as follows. In proposition 2
(i) we present a generalised Tauberian theorem, which states that if the PDF of A contains a slowly-varying factor
L, then the tail of the covariance contains the factor L(¢~!). One example of such a slowly-varying factor is
[In(\)|?, B > 0,50 heavy tails of the covariance of the power law form ¢~ In(t)” can also be present for
compound Ornstein—Uhlenbeck process if the distribution of A exhibits a logarithmic behaviour at 0. This

This is similar to the Landau- O notation, but when we write < we also include the value of the constant factor which would be omitted
writing ry, = O(tle™N").

8 . L. . . B s . s -
The same situation is sometimes denoted in terms of the ‘large theta’ notation, thatis ry;, = ©(t~le=").

7
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observation proves that this equation can also describe ultra-slow diffusion and can be considered as an
alternative to more complex models based on distributed order fractional derivatives [76, 105].

In section 2 we noted that the superstatistical solutions of the Langevin equations are not Gaussian, however,
they can be easily mistaken to be Gaussian. The marginal distributions of V, are Gaussian at any time ¢, only the
joint distributions are not. This means that the multidimensional PDF of the variables V(#,), Vi(t2), ..., VA(,)
does not have a Gaussian shape. This fact is easy to observe studying the characteristic function of the two point
distribution, which is a Fourier transform of the two-point PDF. Let us fix Vi (7), V(7 + t) and define the two-
point characteristic function as

¢A(0) t) = E[ei(91 VA(T)+92VA(T+0)]) 0 - [91’ 92] (32)

For any deterministic A this function is determined by the covariance matrix 3, of the pair V) (1), V\ (7 + 1),

1] 1, e
(b)\(a) t) = e—%QTEtG, Et = El:e)\t, 1 :|) (33)
so in the superstatistical case the characteristic function reads
(6, 1) = Bl§y(8, 1A)] = e iTe i iR[e 200 ], (34)

As we argued, the marginal factors exp(—67 /4), exp(—63 /4) are indeed Gaussian, but the cross factor
describing the interdependence is not. The function ¢, would describe a Gaussian distribution if and only if the
factor E[exp(0,0,e " /2)] had the form exp(af, 0,). But we see that it is in fact a moment generating function of
the variable exp(— At) at point 6, 6, /2, which is an exponential if and only if A equals one fixed value with
probability unity. The compound Ornstein—Uhlenbeck is never Gaussian for non-deterministic A.

This property is also evident if we calculate the conditional MSD of X,

1 1
8% (HA) = —t + —
3, (14) 2N 2N

(e —1). (35)
At short times ¢ this approximately is #2/4, so the distribution is nearly Gaussian and the motion is ballistic.
However atlong ¢ the dominating term is (2A)~ !¢, so we see that if E[A™!] < oo, the integrated compound
Ornstein—Uhlenbeck process describes normal diffusion with random diffusion coefficient D = (4A)~!. Sucha
situation occurs when the distribution A is not highly concentrated around 0. When A has a power-law
singularityasin (31), thatis X*~!at 0%, 0 < a < 1, this condition is not fulfilled: BE[A"!] = oc. Butin this
situation the assumptions required for the Tauberian theorem hold and we can apply it twice: first for relation
(31), to show that 77 (s) ~ 27T ()T'(1 — a)s*~L, s — 0" and the second time for relation (20), to prove that

2I' (@) 2-a

2 ~N —_———
0%, (®) (1— )2 -

t — oQ. (36)

In this regime the system is superdiffusive. The transition from superdiffusion (0 < a < 1)to normal diffusion
(I € «a)isunusual among diffusion models. Fractional Brownian motion and fractional Langevin equation
motion [42,47, 106] undergo transitions from super- to subdiffusion at a critical point of the control parameter.
This is so as in these models the change of the diffusion type is caused by the change of the memory type from
persistent to antipersistent. But the Ornstein—Uhlenbeck process models only persistent dependence, so the
mixture of such motions also inherits this property. For 1 < « (and any other case when E[A™!] < c0) this
dependence is weak enough for the process to be normally diffusive, for smaller values of v it induces
superdiffusion.

In the introduction we already mentioned that it is commonly observed that the distribution of the position
process is double exponential, see equation (6) and references below. This exact distribution is observed when D
has an exponential distribution £(3) with PDF

pp(d) = Be . (37)

For the corresponding compound Ornstein—Uhlenbeck process the distribution of A is given by A = (4D)™!
and for such a choice the process models normal diffusion with a Laplace PDF. Moreover the covariance
function of the velocity process is
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Figure 2. Covariance function from Monte Carlo simulations for a system with Laplace PDF of the position process, together with the
. . o d . . . . o
theoretical asymptotics. The sample size is 10°, (2A)~! = £(1). The covariance is shown in normal and semi-logarithmic scale. The
convergence to the predicted asymptotic behaviour is excellent. The full solution (38) is not shown, it fully overlaps with the
simulations results.

1 t
Wm0 = EE[QW’]
_ B
= 2]; e we P4dd

1 ﬁfm ey Lgg
8 Jo @

Ot
= —f Ki(/Bt), (38)
where we used one of the integral representations of the modified Bessel function of the second kind K|, (see
[107], formula (10.32.10)). This function has the asymptotic K;(z) ~ /7/2 exp(—z)z /%, z — oo [107,
formula (10.40.2)], so the covariance function behaves like

rV(ADfl(t) ~ E(ﬂt)l/zlei"/gt, t — oQ. (39)

This behaviour is shown in figure 2, where we present the covariance function corresponding to the Laplace
distributed X, (¢) with random diffusion coefficient D 4 £(2). We do not present the Bessel function (38), as it
appears to be indistinguishable from the result of the Monte Carlo simulation. Figure 2 also shows how to
distinguish this behaviour from an exponential decay on a semi-logarithmic scale: the covariance function and
its asymptotic are concave, which is mostly visible for short times ¢.

Analysing the shape of the covariance function can serve as a method to distinguish between a superstatistic
introduced by alocal effective temperature and the distribution of mass from superstatistics caused by the
randomness of the viscosity A. In the former case the resulting decay is exponential (as in the non-
superstatistical Langevin equation) or even zero for a free Brownian particle, in the latter case it is given by
relation (38).

3.2. Gamma distributed A
In order to better understand the superstatistical Langevin equation we will consider a simple model with one
particular choice for the distribution A. After going through this explicit example we will come back to the
general case at the end of this section.

A generic choice for the A distribution is the Gamma distribution G(«, 3) with the PDF

) = %Xkle*‘ﬂ, a, 3> 0. (40)

This corresponds to a power law at 0" which is truncated by an exponential. As the conditional covariance
function is an exponential, too, many integrals which in general would be hard to calculate, in this present case
turn out to be surprisingly simple.

The Gamma distribution is also a convenient choice because many of its special cases are well established in
physics. The Erlang distribution is the special case of expression (40) when «v is a natural number. An Erlang
variable with o« = k and (3 can be represented as the sum of k independent exponential variables £(53), in
particular, for k = 1itis the exponential distribution itself. The Chi-square distribution x?(k) is also a special
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Figure 3. Twenty PDFs of the covariance function 27! exp(—At), A 4 G(a, B) for time t changing linearly in the short memory (top)
and long memory (bottom) regimes.

case of expression (40) where & = k/2, 5 = 1/2. The Maxwell-Boltzmann distribution corresponds to the
square root of x2(3), and the Rayleigh distribution to the square root of x?(2).

We already know from relation (31) that r;, has a power tail ~2~!3%~, more specifically, direct integration yields
1 1
201+ t/8)°

This is solely a function of the ratio ¢ /5 which suggests that the parameter 3 changes the time scale of the
process. Indeed, for any A the process V), (bt) is equivalent to V;,, (¢), because the Gaussian process is determined
by its covariance function, which in both cases is the same. Therefore, also the compound process V, (bt) is
equivalent to V,5(¢) and bA has the distribution G(a, 3/b).

The function (41) would be observed if we calculated the ensemble average of Vi (7) VA(7T + t) for some 7. If
instead the covariance function would be estimated as a time average over individual trajectories, the Birkhoff
theorem determines that the result would be a random variable, equal to the conditional covariance

ry(t) = (41)

T
r,(t) = lim 1 f V(M) VA(T + t)dT = rny,(1]A) = le*At. (42)
T-0T Jo 2
It is straightforward to calculate the PDF of this distribution,

2

= B/ InQx) >~ 12x)%-1, 0 < x < 1/2. (43)
I'(a)

Pr (x, 1)

The mean value of this quantity is given by result (41). This PDF is zero in the point x = 1/2if « > 1buthasa
logarithmic singularity at x = (1/2)” if @ < 1(thatis, in the long-memory case). Itiszeroinx = Ofor ¢ < [ as
in expression (43) any power law dominates any power of the logarithm. For ¢ > (3 there is a singularity at

x = 0" which approaches the asymptotics x~!| In x|*~!as t — oo. This behaviour can be observed in figure 3,
illustrating how the probability mass moves from (1,/2)™ to 0" as time increases.

As we already know, the compound Ornstein—Uhlenbeck process is non-Gaussian. Let us follow up on this
property in more detail. To study the characteristic function we need to calculate the average in equation (34),
which is actually the moment generating function for the random variable exp(— At). Some approximations can
be made. First, let us assume that A# is small in the sense that the probability that this variable is larger than some
small € > 01is negligible. In this regime we can approximate exp(—At) ~ 1 — At and find

142 1
D0, 1) = e 1P i E e 21001740

_ ef%(ﬁﬁrﬁz)zE [eéﬁlﬁzAt]

— ety ! . t— o0t (44)
(1 — 16,0,/(26))

The first factor describes a distribution of Vy(7) = V(7 + t). So in our approximation we assume that the
values in the process between short time delays are nearly identical and the multiplicative correction
1 — t6,60,/(23)) *isnon-Gaussian.

10
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Figure 4. Empirical characteristic function (solid black line) calculated from Monte Carlo simulated for AVy(7, 1), A 4 g@ / 2, 1);
sample size was 10°. The red dashed line represents approximation (44), the blue dotted lines are the approximations based on
equation (47) for K = 0, 1, ..., where 20 terms in the Taylor series were taken along.

The second type of approximation can be made for long times t when exp(—At) = 0. In this case

D0, 1) =~ e‘%efe‘iagE[l — %9192{/"]
= efi‘glze*ie%(l — %919215[6’1“])

= eielzeie%(l 06 ), t — 00. (45)
2(1 — ¢/

Now we treat the values V) (7) and Vi (7 + t) as nearly independent, the small correction is once again non-
Gaussian. Apart from the approximations, the exact formula for ¢, can be provided using the series

1
(1 + kt/B)*’

00 1\k 0 11k
E[e_%eleze—m] _ Z ( 1) (elez)kE[e—kAt] _ Z ( 1)

0,0,)
&= 2kl = 2k (h62)

(46)

which is absolutely convergent.
Note that for the specific choice 6, = 0, 6, = —0 the function ¢, is a Fourier transform of the probability
density of the increment AVy(7, t) == Vy(7) — Vi(7 + t), which therefore equals

e O 6% 1

) PRy B 47
Pavyrn (0) = ¢ izo 2%k (1 + kt/B)” v

Clearly, any increment of V}, is non-Gaussian. This is demonstrated in figure 4, where we show

/ _ln(f’AVA(m) (6)) on the y-axis. In this choice of scale Gaussian distributions are represented by straight lines.
The concave shape of the empirical estimator calculated using Monte Carlo simulation shows that the process
V isindeed non-Gaussian. In the same plot we present the two types of approximations of I/)\AV\(T,I): fort — 0F
we have equation (44), which reflects well the tails § — +00, and for t — oo we see that with several terms of
the series (47) a good fit for = 0 is obtained.

It may appear counter-intuitive that the values V) (¢), which are all exactly Gaussian, are sums of non-
Gaussian variables. If the increments were independent that would be impossible, here their non-ergodic
dependence structure allows for this unusual property to emerge. However, they are still conditionally Gaussian
with variance

E[AVA(T, H2[A] = (1 — e ). (48)

The non-Gaussianity is prominent for short times t. As fincreases, the distribution of AVj (7, t) convergestoa
Gaussian with unit variance.

The non-Gaussian memory structure of the velocity V affects also the distribution of the position Xy,
which, using result (35), for large t becomes

11
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]. 2 2
)~ ——B[JAe XA = o—1/2=x*/t+3) A
pXA\(x 2 Vi [ ¢ 1= f X dA

F(oz)J_
_T@a+1/2) (B)”

. 49
ﬁr(a) (x2+ﬁt)a+1/2 ( )

For @ = 1/2 andlong t the position process X, is approximately Cauchy distributed. For short ¢itis nearly
Gaussian distributed with variance 12/4. In general the above formula is a PDF of the Student’s T-distribution
type, although unusual in the sense that most often it arises in statistics where it is parametrised only by positive
integer values of a.. The parameter « in the above expression determines the decay of the tails of the PDF, which,
as we can see, scale like |x| 29~ : the parameter G rescales time, but in an inverse manner compared to its action
on VA

It may therefore seem that for « < 1/2 the process X, may not have a finite second moment, however, this
is not true. In section 2 we made the general remark that the MSD of the superstatistical GLE is necessarily finite,
see the comments below equation (19). In our current case &%, . (f)is given in expression (35), and thus

11m 6%, () = t2/4,  lim 6% (1) = 0. (50)
A—00

This is indeed a bounded function of control parameter A, and the MSD of X, must be finite for any distribution
of A. Moments of higher even order can be expressed as

EXa(1)™ = H 2k — 1) x B[(6%, (f1A)"], (51
k=2

so they are all also finite. Integrating twice relation (41) for Gamma distributed A it can be shown that

2 2—a _ _
E5% <t|A)1_ﬁ (L+ /8P (@=-2t/B-1

X0 = 1-0C-a

(52)

This describes superdiffusion for 0 < a < 1and normal diffusion for 1 < « inagreement with the more
general theory discussed below equation (35).
Similar, a somewhat longer calculation yields

B8, (1)) = 22 !
4 (a —H(a—-3)(a—-2)(a-1)
X (@ — )@ — 3)(t/A)? — 2a — /8 + 1
20— /B + /P — 2L+ t/8) + (1 + 2t/8-) (53)

which determines the asymptotics of the ergodicity breaking parameter (18)

1-a)2—a) 4 r a
TR () IS
EB(t) ~ @-1 PPV A 54
()~ et 0 - 20 = 270 (4) Y 1<a<2 (54)

1
a-2>

2 <«

att — o0o. This result demonstrates that, indeed, individual realisations of this process never become fully
reproducible, as observed in many cases in experiment and simulations [11, 37, 84]. Additionally, in this model it
iseasyto check that 3 x (EB(t) + 1)isthe kurtosis of Xx(t), thatis E[X(t)*] /(BE[Xa(¢)?])?. This is one of the
measures of the thickness of the tails of a distribution which for any one-dimensional Gaussian distribution
equals 3 in one dimension. Here, the distribution is clearly non-Gaussian, but it is hard to judge the tail
behaviour using the kurtosis. This is due to the fact that py converges to a power-law, yet according to result
(51) the tails of p x, must decay faster than any power, symbohcally Py, (%, 1) = O(x~) for any t. Therefore the
PDF’s tails are always truncated, but is not noticeable observing moments, which are affected by the finite range
in which the PDF becomes close to the power law.

The asymptotical properties of X(¢) are illustrated in figure 5, where we show the PDFs of the rescaled
position position Xx(t) /+/t simulated with &« = 1/2, 8 = 1and calculated using a kernel density estimator. In
agreement with result (49), the limiting distribution is of Cauchy type. At the same time for all finite ¢ the tails of
the PDF remain truncated: as time increases this truncation is moved more away into x = 300, and as aresult
the MSD increases as 2.

This is an illustration of a more general rule: equation (49) is a Laplace transform of /A , so any A with
powerlaw p, (A) ~ X*~1, X — 0" will result in a power law x~2*~! as limiting distribution of X,. But at the
same time the superstatistical Langevin equation preserves the finiteness of moments, which stems from the
Hamiltonian derivation of the GLE. Therefore this model reconciles power law tails of the observed distribution
with a finite second moment by naturally introducing truncation moving to oo as t — 0.

12
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0.5

10° 10"

Figure 5. Kernel density of variables X,(t) /+/f estimated for t = 5, 10, ..., 100 (solid lines) and A 4 Gg(1 / 2, 1) versus the Cauchy
PDF (dashed line). Sample size was 10°. Both convergence to Cauchy distribution (49) and the O(x~°°) truncation of the tails (51) can
be observed.

4. More complex memory types

We here analyse the behaviour of the superstatistical GLE (7), which is non-Markovian and may be used to
model more complex types of memory structure. We study the two important cases of exponential and power
law shapes for the kernel.

4.1. Exponential kernel GLE
The covariance function for an exponential kernel GLE has the conditional form

re,,(tlA, B) = B%e 4, A, B > 0. (55)
This particular parametrisation is chosen for convenience, it will simplify the formulas later. The stochastic

force &, in this model is the compound Ornstein—Uhlenbeck process considered in section 3, additionally
rescaled by random coefficient B*. It may be represented in time space or Fourier space as

t ESIN 2 .
a0 =B [ eme it nar = [ fw) b, (56)

We first solve the corresponding deterministic model. The Laplace transform of the Green’s function can be
easily obtained in the form

1 s+ 2A

Gap(s|A, B) = = ) (57)
. B O v )
s+2A
Its Laplace inverse is a conditional covariance function, which is the sum of two exponential functions,
1 A 2 2
A B =—-|1 - —— —(A+~A*—B*)t
rVA,B(tl b ) 2 ( m )e
+ l 1+ L ef(Afx/Aszz)t. (58)
2 A2 _ BZ

In the case A = Badivision by 0 appears, so the above formula should be understood as alimit A — B.Inany
case we can calculate the MSD using relation (19) and obtain

13
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A
6§(A‘B(t|A, B) = 4§t

1 | VA B —A e, NACB A e

+ e
/AZ—BZ (A+ /Aszz)z (Af /AszZ)Z
8A2 ,
—F‘FZB. (59)

As we can see the asymptotical behaviour of the MSD at t = 0" and t = oo is very similar to that of the
compound Ornstein—Uhlenbeck process. For E[A/B?] < oo this GLE models normal diffusion with a random
diffusion coefficient. When this condition is not fulfilled it may model superdiffusion determined by the power-
law tails of the covariance function, compare relation (20) and the discussion below.

The behaviour of this system greatly depends on whether A < B, A = Bor A > B. All ensemble averages
can be separated between these three classes

E[-] = E[A < BIP(A < B) + E['|]A = B]P(A = B) + E[|]A > B]P(A > B), (60)

so even if all three regimes can be present in a physical system, we can model them separately and average the
results at the end. We start the analysis with the simplest case.

4.1.1. Critical regime A = B
Taking thelimit A — B in expression (58) or calculating the inverse Laplace transform from equation (57) with
A = Bwe determine the form of the conditional covariance within this critical regime,

rv,(t1A) = (1 + At)e ", (61)

The behaviour of the resulting solution V4 is very similar to that of the compound Ornstein—Uhlenbeck process.
The differences are mostly technical. For example, if A = A} 4+ A, for some independent A; and A,, then

1y (D) = 1v, (D1y, (1) — E[tAje 41 E[tAye 4] (62)

Therefore, for instance if A > aywecanwrite A = A’ + ay, A’ > 0 and the covariance function becomes
truncated by aqt exp(—aopt).

The formula for r,, consists of two terms: the function At exp(—At) has a thicker tail, but the asymptotic
behaviour of 1y, is determined by the distribution of small values A =~ 0, so it is not clear which term is most
important in that regard. If we assume p, (a) ~ a®~!then

v, (1) ~ (@)t + tT'(a + Dt = (o + DT ()™, (63)

so actually both terms have comparable influence over the resulting tails of the covariance.

4.1.2. Exponential decay regime A > B
In this case the covariance function is a sum of two decaying exponentials. Because of this A > aq resultsin an
exponential truncation by exp(—aot) of the associated covariance, but this time there is no simple rule to
determine the behaviour of this function for A = A; + A,. Instead let us analyse expression (58) in more detail.
The first exponential has a negative amplitude, the second one a positive amplitude. In additional the second
exponential always has a heavier tail, as its exponent includes the difference of positive terms, A — +/A> — B?,
whereas the other exponent includes a sum. Thus we expect that the exponent with A + + A?> — B? cannot lead
to a slower asymptotics than the one containing A — /A?> — B2.

Given this reasoning let us change the variables in the form

2 2 /2
A=A — JA2 - B2 :B—, A BHAT (64)
A+ A2 — B 24

The new parameter A’ attains the value A’ = Bfor A = Band decays monotonicallyto0as A — oo. Note that
for small values of A/, A’ ~ B?/(2A), so the tail behaviour of A determines the distribution of A’ at 0;1in
particular, a power law shape of the former is equivalent to a power law shape of the latter. Using the parameters
A’ and B the covariance function can be expressed as
B* A% g

WAL B = e e ©
As A’ < Bthevariables A’ and B cannot be independent unless B is deterministic. In that latter case B = band
for A’ concentrated around 0" we have that
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b? /
rVA/’b(t) ~ El:m —A't :| f pA/(a) b2 7”tda, (66)

so the asymptotical behaviour of this model is again in analogy to that of the compound Ornstein—Uhlenbeck process.
In particular, p,,(a) ~ a®~!,whena — 0" (equivalently p, (a) ~ 2a~!~*for a — oo) implies the emergence ofa
power law, 1y, , (t) ~ I'(a))t~. This asymptotic does not depend on the exact choice of b, which means that the scale
of the stochastic force does not affect the tails of the memory and the influence of b only matters at short times.
Whenboth A’ and Bare random their dependence may potentially be quite complex and influence the tails
of the covariance in unpredictable ways. It can only be studied under some simplifying assumptions. We want to
require some sort of independence between A’ and B for small values of A’, which determine the asymptotics of
exp(—At).So, letus denote B’ := A’/B, which is arandom variable that must be less than 1, but may be
supposed to be independent from A’. Using variables A’ and B’ the covariance function can be transformed into
i

1 _Alt B/Z ,
= B/Ze — WG B . (67)

In this form the influence of A’ and B’ is mostly factorised, the only remainder is A’/B’? in the second exponent.
This leads to some immediate consequences. If the PDF of A’ is supported on the interval [a;, a,], and
m < py.(a) < M, then straightforward integration yields

1 1 M
E[ B/Z]Ee’“lt Sty ® S E[ — 5 ]—e’“”. (68)

rVAf,B' (t|A/) B/) =

Power law tails appear when p,,(a) ~ a®~!, a — 0. The conditional asymptotics then reads

y u B/2 -«
i) ~ —r@ - v ) (©9)

so for the unconditional covariance we have

(70)

1 — B/2a+2
P (1) ~ P(a)E[i]t".

_ B/Z

Both types of asymptotics are similar to the behaviour of the compound Ornstein—Uhlenbeck process, only with
different scaling. For the same reason 1, , (¢) is truncated under the same conditions as before if it is a sum of

. ’ / '

independent A; and A,,

M5 (£) ~ const X 1y, . (O)1y, (), t— o0, (71)

where the constant depends on the distribution of A’ and B'.

4.1.3. Oscillatory decay regime A < B
When the square root vA? — B? is imaginary we can express the covariance function as

rv,,(t1A, B) = (cos(x/B2 A t) + ——sin(vB?> — A? t)) (72)

\/7

This represents a trigonometric oscillation truncated by the factor exp(—At). When calculating the

unconditional covariance, this function acts as an integral kernel on the distribution of A and B. The exponential

factor acts similarly to the Laplace transform, but oscillations introduce Fourier-like behaviour of this

transformation. It can be observed in the solutions of the corresponding GLE, which we will show below.
Tauberian theorems can be applied for the bound of the covariance, given by the inequality

|TVA,B(t|A) B)l < —eiAt) (73)

which we prove in proposition 3 in the appendix, together with other asymptotic properties. As a general rule it
can be said that solutions of the GLE in this regime have a covariance which decays no slower than the covariance
of the compound Ornstein—Uhlenbeck process with the same distribution. For example, for independent A and
B, when the PDF of A is bounded and supported on some interval [g;, a,],
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Figure 6. Covariance function of the GLE (solid line) calculated using Monte Carlo simulation, the sample size was 10°. Parameters
are B =, A = G(1/2, 1), the theoretical bounds are +¢~!/? (dashed lines) as given in (76).

1
|rVA,B(t)| SJ E T — _eialt’ (74)

ai |t
and for apower lawat a;", thatis A = a; + A’ with p,,(a) ~ a®*'ata — 07, the covariance is bounded by
1
[, (D] S Bl ——=|T'(a)t % !, t— o0. (75)

The scaling constants depend on the distance between the distributions of A and B: the closer they are the larger
is the multiplicative factor. If A/B ~ 1 — ¢ itis roughly ¢ /2,

The question remains if this constraint is reached. The answer is yes, the oscillations of ry, ,(t|A, B) are
asymptotically regular, that is, their frequency becomes constant (exactly equal to B) at t — co. Because of this
they are not influenced by averaging over A, so if Bis deterministic B = b and A has power law
pi(a) ~ a*~1, a — 0%, we observe that

1v,,(t) ~ I'(a)cos(bt)t™%, t — oo. (76)

This behaviour can be seen in figure 6 which demonstrates that the convergence is relatively fast. During the
Monte Carlo simulation the parameter B was fixed as B = 7 and A was taken from gamma distribution

G(1/2, 1). For this distribution there exists a 98.8% chance that A < 7 = B and the system is in the oscillatory
regime, so it is indeed dominating the result, as demonstrated in figure 6.

4.2. Power law kernel GLE
Our last example is the superstatistical GLE in which the force has a power law covariance function, namely

V4

=——  H2 g<H<I 77)
I'CH — 1)

re,,(t1H, Z)
The force process &; , is a fractional Brownian noise with random index H, rescaled by the random coefficient
Z.Thefactor 1/T'(2H — 1) is added for convenience and simplifies the formulas, however, its presence does not

change the outcome of our analysis.
The Green’s function of this GLE is given by

— 1 52H71
Gu,z(s|H, Z2) = = (78)

s+ Zs\2H 7 4 g2H

In the last form we recognise the Laplace transform of a function from the Mittag-Leffler class [108]. The
asymptotic of the conditional covariance can be derived from Tauberian theorems or analysing the Mittag-
Leffler function directly [108, 109]

1

t*ZH
ZI(1 — 2H)

rVH,Z(tIH’ Z) = EZH(fthH) ~ t — oQ. (79)
From this formula we see that the distribution of Z should not have an influence on the covariance asymptotics.
Further on we will assume that Z is independent from Hand E[Z~!] < oo. In the simple case when

0 < h < H < hyand Hhasabounded PDF, thatis m < p,; < M, one can show that following bound holds
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Figure 7. MSD from Monte Carlo simulations (solid blue lines) for power law GLE with fixed Z = 1 and 0.3 < H < 0.5 which has
the power law form p (0.3 + h) ~ const x h®~!with o = 3/4. The sample size was 10%. The result is shown on different scales,
together with the asymptotic (81) (dashed lines) and the same asymptotics without the factor In(t)~3/* (dotted lines).

mE[Z1 ME[Z™Y]
2T'(1 — 2h) 2T(1 — 2hy)

Therefore ry, , =< t~2"In(t)~!. The proofis given in proposition 4 (i) in the appendix. As usual, when H has uniform
distribution on [/, h,] the asymptoticsis stronger, ry;, , ~ B[Z 1] 2T'(1 — 2hy)(h, — hy))~! =2 In()~,

A more interesting situation occurs when H is distributed according to a power law. Noting that
t=2H = ¢=2Hn(® gne may suspect that the resulting covariance would exhibit power-log tails. This intuition is
indeed true. We will analyse the case the when the indexis H = H' + hg, hy > 0, py,(h) ~ h*~'. Byimposing
ho > 0 we prohibit a situation when values of H are arbitrarily close to 0" because the Mittag-Leffler function
diverges in this limit, otherwise it is a continuous function of H. This problem corresponds to the fact that for
small H the trajectories of {;; , become very irregularandas H — 0% the solution of GLE is not well-defined.
We show in the appendix that under these assumptions the asymptotics indeed has power-log factor

E[Z T ()
20T(1 — 2hp)

t=2mIn(t) ! < 1y, () S 2 In@),  t— oo. (80)

Ty, () ~ t=2ho In(¢)—. (81)
Because we can take h arbitrarily close to 0" in this model we can obtain tails which are very close to pure
power-log shape.

To finish this section let us also comment on the properties of the position process. Equation (19) describes
the MSD as a second derivative of the Green’s function, so using its simple form (20) in Laplace space, we find

/2\J 52H73
6XH,Z(S|H’ Z) = m (82)
The inverse transform can be found using tables of two-parameter Mittag-Leffler function, which also
determines its asymptotics [108, 109]
1
6% (t1H, Z) = PEyp 3(—ZtH) ~ —— 2720t — o0, 83
%, ) 2m,3( ) ZTG _ 2H) (83)

The presence of the factor 1/Z means that this superstatistical GLE can model anomalous diffusion with non-
Gaussian PDF’s. This dependence on Z is the same as for the parameter A of the compound Ornstein—Uhlenbeck
process, so both exponential and power law tails can be present in this model in an analogous way.

As for the asymptotic of 5§(H , (1), the identical argument as for the covariance can be used, so in this model
the MSD of the form ’

E[Z T () 42— 2h,
2°T'(3 — 2hy)
ispresentfor 0 < hy < land 0 < a < 1. A numerical evaluation of this behaviour is shown in figure 7 where

we have taken the subdiffusive case H = 3/10 + H’,with p,,(h) = a5 “h® landa = 3/4,0 < H' < 1/5.
The factor # in expression (84) does not depend on the particular form of the dynamics, so we divided all shown

‘5§<H,z(t) ~ In()~ (84)
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Table 1. Different asymptotics of the covariance function ry for different GLE: memoryless, exponential kernel in decay regime (under
convenient parametrisation), exponential kernel in oscillating exponential decay regime, and power law. Different distributions of the shape
parameters A, A’, A, H are considered.

Shape parameter distribution

re Bounded on interval Power lawat 0 Powerlaw +¢, ¢ < 1
A6 (1) =<exponent X %(30) ~pow. law (31) ~pow. law X exponent (27)
2
e,H:/’ ¢ =exponent X %(68) ~pow. law (70) ~pow. law x exponent (71)
e 2 <exponent x %(74) ~osc. pow. law (76) <pow.law X exponent(75)
(2H-2 =pow. law x —— (80) ill-defined ~pow.law x pow.-loglaw (81)

In(r)

functions by this factor to highlight the influence of H. As we can see the convergence to the asymptotic
behaviour is much slower than in the previous examples, which stems from the fact that the Mittag-Leffler
function converges slowly to the power law

t_ZH
E —ZtHy = —— 1 O@H). 85
2h,3( ) ZTG 21 ( ) (85)

The inclusion of the log power law is significant, but may be difficult to determine on the loglog scale. It is
demonstrated in the two lower panels in figure 7. The asymptotic MSD is concave on the log log scale, but the
effect is not very prominent, and for the MSD estimated from Monte Carlo simulations can be detected only on
very long time scales. The difference from a power law is more visible if the lines are shown without the factor
t~2M (bottom panel), but ki, may not be easy to estimate for real systems. This comparison shows that different
possible forms of decay can be easily mistaken, so one should exert caution when analysing data suspected to
stem from such systems.

5. Conclusions

We here studied the properties of the solutions of the superstatistical generalised Langevin equation. This is
based on the Gaussian GLE, but includes random parameters determining the stochastic force. This new type of
process has a number of properties that are unusual among the various existing models of diffusion. Firstly, the
velocity is a stationary but non-ergodic process. The behaviour of its time-averages can be studied, for instance,
using the time averaged covariance function (42), see also figure 3. The resulting process is moreover not
Gaussian. At every point of time it has a Gaussian distribution but exhibits a non-Gaussian structure of the
memory, see equations (44) and (46). One consequence of this is that it has non-Gaussian increments (47), also
shown in figure 4.

Secondly, the position process at small times has a PDF which is approximately Gaussian, but as time
increases it converges to a non-Gaussian PDF, as demonstrated in figure 5. This limit distribution can exhibit
commonly observed exponential tails but also power-law tails (49). Even when the limiting distribution does not
have a finite second moment, at any given finite time ¢ the position process does have a finite MSD. The observed
PDFs are always truncated. For short memory GLE, the MSD of the position process is normal or superdiffusive,
see equation (35) and the discussion below. For power law memory models, anomalous diffusion with
additional log-power law of the form (84) may be observed.

Various kinds of the GLE, distributions of shape parameters and the resulting asymptotic properties of the
covariance function ry-based on the model developed herein, are shown in table 1. The notation is chosen as
follows: f(t) ~ g(t)when f(#)/¢(t) — 1, f(#) S g(t)when f(¢) < h(t) ~ g(¢),and f (t) =< g(¢) when
ag(t) S f(t) S ag(t) for some constants 0 < ¢ < 6. The middle and left columns can be slightly generalised
if the distribution of shape parameters contains a slowly varying factor, see proposition 2.

We see our work as a part of the development of the superstatical approach to the modelling of diffusive
processes in complex media. The assumption that the stochastic force driving the GLE can change its properties
from one localised trajectory to another appears quite natural. Moreover, the superstatistical GLE can
simultaneously explain the presence of non-Gaussian distributions and normal or anomalous types of diffusion.
The properties of the solutions listed above are specific enough to clearly distinguish this model from possible
alternatives, in particular, from the presence of non-Gaussian PDFs caused by random rescaling of the process,
which does not change the type of memory that is observed in the system. We show how in our model the
ensembles of short memory trajectories can, concertedly, give rise to along memory. This dependence is highly
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non-Gaussian despite the Gaussian PDF of the velocity process. The presence of such peculiar phenomena in a
physical model is an interesting theoretical finding in its own right. Its main relevance, however, lies in the
description of stochastic data, highlighting the importance of comprehensive Gaussianity checks in data
analysis.

We also note that the classical Langevin equation, considered in section 3, exhibits most of the properties
specific for superstatistical GLE—even the presence of power-log tails. This model has a very simple form and at
the same time allows for the derivation of not only asymptotic results, but also many exact ones, given the
distribution of the damping coefficient or the viscosity. Its most significant limitation is that it cannot model
subdiffusion. As such it should be considered a simple yet robust model for data with linear or superdiffusive
MSD, power law or log-power law covariance function and non-Gaussian PDFs.

Finally, let us add a caveat. Of course, any locally diffusing particle will eventually reach the border of its
domain characterised by a specific set of diffusion parameters. For time ranges much longer than this
dissociation time, first a coarse-graining of the diffusion parameters will arise, and eventually the diffusion will
be governed by a Gaussian diffusion process with a single, effective diffusion coefficient, similar to the
observations in the diffusing diffusivity model [61]. For many experimental and simulations analyses, however,
the accessible time ranges are limited, and thus the superstatistical treatment remains fully justified. We are
confident that this work represents a relevant contribution to the active current discussion of diffusion processes
with random parameters, and to superstatistics in particular.
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Appendix. Proofs

We here provide several propositions with proofs, needed in the development of the theory in the main body of
the paper.

Proposition 1. The covariance function of any stationary solution V of the GLE (5) equals

rv(t) = G(f), t=0, (86)

where G is the corresponding Green’s function of the GLE, and the MSD of the position process X (t) = J;) Ydr v )
is

§2(1) = 2 fo dn J; "dn, G(ny). (87)

Proof. We will assume that the Green’s function G and kernel K are functions on R for which G(¢¥) = 0 and
K (t) = 0fort < 0 (such functions are called ‘casual’). Using this notation all integrals are defined on R, which
simplifies calculations.

The solution of the GLE is stationary and has zero mean, so we can take ¢ > 0 and calculate the covariance
function as

0 =BIVOVO] =B [ dn € G- [ dn G- |
R R
= [ dn [ dn (2 - D06 — ). (88)
R R
The covariance function r¢ is not casual, but it is symmetric, so it can be represented as r: (1) = K(7) + K(—7).

This formula fails only at 7 = 0, but it does not affect result of integration. The integral separates into two parts,
the first being
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I = d dm K(m — 1)G(—1)G(t —
1‘/;&71];%72(72 G(—m)G(t — 1)
— [ dnG=m [ arh K@t~ 1 - )G
R R
=~ [ GC-mG( - man, (89)
where we used relation (10) in the interior of support of G. Similarly, for the second integral,
L= d dn K(ry — G(—7n)G(t —
2]}1;17'1‘111;7'2(71 7)G(—m)G(t — )
= [ dnG(t—m [ dri K(—m — TG
R R
— j;g G(t — 1) G(—m)dm. (90)

In I; and I, we can substitute —7y = 7 and —7, = 7. In their sum we recognise the formula for integration by
parts, which yields

() = =Gt + 1)G(MII=¢* = kTG(HG(0F) = G®). oD

Now, for the position process we find
t t t t
=] dn | d —n)=| dn | dn (G(n— 7) + G(1i — 7). 92
k= [ an [Cdnwm-m= [ dn [ dn G-+ 6@ - ) 92)

Because of the symmetry between 7; and 7, the integral is twice the term with G(7; — 7), after substitution
n— T = 7'/2 > 0 weget

t t t 7
sm =21 d dn Gri—n) =21 d drl, G(rh). 93
x(®) j; ﬁfo 7 G(1i — 7o) j; Tlfo 75 G(7) (93)

Proposition 2. If L is a slowly varying function at 0%, that is
L(\x)

1 f >0, 94
)\EIOl* oY or any x (94)
then
(i) Adistribution of the form
PN ~ XTILN), A — 0F (95)

implies that the mean value of the exponential satisfies

E[e 2] ~ T(a)t L(t")), t— oo. (96)

(ii) Adistribution of H of the form H = h; + H' with h; > 0

Py (h) ~ h*~'L(h), h—0F (97)
implies that the mean value of a power law satisfies
B[] ~ %rzhm(ln(trl)ln(tro, t— oc. (98)

Proof. We will only show (ii), as the proof of (i) is similar and simpler. We write the integral for E[¢~2(1+H],
reformulate it as a Laplace transform using t 21" = e=2H'In() change variables and calculate the limit

E[tfz(hrkH’)] 1 by )
= (Wt 2(m+h qp 99
£~ L(n(t)""In(r) = t*ZhlL(ln(t)fl)m(t)wfo P (M) (99)
h
0 L(n(t) HIn(t)~@ 0 L(n() Hln()!
tooo [ a—1,—2h 71—‘(04
_>f0 Bl hdh = 2. 100
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Proposition 3. Let 1y, , be a covariance function corresponding to the solution of a GLE with an exponential kernel in
the oscillatory regime,

rv,, (1A, B) = (cos(x/B2 A2 t) + ———sin(VB?* — A1) |e (101)

Ji

Then the following asymptotical properties hold:

(i) For A withbounded PDF p, < M supported on the interval [ay, a,], a, < B and independent of B, there exists
the asymptotic bound

M
|rVA,B(t)| 5 E = _e—alt’ t — oo. (102)

(ii) Ifadditionally A exhibits a power law behaviour at a;*, thatis, A = ay + A', p,.(a) ~ a®*!fora — 0%, the
asymptotic bound can be refined to

[, 5()] S Bl —= [MT'(a)t e "". (103)
“1
BZ

(iii) For p,(a) ~ a®*'ata — 0" and deterministic B = b the asymptotic limit of covariance function is
1y, (1) ~ T'(@)cos(bt)t™*, t — oo, (104)

which holds for all sequences of ty — oo which do not target zeros of cos(bt), thatis |bty — Im + 7/2| > € for
allk, 1 € Nandsomee > 0.

Proof. We start from the simple inequality

2
Irv, 5 (1A, B)| = ‘ 1— (%) cos(vB* — A%t) + %sin(x/B2 — A’t)

B R
2
-5
B

cos( B2 — A2t — arcsm

)] o

< ——e4 (105)

This allows us to prove (i), namely:
o0
Irv,,(t1B)| < e %da < Lz f edg = — M Le-ar (106)
a Ja

wf ﬁ —
a; t
BZ
Averaging over Byields the result. For Bwith a distribution concentrated at a,” it may happen that

Bl—L |- (107)

‘12
T B

and in this case point (i) is a trivial statement. However, it is sufficient that B > a, + ¢, ¢ > 0 for this average to
be finite and <2/¢.
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Proof of point (ii) is similar,

a
[rv,;(HIB)| < f @ ewraigg o MDD oot (108)
AP _ @ta) 2
BZ

Proving (iii) requires a more delicate reasoning. We write 7y, , (t) as an integral and change variables at — a,
so that

rv,, (1) = f pA(a)(cos(\/b2 —a%t) + ———sin(W/b* — a t)] —atdg

Nb? — a?

— %foo pA(%)(COS(M) 4+ — sm(M)] ~“da. (109)
0

After change of variables the Fourier oscillations depend on the variable /6% — a?.1In thelimit t — oo they
converge to oscillations with frequency b,
2 —
b —a? — bt = —> %, (110)
Vb2 — a? + bt
It is crucial that this frequency does not depend on a. The cosine function also converges to a cosine with
frequency b,

cos(Nb*?* — a*)  cos(\b** — a® — bt + br)

cos(bt) N cos(bt)
_cos(b*t? — a® — br)cos(bt) + sin(N b2 — a? — br)sin(bt)
cos(bt)
H—O>Ccos(0) x 1 + sin(0) x tan(bt) = 1, |tan(br)| < l (111)
€

Substituting this result into the integral for ry;, , we obtain the asymptotic
iy, (1) e a).. 1cos(x/m) + — sm(\/ﬁ)
wieh nlf) oo
H—ij:o a® e = I'(a)da. (112)

e %a

Proposition 4. Let H and Z be independent, B[Z~'] < coand 3 > 1. Then the following asymptotic properties of
E[Ey5,5(—Zt*1)] hold

(i) IfHissupported on [hy, h,)with0 < hy < h, < landits PDFisbounded, m < py(h) < M, then

mE[Zf] t—2h1 hl(t)_l 5 E[EZHﬂ(—ZtZH)] < Mt—ﬂll

N In(t)~L.
218 — 2hy) ’ ~ TG — 2hp n(t) (113)

(ii) Ifadditionally H exhibits a power law behaviour at h;*, thatis, H = hy + H', p,,(h) ~ h*"'withh — 0%, a
much stronger asymptotic property holds,

E[Z NT(a) _
E[Eyy g(—ZtH)] ~ ——="—2 2l n() @, ¢t . 114
[Eans(—Z07) ~ St o (114)
Proof. Because
1
E 7y~ 42H 115
21,5( ) 710G — 20 (115)

the left-hand side is a function witch has constant sign. For some small ¢ > 0 and large enough t we observe the
inequality
m(l —¢e) fh t2h M@ + ¢) t2h

dh < E[E,y 3(—Zt*1)|7] <
Z nw TG — 2h) [Bari,6( 2] Z h1 r(,B —2n

dh. (116)
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Now we check the asymptotics of the integral above,

h, —2H hy—hy —2hIn(t)
In(®) ! dh = In(t) f e
=2 Jp T(B — 2h) (8 — 2k — 2h)

In(t) (h—hy) e_2h t—o00 1
- an== L (117)
0 T8 — 2h — 2h/In(t)) 206 — 2hy)

Taking the limit ¢ — 0 and averaging over Z proves point (i).
For (ii) let us first study the behaviour of the power law asymptotic itself,

tfz(hlJrH/) 1
E 1z
708 — 20 + HY) 1 In(t)

1 1-hy t*Z(hHrh)
—————— [ Pt dh
Zr M) Jo T3 — 2(h + h))

In(t)(1—hy) —2h
1 | pH(i)ln(t)al < dh
ZJo Int (B — 2(h + h/1In(t)))
oo —2h
oyl a-1__° dhe— 1@ (118)
zJo (3 — 2h) 72°T(3 — 2hy)
Now, because of asymptotic (115) for every ¢ > 0 there exista Ty such thatfor r > Ty
=€  ,om_ Ey p(—2t2M) < Lte o (119)

ZT(68 — 2H) ZT(68 — 2H)
This inequality holds for any H in a closed interval [, h,] and fixed Z. As the Mittag-Leffler function and the
power function are continuous with respect to H in this range, we can find T sufficiently large such that this
inequality will hold for ¢ > T andall H € [hy, h,] simultaneously. Otherwise we could take T, — oo and
corresponding Hy € [hy, h,]for which it does not hold and obtain a contradiction with continuity of
H +— Eyy 5(—Zt2H) or asymptotic (115) at an accumulation point of the sequence Hy.

We may divide (119) by
_ I'(a) o, a
I(t) = —Zza’l“(ﬁ - 2h1)t In(2) (120)

and consider some large ¢t > T in order to obtain

E[E VA E[E _gs2Hy |7
1 — e < liminf [Ear,5( )l ], lim sup [Ear, € )21 <1
t—00 1(t) oo 1(t)
Taking the limit ¢ — 0 and averaging over Z yields the desired asymptotic
EIZT@ sy,
20T(6 — 2hy)

+ €. (121)

E[Eam,5(—Zt*")] ~ E[l(1)] = In(#)". (122)
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