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1 Introduction and summary

We now have a consistent formulation of closed superstring field theory (see [1] for a

review). Our goal in this paper is to extend this construction to interacting theory of open

and closed strings. Such systems arise naturally in the presence of D-branes.

As has been described in [1], full quantum string field theory can be studied at different

levels. The basic formulation involves the quantum master action satisfying quantum

BV master equation [2–4]. However, without giving up any information, one can have

various equivalent formulations that are useful for specific studies. One of them is the

1PI effective action, suitable for studying the problem of mass renormalization, vacuum

shift and computing S-matrix in the shifted vacuum. Another is the Wilsonian effective

action, suitable for studying the dynamics of string states below certain mass scale, but

without making any low energy approximation. On the other hand the quantum master

action is useful for studying problems that require making all loop momenta integration

manifest, e.g. study of unitarity [6] and analyticity [7] properties of the amplitudes. Of

these the 1PI effective action has the simplest gauge transformation properties, in that

it should be invariant under suitable gauge transformation. As a consequence of this, it

satisfies the classical BV master equation [2]. In contrast the quantum BV master action

and the Wilsonian effective action are not invariant under any gauge transformation, since

the gauge non-invariance of the action needs to compensate for the gauge non-invariance of

the path integral measure [2–4]. What remains invariant is the combination dµ e2S where

dµ is the integration measure in the space of fields and anti-fields and S is the action [5].

This is ensured by the fact that the action satisfies quantum BV master equation.
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For this reason we begin our study by first constructing the 1PI effective action. To

experts in quantum field theory, it may appear strange that we construct the 1PI effective

action before writing down the actual action whose off-shell 1PI amplitudes would give the

interaction terms of the 1PI effective action. However as explained in [1], since in string

theory we already know the formal expressions for on-shell amplitudes (ignoring effects

of vacuum shift and mass renormalization), we can first generalize this to construct off-

shell amplitudes, given as integrals over moduli spaces of punctured Riemann surfaces. By

appropriately restricting the region of integration over the moduli spaces, we can construct

either 1PI amplitudes or amplitudes corresponding to elementary vertices of the quantum

master action. The former requires us to remove certain regions of integration around

separating type degenerations in the moduli space, whereas the latter requires us to remove

certain regions of integration around all degenerations.

After constructing the 1PI effective action and checking its desired properties, namely

gauge invariance and validity of classical BV master equation, we also describe the con-

struction of quantum master action satisfying the quantum BV master equation. This

construction only requires a few changes from its 1PI counterpart. We also generalize our

results to unoriented string theory, required to describe the interacting theory of closed and

open strings in the presence of orientifold planes. Throughout our work, we shall follow the

general strategy that has been used in the formulation of bosonic string field theory [8–10],

but extending this to superstring field theory requires a few additional ingredients that we

shall explain.

We now give a summary of our result for the 1PI effective action of superstring field

theory of open and closed strings. We define Hm,n to be the vector space of GSO even

closed string states |s〉, carrying (left, right) picture numbers (m,n) and satisfying the

constraints [8]:1

b−0 |s〉 = 0, L−
0 |s〉 = 0, L±

0 ≡ L0 ± L̄0, b±0 ≡ b0 ± b̄0, c±0 ≡ 1

2
(c0 ± c̄0) . (1.1)

We also denote by Hm the vector space of GSO even open string states of picture number

m. We now introduce two subspaces in the closed string Hilbert space and two subspaces

in open string Hilbert space as follows:

Hc ≡ H−1,−1 ⊕H−1/2,−1 ⊕H−1,−1/2 ⊕H−1/2,−1/2,

H̃c ≡ H−1,−1 ⊕H−3/2,−1 ⊕H−1,−3/2 ⊕H−3/2,−3/2,

Ho ≡ H−1 ⊕H−1/2,

H̃o ≡ H−1 ⊕H−3/2 . (1.2)

For Ac
i ∈ Hc and Ao

i ∈ Ho, we define {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} to be the off-shell 1PI am-

plitude, summed over all genera and all number of boundaries, with external closed string

1These restrictions on the off-shell closed string states are needed to get well-defined off-shell amplitudes,

which require us to choose local coordinates at the punctures that are used to insert the vertex operators

of the off-shell string states into the correlation function. Such choice of local coordinates at the punctures

are possible globally only if we ignore the phase of the local coordinate. The requirement that the vertex

operators must be invariant under such phase rotations leads to (1.1).
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states Ac
1, · · · , Ac

N and external open string states Ao
1, · · ·Ao

M , excluding the one point func-

tion of closed string states on the disc from the definition of {Ac; }. In computing this

amplitude, we also need to insert in the correlation function appropriate combination of

picture changing operators (PCO) and ghosts. For Ãc ∈ H̃c, we also define {Ãc}D to be

the disc one point function of Ãc with appropriate insertion of PCOs and c-ghosts. More

detailed definitions of {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} and {Ãc}D have been given in section 2.

Note the exclusion of the one point function on the disc from the definition of {Ac; }.
If Ac is in the RR sector, then the contribution to {Ac; } from the disc does not exist,

since the RR vertex operators carry total picture number −1, and therefore it is impossible

to satisfy picture number conservation on the disc, requiring total picture number −2, by

inserting PCOs which carry positive picture number. For Ac belonging to the NSNS sector

the disc one point function is non-vanishing, but we shall still exclude its contribution from

the definition of {Ac; } for uniformity and define {Ãc}D to contain contributions from one

point function on the disc both for NSNS and RR sector Ãc. As we shall comment at

the end of this section, whether to include the contribution to the disc one point function

of NSNS sector closed string states into the definition of {Ac; } or {Ãc}D is a matter of

convention, but for RR states there is no such option. For one point function of closed

string states in Hc on surfaces with more boundaries/genera, there is no problem with

picture number conservation, and we include their contribution in the definition of {Ac; }.
We shall take the closed string states Ac

i ’s and Ã
c to be even elements of the grassmann

algebra and the open string states Ao
i ’s and Ão

i ’s to be odd elements of the grassmann

algebra. This means that if ζ is an odd c-number element of the grassmann algebra, then

we have

ζAc
i = Ac

iζ, ζÃc = Ãcζ, ζAo
i = −Ao

i ζ, ζÃo
i = −Ão

i ζ , (1.3)

where in (1.3), Ac
i , Ã

c, Ao
i and Ã

o refer to the vertex operators corresponding to the states.2

Unless mentioned otherwise, all our subsequent equations will assume this assignment of

grassmann parities. In this case, {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} and {Ãc}D can be shown to be

even elements of the grassmann algebra. Furthermore it follows from the definition given

in section 2 that {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} is invariant under arbitrary exchanges Ac
i ↔ Ac

j

and Ao
k ↔ Ao

ℓ . Note that there is no additional sign even for the grassmann odd vertex

operators Ao
k. More discussion on this can be found in comment 1 at the end of this section.

We also define

[Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M ]c ∈ H̃c, [Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M ]o ∈ H̃o , [ ]D ∈ Hc , (1.4)

via

〈Ac
0|c−0 |[Ac

1 · · ·Ac
N ;Ao

1 · · ·Ao
M ]c〉 = {Ac

0A
c
1 · · ·Ac

N ;Ao
1 · · ·Ao

M}, ∀ |Ac
0〉 ∈ Hc,

〈Ao
0|[Ac

1 · · ·Ac
N ;Ao

1 · · ·Ao
M ]o〉 = {Ac

1 · · ·Ac
N ;Ao

0A
o
1 · · ·Ao

M}, ∀ |Ao
0〉 ∈ Ho ,

〈Ãc|c−0 |[ ]D〉 = {Ãc}D . (1.5)

2Ref. [10] assigned even grassmann parity to the open string field by taking the open string vacuum |0〉 to
have odd grassmann parity and identified the grassmann parity of the string field as that of the corresponding

ket state. In contrast we take the grassmann parity of the string field to that of the corresponding vertex

operator.
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Here 〈A| denotes the BPZ conjugate of |A〉, generated by z → 1/z for closed strings and

z → −1/z for open strings. We shall see in (2.3) that [ ]D is related to the boundary state

of the D-brane system via appropriate picture changing operation and rescaling. It follows

from (1.5), and the fact that {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} is grassmann even, that [Ac
1 · · ·Ao

M ]c

is grassmann odd and [Ac
1 · · ·Ao

M ]o is grassmann even. Similarly one can show that |[ ]D〉
is grassmann odd. Other useful identities involving {· · · }, [· · · ], {Ãc}D and [ ]D are:

{Ac
1 · · ·Ac

k G[Bc
1 · · ·Bc

ℓ ;C
o
1 · · ·Co

m]c;Do
1 · · ·Do

n}
= {Bc

1 · · ·Bc
ℓ G[Ac

1 · · ·Ac
k;D

o
1 · · ·Do

n]
c;Co

1 · · · , Co
m} , (1.6)

{Ac
1 · · ·Ac

k;G[Bc
1 · · ·Bc

ℓ ;C
o
1 · · ·Co

m]oDo
1 · · ·Do

n}
= {Bc

1 · · ·Bc
ℓ ;G[Ac

1 · · · , Ac
k;D

o
1 · · ·Do

n]
oCo

1 · · ·Co
m} . (1.7)

and

{Ac
1 · · ·Ac

N [ ]D;A
o
1 · · ·Ao

M} = {[Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M ]c}D . (1.8)

In (1.6), (1.7), G is given by:

G|so〉 =
{
|so〉 if |so〉 ∈ H−1

1
2(X0 + X̄0) |so〉 if |so〉 ∈ H−3/2

,

G|sc〉 =





|sc〉 if |sc〉 ∈ H−1,−1

X0 |sc〉 if |sc〉 ∈ H−1,−3/2

X̄0 |sc〉 if |sc〉 ∈ H−3/2,−1

X0X̄0 |sc〉 if |sc〉 ∈ H−3/2,−3/2

, (1.9)

with

X0 ≡
∮
dz

z
X (z), X̄0 ≡

∮
dz̄

z̄
X̄ (z̄), (1.10)

X and X̄ being holomorphic and anti-holomorphic PCOs.
∮
includes multiplicative factors

of ±(2πi)−1.

In the following we shall also need to deal with states of wrong grassmann parity —

closed string states which are grassmann odd and open string states which are grassmann

even. To derive the relevant relations, we multiply each grassmann odd closed string state

and grassmann even open string state by grassmann odd c-numbers so that they acquire

standard grassmann parities and therefore obey the standard symmetry properties and

other identities described above. We can now bring the grassmann odd c-numbers to the

extreme left in both sides of the equations keeping track of the signs picked up during this

process. In doing this we follow the convention that a grassmann odd c-number can be

passed through { and 〈 without any extra sign, — the physical origin of these rules will be

described above (2.6). Once this is done, we can remove these c-numbers from both sides

of the equations and derive the relevant identities. To avoid confusion, we shall use the

convention that string states labelled by roman letters, like Ac
i , Ã

c, Ao
i and Ão, carry the

correct grassmann parity — even for Ac
i , Ã

c and odd for Ao
i , Ã

o. When we need to use

states of general grassmann parity, we shall use caligraphic letters Ac
i , Ãc, Ao

i and Ão. In
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this convention, in an expression like QBA
c
i , it will be understood that Ac

i is grassmann

even and therefore QBA
c
i is grassmann odd.

It can be shown that with this prescription, the generalizations of (1.5) remain rela-

tively simple even for states of wrong grassmann parity, provided we use the prescription

that [ for [· · · ]c behaves as a grassmann odd object and [ for [· · · ]o behaves as a grassmann

even object. In that case, when we replace Ac
i , Ã

c, Ao
i and Ão by Ac

i , Ãc, Ao
i and Ão,

the first and the third equations of (1.5) remain the same, and the second equation also

remains the same if either Ao
0 or the product Ac

1 · · · Ac
N is grassmann even. In case both of

these are grassmann odd, we have an extra minus sign on the right hand side of the second

equation. To see the necessity of assigning odd grassmann parity for [ in [· · · ]c, let us use
the generalization of the first equation of (1.5) to get

{Ac
0ζ · · · } = 〈Ac

0|c−0 |[ζ · · · ]c〉 , (1.11)

for a grassmann odd c-number ζ. Now on the left hand side we can bring ζ to the extreme

left by picking up a multiplicative factor given by the grassmann parity of Ac
0. On the right

hand side we shall get an additional minus sign while moving ζ through c−0 . Therefore to

compensate for this we need the rule:

[ζ · · · ]c = −ζ[· · · ]c . (1.12)

There is no such factor for [· · · ]o due to the absence of c0 factor in the second line of (1.5).

Another rule we need to follow is to never move a grassmann odd variable through

]c,o or }. To see this consider {;Ao
1A

o
2A

o
3} and move a grassmann odd c-number ζ through

this from left to right. We may conclude that this operation will pick up a minus sign

due to three grassmann odd open string vertex operators inserted in between {· · · }. But

this may not be the correct result, e.g. the correlation function of three grassmann odd

operators on a disc is a grassmann even number. Furthermore, this cannot be compensated

by simply assigning an odd grassmann parity to } since the result depends on the number

of boundaries. The same rule will be followed for matrix elements like 〈Ao|O|Bo〉 for any
operator O acting on the open string states. Any grassmann odd c-number from inside

the matrix element will be taken outside the matrix element from the left. However in this

case we could allow grassmann odd c-numbers to be taken out from the right by picking

an extra minus sign, i.e. by treating the ket vacuum as grassmann odd.

We are now ready to describe the form of the action. We introduce two sets of grass-

mann even closed string fields Ψc ∈ Hc and Ψ̃c ∈ H̃c and two sets of grassmann odd open

string fields Ψo ∈ Ho and Ψ̃o ∈ H̃o. The 1PI effective action is given by:

S1PI = − 1

2 g2s
〈Ψ̃c|c−0 QBG|Ψ̃c〉+ 1

g2s
〈Ψ̃c|c−0 QB|Ψc〉 − 1

2 gs
〈Ψ̃o|QBG|Ψ̃o〉+ 1

gs
〈Ψ̃o|QB|Ψo〉

+{Ψ̃c}D +
∑

N≥0

∑

M≥0

1

N !M !
{(Ψc)N ; (Ψo)M} , (1.13)

where QB represents the closed string BRST operator on Hc and H̃c and open string BRST

operator on Ho and H̃o. We show in section 3 that the action is invariant under the gauge
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transformation:

|δΨc〉=QB|Λc〉+ g2s
∑

N,M

1

N !M !
G[Λc(Ψc)N ; (Ψo)M ]c + g2s

∑

N,M

1

N !M !
G[(Ψc)N ; Λo(Ψo)M ]c ,

|δΨo〉=QB|Λo〉 − gs
∑

N,M

1

N !M !
G[Λc(Ψc)N ; (Ψo)M ]o − gs

∑

N,M

1

N !M !
G[(Ψc)N ; Λo(Ψo)M ]o ,

|δΨ̃c〉=QB|Λ̃c〉+ g2s
∑

N,M

1

N !M !
[Λc(Ψc)N ; (Ψo)M ]c + g2s

∑

N,M

1

N !M !
[(Ψc)N ; Λo(Ψo)M ]c ,

|δΨ̃o〉=QB|Λ̃o〉 − gs
∑

N,M

1

N !M !
[Λc(Ψc)N ; (Ψo)M ]o − gs

∑

N,M

1

N !M !
[(Ψc)N ; Λo(Ψo)M ]o ,

(1.14)

where |Λc〉 ∈ Hc, |Λo〉 ∈ Ho, |Λ̃c〉 ∈ H̃c, |Λ̃o〉 ∈ H̃o, are gauge transformation parameters.

Λc and Λ̃c are grassmann odd while Λo and Λ̃o are grassmann even. We also check in

section 4 that this form of the gauge transformation is consistent with what we obtain

from the BV formalism.

Besides the various identities mentioned earlier, we need another set of identities,

known as the ‘main identities’ [8], to prove gauge invariance of the action. For grassmann

even Ãc, Ac
i and grassmann odd Ao

i , these identities take the form:

{(QBÃ
c)}D = 0 , (1.15)

and,

N∑

i=1

{Ac
1 · · ·Ac

i−1(QBA
c
i )A

c
i+1 · · ·Ac

N ;Ao
1 · · ·Ao

M}

+

M∑

j=1

{Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

j−1(QBA
o
j)A

o
j+1 · · ·Ao

M}(−1)j−1

= −1

2

N∑

k=0

∑

{i1··· ,ik}⊂{1,··· ,N}

M∑

ℓ=0

∑

{j1,··· ,jℓ}⊂{1,··· ,M}

(
g2s {Ac

i1 · · ·A
c
ik
Bc;Ao

j1 · · ·A
o
jℓ
}

+gs {Ac
i1 · · ·A

c
ik
;BoAo

j1 · · ·A
o
jℓ
}
)

−g2s{[A1
c · · ·Ac

N ;Ao
1 · · ·Ao

M ]c}D ,

Bc ≡ G[Ac
ī1
· · ·Ac

īN−k
;Ao

j̄1
· · ·Ao

j̄M−ℓ
]c, Bo ≡ G[Ac

ī1
· · ·Ac

īN−k
;Ao

j̄1
· · ·Ao

j̄M−ℓ
]o ,

{i1, · · ·, ik} ∪ {̄i1, · · ·, īN−k} = {1, · · ·, N}, {j1, · · ·, jℓ} ∪ {j̄1, · · ·, j̄M−ℓ} = {1, · · ·,M} .
(1.16)

The term proportional to {[A1
c · · ·Ac

N ;Ao
1 · · ·Ao

M ]c}D is not present in bosonic open-closed

string field theory. There we include the contribution of the disc one point function in the

definition of {Bc; }. As mentioned below (1.2), this is not an option for RR sector Bc in

superstring theory due to an obstruction associated with the picture number conservation.
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Note that on the left hand side of (1.16), QBA
c
i and QBA

o
i are string states of ‘wrong

grassmann parity’, while on the right hand side Bc and Bo are also of wrong grassmann

parity. Therefore the corresponding objects {· · · } will have to be defined by multiplying

these wrong parity objects by grassmann odd c-number ζ. It is useful to include this

grassmann odd c-number ζ explicitly in the identity so that each term in the identity has

only states of correct grassmann parity. This takes the form:

N∑

i=1

{Ac
1 · · ·Ac

i−1(ζQBA
c
i )A

c
i+1 · · ·Ac

N ;Ao
1 · · ·Ao

M}

+
M∑

j=1

{Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

j−1(ζQBA
o
j)A

o
j+1 · · ·Ao

M}

= −1

2

N∑

k=0

∑

{i1··· ,ik}⊂{1,··· ,N}

M∑

ℓ=0

∑

{j1,··· ,jℓ}⊂{1,··· ,M}

(
g2s {Ac

i1 · · ·A
c
ik
Bc;Ao

j1 · · ·A
o
jℓ
}

+gs {Ac
i1 · · ·A

c
ik
;BoAo

j1 · · ·A
o
jℓ
}
)

−g2s{ζ[A1
c · · ·Ac

N ;Ao
1 · · ·Ao

M ]c}D ,

Bc ≡ Gζ[Ac
ī1
· · ·Ac

īN−k
;Ao

j̄1
· · ·Ao

j̄M−ℓ
]c, Bo ≡ Gζ[Ac

ī1
· · ·Ac

īN−k
;Ao

j̄1
· · ·Ao

j̄M−ℓ
]o ,

{i1, · · ·, ik} ∪ {̄i1, · · ·, īN−k} = {1, · · ·, N}, {j1, · · ·, jℓ} ∪ {j̄1, · · ·, j̄M−ℓ} = {1, · · ·,M} .
(1.17)

The (−1)j−1 factor on the left hand side of (1.16) will be generated when we pull ζ through

the open string vertex operators Ao
i to the extreme left.

The equations of motion following from the 1PI effective action are given by

|Ψ̃c〉 : QB

(
|Ψc〉 − G|Ψ̃c〉

)
+ g2s |[ ]D〉 = 0 , (1.18)

|Ψc〉 : QB|Ψ̃c〉+ g2s

∞∑

N=1

∞∑

M=0

1

(N − 1)!M !
[(Ψc)N−1; (Ψo)M ]c = 0 , (1.19)

|Ψ̃o〉 : QB

(
|Ψo〉 − G|Ψ̃o〉

)
= 0 , (1.20)

|Ψo〉 : QB|Ψ̃o〉+ gs

∞∑

N=0

∞∑

M=0

1

N !(M − 1)!
[(Ψc)N ; (Ψo)M−1]o = 0 . (1.21)

Now, multiplying the second equation by G and adding to the first equation gives

QB|Ψc〉 + g2s

∞∑

N=1

∞∑

M=0

1

(N − 1)!M !
G[(Ψc)N−1; (Ψo)M ]c + g2s |[ ]D〉 = 0 . (1.22)

Similarly, multiplying the 4th equation by G and adding to the 3rd equation gives

QB|Ψo〉 + gs

∞∑

N=0

∞∑

M=1

1

N !(M − 1)!
G[(Ψc)N ; (Ψo)M−1]o = 0 . (1.23)
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Eqs. (1.22) and (1.23) give the interacting equations of motion for the physical string fields

Ψc and Ψo. Once we pick a solution to these equations and fix |Ψc〉 and |Ψo〉, we can

determine Ψ̃c and Ψ̃o using (1.19) and (1.21) respectively. The only freedom in obtaining

solution to (1.19) is to add solutions to QB|Ψ̃c〉 = 0 to an existing solution. Similarly

the only freedom in obtaining solution to (1.21) is to add solutions to QB|Ψ̃o〉 = 0 to an

existing solution. These represent free field degrees of freedom. Furthermore the choice

of solutions to these free field equations of motion does not affect the interacting field

equations (1.22) and (1.23) since they do not involve Ψ̃c and Ψ̃o. Therefore the degrees of

freedom associated with Ψ̃c and Ψ̃o represent free fields that completely decouple from the

interacting part of the theory, and they have no observable signature.

Besides the results reviewed above, this paper also contains the following results:

1. We show in section 4 that the action (1.13) satisfies the classical BV master equation

(S, S) = 0 where (F,G) denotes the anti-bracket between two functions F and G of

the string field, as defined in (4.7), (4.8).

2. We construct in section 5 the quantum BV master action of superstring field theory

of open and closed strings. This action has the same form as (1.13), but with the

interaction vertices {· · · } replaced by slightly modified vertices {{· · · }}. Also the main

identity satisfied by the new vertices now has additional terms given by the last two

terms in (5.5). Due to these additional terms in the vertices the action now satisfies

the quantum BV master equation (5.2), with ∆ defined in (5.3).

3. In section 6 we describe how to generalize the construction of the 1PI action and the

BV master action to unoriented open closed string field theory. The structure of the

action remains the same but the definitions of the interaction terms change. In par-

ticular {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} now gets additional contribution from non-orientable

surfaces, {Ãc}D gets additional contribution from the projective sphere and there are

additional normalization factors in the definitions of these quantities.

We end this section with a few comments.

1. In most formulation of classical open string field theory an associative ∗-product and
its generalization known as the A∞ algebra plays a significant role [11–22]. This

is not manifest in the formulation of the quantum action described above. Instead

what plays a central role here is the associated Lie algebra and its infinite dimensional

generalization — the L∞ algebra. For example, if we consider Witten’s open bosonic

string field theory [11], then our definition of [;AoBo]o at the tree level corresponds

to Ao ∗ Bo − (−1)ABBo ∗ Ao in the language of ∗-product. The price we pay in

giving up the A∞ structure is that we can no longer extract color ordered amplitudes

from the theory without digging into the detailed definition of {· · · }.3 If we want to

make manifest the information on color ordering, we need to follow a more elaborate

approach described in [10, 23, 24].

3We thank Theodore Erler for pointing this out to us.
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2. A special feature of the 1PI effective action (1.13) is the linear term {Ψ̃c}D that

involves a closed string field from H̃c. Physically this is related to the fact that Ψc

contains RR field strengths while Ψ̃c contains the RR potential. Since D-branes carry

RR charge; we need the RR potential, hidden inside Ψ̃c, to describe the coupling of

closed string fields to D-branes.

3. As has already been alluded to before, we can set {Ãc}D to zero if Ãc belongs to the

NSNS sector, provided we include this contribution into the definition of {Ac; }. This
corresponds to removing part of [ ]D that belongs to the NSNS sector and absorbing

this into the definition of [ ; ]c. Under this (1.22) remains unchanged. This describes

a superstring field theory that is equivalent to the original superstring field theory.

4. Using the open-closed superstring field theory one can construct gauge invariant

1PI effective actions for theories that are apparently anomalous. For example if

we consider type IIB string theory with certain number of space-filling D9-branes,

its spectrum will contain, besides the usual closed string fields, additional chiral

fermions from the gauge supermultiplet on the D9-branes. This theory is known to

suffer from gravitational anomaly [25]. However there is no difficulty in writing down

a gauge invariant 1PI effective action for this theory. In the latter description, the

inconsistency shows up due to the presence of a term in the action that is linear in the

RR 10-form field, encoded in the {Ψ̃c}D term in (1.13). Due to the presence of this

term, the theory does not have a vacuum solution to the equations of motion [27].

However in some cases we may be able to cancel the effect of the {Ψ̃c}D term, leading

to the last term on the left hand side of (1.22), by switching on other background

fields contributing to the second term on the left hand side of (1.22). Examples of

this kind can be found in compactification of type IIB string theory on Calabi-Yau

manifolds where the space-filling D3-brane charge can be cancelled by flux of 3-form

fields along the internal 3-cycles of the Calabi-Yau manifold.

5. The action (1.13) contains insertion of c−0 in several places — in the kinetic term as

well as in the definition of {Ψ̃c}D given in (2.2). This can be traced to the presence

of conformal Killing vectors on the associated Riemann surfaces — a sphere with

two punctures and a line integral of the BRST current, and a disk with one bulk

puncture. We can avoid this by including c−0 in the definition of Ψ̃c, declaring H̃c to

be the subspace of states annihilated by c−0 instead of b−0 . This will introduce a b
−
0 in

the Ψ̃c-Ψ̃c kinetic term, but this is a more natural operator since the anti-commutator

of QB with b−0 generates L−
0 . It has in fact been argued in [26] that in this formalism

we can take Ψc and Ψ̃c to be unconstrained elements in the Hilbert space of closed

string states except for the restriction on the picture numbers. This introduces some

additional free field degrees of freedom which decouple from the interacting part of

the theory.

6. As has been mentioned already, (1.22) and (1.23) can be regarded as the equations

of motion of the physical string fields Ψc and Ψo. One important question is: given
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a solution to these equations, can we always find a solution to the equations of mo-

tion (1.19) and (1.21) for the additional fields Ψ̃c and Ψ̃o? If the answer is in the

negative, this may impose further constraints on the physical fields Ψc and Ψo. Now,

using (1.16) it is straightforward to show that once (1.22) and (1.23) are satisfied,

the second terms in (1.19) and (1.21) are BRST invariant. Therefore the question re-

duces to whether they describe non-trivial elements of the BRST cohomology, since

as long as they are BRST trivial one can always find Ψ̃c and Ψ̃o satisfying (1.19)

and (1.21). This can be studied separately in the zero momentum sector and the

non-zero momentum sector. We shall analyze this question for (1.19), — the analysis

of (1.21) will be similar and in fact simpler. In the sector carrying non-zero momen-

tum along the non-compact space-time directions, the contribution from [ ]D can be

expressed as QBb
+
0 (L

+
0 )

−1[ ]D, and therefore the second term in (1.22), being equal

to −QB|Ψc〉 −QBb
+
0 (L

+
0 )

−1[ ]D, is BRST trivial. It follows from the analysis of [27]

that the second term in (1.19) is also BRST trivial, — one can use the inverse pic-

ture changing operator introduced in [27] to map elements of the BRST cohomology

from Hc to H̃c in the non-zero momentum sector. On the other hand, it was shown

in [27] that in H̃c, the BRST cohomology in the zero momentum sector is trivial.4

Therefore the BRST invariance of the second term in (1.19) implies BRST exactness

of this term. This, in turn, implies that (1.19) always has a solution when (1.22)

and (1.23) are satisfied. A similar conclusion follows for (1.21). Therefore (1.19)

and (1.21) do not impose any additional constraint on Ψc and Ψo besides the ones

implied by (1.22) and (1.23).

7. Once a consistent superstring field theory for open and closed strings has been formu-

lated, it can be used to systematically study various aspects of string theory that are

not easily amenable to the standard world-sheet approach. This includes for example

the study of mass renormalization or vacuum shift [1], or studying superstring theory

in RR background [28].

8. The superstring field theory of open and closed strings constructed here does not

suffer from any ultra-violet divergence. However this theory suffers from all the usual

infra-red divergences that a quantum field theory suffers. These have physical origin

and need to be dealt with as in a quantum field theory.

9. Superstring field theory action that we write down can be formulated around any

background associated with a superconformally invariant world-sheet theory in the

NSR formalism. Even for a given background the theory is not unique — it depends

on the choice of local coordinates at the punctures and the choice of PCO locations

that we have to make in defining the interaction terms of the action. For superstring

field theories of closed strings it is known that apparently different string field the-

ories, that one gets by making different choices, are all related by field redefinition.

We expect a similar result to hold for the theory described here, but we have not

4For this one needs to use x0 cohomology where one allows polynomials in the zero modes of the non-

compact space-time coordinate fields to appear in the state.
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attempted to give a complete proof. Another feature of the theory that we would like

to prove is background independence — if we have different backgrounds related by

marginal deformation of the world-sheet theory, then the superstring field theories

formulated around these different backgrounds should also be related by field redef-

inition. This analysis is expected to be more complicated than the corresponding

analysis for closed superstring field theory, since under marginal deformation of the

bulk world-sheet theory we also need to deform the D-brane system appropriately [10].

We hope to return to these problems in the future.

2 Construction of 1PI vertices and their properties

We shall now describe the construction of the 1PI vertices {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} and

{Ãc}D satisfying the various identities described in section 1. Since the construction pro-

ceeds more or less in the same way as in the case of closed superstring field theory reviewed

in [1], we shall only emphasize the differences.

We begin by describing our convention for correlation functions of open string vertex

operators. If there are N D-branes, not necessarily of the same kind, then a general open

string state is described by an N ×N matrix, with the i-j matrix element describing the

state of an open string whose left end is on the i-th D-brane and the right end is on the j-th

D-brane. A correlation function of open and closed string vertex operators on a general

Riemann surface with multiple boundaries include taking traces over the N × N Chan-

Paton matrices on each boundary of the Riemann surface. These traces will not be written

explicitly, but will be understood as part of the definition of the correlation function. We

shall follow the standard convention of referring to the locations of the vertex operators on

the Riemann surface as punctures, with closed string vertex operators inserted at the bulk

punctures and the open string vertex operators inserted at the boundary punctures.

We shall first define {Ãc}D. We take this to be the one point function of g−1
s c−0 ĜÃc

on the unit disc |z| ≤ 1, with the vertex operator inserted at the center of the disc using

local coordinate z eβ . Here β is some positive number and5

Ĝ ≡
{
1 on H−1,−1

1
2(X0 + X̄0) on H−3/2,−3/2

, (2.1)

where X0, X̄0 are zero modes of the PCOs as defined in (1.10). The c−0 factor is needed due

to the presence of conformal Killing vector on the disc, which makes one point function of

any operator vanish if the operator is annihilated by b−0 . The Ĝ factor is needed for picture

number conservation. Since Ãc has picture number −2 in the NSNS sector and −3 in the

RR sector, ĜAc has picture number −2 in both sectors. This is the correct picture number

for getting a non-vanishing one point function on the disc. The identity (1.15) can now be

proved by deforming the integration contour defining QB to the boundary of the disc. On

5Since there is no insertion on the boundary, X0 and X̄0 could be evaluated by taking their defining

integration contours on the boundary. Since on the boundary the holomorphic and anti-holomorphic PCOs

are equal, X0 and X̄0 are identical. Therefore we could replace Ĝ by X0 or X̄0.
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the boundary the holomorphic and the anti-holomorphic components of QB cancel each

other. There is no additional contribution from having to pass QB through Ĝ since [QB, Ĝ]
vanishes. The term containing {QB, c

−
0 } vanishes since {QB, c

−
0 } does not contain a c−0 and

therefore integration over the zero mode c−0 associated with the conformal Killing vector

vanishes.

Given this definition of {Ãc}D, we can define [ ]D via (1.5). We can also express [ ]D
in terms of the boundary state [29–32] of the D-brane system as follows. Let |B〉 be the

boundary state of the D-brane system under consideration so that 〈φc|c−0 |B〉 describes the
one point function of the closed string vertex operator c−0 φ

c, inserted at the center of the

unit disc |z| ≤ 1 in the z coordinate system. This gives

{Ãc}D = g−1
s 〈Ãc|c−0 Ĝ e−β(L0+L̄0)|B〉 . (2.2)

Since one point function on the disc is non-zero only for vertex operators of picture number

−2, φc must have picture number −2 for getting non-vanishing 〈φc|c−0 |B〉. On the other

hand, 〈φc|c−0 |B〉, being related to a sphere correlation function of φc and B, is non-zero

only when the total picture number of φc and B add up to −4. Therefore |B〉 has picture
number −2. Comparing the last equation of (1.5) and (2.2), we can express []D ∈ Hc as

[]D = g−1
s P Ĝ e−β(L0+L̄0)|B〉 , (2.3)

where P denotes projection operator into Hc. Its role is to pick the (−1,−1) and

(−1/2,−1/2) components of Ĝ|B〉, which otherwise has states in Hm,n for all m,n with

m+ n = −2 in the NSNS sector and m+ n = −1 in the RR sector.

The construction of {· · · } proceeds as in the case of closed superstring field theory

— therefore we shall be brief, emphasizing only the new aspects of this construction.

We denote by Mg,b,mc,nc,pc,qc,mo,no the moduli space of Riemann surfaces with genus g, b

boundaries, mc NSNS punctures, nc NSR punctures, pc RNS punctures, qc RR punctures,

mo NS-sector punctures on the boundary and no R-sector punctures on the boundary,

with the understanding that the integration over Mg,b,mc,nc,pc,qc,mo,no includes sum over

spin structures. It will also be understood that the Ramond punctures carry picture number

−1/2, i.e. when we insert a vertex operator at the puncture, it belongs to Hc or Ho. We

denote by P̃g,b,mc,nc,pc,qc,mo,no a fiber bundle over this moduli space, with the fiber directions

specifying the choice of local coordinates at the punctures and also the locations of the

℘ ≡ 4g + 2b− 4 + 2mc + 3(nc + pc)/2 + qc +mo + no/2 , (2.4)

PCOs. Note that for Riemann surfaces with boundary, the picture number in the holomor-

phic and anti-holomorphic sectors are not separately conserved, but only the total picture

number is conserved. For this reason, we have specified only the total picture number.

Only for b = 0, we have to have 2g − 2 +mc + nc + (pc + qc)/2 anti-holomorphic PCOs

and 2g − 2 +mc + pc + (nc + qc)/2 holomorphic PCOs. Therefore for b 6= 0 the fiber has

℘ + 1 different branches, with the r-th branch having r holomorphic PCOs and (℘ − r)

anti-holomorphic PCOs.
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In order to simplify notation we shall define the formal sum

P̃g,b,N,M ≡
∑

mc,nc,pc,qc,mo,no
mc+nc+pc+qc=N,mo+no=M

P̃g,b,mc,nc,pc,qc,mo,no , (2.5)

and similarly Mg,b,N,M . Following the same procedure reviewed in [1] for closed string

theory, given a set of closed string states Ac
1, · · · , Ac

N and open string states Ao
1, · · · , Ao

M ,

we can construct a p-form Ωg,b,N,M
p (Ac

1, · · · , Ac
N ;Ao

1, · · · , Ao
M ) on P̃g,b,N,M for any positive

integer p, in terms of appropriate correlation functions of b-ghosts, PCOs and of vertex

operators {Ac
i}, {Ao

i } on the corresponding Riemann surfaces. In this construction the

local coordinates used in the insertion of off-shell vertex operators and the locations of the

PCOs are determined by the point in P̃g,b,N,M where we compute the p-form. The specific

form of the ghost insertions is determined by the tangent vectors of P̃g,b,N,M with which

we contract Ωg,b,N,M
p , i.e. the particular components of Ωg,b,N,M

p that we want to compute.

The sign rules of section 1, that tells us that we can take a grassmann odd c-number out

of {· · · } from the left, implicitly assumes that in computing the correlation functions that

define Ωg,b,N,M
p , we insert the vertex operators for the external states first in the order

they appear inside {· · · } and then insert all the ghosts and PCOs. Similarly the sign rule

that we can move a grassmann odd c-number through 〈 without extra sign corresponds to

treating the bra vacuum 〈0| as grassmann even. Ωg,b,N,M
p satisfies the useful property:

N∑

i=1

Ωg,b,N,M
p (Ac

1, · · · , Ac
i−1, QBA

c
i , A

c
i+1, · · ·Ac

N ;Ao
1, · · · , Ao

M )

+
M∑

j=1

(−1)j−1Ωg,b,N,M
p (Ac

1, · · · , Ac
N ;Ao

1, · · · , Ao
j−1, QBA

o
j , A

o
j+1, · · · , Ao

M )

= κ(g, b,N,M, p) dΩg,b,N,M
p−1 (Ac

1, · · · , Ac
N ;Ao

1, · · · , Ao
M ) , (2.6)

where κ is an appropriate sign factor about which we shall say more later. The identity

is derived by deforming the integration contour used in defining QB away from the vertex

operators and making it act on the ghosts / PCO insertions. This generates insertion of

stress tensor in the correlation function which in turn has the interpretation of an exterior

derivative acting on Ωp−1. The phase κ could in principle differ from the corresponding

result in the closed string case from having to move odd operators through open string

vertex operators. It can be determined by careful analysis as in [10], but we shall extract

the relevant information using an indirect approach to be described later. A special role

will be played by Ωg,b,N,M
6g−6+3b+2N+M since the dimension of the moduli space Mg,b,N,M is

given by 6g − 6 + 3b+ 2N +M .

As in the case of closed (super-)string field theory reviewed in [1], we introduce the

notion of a generalized section of P̃g,b,N,M by extending the notion of a section. A general-

ized section can be a formal weighted average of many sections — with the understanding

that integral over such a generalized section will be given by the weighted average of the

integral over the corresponding sections. Unlike a regular section, a generalized section may

also contain vertical segments across which the PCO locations jump discontinuously. The
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integral of Ωg,b,N,M
6g−6+3b+2N+M over such vertical segments will have to be defined by adding

to the integral over the continuous part of the section some correction terms described

in [33, 34].

The ability to include vertical segments in the generalized section plays a crucial role

in open-closed string field theory — it allows us to choose generalized sections that can

jump between the different branches of P̃g,b,N,M mentioned earlier. This is done by moving

one or more PCOs from the bulk to a boundary across a vertical segment [33, 34]. Since on

the boundary the holomorphic and anti-holomorphic PCOs are identical, we can replace

holomorphic PCOs by anti-holomorphic PCOs (or vice versa) and then move them to the

desired positions in the bulk across another vertical segment. Such jumps may be necessary

in order to ensure that near various boundaries of the moduli space, the generalized section

factorizes correctly into the direct product of the sections on the component Riemann

surfaces to which the original Riemann surface degenerates.

For defining {· · · } we also need the notion of a section segment where we remove from

the base Mg,b,N,M certain codimension zero regions and then erect a generalized section on

this truncated space. Even though we drop the word generalized for brevity, it should be

understood that the section segments we shall be working with refer to generalized section

segments, allowing us to take weighted averages and vertical segments. Each such section

segment represents a family of punctured Riemann surfaces equipped with a choice of local

coordinates at the punctures and the choice of PCO locations. We shall now define two

operations on section segments that will be important for us:

1. Sewing. Let us take a pair of section segments, one in P̃g,b,N,M and the other in

P̃g′,b′,N ′,M ′ . Each represents a family of Riemann surfaces equipped with choice of

local coordinates at the punctures and PCO locations. We can now construct a new

section segment by sewing them at a pair of punctures — one from each section

segment. If the sewing is done at a bulk puncture, then this means that we take a

Riemann surface from one family and sew one of its punctures to a puncture on the

Riemann surface from the other family by making the identification

w1w2 = e−s−iθ, 0 ≤ s ≤ ∞, 0 ≤ θ < 2π , (2.7)

where w1 and w2 are the local coordinates at the respective punctures. For sewing

at a pair of boundary punctures the analog of (2.7) takes the form

w1w2 = −e−s . (2.8)

In both cases, we also insert a factor of G defined in (1.9) around the origin of the

w1 (or the w2) coordinate system. Doing this operation for each element of the

first section segment and each element of the second section segment, we generate a

family of new Riemann surfaces equipped with local coordinates at the punctures and

choice of PCO locations, producing a new section segment. When the sewing is done

at a pair of bulk punctures via (2.7), the resulting family of Riemann surfaces gives a

section segment of P̃g+g′,b+b′,N+N ′−2,M+M ′ . On the other hand for sewing at a pair of

boundary punctures via (2.8), we get a section segment of P̃g+g′,b+b′−1,N+N ′,M+M ′−2.
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2. Hole creation. Another way of producing a new section segment from a given one

is to sew a Riemann surface belonging to a section segment to a disc |z| ≤ 1 with one

bulk puncture, via the relation

w1w2 = e−s , (2.9)

where w1 is the local coordinate at the bulk puncture on the Riemann surface that is

being sewed and w2 is the local coordinate at the bulk puncture at the center of the

disc. We also need to insert a factor of Ĝ defined in (2.3) around the origin of the w1

or w2 coordinate system. Note the absence of the phase e−iθ even though we sew two

closed string punctures — this is related to the presence of a conformal Killing vector

on the one punctured disc. We shall take w2 to be related to the standard coordinate

z on the unit disc by w2 = eβz, where β is the positive constant that appeared in the

definition of {Ãc}D. In that case, hole creation is equivalent to inserting at a bulk

puncture on the Riemann surface the state (see (A.16))

− g2s e
−s(L0+L̄0)(b0 + b̄0)|[]D〉 = −gs e−(s+β)(L0+L̄0)P Ĝ (b0 + b̄0)|B〉 , 0 ≤ s ≤ ∞ .

(2.10)

The parameter s labels the extra modulus that appears when we replace a closed

string puncture by a boundary. If the original section segment belonged to P̃g,b,N,M ,

then the new section segment obtained by hole creation belongs to P̃g,b+1,N−1,M .

In bosonic open-closed string field theory the hole creation need not be described as

a separate operation, — it can be included in the sewing of a Riemann surface with

punctures to the disc with one bulk puncture. In open-closed superstring field theory

the disc with one bulk puncture requires special treatment since picture number

conservation makes the disc one point function of vertex operators in Hc vanish and

we need to pick vertex operators from H̃c.

The definition of {· · · } requires choice of section segments Rg,b,N,M of P̃g,b,N,M satis-

fying certain properties:

1. The projection of Rg,b,N,M on the base Mg,b,N,M must not contain any separating

type degeneration.

2. Rg,b,N,M must be symmetric under the exchange of punctures, separately for closed

strings and for open strings.

3. Given a set of section segments {Rg,b,N,M}, we can generate new section segments

from them by repeated application of sewing and hole creation. The demand we

make on Rg,b,N,M is that the formal sum of all of these section segments produces

a full generalized section whose projection to the base covers the full moduli space

Mg,b,N,M .

As in the case of closed superstring field theory described in [1], we can systematically

construct the section segments Rg,b,N,M ’s satisfying the above requirements as follows.

Since the sewing and hole creation operation always increase the dimension of the section

segment due to appearance of new parameters s or θ, we shall set up a recursive procedure
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for constructing Rg,b,N,M with the dimension of Rg,b,N,M as the recursion parameter. We

begin by making choices of R0,0,3,0, R0,1,0,3 and R0,1,1,1. In each of these cases the moduli

space is 0-dimensional, so the only choice we have to make is the choice of local coordinates

and PCO locations.6 We choose the local coordinates wi so that they are related to some

natural local coordinate z on these Riemann surfaces by large scaling: wi = eβi z with large

|βi|, so that |wi| = 1 describes a small circle around the puncture in the natural coordinates.

This is known as adding long stubs to the string vertices [35]. Similarly we choose the

parameter β appearing in the definition of {Ãc}D in (2.3) to be large. In order to make

Rg,b,N,M symmetric under the exchange of punctures, we may need to average over different

choices of local coordinates and / or PCO locations — this is allowed since we only require

Rg,b,N,M to be a generalized section segment. We now focus on Rg,b,N,M ’s whose expected

dimension is 1, e.g. R0,1,0,4, R0,1,1,2, R0,1,2,0 and R0,2,0,1. For any such g, b,N,M , we first

determine all section segments obtained by sewing or hole creation operation involving zero

dimensional Rg′,b′,N ′,M ′ . As long as the zero dimensional Rg′,b′,N ′,M ′ have been constructed

by adding long stubs, sewing and hole creation of the corresponding section segments will

generate one dimensional section segments of P̃g,b,N,M , whose projection on the base covers

only small regions in Mg,b,N,M around separating type degenerations, leaving behind large

gaps. We now choose one dimensional Rg,b,N,M to ‘fill the gap’ so that together we have a

complete generalized section of P̃g,b,N,M . There is clearly a lot of freedom since the section

segments generated by sewing or hole creation of zero dimensional Rg′,b′,M ′,N ′ only fix the

boundaries of one dimensional Rg,b,N,M , by requiring them to match the s = 0 boundaries

of the sewing operation (2.8) or hole creation operation (2.9). In the interior we can choose

local coordinates / PCO locations arbitrarily, subject to the restriction that the local

coordinates should carry long stubs, and the PCOs must avoid spurious poles [36] by finite

margin [1]. We now repeat the process, generating all the two dimensional section segments

by sewing and hole creation of the section segments of lower dimensional Rg′,b′,N ′,M ′ ’s and

then choose the two dimensional Rg,b,N,M ’s by filing the gap. This procedure can be

repeated to generate all the Rg,b,N,M ’s.

Note that allowing Rg,b,N,M to be generalized section segments is crucial for this con-

struction. We have already mentioned that making it symmetric under the exchange of

punctures may require averaging over different choices of local coordinates and/or PCO lo-

cations. Furthermore the boundaries of Rg,b,N,M , fixed by sewing or hole creation in lower

dimensional Rg′,b,M ′,N ′ ’s, are often generalized sections since they often have insertion of

the operator G or Ĝ involving average of PCO insertions on a circle.

For the purpose of our analysis we shall not need the explicit form of Rg,b,N,M ’s.

Explicit construction of such Rg,b,N,M ’s can be done using minimal area metric [8] or

hyperbolic metric [37–39], but any other choice satisfying the above requirements will also

be acceptable for our construction. We now define:

{Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} (2.11)

≡
∑

g,b≥0
(g,b) 6=(0,1) for (N,M)=(1,0)

(gs)
2g−2+b

∫

Rg,b,N,M

Ωg,b,N,M
6g−6+3b+2N+M (Ac

1, · · · , Ac
N ;Ao

1, · · · , Ao
M ) .

6Note that R0,0,n,0 and R0,1,0,n are empty for n ≤ 2.
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The proof of the main identity (1.16) can now be given as follows. It is clear from (2.11)

that the left hand side of the main identity is given by

∑

g,b≥0
(g,b) 6=(0,1) for (N,M)=(1,0)

(gs)
2g−2+b

∫

Rg,b,N,M

l.h.s. of (2.6) with p = 6g − 6 + 3b+ 2N +M .

(2.12)

We can now use (2.6) to express this as

∑

g,b≥0
(g,b) 6=(0,1) for (N,M)=(1,0)

(gs)
2g−2+b

∫

∂Rg,b,N,M

κg,b,N,M Ωg,b,N,M
6g−7+3b+2N+M (Ac

1, · · · , Ac
N ;Ao

1, · · · , Ao
M ) ,

(2.13)

where κg,b,N,M ≡ κ(g, b,N,M, 6g − 6 + 3b + 2N +M). From the definition of Rg,b,N,M

given above, it follows that ∂Rg,b,N,M must match onto the s = 0 boundary of one of the

three sewing operations (2.7), (2.8), (2.9) acting on (a pair of) Rg′,b′,N ′,M ′ . The standard

arguments in conformal field theory now show that up to signs, the s = 0 boundary of

the operation (2.7) produces the term involving Bc on the right hand side of (1.16), the

s = 0 boundary of the operation (2.8) produces the term involving Bo on the right hand

side of (1.16), and the s = 0 boundary of the operation (2.9) produces the term involving

{[· · · ]}D on the right hand side of (1.16). The signs can be determined by careful analysis as

in [10] since there is no essential difference between bosonic and superstring theories here,

the open string fields being grassmann odd in both cases. However we shall determine the

signs by an indirect argument. We outline below the general strategy, leaving the detailed

analysis to appendix A.

First of all, the fact that using (1.16) we can prove gauge invariance of the action, as

shown in section 3, provides an indirect evidence for the correctness of the signs of the terms

on the right hand side of (1.16). We can provide a more direct argument for these signs

using the factorization property of string amplitudes as follows. Factorization property tells

us that near the separating type degeneration, the integrand of a string amplitude breaks

into a sum of products of the integrands associated with the component Riemann surfaces

into which the original Riemann surface degenerates. This property is needed to ensure

that the contribution to the amplitude from the region near a separating type degeneration

has the interpretation of a pair of string amplitudes connected by a propagator. This can be

used to fix any phase ambiguity in the integrand of a string amplitude by relating it to the

product of the phases of amplitudes at lower genus / with lower number of punctures. We

shall show in appendix A that if the phases of the amplitudes are fixed this way, then (2.13)

gives precisely the right hand side of the main identity (1.16) without any extra sign.

Other properties of {· · · } and [· · · ]c,o described in section 1 can be proved easily.

For example, symmetry of {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} under arbitrary exchanges Ac
i ↔ Ac

j

and Ao
k ↔ Ao

ℓ follows immediately from the symmetry of Rg,b,N,M under permuta-

tion of bulk punctures and of boundary punctures. Put another way, the definition of

{Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} involves explicit symmetrization under Ac
i ↔ Ac

j and Ao
k ↔ Ao

ℓ .

The fact that {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} and {Ãc}D are grassmann even can be proved itera-

tively by starting with an amplitude with no external states (or, for low genus, amplitudes
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with minimal number of external states needed for removing the conformal Killing vectors)

and then noting that the addition of a grassmann even closed string state is accompanied

by two insertions of b-ghosts in the correlator, while the addition of a grassmann odd open

string is accompanied by one insertion of b-ghost. Therefore the grassmann parity of the

correlator remains unchanged under these operations. This is also consistent with the fact

that in order to get a non-zero result for an amplitude, the total number of grassmann

odd component fields (coming from space-time ghosts, fermions etc.) must be even. The

identities (1.6)–(1.8) can be proved using (1.5). For example we can express the left hand

side of (1.6) as:

{Ac
1 · · ·Ac

k G[Bc
1 · · ·Bc

ℓ ;C
o
1 · · ·Co

m]c;Do
1 · · ·Do

n}
= 〈G[Bc

1 · · ·Bc
ℓ ;C

o
1 · · ·Co

m]c|c−0 |[Ac
1 · · ·Ac

k;D
o
1 · · ·Do

n]
c〉

= 〈[Bc
1 · · ·Bc

ℓ ;C
o
1 · · ·Co

m]c|c−0 G|[Ac
1 · · ·Ac

k;D
o
1 · · ·Do

n]
c〉

= 〈G[Ac
1 · · ·Ac

k;D
o
1 · · ·Do

n]
c|c−0 |[Bc

1 · · ·Bc
ℓ ;C

o
1 · · ·Co

m]c〉
= {Bc

1 · · ·Bc
ℓ G[Ac

1 · · ·Ac
k;D

o
1 · · ·Do

n]
c;Co

1 · · ·Co
m} , (2.14)

where in the second step we have used the fact that the both [· · · ]c in (2.14) are grassmann

odd. This establishes the symmetry property (1.6). The other identities (1.7), (1.8) can

be proven in a similar manner.

3 Gauge invariance of the 1PI action

In this section we shall prove the invariance of the 1PI action given in (1.13) under the

gauge transformation (1.14). The corresponding result for bosonic string field theory of

open and closed strings follows from this by setting Ψ̃ = Ψ, Λ̃ = Λ and G = 1.

Under the gauge transformation (1.14), the variation in the action (1.13) is given by

δS1PI = − 1

g2s
〈Ψ̃c|c−0 QBG|δΨ̃c〉+ 1

g2s
〈δΨ̃c|c−0 QB|Ψc〉+ 1

g2s
〈Ψ̃c|c−0 QB|δΨc〉

− 1

gs
〈Ψ̃o|QBG|δΨ̃o〉+ 1

gs
〈δΨ̃o|QB|Ψo〉+ 1

gs
〈Ψ̃o|QB|δΨo〉

+ {δΨ̃c}D +
∞∑

N=1

∞∑

M=0

N

N !M !
{(Ψc)N−1δΨc; (Ψo)M}

+

∞∑

N=0

∞∑

M=1

M

N !M !
{(Ψc)N ; δΨo(Ψo)M−1} , (3.1)

where we used the identity

〈δΨ̃c|c−0 QBG|Ψc〉 = 〈Ψ̃c|c−0 QBG|δΨ̃c〉 ,

〈δΨ̃o|QBG|Ψ̃o〉 = 〈Ψ̃o|QBG|δΨ̃o〉 . (3.2)

We shall analyze separately the effect of the transformations generated by Λ̃c, Λ̃o, Λc and

Λo. First we consider the gauge transformation parametrized by Λ̃c in (1.14). Using Q2
B = 0
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we see that the variation of the action is given by

δ̃cS1PI = {QBΛ̃
c}D . (3.3)

But this vanishes by the identity (1.15). Similarly, the variation of the action parametrized

by Λ̃o in (1.14) vanishes identically:

δ̃oS1PI = 0 . (3.4)

For the gauge transformation parametrized by Λc, we have, from (1.14),

δcS1PI = −
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃c|c−0 QBG|[Λc(Ψc)N ; (Ψo)M ]c〉 (3.5)

+
∑

N≥0

∑

M≥0

1

N !M !
〈[Λc(Ψc)N ; (Ψo)M ]c|c−0 QB|Ψc〉

+
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃c|c−0 QBG|[Λc(Ψc)N ; (Ψo)M ]c〉

+
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃o|QBG|[Λc(Ψc)N ; (Ψo)M ]o〉

−
∑

N≥0

∑

M≥0

1

N !M !
〈[Λc(Ψc)N ; (Ψo)M ]o|QB|Ψo〉

−
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃o|QBG|[Λc(Ψc)N ; (Ψo)M ]o〉

+g2s
∑

N≥0

∑

M≥0

1

N !M !
{[Λc(Ψc)N ; (Ψo)M ]c}D

+

∞∑

N=1

∞∑

M=0

1

(N − 1)!M !
{(Ψc)N−1QBΛ

c; (Ψo)M}

+
∞∑

N=1

∞∑

M=0

∑

P≥0

∑

Q≥0

g2s
(N − 1)!M !P !Q!

{(Ψc)N−1G[Λc(Ψc)P ; (Ψo)Q]c; (Ψo)M}

−
∞∑

N=0

∞∑

M=1

∑

P≥0

∑

Q≥0

gs
N !(M − 1)!P !Q!

{(Ψc)N ;G[Λc(Ψc)P ; (Ψo)Q]o(Ψo)M−1} .

The first and 3rd terms cancel each other while 4th and 6th terms cancel each other. After

using (1.5) we are left with

δcS1PI =
∑

N≥0

∑

M≥0

1

N !M !
{(QBΨ

c)Λc(Ψc)N ; (Ψo)M} (3.6)

−
∑

N≥0

∑

M≥0

1

N !M !
{Λc(Ψc)N ; (QBΨ

o)(Ψo)M}

+g2s
∑

N≥0

∑

M≥0

1

N !M !
{[Λc(Ψc)N ; (Ψo)M ]c}D
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+
∞∑

N=1

∞∑

M=0

1

(N − 1)!M !
{(Ψc)N−1QBΛ

c; (Ψo)M}

+

∞∑

N=1

∞∑

M=0

∑

P≥0

∑

Q≥0

g2s
(N − 1)!M !P !Q!

{(Ψc)N−1G[Λc(Ψc)P ; (Ψo)Q]c; (Ψo)M}

−
∞∑

N=0

∞∑

M=1

∑

P≥0

∑

Q≥0

gs
N !(M − 1)!P !Q!

{(Ψc)N ;G[Λc(Ψc)P ; (Ψo)Q]o(Ψo)M−1} .

Now, we specialize the identity (1.16) to the following case

Ac
i = Ψc for i = 1, · · · , N − 1 ,

Ac
N = ζΛc ,

Ao
j = Ψo for j = 1, · · · ,M , (3.7)

where ζ is a grassmann odd c-number. This gives

(N − 1)
{
QBΨ

c(Ψc)N−2ζΛc; (Ψo)M
}
+
{
(Ψc)N−1QBζΛ

c; (Ψo)M
}

+M
{
(Ψc)N−1ζΛc; (QBΨ

o)(Ψo)M−1
}

= −
N−1∑

k=0

M∑

ℓ=0

(
N − 1

k

)(
M

ℓ

)(
g2s
{
(Ψc)kG[(Ψc)N−1−kζΛc; (Ψo)M−ℓ]c; (Ψo)ℓ

}

+ gs
{
(Ψc)k;G[(Ψc)N−1−kζΛc; (Ψo)M−ℓ]o(Ψo)ℓ

})

−g2s{[(Ψc)N−1ζΛc; (Ψo)M ]c}D . (3.8)

In writing the above equation, we have used the identities (1.6), (1.7). Now, bring-

ing the grassmann odd parameter ζ to the extreme left, multiplying the expression by

{(N − 1)!M !}−1, and summing over M and N , we obtain

0 =
∑

M≥0

∑

N≥2

1

(N − 2)!M !

{
QBΨ

c(Ψc)N−2Λc; (Ψo)M
}

+
∑

M≥0

∑

N≥1

1

(N − 1)!M !

{
(Ψc)N−1QBΛ

c; (Ψo)M
}

−
∑

M≥0

∑

N≥1

1

(N − 1)!(M − 1)!

{
(Ψc)N−1Λc; (QBΨ

o)(Ψo)M−1
}

+
∑

M≥0

∑

N≥1

N−1∑

k=0

M∑

ℓ=0

1

(N−1−k)!(M−ℓ)!ℓ!k!
(
g2s
{
(Ψc)kG[(Ψc)N−1−kΛc; (Ψo)M−ℓ]c; (Ψo)ℓ

}

− gs
{
(Ψc)k;G[(Ψc)N−1−kΛc; (Ψo)M−ℓ]o(Ψo)ℓ

})

+g2s
∑

M≥0

∑

N≥1

1

(N − 1)!M !
{[(Ψc)N−1Λc; (Ψo)M ]c}D . (3.9)

After redefining the sums appropriately, we see that the right hand side of the above

equation is precisely the gauge transformation δcS1PI given in (3.6). This proves gauge
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invariance under the transformation generated by Λc:

δcS1PI = 0 . (3.10)

Finally, we consider the variation of the action under the gauge transformation

parametrized by Λo. The variation of the action is given by

δoS1PI = −
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃c|c−0 QBG|[(Ψc)N ; Λo(Ψo)M ]c〉 (3.11)

+
∑

N≥0

∑

M≥0

1

N !M !
〈[(Ψc)N ; Λo(Ψo)M ]c|c−0 QB|Ψc〉

+
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃c|c−0 QBG|[(Ψc)N ; Λo(Ψo)M ]c〉

+
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃o|QBG|[(Ψc)N ; Λo(Ψo)M ]o〉

−
∑

N≥0

∑

M≥0

1

N !M !
〈[(Ψc)N ; Λo(Ψo)M ]o|QB|Ψo〉

−
∑

N≥0

∑

M≥0

1

N !M !
〈Ψ̃o|QBG|[(Ψc)N ; Λo(Ψo)M ]o〉

+g2s
∑

N≥0

∑

M≥0

1

N !M !
{[(Ψc)N ; Λo(Ψo)M ]c}D

+
∞∑

N=0

∞∑

M=1

1

(M − 1)!N !
{(Ψc)N ;QBΛ

o(Ψo)M−1}

+

∞∑

N=1

∞∑

M=0

∑

P≥0

∑

Q≥0

g2s
(N − 1)!M !P !Q!

{(Ψc)N−1G[(Ψc)P ; Λo(Ψo)Q]c; (Ψo)M}

−
∞∑

N=0

∞∑

M=1

∑

P≥0

∑

Q≥0

gs
N !(M − 1)!P !Q!

{(Ψc)N ;G[(Ψc)P ; Λo(Ψo)Q]o(Ψo)M−1} .

Again, the first and third terms cancel each other and the fourth and sixth terms cancel

each other. After using (1.5), we are left with

δoS1PI =
∑

N≥0

∑

M≥0

1

N !M !
〈{(QBΨ

c)(Ψc)N ; Λo(Ψo)M} (3.12)

−
∑

N≥0

∑

M≥0

1

N !M !
{(Ψc)N ; (QBΨ

o)Λo(Ψo)M}

+g2s
∑

N≥0

∑

M≥0

1

N !M !
{[(Ψc)N ; Λo(Ψo)M ]c}D

+
∞∑

N=0

∞∑

M=1

1

(M − 1)!N !
{(Ψc)N ;QBΛ

o(Ψo)M−1}
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+g2s

∞∑

N=1

∞∑

M=0

∑

P≥0

∑

Q≥0

1

(N − 1)!M !P !Q!
{(Ψc)N−1G[(Ψc)P ; Λo(Ψo)Q]c; (Ψo)M}

−gs
∞∑

N=0

∞∑

M=1

∑

P≥0

∑

Q≥0

1

N !(M − 1)!P !Q!
{(Ψc)N ;G[(Ψc)P ; Λo(Ψo)Q]o(Ψo)M−1} .

Now, we specialize the identity (1.16) to the following case

Ao
i = Ψo for i = 1, · · · ,M − 1 ,

Ao
N = ζΛo ,

Ac
j = Ψc for j = 1, · · · , N , (3.13)

for some grassmann odd c-number ζ. This gives

N
{
QBΨ

c(Ψc)N−1; ζΛo(Ψo)M−1
}
+
{
(Ψc)N ; (QBζΛ

o)(Ψo)M−1
}

+(M − 1)
{
(Ψc)N ; (QBΨ

o)ζΛo(Ψo)M−1
}

= −
N∑

k=0

M−1∑

ℓ=0

(
N

k

)(
M − 1

ℓ

)(
g2s
{
(Ψc)kG[(Ψc)N−k; ζΛo(Ψo)M−ℓ−1]c; (Ψo)ℓ

}

+gs
{
(Ψc)k;G[(Ψc)N−1−k; ζΛo(Ψo)M−ℓ−1]o(Ψo)ℓ

})

−g2s{[(Ψc)N ; ζΛo(Ψo)M−1]c}D . (3.14)

Bringing the grassmann odd parameter ζ to extreme left and summing over M and N after

multiplying with {N !(M − 1)!}−1, we get

0 =
∑

N≥1

∑

M≥1

1

(N − 1)!(M − 1)!

{
(QBΨ

c)(Ψc)N−1; Λo(Ψo)M−1
}

+
∑

N≥0

∑

M≥1

1

N !(M − 1)!

{
(Ψc)N ; (QBΛ

o)(Ψo)M−1
}

−
∑

N≥0

∑

M≥2

1

N !(M − 2)!

{
(Ψc)N ; (QBΨ

o)Λo(Ψo)M−2
}

+
∑

N≥0

∑

M≥1

N∑

k=0

M−1∑

ℓ=0

1

(N−k)!(M−ℓ−1)!k!ℓ!

(
g2s
{
(Ψc)kG[(Ψc)N−k; Λo(Ψo)M−ℓ−1]c; (Ψo)ℓ

}

−gs
{
(Ψc)k;G[(Ψc)N−1−k; Λo(Ψo)M−ℓ−1]o(Ψo)ℓ

})

+g2s
∑

N≥0

∑

M≥1

1

N !(M − 1)!
{[(Ψc)N ; Λo(Ψo)M−1]c}D . (3.15)

After redefining the sums and comparing with (3.12), we find

δoS1PI = 0 . (3.16)

This completes the proof of gauge invariance of the 1PI effective action.

– 22 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
3

4 Classical BV master equation for the 1PI action

We shall now show that the 1PI effective action satisfies the classical BV master equa-

tion [8, 10, 40, 41]. For this, we first identify the fields and anti-fields of the theory. This

is done by dividing the Hilbert spaces as follows

Hc = Hc
+ ⊕Hc

− , H̃c = H̃c
+ ⊕ H̃c

− ,

Ho = Ho
+ ⊕Ho

− , H̃o = H̃o
+ ⊕ H̃o

− , (4.1)

such that the states in Hc
+ and H̃c

+ have world-sheet ghost number ≥ 3, the states in

Hc
− and H̃c

− have world-sheet ghost number ≤ 2, the states in Ho
+ and H̃o

+ have world-

sheet ghost number ≥ 2 and the states in Hc
− and H̃c

− have the world-sheet ghost number

≤ 1. We denote the basis states of Hc
+, Hc

−, H̃c
+, and H̃c

− by |ϕr
+〉, |ϕ−

r 〉, |ϕ̃r
+〉 and |ϕ̃−

r 〉
respectively. They are chosen to satisfy orthonormality and completeness conditions:

〈ϕ̃r
+|c−0 |ϕ−

s 〉 = δrs = 〈ϕ−
s |c−0 |ϕ̃r

+〉, 〈ϕr
+|c−0 |ϕ̃−

s 〉 = δrs = 〈ϕ̃−
s |c−0 |ϕr

+〉,
|ϕ−

r 〉〈ϕ̃r
+|+ |ϕr

+〉〈ϕ̃−
r | = b−0 = |ϕ̃r

+〉〈ϕ−
r |+ |ϕ̃−

r 〉〈ϕr
+| . (4.2)

Similarly, we denote the basis states of Ho
+, Ho

−, H̃o
+, and H̃o

− by |φr+〉, |φ−r 〉, |φ̃r+〉 and |φ̃−r 〉
respectively. They satisfy orthonormality and completeness conditions:

〈φ̃r+|φ−s 〉 = δrs = 〈φ−s |φ̃r+〉, 〈φr+|φ̃−s 〉 = δrs = 〈φ̃−s |φr+〉,
|φ−r 〉〈φ̃r+|+ |φr+〉〈φ̃−r | = 1 = |φ̃r+〉〈φ−r |+ |φ̃−r 〉〈φr+| . (4.3)

The closed string fields are expanded as7

|Ψ̃c〉 = gs
∑

r

(−1)ϕ̃
−
r (ψ̃c)r|ϕ̃−

r 〉 − gs
∑

r

(ψc)∗r |ϕ̃r
+〉 ,

|Ψc〉 − 1

2
G|Ψ̃c〉 = gs

∑

r

(−1)ϕ
−
r (ψc)r|ϕ−

r 〉 − gs
∑

r

(ψ̃c)∗r |ϕr
+〉 , (4.4)

where ϕ in the exponent for any state |ϕ〉 denotes the grassmann parity of the vertex

operator ϕ, taking value 0 for even operators and 1 for odd operators. We define the target

space ghost number of the coefficient fields by g = 2 − G where G denotes the world-

sheet ghost number of the corresponding basis states. This means that the coefficients

(ψc)r, (ψ̃c)r have target space ghost numbers ≥ 0 whereas the coefficients (ψc)∗r and (ψ̃c)∗r
have target space ghost numbers ≤ −1. In the BV quantization, the (ψc)r and (ψ̃c)r will be

interpreted as fields whereas (ψc)∗r and (ψ̃c)∗r will be interpreted as anti-fields. The factors

of gs in (4.4) ensure that in the action (ψc)r, (ψ̃c)r, (ψc)∗r and (ψ̃c)∗r have conventionally

normalized kinetic terms.

In a similar way, we expand the open string fields as

|Ψ̃o〉 = g1/2s

∑

r

(ψ̃o)r |φ̃−r 〉+ g1/2s

∑

r

(−1)φ̃
r
++1(ψo)∗r |φ̃r+〉 ,

|Ψo〉 − 1

2
G|Ψ̃o〉 = g1/2s

∑

r

(ψo)r |φ−r 〉+ g1/2s

∑

r

(−1)φ
r
++1(ψ̃o)∗r |φr+〉 . (4.5)

7in these equations * denotes anti-fields and not complex conjugation.
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We define the target space ghost number of the coefficient fields by g = 1 − G where G

denotes the world-sheet ghost number of the corresponding basis states. This means that

the coefficients (ψo)r, (ψ̃o)r have target space ghost numbers ≥ 0 whereas the coefficients

(ψo)∗r and (ψ̃o)∗r have target space ghost numbers ≤ −1. In the BV quantization, (ψo)r and

(ψ̃o)r will be interpreted as fields whereas (ψo)∗r and (ψ̃o)∗r will be interpreted as anti-fields.

The BV anti-bracket between any two functions F and G of the fields is given by

(F,G) =
∂RF

∂ψr

∂LG

∂ψ∗
r

− ∂RF

∂ψ∗
r

∂LG

∂ψr
, (4.6)

where ψr stand for all the fields (ψc)r, (ψ̃c)r, (ψo)r and (ψ̃o)r and ψ∗
r stand for all the

anti-fields (ψc)∗r , (ψ̃c)∗r , (ψo)∗r and (ψ̃o)∗r . ∂L and ∂R denotes left and right derivatives

respectively. If for an arbitrary function F (Ψc, Ψ̃c,Ψo, Ψ̃o), one expresses the first order

variation as

δF = 〈F c
R|c−0 |δΨ̃c〉+ 〈F̃ c

R|c−0 |δΨc〉+ 〈F o
R|δΨ̃o〉+ 〈F̃ o

R|δΨo〉
= 〈δΨ̃c|c−0 |F c

L〉+ 〈δΨc|c−0 |F̃ c
L〉+ 〈δΨ̃o|F o

L〉+ 〈δΨo|F̃ o
L〉 , (4.7)

then using (4.4), (4.5), (4.6), one can express the anti-bracket as

(F,G) = −g2s
(
〈F c

R|c−0 |G̃c
L〉+ 〈F̃ c

R|c−0 |Gc
L〉+ 〈F̃ c

R|c−0 G|G̃c
L〉
)

−gs
(
〈F o

R|G̃o
L〉+ 〈F̃ o

R|Go
L〉+ 〈F̃ o

R|G|G̃o
L〉
)
. (4.8)

Our goal will be to verify that the action (1.13) satisfies the classical BV master

equation:

(S1PI , S1PI) = 0 . (4.9)

For this we need to compute the quantities Sc,o
R , Sc,o

L , S̃c,o
R and S̃c,o

L using the definition (4.7).

The variation of the action (1.13) under an arbitrary deformation of the fields is given by

δS1PI = − 1

g2s
〈δΨ̃c|c−0 QBG|Ψ̃c〉+ 1

g2s
〈δΨ̃c|c−0 QB|Ψc〉+ 1

g2s
〈δΨc|c−0 QB|Ψ̃c〉

− 1

gs
〈δΨ̃o|QBG|Ψ̃o〉+ 1

gs
〈δΨ̃o|QB|Ψo〉+ 1

gs
〈δΨo|QB|Ψ̃o〉+ 〈δΨ̃c|c−0 |[ ]D〉

+
∞∑

N=1

∞∑

M=0

1

(N − 1)!M !

〈
δΨc|c−0 |[(Ψc)N−1; (Ψo)M ]c

〉

+
∞∑

N=0

∞∑

M=1

1

N !(M − 1)!
〈δΨo|[(Ψc)N ; (Ψo)M−1]o〉 . (4.10)
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This gives,

|Sc
L〉 = − 1

g2s
QBG|Ψ̃c〉+ 1

g2s
QB|Ψc〉+ |[ ]D〉 ,

|S̃c
L〉 =

1

g2s
QB|Ψ̃c〉+

∞∑

N=0

∞∑

M=0

1

N !M !

∣∣[(Ψc)N ; (Ψo)M ]c
〉
,

|So
L〉 = − 1

gs
QBG|Ψ̃o〉+ 1

gs
QB|Ψo〉 ,

|S̃o
L〉 =

1

gs
QB|Ψ̃o〉+

∞∑

N=0

∞∑

M=0

1

N !M !

∣∣[(Ψc)N ; (Ψo)M ]o
〉
. (4.11)

The variation (4.10) can also be written as

δS1PI = − 1

g2s
〈Ψ̃c|c−0 QBG|δΨ̃c〉+ 1

g2s
〈Ψc|c−0 QB|δΨ̃c〉+ 1

g2s
〈Ψ̃c|c−0 QB|δΨc〉

− 1

gs
〈Ψ̃o|QBG|δΨ̃o〉+ 1

gs
〈Ψo|QB|δΨ̃o〉+ 1

gs
〈Ψ̃o|QB|δΨo〉+ 〈[ ]D|c−0 |δΨ̃c〉

+

∞∑

N=1

∞∑

M=0

1

(N − 1)!M !

〈
[(Ψc)N−1; (Ψo)M ]c|c−0 |δΨc

〉

+
∞∑

N=0

∞∑

M=1

1

N !(M − 1)!
〈[(Ψc)N ; (Ψo)M−1]o|δΨo〉 . (4.12)

This gives

〈Sc
R| =

1

g2s
〈Ψ̃c|QBG − 1

g2s
〈Ψc|QB + 〈[ ]D| ,

〈S̃c
R| = − 1

g2s
〈Ψ̃c|QB +

∞∑

N=0

∞∑

M=0

1

N !M !

〈
[(Ψc)N ; (Ψo)M ]c

∣∣ ,

〈So
R| = − 1

gs
〈Ψ̃o|QBG +

1

gs
〈Ψo|QB ,

〈S̃o
R| =

1

gs
〈Ψ̃o|QB +

∞∑

N=0

∞∑

M=0

1

N !M !

〈
[(Ψc)N ; (Ψo)M ]o

∣∣ , (4.13)

in the convention that the operators QB and G act on the right even though they are to

the right of a bra state. Using (4.8), (1.5), (1.15) and Q2
B = 0, we now get

−(S1PI , S1PI) = 2
∞∑

N=0

∞∑

M=0

1

N !M !
{QBΨ

c(Ψc)N ; (Ψo)M}

+2
∞∑

N=0

∞∑

M=0

1

N !M !
{(Ψc)N ;QBΨ

o(Ψo)M}

+g2s

∞∑

N=0

∞∑

M=0

∞∑

P=0

∞∑

Q=0

1

N !M !P !Q!
{G[(Ψc)N ; (Ψo)M ]c(Ψc)P ; (Ψo)Q}
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+gs

∞∑

N=0

∞∑

M=0

∞∑

P=0

∞∑

Q=0

1

N !M !P !Q!
{(Ψc)P ;G[(Ψc)N ; (Ψo)M ]o(Ψo)Q}

+2 g2s

∞∑

N=0

∞∑

M=0

1

N !M !
{[(Ψc)N ; (Ψo)M ]c}D . (4.14)

If we specialize the main identity (1.16) to the case

Ac
i = Ψc , i = 1, · · · , N ,

Ao
i = Ψo , i = 1, · · · ,M , (4.15)

we obtain

N
{
QBΨ

c(Ψc)N−1; (Ψo)M
}
+M

{
(Ψc)N ;QBΨ

o(Ψo)M−1
}

= −1

2

N∑

k=0

M∑

ℓ=0

(
N

k

)(
M

ℓ

)(
g2s
{
(Ψc)kG[(Ψc)N−k; (Ψo)M−ℓ]c; (Ψo)ℓ

}

+gs
{
(Ψc)k;G[(Ψc)N−k; (Ψo)M−ℓ]o(Ψo)ℓ

})

−g2s{[(Ψc)N ; (Ψo)M ]c}D . (4.16)

Multiplying by 1
N !M ! and summing over N and M from 0 to ∞, we get

0 = 2

∞∑

N=0

∞∑

M=0

1

N !M !

{
QBΨ

c(Ψc)N ; (Ψo)M
}
+2

∞∑

N=0

∞∑

M=0

1

N !M !

{
(Ψc)N ;QBΨ

o(Ψo)M
}

+
∞∑

N=0

∞∑

M=0

N∑

k=0

M∑

ℓ=0

1

(N − k)!(M − ℓ)!k!ℓ!

(
g2s
{
(Ψc)kG[(Ψc)N−k; (Ψo)M−ℓ]c; (Ψo)ℓ

}

+gs
{
(Ψc)k;G[(Ψc)N−k; (Ψo)M−ℓ]o(Ψo)ℓ

})

+2g2s

∞∑

N=0

∞∑

M=0

1

N !M !
{[(Ψc)N ; (Ψo)M ]c}D . (4.17)

By redefining the sums in the second line and comparing with the expression of anti-bracket

(S1PI , S1PI), we see that

(S1PI , S1PI) = 0 . (4.18)

Therefore the 1PI effective action satisfies the classical BV master equation.

The BV formalism also gives a way to derive the gauge transformation laws (1.14).

The classical BV master action — and therefore also the 1PI effective action — is known

to be invariant under gauge transformations that transform any function F of the string

fields |Ψc〉, |Ψ̃c〉, |Ψo〉 and |Ψ̃o〉 as [5],

δF = (F, (S,Λ)) , (4.19)

where Λ is any even function of the fields. Choosing

Λ=g−2
s

(
〈Ψ̃c|c−0 |Λc〉+ 〈Ψc|c−0 |Λ̃c〉−〈Ψ̃c|c−0 G|Λ̃c〉

)
+ g−1

s

(
〈Ψ̃o|Λo〉+ 〈Ψo|Λ̃o〉 − 〈Ψ̃o|G|Λ̃o〉

)
,

(4.20)

we reproduce the gauge transformation laws given in (1.14).
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5 Quantum BV master action

We can also write down the quantum BV master action for the combined open closed string

field theory following the procedure reviewed in [1]. It is given by

SBV = − 1

2g2s
〈Ψ̃c|c−0 QBG|Ψ̃c〉 +

1

g2s
〈Ψ̃c|c−0 QB|Ψc〉 − 1

2gs
〈Ψ̃o|QBG|Ψ̃o〉+ 1

gs
〈Ψ̃o|QB|Ψo〉

+{{Ψ̃c}}D +
∞∑

N=0

∞∑

M=0

1

N !M !
{{(Ψc)N ; (Ψo)M}} , (5.1)

where {{· · · }}, to be defined shortly, denotes the contribution to the off shell amplitude due

to the elementary interaction vertices of superstring field theory. {{Ãc}}D is defined exactly

in the same way as {Ãc}D. {{· · · }} is defined in a way similar to {· · · } given in (2.11), except

that the region of integration Rg,b,N,M is replaced by a smaller region Rg,b,N,M defined as

follows. Recall that we determine Rg,b,N,M by demanding that Rg,b,N,M ’s, together with all

section segments generated from Rg′,b′,N ′,M ′ ’s by repeated application of hole creation and

sewing punctures on different Riemann surfaces, generate complete generalized sections of

P̃g,b,N,M ’s whose bases cover the full moduli spaces Mg,b,N,M . For Rg,b,N,M we make a

similar demand, except that we now also allow sewing two punctures on the same Riemann

surface via the sewing relations (2.7) or (2.8). A systematic procedure for constructing

the Rg,b,N,M ’s can be developed along the same lines as for the Rg,b,N,M ’s, as described

in section 2. We begin with the dimension zero Rg,b,N,M ’s, which can be taken to be

identical to the dimension zero Rg,b,N,M ’s, and then begin building higher dimensional

section segments from the lower dimensional ones by sewing and hole creation operations

described in (2.7), (2.8) and (2.9). The only difference from the corresponding procedure

for the construction of Rg,b,N,M ’s is that we also allow sewing of punctures on the same

Riemann surface. After constructing all the section segments for a given g, b,N,M this

way, we ‘fill the gap’ by Rg,b,N,M so as to generate a full generalized section of P̃g,b,N,M .

The quantum BV master action (5.1), constructed this way, satisfies the quantum BV

master equation:
1

2
(SBV , SBV ) + ∆SBV = 0 , (5.2)

where the anti-bracket (, ) has been defined in (4.6), and

∆SBV =
∂R
∂ψr

∂LSBV

∂ψ∗
r

. (5.3)

Here ψr stand for all the fields (ψc)r, (ψ̃c)r, (ψo)r and (ψ̃o)r and ψ∗
r stand for all the anti-

fields (ψc)∗r , (ψ̃
c)∗r , (ψ

o)∗r and (ψ̃o)∗r . −(SBV , SBV ) is given by the right hand side of (4.14)

with { } replaced by {{ }}. Using (5.3) one finds that ∆S is given by:

∆S = −1

2
g2s

∞∑

N=0

∞∑

M=0

1

N !M !
{{(Ψc)Nϕsϕr; (Ψ

o)M}}〈ϕ̃s|c−0 G|ϕ̃r〉

−1

2
gs (−1)φs

∞∑

N=0

∞∑

M=0

1

N !M !
{{(Ψc)N ;φsφr(Ψ

o)M}}〈φ̃s|G|φ̃r〉 , (5.4)
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where |ϕr〉, ϕ̃r〉, |φr〉 and |φ̃r〉 are the basis states in Hc, H̃c, Ho and H̃o, normalized

according to (A.2), (A.9), and (−1)φs denotes grassmann parity of the state |φs〉. The BV

master equation (5.2) can be proved using a modified version of the main identity for {{ }}:

N∑

i=1

{{Ac
1 · · · , Ac

i−1(QBA
c
i )A

c
i+1 · · ·Ac

N |Ao
1 · · · , Ao

M}}

+
M∑

j=1

(−1)j−1{{Ac
1 · · ·Ac

N |Ao
1 · · ·Ao

j−1(QBA
o
j)A

o
j+1 · · ·Ao

M}}

= −1

2

N∑

k=0

∑

{i1,··· ,ik}⊂{1,··· ,N}

M∑

ℓ=0

∑

{j1,··· ,jℓ}⊂{1,··· ,M}

(
g2s{{Ac

i1 · · · , A
c
ik
Bc|Ao

j1 · · · , A
o
jℓ
}}

+gs{{Ac
i1 · · · , A

c
ik
|BoAo

j1 · · · , A
o
jℓ
}}
)

−g2s{{[Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M ]D}} −
1

2
g2s {{Ac

1 · · ·Ac
Nϕsϕr;A

o
1 · · · , Ao

M}}〈ϕ̃s|c−0 G|ϕ̃r〉

−1

2
gs (−1)φs {{Ac

1 · · ·Ac
N ;φsφrA

o
1 · · · , Ao

M}}〈φ̃s|G|φ̃r〉 . (5.5)

The proof of this follows the same analysis as used in section 2 and appendix A for the

proof of (1.16). The last two terms arise due to the fact that Rg,b,N,M has two extra sets of

boundaries compared to Rg,b,N,M , where two bulk punctures or two boundary punctures

on a lower dimensional Rg′,b′,N ′,M ′ are sewed via (2.7) or (2.8) with s = 0.

Given a set of Rg,b,N,M ’s satisfying the necessary conditions, we can construct a set

of Rg,b,N,M ’s by sewing the Rg′,b′,N ′,M ′ ’s with each other / itself via the sewing opera-

tions (2.7) and / or (2.8), subject to the constraint that if we omit one such operation, the

Riemann surface should not become disconnected. This is precisely the way we build the

1PI amplitudes from elementary vertices using Feynman diagram, with the sewing playing

the role of joining vertices by propagators. Rg,b,N,M ’s constructed this way automatically

satisfy the required conditions described in section 2.

6 Unoriented open-closed string field theory

Our construction of the 1PI effective action or BV master action holds for any superconfor-

mal field theory that we use to compute the correlation functions of vertex operators that

enter the definition of {Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} and {Ãc}D. Therefore the same construction

is valid for any compactification of type IIA or type IIB superstring field theory involving

NSNS background. The construction should also generalize to orientifolds where we have

unoriented strings, but there will be a few differences. The main difference will be that the

definitions of Hc, H̃c, Ho and H̃o will automatically include projection by the appropriate

orientifold operation. Therefore the sewing and hole creation operation will also have this

projection operator. For consistency, now we must also include non-orientable Riemann

surfaces in the construction of superstring field theory interaction vertex, — if we start

with an oriented Riemann surface and sew two of its punctures with the orientifold pro-

jection inserted, we shall generate a non-orientable surface. Together, the oriented and
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non-orientable surfaces that will be relevant for us are known as Klein surfaces. Review of

the essential results that we shall need can be found in [42–44] and has been summarized

in appendix B.

Due to the inclusion of non-orientable surfaces, we encounter a few differences from

the corresponding results in oriented open-closed string field theory.

1. Off-shell amplitudes now include sum over the moduli spaces of oriented and non-

orientable surfaces. The oriented surfaces are as usual characterized by their genus g

and the number of boundaries b, while the non-orientable surfaces are characterized

by the number of crosscaps c and the number of boundaries b [42], with the Euler

character given by b+c−2. Therefore in the definition (2.11) of {· · · }, the contribution
from the non-orientable surfaces must be weighted by a factor of (gs)

c+b−2, whereas

the contribution from the oriented surfaces continue to be weighted by (gs)
2g+b−2. We

shall often express such factors as (gs)
2g+b+c−2, with the understanding that oriented

surfaces will have c = 0 and non-orientable surfaces will have g = 0.

2. We shall now show that in the definition of {· · · } given in (2.11) we must also include

an extra factor of

2−g−(c+b)/2+M/4 , (6.1)

if we normalize Ωg,b,c,N,M in the same way as in the case of oriented string theories,

e.g. for c = 0, Ω is defined with the same normalization as for oriented string theory.

As we shall explain below, this extra factor (6.1) is needed to ensure that amplitudes

factorize correctly near degeneration.8

First let us consider the effect of sewing two bulk punctures on an oriented surface.

Now the sewing has a projection operator P = (1+W )/2 whereW is the operation of

world-sheet orientation reversal, possibly accompanied by some action on the space-

time. Insertion of 1 corresponds to the usual sewing via (2.7) and produces a handle.

The resulting Riemann surface is an oriented Riemann surface with two less closed

string punctures and one additional genus compared to the original Riemann surface.

b, M and c(= 0) remain fixed under this operation. Under this change (6.1) picks

up a factor of 1/2. This correctly accounts for the factor of 1/2 that appears in the

projection operator (1 +W )/2.

On the other hand insertion of W changes one of the local coordinates in (2.7) to its

complex conjugate. Therefore the sewing relation takes the form

zw̄ = e−s−iθ . (6.2)

This is known as a cross handle. If the original Riemann surface had genus g, then

this operation produces a non-orientable Klein surface with 2g+2 crosscaps. M and

8The presence of the M dependent factor may be understood as follows. Since we have a factor of 2−b/2,

and since the open string kinetic term involves a disc amplitude, it would be natural to multiply the open

string kinetic term by a factor of 1/
√
2. However we can remove this factor by scaling each open string

field by 21/4. This introduces the factor of 2M/4 in the definition of the interaction terms. There is no such

factor for closed strings since the kinetic term is a genus 0 amplitude, and for this there is no additional

factor of 1/2.
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b remain unchanged. It is easy to verify that (6.1) changes by a factor of 1/2 under

this operation. This again correctly accounts for the factor of 1/2 in the projection

operator.

If the original surface was non-orientable, with c crosscaps, then the effect of sewing

two of its bulk punctures may be analyzed in a similar manner. We again have the

projection operator (1 +W )/2 with 1 corresponding to sewing with a handle and W

corresponding to sewing with a cross handle. Both operations increase the number

of crosscaps by 2, leaving fixed g(= 0), b and M . Under this (6.1) picks a factors of

1/2, correctly accounting for the 1/2 in the projection operator.

Next consider the effect of sewing a pair of boundary punctures of a Klein surface.

Let us for definiteness consider the case where the two punctures lie on the same

boundary. Again sewing introduces a factor of (1+W )/2. For the term proportional

to 1, the sewing reduces the number M of open string punctures by 2 and increases

the number b of boundaries by 1. Under such changes, (6.1) picks up a factor of 1/2,

correctly accounting for the factor of 1/2 in the projection operator. On the other

hand if we pick the term proportional to W , then this reduces the number M of open

string punctures by 2 and increases the number of crosscaps by 1, leaving the number

of boundaries unchanged. Under such a change also (6.1) picks up the desired factor

of 1/2. Similar analysis can be done for the sewing of a pair of boundary punctures

lying on two different boundaries.

It is easy to verify that (6.1) is also compatible with separating type degenerations.

For example when we sew two oriented surfaces along bulk punctures, the total

numbers for g, c, b and M all remain unchanged and therefore there is no change

in (6.1). On the other hand in this case even though sewing introduces a factor of

(1 +W )/2, both 1 and W produce the same set of oriented surfaces and therefore

there is no factor of 1/2. Similar agreement can be shown for sewing of boundary

punctures. A description of different kinds of sewing that can arise in unoriented

open closed string field theory can be found in [43] and reviewed in appendix B.

3. Finally, in defining {Ãc}D we must now include not only one point function of c−o Ã
c

on the disc, but also on RP 2, together with an insertion of Ĝ as before. The latter is

similar to one point function on the disc, but with the boundary condition on the disc

replaced by a crosscap. In keeping with our discussion above we must accompany

each crosscap and disc by a factor of 1/
√
2 by including it in the definition of {Ãc}D.

4. The choice of local coordinates at the punctures and PCO locations must be com-

patible with the orientifold projection.

5. In the presence of one or more crosscaps, only the total picture number is conserved

but the holomorphic and anti-holomorphic picture numbers are not separately con-

served. Therefore the corresponding P̃0,b,c,N,M will have multiple branches. We can

jump between the branches by moving the PCOs to the crosscap via vertical segments

– 30 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
3

and converting holomorphic PCOs into anti-holomorphic PCOs or vice versa using

the boundary condition on the crosscap.

With these few changes, the construction of Rg,b,c,N,M for unoriented open-closed string

field theory proceeds in the same way as in the case of oriented strings, beginning with

zero dimensional Rg,b,c,N,M ’s. Eqs. (2.11) and (2.3) are generalized to:

{Ac
1 · · ·Ac

N ;Ao
1 · · ·Ao

M} ≡
∑

g,b,c≥0
(g,b,c) 6=(0,1,0),(0,0,1) for (N,M)=(1,0)

(gs)
2g−2+b+c 2−g−(b+c)/2+M/4

∫

Rg,b,c,N,M

Ωg,b,c,N,M
6g−6+3b+3c+2N+M (Ac

1, · · · , Ac
N ;Ao

1, · · · , Ao
M ) , (6.3)

and,

[]D =
1√
2
P Ĝ

{
e−βb(L0+L̄0)|B〉+ e−βc(L0+L̄0)|C〉

}
, (6.4)

where βb and βc are positive constants and |B〉 and |C〉 are the boundary states for the

disc and the crosscap. The form of the action, various identities described in section 1,

the gauge transformation laws and the definition of the anti-bracket remains the same. We

can also construct quantum BV master action by replacing Rg,b,c,N,M ’s by Rg,b,c,N,M ’s that

satisfy slightly different constraints as described in section 5.
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A Signs of the terms in the ‘main identity’

In this appendix we shall determine the signs of various terms on the right hand side of the

main identity (1.17), following the strategy outlined at the end of section 2. We shall do the

analysis iteratively in the dimension of Rg,b,N,M (or equivalently Mg,b,N,M ) associated with

the interaction vertex, which we shall simply refer to as the dimension of the interaction

vertex. Therefore we shall assume that (1.17) holds for vertices carrying dimension ≤ K

and prove that it holds for vertices of dimension K + 1.

In the following we shall analyze the behaviour of the amplitude near the boundary of

the moduli space using the language of string field theory. This may give the impression

that our argument is circular, i.e. we use string field theory to prove relations among string

field theory interaction vertices. However the factorization property of the string amplitude
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ζQBA
c
1

Ac
2

Ac
n

Ao
1

Ao
p

...

...

Bc
1

Bc
2

Bc
m

Bo
1

Bo
q

...

...

ψc
rϕr ψc

sϕs

Figure 1. A Feynman diagram where a 1PI vertex with the external states ζQBA
c
1
, Ac

2
· · · ,

Ac
n, A

o
1
· · ·Ao

p and an internal closed string state and another 1PI vertex with the external states

Bc
1
, · · · , Bc

m, B
o
1
, · · ·Bo

q and an internal closed string state are joined by a closed string propagator.

that we use is known to hold independently of string field theory, and tells us that the

contribution to an amplitude near a separating type degeneration has the interpretation

of the contribution from a Feynman diagram where two different diagrams are connected

by an internal line. This has been shown in figure 1. Therefore our argument does not

use any essential element of string field theory. We shall also use gauge invariance of the

amplitude, that tells us that if in an amplitude we act ζQB in turn on each external state,

the result vanishes. This property of the amplitude also follows from standard world-sheet

analysis and does not rely on the existence of an underlying string field theory.

Let us consider an amplitude with external closed string states Ac
1, · · ·Ac

n, B
c
1, · · ·Bc

m

and external open string states Ao
1, · · · , Ao

p, B
o
1, · · · , Bo

q , with ζQB acting in turn on each

external state. Gauge invariance requires this amplitude to vanish. However the contribu-

tion to this amplitude from the 1PI vertex does not vanish — rather it is given by the right

hand side of the main identity (1.17).9 Let us first focus on the particular contribution:

− g2s {Ac
1 · · ·Ac

n Gζ[Bc
1 · · ·Bc

m;Bo
1 · · ·Bo

q ]
c;Ao

1 · · ·Ao
p} , (A.1)

on the right hand side of (1.17). This is expected to get cancelled against the con-

tribution from the Feynman diagram where a 1PI vertex with the external states

Ac
1, · · · , Ac

n, A
o
1 · · ·Ao

p and an internal closed string state and another 1PI vertex with the

external states Bc
1, · · · , Bc

m, B
o
1 , · · ·Bo

q and an internal closed string state are joined by a

closed string propagator, and ζQB acts in turn on each of the Ac,o
i ’s and Bc,o

i ’s. Figure 1

shows one of these Feynman diagrams where ζQB acts on Ac
1. Our strategy will be to

evaluate these Feynman diagrams explicitly and use this to test the sign in (A.1).

We shall first compute the contribution to the amplitude from the Feynman diagram

when ζQB acts on Ac
1, as shown in figure 1. Let us denote by |ϕr〉 the basis states in Hc

9As in [1] we shall follow the convention that the 1PI vertex contributes to the amplitude without any

sign factor.
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and by |ϕ̃r〉 the conjugate basis in H̃c, satisfying

〈ϕ̃r|c−0 |ϕs〉 = δrs = 〈ϕs|c−0 |ϕ̃r〉, |ϕr〉〈ϕ̃r| = b−0 = |ϕ̃r〉〈ϕr| , (A.2)

so that the closed string field can be expanded as ψc
r|ϕr〉. Then the product of the two

vertex factors in figure 1 can be expressed as:

{(ζQBA
c
1) · · ·Ac

n ψ
c
rϕr;A

o
1 · · ·Ao

p}{ψc
sϕsB

c
1 · · ·Bc

m;Bo
1 · · ·Bo

q} . (A.3)

We shall eventually get a propagator by contracting ψc
r and ψc

s. Therefore ψ
c
r and ψc

s must

have same grassmann parity. Since the closed string field is grassmann even, |ϕr〉 and |ϕs〉
will also have the same grassmann parities as ψc

r and ψc
s. We shall denote this grassmann

parity by (−1)ϕr . We now pull the ψc
r from the ψc

r|ϕr〉 factor inside the first vertex and ψc
s

from the ψc
s|ϕs〉 factor inside the second vertex to the left outside the respective {· · · }’s.

This does not generate any sign since the Ac
i ’s are grassmann even. ψc

r and ψc
s are now

separated by {(ζQBA
c
1) · · ·Ac

nϕr;A
o
1 · · ·Ao

p}. This has grassmann parity (−1)ϕr . Therefore

the contraction of ψc
r and ψc

s gives a factor of (−1)ϕr∆rs where ∆rs is the propagator.

∆rs can be computed as follows. In the kinetic term, we expand 〈Ψc| as ψc
r〈ϕr| and

pull ψc
r to the left without picking any sign, and express |Ψc〉 as ψc

s|ϕs〉 and pull ψc
s to

the left, picking a factor of (−1)ϕr since it has to pass through 〈ϕr|c−0 QB which has the

same grassmann parity as ψc
s. Similar operation can be done for fields in H̃c. Furthermore

in the Siegel gauge we can replace QB by (c0L0 + c̄0L̄0). Inverting the kinetic operator

we now get a ψr-ψs propagator ∆rs = −g2s(−1)ϕr〈ϕ̃r|c−0 b+0 G(L+
0 )

−1|ϕ̃s〉 [1].10 After can-

celling the (−1)ϕr factor in ∆rs with the (−1)ϕr factor coming from the contraction of ψr

and ψs across {(ζQBA
c
1) · · ·Ac

nϕr;A
o
1 · · ·Ao

p}, we arrive at the following expression for the

amplitude shown in figure 1:

− g2s {(ζQBA
c
1) · · ·Ac

nϕr;A
o
1 · · ·Ao

p}〈ϕ̃r|c−0 b+0 G (L+
0 )

−1|ϕ̃s〉{ϕsB
c
1 · · ·Bc

m;Bo
1 · · ·Bo

q} . (A.4)

We now use (1.5) to express the last factor as 〈ϕs|c−0 |[Bc
1 · · ·Bc

m;Bo
1 · · ·Bo

q ]
c〉 and then

perform the sum over s in (A.4) using the completeness relation to express the product of

the last two factors as 〈ϕ̃r|c−0 b+0 G (L+
0 )

−1|[Bc
1 · · ·Bc

m;Bo
1 · · ·Bo

q ]
c〉. On the other hand the

first {· · · } factor in (A.4) can be expressed as

〈ϕr|c−0 [(ζQBA
c
1) · · ·Ac

n;A
o
1 · · ·Ao

p]
c〉 = 〈[(ζQBA

c
1) · · ·Ac

n;A
o
1 · · ·Ao

p]
c|c−0 |ϕr〉 , (A.5)

where we have used the fact that [(ζQBA
c
1) · · ·Ac

n;A
o
1 · · ·Ao

p]
c is grassmann odd. We can

now perform the sum over r in (A.4) using completeness relation and express (A.4) as

−g2s
〈[
(ζQBA

c
1) · · ·Ac

n;A
o
1 · · ·Ao

p

]c∣∣ c−0 b+0 G (L+
0 )

−1
∣∣[Bc

1 · · ·Bc
m;Bo

1 · · ·Bo
q

]c〉

= −g2s
〈
b+0 G (L+

0 )
−1

[
Bc

1 · · ·Bc
m;Bo

1 · · ·Bo
q

]c∣∣ c−0
∣∣[(ζQBA

c
1) · · ·Ac

n;A
o
1 · · ·Ao

p

]c〉

= −g2s{(ζQBA
c
1) · · ·Ac

n b
+
0 G(L+

0 )
−1[Bc

1 · · ·Bc
m;Bo

1 · · ·Bo
q ]

c;Ao
1 · · ·Ao

p} , (A.6)

10In computing the propagator, we only use the terms involving QB as kinetic operator and treat the

quadratic and linear terms in {· · · } as interaction terms. This allows us to make contact with the world-

sheet formulation, although in order to correctly compute the renormalized masses we have to work with

the full quadratic term. In [1] the propagator was written as −g2s〈ϕ̃s|c−0 b+0 G(L+
0 )

−1|ϕ̃r〉. This can be shown

to be equal to −g2s(−1)ϕr 〈ϕ̃r|c−0 b+0 G(L+
0 )

−1|ϕ̃s〉.
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where in the first step we have used the fact that both factors of [· · · ]c are grassmann odd

and in the last step we have used (1.5).

Similar expressions can be obtained when ζQB acts in turn on the other Ac
i ’s and A

o
i ’s.

Using the main identity for lower number of external states, which we are allowed to use

in a recursive proof, the effect of acting with ζQB in turn on the Bc,o
i ’s can be represented

by ζQB acting on [Bc
1 · · ·Bc

m;Bo
1 · · ·Bo

q ]
c. There are additional terms corresponding to the

right hand side of the main identity with Bc,o
i ’s as external states but these would cancel

against other Feynman diagrams with two propagators, where the right vertex of figure 1

is replaced by sub-diagram containing an additional propagator. This brings the sum of

the Feynman diagrams of the form shown in figure 1 to a form where ζQB acts in turn

on all the Ac,o
i ’s and on [Bc

1 · · ·Bc
m;Bo

1 · · ·Bo
q ]

c in the right hand side of (A.6). We again

use the main identity on this expression and throw away the right hand side which would

cancel against contribution from Feynman diagrams where the left vertex in figure 1 will

be replaced by sub-diagrams with an additional propagator. The left over term is given

by −ζQB acting on b+0 G(L+
0 )

−1 in (A.6), producing just a factor of −Gζ. This brings

the relevant contribution from the Feynman diagram with one closed string propagator

to the form:

g2s{Ac
1 · · ·Ac

n Gζ[Bc
1 · · ·Bc

m;Bo
1 · · ·Bo

q ]
c;Ao

1 · · ·Ao
p} . (A.7)

This cancels (A.1), confirming that the sign in (A.1) is correct.

Next we consider the contribution:

− gs{Ac
1 · · ·Ac

n;Gζ[Bc
1 · · ·Bc

m;Bo
1 · · ·Bo

q ]
oAo

1 · · ·Ao
p} , (A.8)

arising from the right hand side of (1.17). In the Ward identity for the amplitude, this is

expected to get cancelled against the contribution from the sum of Feynman diagrams of

the same type as the ones in figure 1, except that the internal line is now an open string

instead of a closed string. To evaluate the contribution from the Feynman diagram we first

introduce conjugate pair of basis states |φr〉 ∈ Ho, |φ̃r〉 ∈ H̃o, satisfying

〈φ̃r|φs〉 = δrs = 〈φs|φ̃r〉, |φr〉〈φ̃r| = 1 = |φ̃r〉〈φr| . (A.9)

Let us first consider the case where ζQB acts on Ac
1. We proceed as in the earlier case, by

first writing down the product of the two vertex factors:

{(ζQBA
c
1) · · ·Ac

n;ψ
o
rφr A

o
1 · · ·Ao

p}{Bc
1 · · ·Bc

m;ψo
sφsB

o
1 · · ·Bo

q} . (A.10)

Following the same approach as in the case of (A.3) we can prove that φr, φs have the same

grassmann parity (−1)φr , the open string fields ψo
r and ψo

s multiplying them have grass-

mann parity (−1)φr+1, and {(ζQBA
c
1) · · ·Ac

n;φrA
o
1 · · ·Ao

p} and {Bc
1 · · ·Bc

m;φsB
o
1 · · ·Bo

q}
have grassmann parity (−1)φr+1. We can pull the ψo

r and ψo
s factors from the two ampli-

tudes in (A.10) to the left outside {· · · } without picking any sign. The contraction of ψo
r

with ψo
s produces a factor of (−1)φr+1 besides the propagator, since they are separated by

{(ζQBA
c
1) · · ·Ac

n;φrA
o
1 · · ·Ao

p}. The propagator is obtained as follows. If we express 〈Ψo|
and |Ψo〉 (and similarly 〈Ψ̃o|) and |Ψ̃o〉) in the kinetic term as ψo

r〈φr| and ψo
s |φs〉 and then
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pull ψo
r and ψo

s to the left, we get a factor of (−1)φr+1 from having to pass ψo
s through

〈φr|QB. After replacing QB by c0L0 in the Siegel gauge and inverting the kinetic opera-

tor, we get a ψo
r -ψ

o
s propagator of the form −gs(−1)φr+1〈φ̃r|b0G(L0)

−1|φ̃s〉. Cancelling the

(−1)φr+1 factor from the propagator with the (−1)φr+1 factor coming from the contraction,

we arrive at the expression:

− gs {(ζQBA
c
1) · · ·Ac

n;φrA
o
1 · · ·Ao

p}〈φ̃r|b0G(L0)
−1|φ̃s〉{Bc

1 · · ·Bc
m;φsB

o
1 · · ·Bo

q} . (A.11)

The rest of the analysis proceeds almost in the same way as for (A.4), with the [· · · ]c’s
replaced by [· · · ]o, c−0 ’s removed, b+0 replaced by b0 and ϕr, ϕ̃r replaced by φr, φ̃r. Using

the fact that [(ζQBA
c
1) · · ·Ac

n;A
o
1 · · ·Ao

p]
o is grassmann even, we can verify that there are

no extra signs compared to those that appeared in the earlier analysis. The final result

takes the form analogous to (A.6)

− gs{(ζQBA
c
1) · · ·Ac

n; b0G(L0)
−1[Bc

1 · · ·Bc
m;Bo

1 · · ·Bo
q ]

oAo
1 · · ·Ao

p} . (A.12)

We now sum over terms where ζQB acts in turn on all the external states. Each of these

terms can be analyzed in the same way, leading to expressions similar to (A.12) with

the position of ζQB shifted. Using the main identity for vertices of lower dimension and

throwing away terms that would cancel with Feynman diagrams with two propagators, we

can, as in the case of (A.6), express the sum of these terms as the negative of the term

where ζQB acts on b0G(L0)
−1, producing just a factor of Gζ. This brings the boundary

contribution to the form:

gs{Ac
1 · · ·Ac

n;Gζ[Bc
1 · · ·Bc

m;Bo
1 · · ·Bo

q ]
oAo

1 · · ·Ao
p} . (A.13)

This cancels (A.8), confirming that the sign in (A.8) is correct.

Finally we turn to the contribution

− g2s{ζ[A1
c · · ·Ac

nB
c
1 · · ·Bc

m;Ao
1 · · ·Ao

mB
o
1 · · ·Bo

q ]
c}D , (A.14)

arising on the right hand side of (1.17). The Feynman diagram that cancels it is the sum of

the diagrams of the form shown in figure 2, with ζQB acting on each external state in turn.

This amplitude can be analyzed in the same way as (A.3) and is given by an expression

similar to (A.4):

− g2s{ζQBA
1
c · · ·Ac

nB
c
1 · · ·Bc

mϕr;A
o
1 · · ·Ao

mB
o
1 · · ·Bo

q}〈ϕ̃r|c−0 b+0 (L+
0 )

−1|ϕs〉{ϕ̃s}D , (A.15)

together with similar terms where ζQB acts in turn on the other external states. Note that

there is no G insertion in the propagator since we have to use the ψr-ψ̃s propagator [1]. We

now carry out manipulations similar to those for (A.4) to express (A.15) in the form given

in (A.6):

− g2s {ζQBA
1
c · · ·Ac

nB
c
1 · · ·Bc

mb
+
0 (L+

0 )
−1[ ]D;A

o
1 · · ·Ao

mB
o
1 · · ·Bo

q} . (A.16)

The vertex appearing in (A.16) has one less dimension compared to the original vertex,

since we replace a boundary by a closed string puncture where b+0 (L+
0 )

−1[ ]D is inserted.
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ζQBA
c
1

Ac
2

Bc
m

Ao
1

Bo
q

...

...

ψc
rϕr ψ̃c

sϕ̃
s
×

Figure 2. A Feynman diagram where a 1PI vertex with the external states ζQBA
c
1
, Ac

2
· · · ,

Ac
n, B

c
1
, · · · , Bc

m, A
o
1
· · ·Ao

p, B
o
1
, · · ·Bo

q and an internal closed string state in Hc and another one

point 1PI vertex with an internal closed string state in H̃c are joined by a closed string propagator.

Therefore we can use the main identity (1.17). Throwing away the terms on the right

hand side of (1.17) that would cancel against Feynman diagrams with two propagators,

and using BRST invariance of [ ]D, we can express the sum of Feynman diagrams of the

type shown in figure 2 as

g2s {A1
c · · ·Ac

nB
c
1 · · ·Bc

mζ[ ]D;A
o
1 · · ·Ao

mB
o
1 · · ·Bo

q}
= g2s {ζ[A1

c · · ·Ac
nB

c
1 · · ·Bc

m;Ao
1 · · ·Ao

mB
o
1 · · ·Bo

q ]
c}D , (A.17)

where in the last step we used (1.8). This cancels (A.14), confirming that the sign in (A.14)

is correct.

B Review of non-orientable surfaces

In this appendix we shall review some properties of non-orientable surfaces follow-

ing [42–44].

A 2 dimensional surface is non-orientable if we cannot assign an orientation to the

surface uniquely, i.e. there exist closed curves such that the tangent bundle, parallel trans-

ported along the curve, comes back with opposite orientation. A non-orientable 2 dimen-

sional surface can be described using the ‘crosscap’ — a disc whose diametrically opposite

points have been identified. By attaching an arbitrary number of crosscaps to a sphere with

holes, we can generate an arbitrary non-orientable surface in 2 dimensions. Examples of

non-orientable surfaces which appear at tree and one loop level in unoriented string theory

are real projective plane (RP2), Mobius strip and Klein bottle. The RP2 is a sphere with

one crosscap, the Mobius strip is a disc with one crosscap whereas Klein bottle is a sphere

with two crosscaps. Therefore to construct RP2, we remove a disc from the sphere and iden-

tify the diametrically opposite points of the resulting hole, whereas to construct the Mobius

strip, we remove a disc from the interior of the disc and identify the diametrically opposite

points of the resulting hole. A Klein bottle can be obtained by removing two discs from

the sphere and identifying the diametrically opposite points of each of the resulting hole.
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We now recall some general statements about two dimensional surfaces. Any compact

orientable 2 dimensional manifold is topologically equivalent to a sphere with g handles

and b boundaries. On the other hand, any compact non-orientable 2 dimensional manifold

is topologically equivalent to a sphere with c crosscaps and b boundaries. Surfaces with

both handles and crosscaps are redundant, since, in the presence of crosscaps, a handle can

be replaced by two crosscaps:

handle + crosscap = 3 crosscaps . (B.1)

Therefore for non orientable surfaces, the number of boundaries and crosscaps specify

the surface topologically. The Euler number of a general surface, having g handles (or c

crosscaps) and b boundaries is given by

Orientable surfaces : χ = 2− 2g − b

Non orientable surfaces : χ = 2− c− b . (B.2)

These determine the power of the string coupling constant gs in a given amplitude. Often,

one combines the two formula in (B.2) into a single one to write χ = 2 − 2g − c − b with

the understanding that we choose g = 0 for the non-orientable surfaces and c = 0 for the

oriented surfaces. In the same convention, the dimension of moduli space of an arbitrary

two dimensional surface with N bulk punctures and M boundary punctures is given by

dim (Mg,b,c,N,M ) = 6g − 6 + 3b+ 3c+ 2N +M . (B.3)

Also for getting a non-zero correlation function, the required value of the total picture

number on a surface is given by

4g − 4 + 2b+ 2c . (B.4)

This, together with the picture numbers carried by the string states, dictates the number

of PCOs one needs to insert on the surface.

The conformal killing groups of sphere and disc without punctures are SL(2,C) and

SL(2,R) respectively. There are 3 complex conformal Killing vectors (CKVs) on the sphere

and 3 real CKVs on the disc. Moreover, the volume of these conformal killing groups is

infinite. This implies that the 1 and 2 point sphere amplitudes do not give any contribution

to the 1PI effective action.11 Similarly, the 1 and 2 point disc amplitudes for external open

strings also do not give any contribution to the 1PI effective action. However, the amplitude

of 1 closed string on the disc does not vanish since the resulting surface — disc with one

bulk puncture — has only one real CKV, generating a finite volume U(1) group. The

conformal killing group of RP2 is SU(2) which has finite volume. Hence, we can also have

non zero 1-point function of closed strings on RP2.

11It has been argued in a recent paper [45] that the two point function on the sphere does not vanish.

This, however, represents the standard forward contribution to the S-matrix present in any quantum field

theory, including string field theory, and is needed for unitarity of the theory [6]. Therefore this does not

require us to add a new term in the action. The same comment holds for two point function on the disc.
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The parametrization of the world-sheet with coordinates (σ, τ) defines an orientation

to the world-sheet locally. The orientation can be reversed by making the following trans-

formation

Ω : σ → σ′ = ℓ− σ , τ → τ ′ = τ (B.5)

The parameter ℓ, describing the length of the string in σ coordinates, is usually chosen to

be π for open strings and 2π for the closed strings. In complex coordinates z = eτ+iσ, the

operator Ω acts as

Closed strings : z → z̄ , z̄ → z ,

Open strings : z → −z̄ , z̄ → −z . (B.6)

The operator Ω is called world-sheet parity operator. Since acting twice with Ω gives us

the original orientation, we have Ω2 = 1 and hence the eigenvalues of Ω are ±1.

Orientifold operation typically corresponds to taking a projection by the operator

Ω possibly accompanied by another symmetry transformation acting on the world-sheet

superconformal field theory. It could for example involve reversing the directions of certain

space-time coordinates. Let us denote by W this combined operation. We can take W 2 =

1.12 In the theory obtained by quotienting the original theory by W , we keep only those

states that carry W eigenvalue +1. This can be achieved using the projection operator P :

P =
1 +W

2
. (B.7)

Note that the propagator also has GSO projection in all superstring field theories and

L0 = L̄0 projection in the closed string sector, but we do not display this explicitly.

Let us now review how non-orientable surfaces appear in the unoriented theories. Con-

sider a loop diagram. In the intermediate state, we need to sum over all the states. Since

we only want to keep the W = 1 states, the intermediate states must include the pro-

jection operator (1 + W )/2. This corresponds to cutting the world-sheet describing the

propagation of the intermediate state, inserting the projection operator P and then sewing

back the cut-edges. Then the 1 part of the projector corresponds to gluing the cut edges

with the same orientation — via the sewing relations (2.7) for closed strings and (2.8) for

the open strings. However, the W part of the projector corresponds to first reversing the

orientation of one edge and then gluing it with the other edge. The corresponding sewing

relations are zw̄ = q ≡ e−s−iθ for closed strings and zw̄ = e−s for open strings. This

produces a non-orientable surface even if the original surface was oriented. Note that both,

the oriented and the non-orientable surface produced this way, come with weight half.

With this understanding we can now describe the effect of different types of sewing in

the unoriented theories. One general result that one can infer from this is that sewing two

12If W 2 is not identity, then it must be given by some symmetry U of the world-sheet theory that does

not involve world-sheet parity transformation. We can first define a theory where we take the quotient of

the world-sheet theory by U . This is an ordinary orbifold superconformal field theory describing oriented

strings. In this theory U acts as identity operator, and therefore W 2 = 1. The desired orientifold is now

given by the W quotient of the orbifold theory.
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Sewing type
degeneration

type

Boundary

sewn
Sewing relation

change in

topology

closed-closed separating - zw = q, zw̄ = q -

closed-closed non separating - zw = q
g → g + 1

c→ c+ 2

closed-closed non separating - zw̄ = q
c→ 2g + 2

c→ c+ 2

open-open separating different zw− e−s, zw̄ = e−s b→ b− 1

open-open non separating same zw = −e−s b→ b+ 1

open-open non separating same zw̄ = e−s c→ 2g + 1

c→ c+ 1

open-open non separating different zw = −e−s g → g+1, b → b−1

c → c+2, b → b−1

open-open non separating different zw̄ = e−s c → 2g+2, b → b−1

c → c+2, b → b−1

Table 1. Relation between the topology of the sewed surface to the topology of the surface(s)

before sewing. The last column of some of the rows have two entries. The top entry refers to the

case where the original surface before sewing is oriented, while the bottom entry refers to the case

where the original surface was non-orientable.

different surfaces never produces a non-orientable surface (unless one of the sewed surface

itself is non-orientable). The reason for this is that while sewing two surfaces Σ with Σ′,

we can consider the sewing of a fixed surface Σ with all possible surfaces Σ′ having the

same topology. For sewing with W , we just change w → w̄ without changing the topology

of Σ′. Hence, the new surface obtained by w → w̄ is already included in the original list

of surfaces Σ′. So, by sewing with W , we do not generate any new surface which had

not been already generated by the sewing with 1. In contrast, for non-separating type

degeneration sewing with W produces non-orientable surfaces from oriented surfaces for

reasons explained earlier. We reproduce in table 1 the results described in [43] for different

type of sewing and the associated degeneration of the sewed surface.
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