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Abstract
We analyse the most general supersymmetric solutions of D = 11 supergravity
consisting of a warped product of five-dimensional anti-de Sitter space with
a six-dimensional Riemannian space M6, with 4-form flux on M6. We show
that M6 is partly specified by a one-parameter family of four-dimensional
Kähler metrics. We find a large family of new explicit regular solutions where
M6 is a compact, complex manifold which is topologically a 2-sphere bundle
over a four-dimensional base, where the latter is either (i) Kähler–Einstein
with positive curvature, or (ii) a product of two constant-curvature Riemann
surfaces. After dimensional reduction and T-duality, some solutions in the
second class are related to a new family of Sasaki–Einstein spaces which
includes T 1,1/Z2. Our general analysis also covers warped products of five-
dimensional Minkowski space with a six-dimensional Riemannian space.

PACS numbers: 02.40.−k, 04.65.+e, 11.30.Pb

1. Introduction

String or M-theory on a supersymmetric background that contains an AdS5 factor is expected
to be equivalent to a four-dimensional superconformal field theory [1]. The best-known
example is the AdS5 × S5 solution of type IIB string theory which is conjectured to be dual
to N = 4 super-Yang–Mills theory. This geometry arises as the near-horizon limit of the
supergravity solution describing D3-branes in flat space. It is a special case of a general
class of supersymmetric solutions of the form AdS5 × M5 where M5 is a Sasaki–Einstein
5-manifold. These arise as the near-horizon limits of solutions describing D3-branes at the
singularities of Calabi–Yau cones and are dual to N = 1 superconformal field theories [2–4].

3 On leave from: Blackett Laboratory, Imperial College, London, SW7 2BZ, UK.
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The purpose of this paper is primarily to study analogous solutions in M-theory. We first
analyse the most general class of supersymmetric solutions of the form of a warped AdS5 ×M6

product, deriving the conditions on the geometry of the six-dimensional manifold M6. We
then use our results to construct rich new families of explicit regular compact solutions.

To date, rather surprisingly, only a handful of supersymmetric AdS5 solutions have been
found in M-theory (There are also some examples of non-supersymmetric solutions [5, 6]).
A rather trivial case is the maximally supersymmetric AdS7 × S4 solution: AdS7 can be
foliated by AdS5 and S1 (see, for example, [7]) and hence this solution can be viewed as
a warped product of AdS5 with a (non-compact) six-dimensional space. Another example
was presented in [8] where it was interpreted as the near-horizon limit of two semi-localized
M5-branes (the same solution also appears in [9]). It was subsequently shown in [7] that this
solution can be obtained from the type IIB AdS5 ×S5 solutions by a simple T-duality followed
by an uplift to D = 11. It was noted in [8] that the six-dimensional manifold is singular
indicating that the solution is not capturing all the degrees of freedom of the intersecting
M5-brane system, and hence the D = 11 solution is of limited utility in analysing the dual
field theory.

Two more interesting examples were found in [10]. These solutions describe the near-
horizon limit of 5-branes wrapping holomorphic curves in Calabi–Yau 2- or 3-folds. In these
solutions M6 is an S4 bundle over H 2/� where � is a discrete group of isometries of H 2, and
hence H 2/� can be compact. They are dual to the N = 2 or N = 1 superconformal field
theories arising on 5-branes wrapped on a holomorphic H 2/� cycle in a Calabi–Yau 2- or
3-fold, respectively. These solutions were first found in D = 7 gauged supergravity and then
uplifted to obtain solutions of D = 11 supergravity. Regular and compact solutions where
M6 is an S4 bundle over S2 were found in [11] but these have yet to be connected with a dual
field theory. Finally, AdS5 solutions were also found in [12], and were argued to be related to
N = 2 superconformal field theories arising on intersecting 5-branes. It would be interesting
to know if these solutions are regular.

This small collection of solutions have all been found by guessing a suitable ansatz for
the metric on M6. Here we will systematically determine the general conditions placed on
the geometry M6, the 4-form field strength and the warp factor in order for the solution to
have N = 1 supersymmetry. These conditions thus characterize the most general way in
which four-dimensional superconformal field theories can arise in M-theory via the AdS/CFT
correspondence. Furthermore, we use our results to obtain a rich family of new solutions
in explicit form. It is quite simple to extend our analysis to characterize the most general
warped products of five-dimensional Minkowski space with a six-dimensional manifold and
this analysis is included in an appendix.

Our method follows that employed to analyse the most general kinds of supersymmetric
solutions in supergravity theories, using the language of ‘G-structures’ and ‘intrinsic torsion’.
It provides a systematic way of translating the local supersymmetry constraints into differential
conditions on a set of differential forms on M6 defining the metric and flux. The utility
of G-structures for analysing supersymmetric solutions was first advocated in [13]; for
related developments in various string/M-theory settings see [18–29]. Essentially the same
techniques have also proved very useful in determining the general form of supersymmetric
solutions in various lower-dimensional supergravities [30–34]. In the present setting, we first
concentrate on the local conditions on the geometry. We will see that the Killing spinor
defines a preferred local SU(2) structure on M6, characterized by a number of tensor fields
constructed as bilinears in the Killing spinor. The Killing spinor equation then implies a
number of differential conditions on the tensors that determine the intrinsic torsion of the
structure.
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It is then straightforward to see what these conditions imply for the geometry of M6. We
will show that the metric on M6 always admits a Killing vector. In terms of the AdS/CFT
correspondence this corresponds to the R-symmetry of the N = 1 superconformal field theory.
Locally the five-dimensional space orthogonal to the Killing vector is a warped product of
a one-dimensional space with coordinate y and a four-dimensional complex space with a
one-parameter family of Kähler metrics depending on y.

We then use these results to construct new explicit solutions. To do this, we impose a very
natural geometric condition on the geometry. Specifically, we demand that the six-dimensional
space is a complex manifold. Globally, the new regular compact solutions that we construct
are all holomorphic 2-sphere bundles over a smooth four-dimensional Kähler base M4. Using
a recent mathematical result on Kähler manifolds [35], we are able to completely classify this
class of solutions (assuming that the Goldberg conjecture is true). In particular, at fixed y

the base is either (i) a Kähler–Einstein (KE) space or (ii) a non-Einstein space which is the
product of two constant curvature Riemann surfaces.

In the KE class (i), we find regular solutions only if the curvature is positive. Such spaces
have been classified by Tian and Yau [36, 37] and are topologically either S2 × S2, CP 2 or
CP 2#nCP 2 with n = 3, . . . , 8. The KE metrics are of course explicitly known in the first
two cases, but are not known explicitly for the other examples. In the second product class
(ii), one finds regular compact solutions when the geometry is S2 × S2, or S2 × T 2. There are
also regular solutions of the form S2 × H 2, where H 2 is hyperbolic space, but these are not
compact. Note, however, that we recover the N = 1 solution of [10], for which it is known
that one can divide H 2 by a discrete group of isometries to obtain compact solutions while
preserving supersymmetry. A number of additional singular solutions in both the first and
second classes are also found in explicit form.

The S2 × T 2 class of solutions has the particularly interesting property that they can
be reduced on an S1 in T 2 to obtain regular supersymmetric type IIA supergravity solutions
of the form AdS5 × X′

5. Then, via a T-duality on the other S1, these give solutions of
the form AdS5 × X5 where X5 is a new one-parameter family of Sasaki–Einstein spaces.
Global properties of these will be studied in more detail in a separate paper [38], but we note
that one special case gives AdS5 × T 1,1/Z2, where T 1,1/Z2 is a well-known Sasaki–Einstein
manifold4; the superconformal field theory was identified in [4] (see also [2]). It will be clearly
interesting to identify dual conformal field theories for our new solutions and determine under
which conditions the M-theory, type IIA or type IIB supergravity solution is most useful.

The plan of the rest of the paper is as follows. Section 2 contains the analysis of the
conditions imposed on the geometry of M6 in order to get a supersymmetric solution. We have
tried to minimize the details as much as possible, relegating most of the calculation to two
appendices B and C. The conditions on the local form of the metric and flux are summarized
at the end of section 2.3. Section 3 starts by analysing the additional local conditions on the
geometry that arise by assuming that M6 is a complex manifold. We then discuss a natural
ansatz for the global topology of the solutions, requiring M6 to be an S2 fibration over a four-
dimensional manifold M4. Regular compact solutions of this type are shown to fall into two
classes: one where the base is KE, the other where it is a product of constant curvature Riemann
surfaces. In either case, we show that the supersymmetry conditions reduce to solving a single
nonlinear ordinary differential equation. Section 4 discusses the explicit solutions in the first
class, for positive, negative and zero curvature. Section 5 discusses the explicit solutions of the
second type, again for each different possible sign of curvature. We also discuss the type IIA

4 Note here, and throughout the paper, T 1,1/Z2 refers to the unique smooth quotient of T 1,1 by Z2 that preserves the
Sasaki–Einstein structure.
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and IIB duals to the S2×T 2 solutions and how the solution of [10] is obtained in our formalism.
Finally, we end with some conclusions. In the remaining appendices, we give a summary of
our conventions (appendix A) and analyse the closely related case of supersymmetric warped
products of Minkowski space with M6 (appendix D).

2. The conditions for supersymmetry

We want to find the general structure of supersymmetric configurations of D = 11 supergravity
that are warped products of an external AdS5 space with an internal six-dimensional
Riemannian manifold M6:

ds2 = e2λ(v)[ds2(AdS5) + ds2(M6)]
(2.1)

G = 1

4!
Gµ1µ2µ3µ4 dvµ1 ∧ dvµ2 ∧ dvµ3 ∧ dvµ4

where uα, α = 0, 1, . . . , 4 are coordinates on AdS5 and vµ, µ = 1, 2, . . . , 6 are coordinates
on M6. We assume that the AdS5 space has radius squared given by m−2 so that

Rαβ = −4m2gαβ. (2.2)

Note that when m = 0 our ansatz reduces to warped products of five-dimensional Minkowski
space with M6. For completeness, this case is discussed separately in appendix D.

Our conventions for D = 11 supergravity are included in appendix A. We want solutions
admitting at least one supersymmetry and satisfying the equations of motion. Supersymmetry
implies we have a solution of the Killing spinor equation

∇µε +
1

288

[
�µ

ν1ν2ν3ν4 − 8δν1
µ �ν2ν3ν4

]
Gν1ν2ν3ν4ε = 0 (2.3)

where ε is a Majorana spinor in the representation where �11 ≡ �0�1 . . . �10 = 1. To see
how this reduces to a condition on M6 we first decompose the D = 11 Clifford algebra
Cliff(10, 1) ∼= Cliff(1, 4) ⊗ Cliff(6, 0). Explicitly, Cliff(6, 0) ∼= H(4) and Cliff(1, 4) ∼=
H(2) ⊕ H(2) and hence the tensor product gives R(32) ⊕ R(32) ∼= Cliff(10, 1). In other
words, we can write the D = 11 gamma matrices as

�a = ρa ⊗ γ7 �m = 1 ⊗ γm (2.4)

where a, b = 0, 1, . . . , 4 and m, n = 1, 2, . . . , 6 are frame indices on AdS5 and M6

respectively, and we have

[ρa, ρb]+ = −2ηab [γ m, γ n]+ = 2δmn (2.5)

with ηab = diag(−1, 1, 1, 1, 1). Note that

γ7 ≡ γ1 . . . γ6 (2.6)

so that (γ7)
2 = −1. Given our conventions in D = 11, we then have ρ01234 = −1. The

parameter ε decomposes as ψ(u) ⊗ eλ/2ξ(v), where the dependence on λ is added to simplify
the resulting formulae. On the AdS5 space, the Killing spinor satisfies

Daψ ≡ (
∂a − 1

4ωabcρ
bc

)
ψ = 1

2 imρaψ. (2.7)

The D = 11 Killing spinor equation then implies that the internal ξ must satisfy[
∇m +

1

2
imγmγ7 − 1

24
e−3λγ n1n2n3Gmn1n2n3

]
ξ = 0

[
γ m∇mλ +

1

144
e−3λγ m1m2m3m4Gm1m2m3m4 − imγ7

]
ξ = 0.

(2.8)
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For a true supergravity solution we must check that a background satisfying these equations
is actually a solution of the equations of motion. By analysing the integrability conditions,
and using the arguments presented in [20], we find that a geometry admitting solutions to (2.8)
will satisfy the equations of motion if the Bianchi identity and the equation of motion for the
4-form G are imposed. Given our ansatz (2.1), these reduce to the following two conditions
on M6:

d(e3λ ∗6 G) = 0 dG = 0. (2.9)

The spinor ξ is a representation of the Clifford algebra Cliff(6, 0). Under Spin(6, 0)

it decomposes into chiral and anti-chiral pieces ξ = ξ+ + ξ− where −iγ7ξ± = ±ξ±. It is
straightforward to analyse the Killing spinor equations (2.8) in the particular case that ξ is
chiral. For either chirality, one finds that m = 0, λ = constant,G = 0 and ∇ξ = 0. This
implies that solutions are, after possibly going to the covering space, simply the direct product
R

1,4 × M6, with M6 being a Calabi–Yau 3-fold, and with zero G-flux. In particular, there
are no AdS5 solutions, which is the case of primary interest in this paper5. Henceforth, we
therefore assume that ξ is of indefinite chirality.

In summary, we want to analyse (2.8), combined with the Bianchi identity and equation
of motion (2.9) for G. In particular, we will recast these conditions into equivalent conditions
on the local geometry of M6, the warp factor and the 4-form.

2.1. Spinor bilinears and local SU(2)-structure

We will derive the local form of the metric by first deriving a set of differential conditions
on a set of spinor bilinears formed from ξ . The details of the calculation are described in
appendices B and C. First note that generically the non-chiral ξ can be decomposed as

ξ ≡ ξ+ + ξ− = f1η1 + f2[aη1 + (1 − |a|2)1/2η2]∗ (2.10)

where ηi are two orthogonal unit-norm chiral spinors, and fi and a are real and complex
functions, respectively. As we show in appendices B and C, the supersymmetry conditions
(2.8) imply that ξ has constant norm and furthermore ξTξ = 0. This implies we can choose a
normalization such that we have

ξ =
√

2(cos αη1 + sin αη∗
2). (2.11)

Since the stabilizer of (η1, η2) in SO(6) is SU(2) they define a particular privileged local
SU(2) structure on M6. Equivalently, the structure can be specified by a set of bilinear forms
constructed from ηi . It is worth emphasizing that since ηi are not globally defined in general (in
particular, one or the other is not defined when sin α = 0 and cos α = 0), the SU(2) structure
on M6 is not globally defined in general either. We will address the global G-structure in the
case of a specific class of global solutions in section 3.

Nevertheless, in deriving the local form of the metric it is still very useful to derive
differential conditions on the local SU(2) structure. A basic set of bilinears specifying the
local SU(2) structure is given in equations (C.4) and (C.6) in appendix C. They consist of a
fundamental (1, 1)-form J , a complex (2, 0)-form � and two 1-forms K1 and K2. The metric
can be written as

ds2 = eiei + (K1)2 + (K2)2 (2.12)

5 Note that this is somewhat analogous to M-theory compactifications on 8-manifolds, where it was shown in [39, 23]
that a chiral internal spinor rules out most of the possible internal fluxes, and fixes the internal space to be conformal
to a Spin(7)-holonomy manifold.
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where J = e1 ∧ e2 + e3 ∧ e4 and � = (e1 + ie2) ∧ (e3 + ie4). The volume form is defined by
vol6 = 1

2J ∧ J ∧ K1 ∧ K2. These forms satisfy the following set of differential constraints,
derived in appendices B and C:

e−3λ d(e3λ sin ζ ) = 2mK1 cos ζ (2.13)

e−6λ d(e6λ� cos ζ ) = 3m� ∧ (−K1 sin ζ + iK2) (2.14)

e−6λ d(e6λK2 cos ζ ) = e−3λ ∗ G + 4m(J − K1 ∧ K2 sin ζ ) (2.15)
e−6λ d(e6λJ ∧ K2 cos ζ ) = e−3λG sin ζ + m(J ∧ J − 2J ∧ K1 ∧ K2 sin ζ ). (2.16)

In the last formula we have used ∗J = J ∧ K1 ∧ K2. Here we have defined ζ = π/2 − 2α,
giving cos 2α = sin ζ, sin 2α = cos ζ . Note that multiplying each of the first three equations
by a suitable power of eλ and taking the exterior derivative so that the left-hand side vanishes
leads to three more equations which should be separately imposed when m = 0. (This case is
discussed separately in appendix D.)

We will argue in the following section that the above differential conditions are the set
of necessary and sufficient local differential conditions for the geometry to admit a Killing
spinor. In addition, we will show that they automatically imply that the equation of motion
(2.9) and (for m 
= 0) the Bianchi identity for G are satisfied.

2.2. Reduction from d = 7

Before analysing what these conditions imply about the local form of the metric, we briefly
pause to discuss how they can be obtained in a different way. If we write AdS5 in Poincaré
coordinates, the warped product of AdS5 with M6 that we are considering can be viewed
as a special case of a warped product of Minkowski 4-space R

1,3 with a seven-dimensional
Riemannian manifold M7. That is, we can rewrite (2.1) as

ds2 = e2λ e−2mr ds2(R1,3) + e2λ
[
dr2 + ds2

6

]
(2.17)

with G being a 4-form on M6 that is independent of r. General conditions on the geometry of
M7 imposed by supersymmetry have been analysed in [22] and then subsequently in [26, 28].
We now show how to obtain our conditions from these results.

It was shown in [22] that the d = 7 geometry is determined by an SU(3) structure
specified by a vector K ′, a 2-form J ′ and a 3-form �′. In particular, we write the d = 7
metric as

ds2
7 = e′ae′a + (K ′)2 (2.18)

with J ′ = e′1 ∧ e′2 + e′3 ∧ e′4 + e′5 ∧ e′6 and �′ = (e′1 + ie′2) ∧ (e′3 + ie′4) ∧ (e′5 + ie′6). The
volume form is given by vol7 = 1

3!J
′ ∧ J ′ ∧ J ′ ∧ K ′. The differential conditions are given, in

our conventions, by

d(e2�K ′) = 0 e−4� d(e4�J ′) = ∗7G

d(e3��′) = 0 e−2� d(e2�J ′ ∧ J ′) = −2G ∧ K ′ (2.19)

with metric

ds2 = e2� ds2(R1,3) + ds2
7 . (2.20)

The first three equations were derived in [22] while the last equation corrects that appearing
in [22] by a factor. It was argued in [28] that these are sufficient conditions for a geometry
to admit a Killing spinor. Furthermore, the second equation implies the G equation of motion
and thus, given an integrability argument as in [20], only the Bianchi identity dG = 0 need be
imposed to give a solution to the full equations of motion.
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It is easy to show that our set of equations (2.13)–(2.16) for the d = 6 geometry are
precisely equivalent to the conditions (2.19) together with the AdS5 metric ansatz (2.17). The
correspondence is given by first identifying e2� = e2λ e−2mr . The forms (K ′, J ′,�′) are then
related to (J,�,K1,K2) by

K ′ = eλ(cos ζK1 − sin ζ dr)

J ′ = e2λ(J − (sin ζK1 + cos ζ dr) ∧ K2)

�′ = e3λ� ∧ (−sin ζK1 − cos ζ dr + iK2).

(2.21)

This structure arises as follows. In order to obtain AdS5 we need to select a radial direction
from the d = 7 geometry, which we denote by the unit 1-form eλ dr . In general, this radial
direction will point partly in the K ′ direction and partly in the d = 6 space orthogonal to K ′.
In other words we have

eλ dr = −sin ζK ′ − cos ζW eλK1 = cos ζK ′ − sin ζW (2.22)

where W is a unit 1-form in M6. We have also defined K1 as the unit 1-form, orthogonal
linear combination of K ′ and W . (The angle ζ is chosen to match the definition in the previous
section). The almost complex structure determined by J ′

a
b in d = 6 pairs the 1-form W with

another unit 1-form eλK2 ≡ J ′ · W . With these definitions, inverting the rotation (2.22) to
write (K ′,W) in terms of (dr,K1), one then gets the expressions in (2.21) for K ′, J ′ and �′.

As mentioned, the d = 7 conditions (2.19) are necessary and sufficient for a geometry
which admits a Killing spinor. Given our metric ansatz they are equivalent to our
conditions (2.13)–(2.16) on M6. Hence, our conditions are also necessary and sufficient
for supersymmetry.

To ensure we have a solution of the equations of motion, in general one also needs to
impose the equation of motion and Bianchi identity (2.9) for G. The connection with the d = 7
results gives us a quick way of seeing that, in fact, provided sin ζ is not identically zero, both
conditions are a consequence of the supersymmetry constraints (2.13)–(2.16). As already
noted, the equation of motion for G follows directly from the exterior derivative of the second
equation in (2.19). For the Bianchi identity one notes that, given the ansatz for the d = 7
metric and G, the first and last equations in (2.19) imply in general that

sin ζ dG ∧ dr = 0 (2.23)

since dG lies solely in M6. This implies that dG = 0 provided sin ζ is not identically
zero–which can occur only when m = 0. Thus we see that, when m 
= 0, the constraints
(2.13)–(2.16) are necessary and sufficient both for supersymmetry and for a solution of the
equations of motion.

2.3. Local form of the metric

In this section, we use the differential conditions on the forms derived in section 2.1 to give
the local form of the metric. We start by considering K1 and K2.

For K1, we can immediately integrate condition (2.13) and introduce coordinates (wM, y)

with M = 1, . . . , 5 and y defined by

2my = e3λ sin ζ (2.24)

so that

K1 = e−3λ sec ζ dy. (2.25)

While we could eliminate either λ or ζ from the following formulae, for the moment it will
be more convenient to keep both. The metric then has the form

ds2 = g5
MN(w, y) dwM dwN + e−6λ(w,y) sec2 ζ(w, y) dy2. (2.26)
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Turning to K2, as discussed in appendix B, it is easy to show, starting from the Killing
spinor equations, that K̃2

µ = 1
2 ξ̄ γµγ7ξ = cos ζK2

µ satisfies ∇(µK̃2
ν) = 0 and hence, raising an

index, we have the important condition that

K̃2 = cos ζK2 defines a Killing vector. (2.27)

(Note that one could also show this from conditions (2.13)–(2.16) since they are necessary
and sufficient—it is simply much easier to obtain this result directly from the Killing spinor
equations). We also have LK̃2λ = 0 (see (B.8)) and LK̃2ζ = LK̃2K1 = 0 where LK̃2 is the
Lie derivative with respect to K̃2. This allows us to refine the local coordinates wM = (xi, ψ)

with i = 1, . . . , 4, where as a vector K̃2 = 3m∂/∂ψ , and the factor of 3m has been inserted
for later convenience. Hence

K2 = 1

3m
cos ζ(dψ + ρ) (2.28)

with ρ = ρi(x
j , y) dxi . Locally the metric is then a product of a four-dimensional space M4

and the K1 and K2 directions:

ds2 = g4
ij (x, y) dxi dxj + e−6λ(x,y) sec2 ζ(x, y) dy2 +

1

9m2
cos2 ζ(x, y)(dψ + ρ)2 (2.29)

with λ and ζ independent of ψ . Also note, from (2.15), that iK̃2 ∗ G = −6e3λ dλ and hence

LK̃2G = 0. (2.30)

In other words, the Killing vector generates a symmetry not only of the metric, and the AdS5

warp factor λ, but also of the 4-form flux G.
Now let us turn to the metric g4 on the four-dimensional part of the space M4. The forms

J = 1
2Jij dxi ∧ dxj and � = 1

2�ij dxi ∧ dxj define a local SU(2) structure on M4. Although
the metric is independent of ψ , it does not necessarily follow that J and � are. They also
explicitly depend on xi and y. Let us write

d = d4 + dy ∧ ∂y + dψ ∧ ∂ψ. (2.31)

It is also useful to define a rescaled structure and corresponding metric

J = e−6λĴ � = e−6λ�̂ g4
ij = e−6λĝij (2.32)

so that the d = 6 metric becomes

ds2 = e−6λ(x,y)[ĝij (x, y) dxi dxj + sec2 ζ(x, y) dy2] +
1

9m2
cos2 ζ(x, y)(dψ + ρ)2. (2.33)

Considering first J , the supersymmetry condition (2.15), together with the 4-form equation of
motion (2.9), implies

e−6λ d(e6λJ ) = K1 ∧ (d log cos ζ ∧ K2 − dK2) sin ζ

= − 1

3m
dρ ∧ K1 cos ζ sin ζ. (2.34)

Decomposing, we find

d4Ĵ = 0 (2.35)

∂yĴ = − 2
3y d4ρ (2.36)

∂ψ Ĵ = 0. (2.37)
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For � we can work directly from condition (2.14). We find

d4�̂ = (iρ − d4 log cos ζ ) ∧ �̂ (2.38)

∂y�̂ = (− 3
2y−1 tan2 ζ − ∂y log cos ζ

)
�̂ (2.39)

∂ψ�̂ = i�̂. (2.40)

We note in particular that d�̂ = A ∧ �̂, for a suitable 1-form A. This implies that the
almost complex structure defined by �̂, or equivalently Ĵ i

j , is independent of ψ and y and is
integrable on M4. In other words, M4 is a complex manifold. Furthermore, from (2.35), we
see that d4Ĵ = 0, and thus we have

ĝ is locally a family of Kähler metrics on M4 parametrized by y. (2.41)

The corresponding complex structure is independent of y and ψ , while from (2.37) we see the
Kähler form Ĵ is independent of ψ .

Given the family of Kähler metrics ĝ, we have the general expression

d4�̂ = iP̂ ∧ �̂ (2.42)

where P̂ is the canonical Ricci-form connection defined by the Kähler metric (at fixed y).
That is, if the Ricci-form �̂ is defined by �̂ij = 1

2 R̂4
ijkl Ĵ

kl then

�̂ = d4P̂ . (2.43)

Thus, the content of equation (2.38) is to fix the 1-form ρ in terms of P̂ and d4ζ

ρ = P̂ + Ĵ · d4 log cos ζ. (2.44)

The ∂ψ�̂ condition is easily solved by redefining the phase of �̂

�̂(x, y, ψ) = eiψ�̂0(x, y). (2.45)

The remaining content of the ∂y�̂ equation (2.39) is to fix the y-variation of the volume of ĝ4.

Recalling that �̂ ∧ ¯̂� = 4v̂ol4, we find

∂y log
√

ĝ = −3y−1 tan2 ζ − 2∂y log cos ζ. (2.46)

Note that compatibility of the last equation with equation (2.44) implies that6

e3λ cos3 ζ∂yρ = −6mĴ · d4ζ (2.47)

or equivalently that e3λ cos3 ζ∂yρ − 6mi d4ζ is a (1, 0)-form on M4.
For a general 2-form ω on M4 we can define self-dual and anti-self-dual combinations by

ω± = 1
2 (ω ± ∗̂4ω). We have the identity

(∂yĴ )+ = 1
2∂y log

√
ĝĴ (2.48)

valid when the complex structure, Ji
j , is independent of y. Given the relation (2.36), we then

see that the condition on the volume (2.46) can be written in the form

(d4ρ)+ = 3m2 e−6λ sec2 ζ(1 + 6y∂yλ)Ĵ . (2.49)

These conditions are in fact sufficient to ensure all the relations (2.13)–(2.16) are satisfied.
The only remaining point is that one finds the flux G is given by

G = −(∂y e−6λ)v̂ol4 − e−9λ sec ζ(∗̂4 d4 e6λ) ∧ K1 − 1

3m
cos3 ζ(∗̂4∂yρ) ∧ K2

+ e3λ

[
1

3m
cos2 ζ ∗̂4 d4ρ − 4m e−6λĴ

]
∧ K1 ∧ K2. (2.50)

6 Recall that when ĝ is written in terms of four-dimensional complex coordinates, defined by the y-independent
complex structure Ĵ i

j , locally we have P̂ = i
2 (∂ − ∂̄) log

√
ĝ.
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In summary, we have shown that the necessary and sufficient local conditions for M6 to
be supersymmetric and solve the equations of motion are that the metric has the form

ds2 = e−6λ(ĝij dxi dxj + sec2 ζ dy2) +
1

9m2
cos2 ζ(dψ + ρ)2 (2.51)

where ĝ, λ and ζ and ρ = ρi dxi are all functions of xi and y. We also have

(a) ∂/∂ψ is a Killing vector (2.52)

(b) ĝ is a family of Kähler metrics on M4 parametrized byy (2.53)

(c) the corresponding complex structure Ĵ i
j is independent of y and ψ. (2.54)

In addition

(d) 2my = e3λ sin ζ (2.55)

(e) ρ = P̂ + Ĵ · d4 log cos ζ (2.56)

where, in complex coordinates, P̂ = 1
2 Ĵ · d log

√
ĝ is the Ricci-form connection defined by

the Kähler metric, satisfying �̂ = dP̂ . Finally, we have the conditions

(f ) ∂yĴ = − 2
3y d4ρ (2.57)

(g) ∂y log
√

ĝ = −3y−1 tan2 ζ − 2∂y log cos ζ (2.58)

where, using (2.57), the last expression can also be written as

(d4ρ)+ = 3m2 e−6λ sec2 ζ(1 + 6y∂yλ)Ĵ . (2.59)

The 4-form flux G is given by (2.50) and is independent of ψ—that is, L∂/∂ψG = 0. As shown
in the previous subsection, the equations of motion for G and the Bianchi identity (2.9) are
implied by expressions (2.52)–(2.58).

3. Complex M6 and explicit solutions

In this section, we consider how the conditions on the metric specialize for solutions where
the six-dimensional space M6 is a complex manifold. As we will see this additional condition
is equivalent to

d4ζ = 0 d4λ = 0 ∂yρ = 0 (3.1)

and from the condition (2.56), we see that ρ then coincides with the canonical connection on
the Kähler manifold M4:

ρ = P̂ . (3.2)

Crucially, the supersymmetry conditions simplify considerably and we are able to find many
solutions in closed form. In particular, we find many new regular and compact solutions that
are topologically 2-sphere bundles over the Kähler base. These fall into two general classes
and are discussed in detail in sections 4 and 5. In this section, we first analyse what the
assumption that we have a complex structure implies about the geometry of M6 and then
describe the global topology of the class of solutions we consider.
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3.1. Conditions on local geometry

We would like to specialize to the case where

ds2(M6) is a Hermitian metric on a complex manifold M6.

There is a natural almost complex structure compatible with ds2(M6) and the local SU(2)-
structure given by complex 3-form �(3) = � ∧ (K1 + iK2) (Note one could equally well
consider the 3-form �∧ (K1 − iK2) and get the same results). We find that d�(3) has the form

d�(3) = A ∧ �(3) + v ∧ � ∧ (K1 − iK2) (3.3)

where v is a 1-form given by

v = −(
tan ζ + 1

2 cot ζ
)

d4ζ + i 1
6m

e3λ cos2 ζ∂yρ. (3.4)

In deriving (3.3) we have used the fact that d4ρ ∧ � = 0, which is a consequence of (2.56).
For �(3) to define an integrable complex structure, the second term in (3.3) must vanish. In
general, this implies v ∧ � = 0 or equivalently v is a (0, 1)-form on M4. This means that

e3λ cos2 ζ∂yρ = −6m
(
tan ζ + 1

2 cot ζ
)
Ĵ · d4ζ. (3.5)

However, we also have the integrability condition (2.47). The only way both equations can
hold is if d4ζ = ∂yρ = 0 and, in fact, v = 0. From (2.55) we immediately have d4λ = 0 and
from (2.56) ρ = P̂ . We thus get the results (3.1) and (3.2) stated above.

We will next derive conditions on the eigenvalues of the Ricci tensor for the metric on the
four-dimensional space M4. By definition, �̂ = d4P̂ so conditions (2.57) and (2.59) now read

�̂ = − 3

2y
∂yĴ �̂+ = 3m2 e−6λ sec2 ζ(1 + 6y∂yλ)Ĵ . (3.6)

Note that �̂+ is necessarily pointwise-proportional to Ĵ since it is a self-dual (1, 1)-form.
However, here we see that the proportionality factor is independent of xi . This implies that
the Ricci scalar R̂ ≡ Ĵ ij �̂ij = Ĵ ij �̂+

ij is constant:

d4R̂ = 0. (3.7)

Recall that on a Kähler manifold, the Ricci tensor R̂ij is related to the Ricci form by
R̂ij = −Ĵ i

k�̂kj . From the third equation in (3.1) and the fact that the complex structure
is independent of y, we have ∂yR̂ij = 0. Also note that we can rewrite the first equation of
(3.6) as

R̂ij = − 3

2y
∂yĝij . (3.8)

Given ∂yĝ
ij = −ĝikĝj l∂y ĝkl one finds

R̂ij R̂
ij = 3

2y
∂yR̂ (3.9)

and hence

d4(R̂ij R̂
ij ) = 0. (3.10)

For a Kähler metric, the eigenvalues of the Ricci tensor come in pairs, since it is invariant
under the action of the complex structure. Thus, in dimension four, there are a priori two
distinct eigenvalues which each have a degeneracy of 2. From (3.7), we know that the sum
of the eigenvalues is a constant (on M4). Moreover, from (3.10) we see that the sum of the
squares of the eigenvalues is also constant. Thus we find the useful condition that at fixed y,
the Ricci tensor on M4 has two pairs of constant eigenvalues.

Finally, we note that expression (2.50) for the flux G simplifies to

G = −(∂y e−6λ)v̂ol4 + e3λ

(
1

3m
cos2 ζ ∗̂4 d4ρ − 4m e−6λĴ

)
∧ K1 ∧ K2. (3.11)
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3.2. Global structure of solutions

We would like to find global regular solutions for the complex manifold M6. Our basic
construction, which will cover almost all regular compact solutions that we find, will be as
follows. We require that ψ and y describe a holomorphic CP 1 bundle over a smooth Kähler
base M4

CP 1
y,ψ −−−−→ M6

||↓
M4

. (3.12)

Recall that, given d4ζ = 0, the metric has the form

ds2 = e−6λ(y)ĝij (x, y) dxi dxj + e−6λ(y) sec2 ζ(y) dy2 +
1

9m2
cos2 ζ(y)[dψ + P̂ (x)]2. (3.13)

For the (y, ψ) coordinates to describe a smooth S2 we take the Killing vector ∂/∂ψ to have
compact orbits so that ψ defines an azimuthal angle. The coordinate y is taken to lie in
the range [y1, y2] with the U(1) fibre, defined by ψ , shrinking to zero size at the two poles
y = yi—that is, we demand cos ζ(yi) = 0.

It is necessary to check that the fibre is smooth at the poles y = yi . As we shall see, in
all cases in the above construction, a smooth S2 is obtained by choosing the period of ψ to be
2π . (Note that this is consistent with the integrated expression (2.45) for �). By definition,
P̂ is a connection on the canonical bundle L of the base M4. Thus at fixed generic y, so that
y1 < y < y2, the resulting 5-manifold is the total space of a U(1) bundle over M4, which is in
fact just the U(1) bundle associated with the canonical line bundle L of M4. For the full CP 1

fibration we can think of each fibre CP 1 as a projectivization of C
2 = C ⊕ C. The transition

functions of the CP 1 bundle act on the relative phase of the two factors of C. Thus we can
take one to be the trivial bundle O. The other is then L. Projectivizing the bundles, we then
have that, as a complex manifold, M6 is the total space of the fibration

M6 = P(O ⊕ L). (3.14)

We note that M6 can also be viewed as the total space of the bundle of unit self-dual7

2-forms over M4. Here we think of each S2 fibre as being a unit sphere in R
3 = R ⊕ C with

the factor of R being the polar direction on the S2. Our S2 bundle may then be viewed as the
unit sphere bundle in an R

3 bundle, with the transition functions acting only in the R
2 = C

part of the fibre. The rank 3 real bundle thus splits into a direct sum O ⊕ LR of a trivial real
line bundle O, and (the realization of) the complex canonical line bundle L. Consider now the
2-forms on M4. These decompose into self-dual or anti-self-dual 2-forms:

�2M4
∼= �+M4 ⊕ �−M4. (3.15)

However, since M4 is Kähler, the structure group of the tangent bundle is in fact U(2) ⊂ SO(4).
Thus, one can now further decompose the space of real 2-forms as follows:

�+M4
∼= R[Ĵ ] ⊕ LR �−M4

∼= �
1,1
0 M4. (3.16)

Here �
1,1
0 M4 denotes the bundle of primitive (1, 1)-forms, i.e., 2-forms which are orthogonal

to the Kähler form Ĵ , and are invariant under the action of the complex structure. Thus we
see that the bundle of self-dual 2-forms splits as �+M4

∼= O ⊕ LR where O is a trivial real
line bundle generated by the Kähler form on M4. It is now clear that the R

3 bundle over M4

7 This is not to be confused with the bundle of unit anti-self-dual 2-forms, which is the twistor space of M4.
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associated with our metrics is in fact the bundle of self-dual 2-forms. Note that the ‘polar
direction’ is identified with the direction corresponding to the Kähler form.

Let us now return to considering the base manifold M4. We showed in the previous
subsection that, at fixed y, the Ricci tensor on M4 has two pairs of constant eigenvalues.
We may now invoke recent mathematical results from the literature on Kähler manifolds.
Theorem 2 of [35] states that, if the Goldberg conjecture8 is true, then a compact Kähler
4-manifold whose Ricci tensor has two distinct pairs of constant eigenvalues is locally the
product of two Riemann surfaces of (distinct) constant curvature. If the eigenvalues are
the same the manifold is by definition Kähler–Einstein. The compactness in the theorem is
essential, since there exist non-compact counterexamples. However, for AdS/CFT purposes,
we are most interested in the compact case (for example, the central charge of the dual CFT
is inversely proportional to the volume).

Thus we naturally have two possibilities. First, the base M4 is Kähler–Einstein. The
cosmological constant can depend on y, so by definition we can write

case 1: �̂ = k

F (y)
Ĵ (3.17)

where k ∈ {0,±1} and F(y) > 0.
Second, at fixed y, the base is a product of two constant curvature Riemann surfaces.

Thus the metric splits as

dŝ2(M4) = dŝ2
1 + dŝ2

2 . (3.18)

Let Ĵ i be the corresponding Kähler forms. Again the cosmological constant on each Riemann
surface can depend on y. By definition we can write

�̂1 = k1

F1(y)
Ĵ 1 �̂2 = k2

F2(y)
Ĵ 2 (3.19)

where ki ∈ {0,±1} and Fi(y) > 0. Thus on M4 we have Ĵ = Ĵ 1 + Ĵ 2 and

case 2: �̂ = �̂1 + �̂2 = k1

F1(y)
Ĵ 1 +

k2

F2(y)
Ĵ 2. (3.20)

Clearly when k1 = k2 and F1 = F2 we get special examples of case 1 above.
Since ∂yP̂ = ∂yρ = 0, we have ∂y�̂ = 0. Thus, we immediately see that the rescaled

Kähler forms given by

J̃ = 1

F
Ĵ J̃ i = 1

Fi

Ĵ i (3.21)

are independent of y. The corresponding rescaled metrics ds̃2 = (1/F ) dŝ2 and ds̃2
i =

(1/Fi) dŝ2
i , are independent of y and have fixed cosmological constants k and ki , respectively

�̃ = kJ̃ �̃i = ki J̃ i . (3.22)

For the Riemann surfaces of case 2, we write the metrics as ds̃2
(
Cki

)
. Depending on the value

of ki , they are the standard metrics on the torus C0 ≡ T 2, the sphere C1 ≡ S2 and hyperbolic
space9 C−1 ≡ H 2. From the first equation in (3.6), we can also solve for the functions F and
Fi . We find

F(y) = 1
3 (b − ky2) Fi(y) = 1

3 (ai − kiy
2) (3.23)

8 The Goldberg conjecture says that any compact Einstein almost Kähler manifold is Kähler–Einstein, i.e., the
complex structure is integrable.
9 In this last case, hyperbolic space H 2 is of course non-compact. One might also consider compact H 2/�, where �

is a discrete group of isometries of H 2, but in general we expect these to break supersymmetry. Exceptions do exist
such as, for example, the solution discussed in section 5.4.
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where b and ai are constants. We then satisfy all the constraints of supersymmetry except for
the ∂y log

√
ĝ condition (2.58).

Thus we have found that the metric on M4 is given by

case 1: ds2(M4) = 1
3 e−6λ(b − ky2) ds̃2(M4)

case 2: ds2(M4) = 1
3 e−6λ(a1 − k1y

2) ds̃2
(
Ck1

)
+ 1

3 e−6λ(a2 − k2y
2) ds̃2

(
Ck2

) (3.24)

where e3λ(y) sin ζ(y) = 2my and the Kähler metrics ds̃2(M4) and ds̃2(Ck) each satisfy

�̃ = kJ̃ (3.25)

and are independent of y. The remaining equation (2.58), or equivalently the second equation
in (3.6), implies

case 1: 3m2F(1 + 6y∂yλ) = k(e6λ − 4m2y2)

case 2: 6m2F1F2(1 + 6y∂yλ) = (k1F2 + k2F1)(e
6λ − 4m2y2).

(3.26)

In summary, our basic construction is to solve these final equations and look for solutions
with a smooth base M4 and a smooth CP 1 fibre with the topology given in equation (3.14).
We will consider both compact and non-compact examples, although the theorem leading to a
consideration of these two classes of base manifold only applies to the compact case. Note it
is also possible to find smooth metrics on M6 when both the base and fibre metrics degenerate.
One example of this more general class is described in section 5. In this case, the topology of
the U(1) fibration given by ψ also changes.

4. Case 1: Kähler–Einstein base

We start by considering the case where the base is Kähler–Einstein (KE). Recall that the metric
has the form

ds2 = 1
3 e−6λ(b − ky2) ds̃2(M4) + e−6λ sec2 ζ dy2 +

1

9m2
cos2 ζ(dψ + P̃ )2 (4.1)

where ds̃2(M4) is a y-independent KE metric on the four-dimensional base satisfying
�̃ = d4P̃ = kJ̃ . The remaining supersymmetry condition (3.26) can be integrated explicitly.
One finds, for k = ±1

e6λ = 2m2(kb − y2)2

cy + 2kb + 2y2

cos2 ζ = −3y4 − 2cy3 − 6kby2 + b2

(kb − y2)2
.

(4.2)

The solution is fully specified by giving the 4-form flux which reads

G = (4y3 + 3cy2 + 12kby + kbc)

18m2(y2 − kb)
˜vol4 +

k(y4 − 6kby2 − 2kbcy − 3b2)

9m2(y2 − kb)2
J̃ ∧ dy ∧ (dψ + P̃ ).

(4.3)

For k = 0, without loss of generality we can set b = 3, and we have simply

e6λ = 1

cy
cos2 ζ = 1 − 4m2cy3. (4.4)

The 4-form flux for k = 0 will be given shortly.
By construction these give locally supersymmetric solutions. We next investigate the

solutions in more detail, in particular, analysing when they are regular. We will find that
there are regular solutions only for k = 1. An interesting aspect of the k = 0 case, when
the hyper-Kähler manifold is taken to be a 4-torus, is that the solutions can be reduced to
type IIA solutions and thence, on performing a T-duality, to (singular) Sasaki–Einstein type
IIB solutions.
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4.1. KE bases with positive curvature: k = 1

We consider the case where k = 1. From the form of the metric (4.1), we see that we require
b > 0. Without loss of generality, by an appropriate rescaling of y we can set b = 1. In
addition, by flipping the sign of y if necessary, we can take c to be positive. The warp factor
e6λ becomes zero at y2 = 1 and the metric on M4 also develops a singularity, and thus we
require

y2 < 1. (4.5)

First we consider 0 � c < 4, in which case cos2 ζ has two zeros, at y1, y2, which are the
two real roots of the quartic:

3y4 + 2cy3 + 6y2 − 1 = 0. (4.6)

We take y1 � y � y2 and note the remarkable fact that, within this range, the expression for
cos2 ζ is consistent with ζ running monotonically from −π/2 to π/2 (for example cos2 ζ � 1
and is equal to 1 just at y = 0). We also find that y2 < 1 and so the base metric is well defined.

Now, if ψ is periodic, the (y, ψ) part of the metric is a metric on a non-round 2-sphere
provided that a single choice for the period of ψ ensures the metric is smooth at both the poles,
located at y = y1, y2. Let �1 be the value of the derivative of cos2 ζ at y1. Assuming that
�1 is non-vanishing, which will be the typical case, then near y1 the (y, ψ) part of the metric
becomes

e−6λ(y1)

�1(y − y1)
dy2 +

1

9m2
�1(y − y1)(dψ + P̃ )2. (4.7)

If we now introduce the coordinate ε = 2(y − y1)
1/2, this can be written as

e−6λ(y1)

�1
[dε2 + α2ε2(dψ + P̃ )2] (4.8)

where

α2 = 1

36m2
e6λ(y1)�2

1 . (4.9)

This is regular provided that ψ has period 2πα. Remarkably, for both y1 and y2 (in fact
for all the roots of the quartic (4.6)) we find α2 = 1. Thus choosing the period of ψ to be
2π implies that we do indeed have a smooth 2-sphere. This is compatible with the fact that
P̃ is the Kähler connection on the canonical bundle L, and implies that at fixed y 
= yi the
five-dimensional manifold is the total space of the associated U(1) = S1 bundle to L. In
addition, it is compatible with solution (2.45) for the 2-form �, implying that � has charge 1
under the action of the Killing vector ∂/∂ψ . In other words, for 0 � c < 4 we have a
one-parameter family of completely regular solutions which are S2 fibrations over a smooth
KE base.

Next consider c = 4. This case needs a special analysis since the quartic develops a triple
root at y = −1. Another root is located at y = 1/3. As before, choosing the period of ψ to be
2π leads to a smooth metric near y = 1/3. On the other hand, this period leads to a conical
singularity at y = −1. This is in fact a curvature singularity in general, the exception being
when the base is CP 2, in which case one has an orbifold singularity at this point. In fact the
solution is in this case the weighted projective space WCP 3

[1,1,1,3].
Finally, when c > 4, the quartic only has a single real positive root. Once again, choosing

the period of ψ to be 2π leads to a smooth metric at y equal to this root. On the other hand, the
space includes the point y = −1 where the warp factor e6λ is zero and the metric is singular.
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In summary, we have found that:

For 0 � c < 4, we have a one-parameter family of completely regular, compact,
complex solutions with the topology of a CP 1 fibration over a positive curvature KE
space.

Since four-dimensional compact Kähler–Einstein spaces with positive curvature have been
classified [36, 37], we have a classification for the above solutions. In particular, the base
space is either S2 × S2 or CP 2, or CP 2#nCP 2 with n = 3, . . . , 8. For the first two examples,
the KE metrics are of course explicitly known and this gives explicit solutions of M-theory
when fed into the above solutions. The remaining metrics, although proved to exist, are not
explicitly known, and so the same applies to the corresponding M-theory solutions.

4.2. KE bases with negative curvature: k = −1

We now consider cases with k = −1. First consider the case b 
= 0. Arguing as above, by
redefining y we can set b = 1 and we may also take c to be positive without loss of generality.
To ensure that e6λ is positive we need to take

y � y+ ≡ 1
4

(−c +
√

c2 + 16
)
, or y � y− ≡ 1

4

(−c −
√

c2 + 16
)
. (4.10)

Now, for all values of c we find that cos2 ζ has two real roots, y1 and y2. The largest one, y2,
is always greater than y+, while y1 is always smaller than y−. To ensure that cos2 ζ is positive,
we must take the range of y to be either: y+ � y � y2 or y1 � y � y−. When y = y1,2,
in each of the two solutions, by carrying out an analysis as above we find that the metric is
regular provided that the period of ψ is once again taken to be 2π . However, when y = y±,
the warp factor e6λ goes to infinity and we have a singularity.

When b = 0 we can again take c � 0, without loss of generality. For e6λ to be positive
and finite, we require y < − 1

2c or y > 0. The roots of cos2 ζ are now y = 0 and y = − 2
3c.

Thus the possible ranges of y are either y � 0, in which case the solution is singular at y = 0,
or − 2

3c � y < − 1
2c with c strictly positive, c > 0. In the latter case, while y = − 2

3c is regular
if the period of ψ is taken to be 2π , at y = − 1

2c again the solution is singular.

4.3. Hyper-Kähler bases: k = 0

Now we consider the case k = 0. This means the base is a Ricci-flat Kähler manifold, or in
other words the y-independent four-dimensional metric g̃ is hyper-Kähler. Locally we can,
and will, choose P̃ = 0. As discussed above the solution has warp factor e6λ = 1/cy and
hence cos2 ζ = 1 − 4m2cy3. Without loss of generality, we can assume c � 0 and hence
y > 0 for the warp factor to be positive.

After rescaling y → y/c1/3 and g̃ → c−2/3g̃, the full 11-metric takes the simple form

ds2
11 = c−2/9

[
1

y1/3
ds2(AdS5) + y2/3 ds̃2(M4)

+
y2/3

1 − 4m2y3
dy2 +

1

9m2y1/3
(1 − 4m2y3) dψ2

]
(4.11)

where, if the hyper-Kähler 4-metric ds̃2 is to be compact, the base M4 is either T 4 or K3
(modulo a quotient by a freely acting finite group). The flux takes the form

G = c−1/3
[−ṽol4 − 4

3y dy ∧ dψ ∧ J̃
]

(4.12)
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where J̃ and ṽol4 denote the Kähler form and volume form on the hyper-Kähler space,
respectively. We clearly see that the constant c is just an overall scaling and is not a genuine
modulus, and so henceforth we set c = 1.

If we introduce the new variable:

y = 1

(4m2)1/3
cos2/3 θ (4.13)

the D = 11 solution becomes

ds2
11 = y−1/3

[
ds2(AdS5) +

1

9m2
(dθ2 + sin2 θ dψ2)

]
+ y2/3 ds̃2(M4)

G = −ṽol4 +
4

9m
y1/2 sin θ dθ ∧ dψ ∧ J̃ .

(4.14)

If the period of ψ is 2π , then the solution is regular at θ = 0. On the other hand, θ = π/2 is
clearly singular.

In the special case that the HK space is flat, we can obtain supersymmetric solutions of
type IIA and type IIB supergravity by dimensional reduction and T-duality, respectively. Note
that these solutions will be supersymmetric provided that the Killing spinor is invariant under
the action of the Killing vector that one is reducing on or T-dualizing on. This will be the
case for the flat torus directions but will not in general be the case if we reduce on ψ . If we
write the flat HK metric as dx2

1 + dx2
2 + dx2

3 + dx2
4 with J̃ = dx1 ∧ dx2 + dx3 ∧ dx4 and then

dimensionally reduce on the x4 direction we obtain the type IIA supersymmetric solution

ds2 = ds2(AdS5) +
1

9m2
(dθ2 + sin2 θ dψ2) + y

(
dx2

1 + dx2
2 + dx3

3

)
e2� = y

F RR = 4

9m
y1/2 sin θ dθ ∧ dψ ∧ dx1 ∧ dx2

BNS = −1

2
x1 dx2 ∧ dx3 +

1

2
x2 dx1 ∧ dx3 − 2

3
y2 dψ ∧ dx3

(4.15)

where ds2 is the type IIA string metric, � is the dilaton, F RR is the Ramond–Ramond
4-form field strength and BNS is the Neveu–Schwarz 2-form potential. Here we are using the
conventions of, for example, [40].

If we T-dualize now on the x3 direction, using the formulae in [41], we obtain a
supersymmetric type IIB solution whose metric is the direct product of AdS5 with a 5-manifold
X5. The solution has constant dilaton and the only other non-vanishing field is the self-dual
5-form. The metric on X5 is given by

ds2(X5) = y
(
dx2

1 + dx2
2

)
+

sin2 θ

4y
(2dx3 + x2 dx1 − x1 dx2)

2

+
1

9m2
dθ2 +

1

9m2
[dψ − 3m2y(2dx3 + x2 dx1 − x1 dx2)]

2. (4.16)

For this to be a supersymmetric solution of type IIB string theory we know that the metric
should be Sasaki–Einstein. It is satisfying to check that the Ricci tensor is given by 4m2 times
the metric. A calculation of the square of the Riemann tensor is given by 8m4(5 + 48 cos−4 θ),
which implies that the solution is singular at θ = π/2.
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5. Case 2: product base

Now we consider the case where the base is a product of two constant curvature Riemann
surfaces. Recall that the metric has the form

ds2 = 1

3
e−6λ(a1 − k1y

2) ds̃2(C1) +
1

3
e−6λ(a2 − k2y

2) ds̃2(C2)

+ e−6λ sec2 ζ dy2 +
1

9m2
cos2 ζ(dψ + P̃ )2 (5.1)

where the y-independent metrics ds̃2(Ci) describe constant curvature Riemann surfaces with
curvature ki ∈ {0,±1}. In other words the metrics on Ci are the standard ones on either tori
T 2, spheres S2 or hyperbolic spaces H 2.

We must solve the remaining supersymmetry condition (3.26) to find λ and ζ as functions
of y. Substituting for Fi , the condition can be written as

2m2y∂y e6λ(a1 − k1y
2)(a2 − k2y

2) = e12λ(k1a2 + k2a1 − 2k1k2y
2)

+ 2m2 e6λ(3k1k2y
4 − (k1a2 + k2a1)y

2 − a1a2). (5.2)

Remarkably, this can again be solved in closed form for general ki . In the following, we will
treat two cases separately. First we note that k1 = k2 = 0 is just a 4-torus and so this case
was considered in the previous section. We can then distinguish between the cases where one
of the ki is zero and where neither is zero. We first consider the former case, when one of
the Riemann surfaces is a flat 2-torus. For this case we will also show that, by dimensionally
reducing on one of the circle directions, we can obtain additional type IIA solutions, and that
a further T-duality on the other circle direction leads to type IIB solutions. In particular, in
this way we obtain new Sasaki–Einstein spaces.

5.1. S2 × T 2 and H 2 × T 2 base: k2 = 0

Let us first suppose that one of the Riemann surfaces is flat. Then without loss of generality,
we may set k1 = k = ±1, k2 = 0 and also write a1 = a. The general solution to (5.2) is then

e6λ = 2m2(a − ky2)

k − cy
cos2 ζ = a − 3ky2 + 2cy3

a − ky2
(5.3)

where c is an integration constant. Without loss of generality we can set a2 = 3. The full
supersymmetric solution can then be written as

ds2 = e−6λ ds̃2(T 2) +
k − cy

6m2
ds̃2(Ck) + e−6λ sec2 ζ dy2 +

1

9m2
cos2 ζ(dψ + P̃ )2 (5.4)

where P̃ denotes the canonical connection for the metric ds̃2(Ck). The constants a and c are
arbitrary. We find that the flux is given by

G = −2y + ky2c + ca

6m2(a − ky2)
vol(Ck) ∧ vol(T 2) − 2(k − cy)

9m2
dy ∧ (dψ + P̃ ) ∧ vol(Ck)

− ak + y2 − 2acy

3m2(a − ky2)2
dy ∧ (dψ + P̃ ) ∧ vol(T 2) (5.5)

where vol(Ck) is the standard volume form on Ck ∈ {S2,H 2} for k = ±1.
We are looking for solutions which are S2 fibrations over Ck ×T 2. For compact fibres, as

before, we consider y1 � y � y2 where yi are two roots of cos2 ζ = 0 giving the poles of the
S2. Moreover, we also require that k − cy and e−6λ should both be positive in this range so
that the metric on Ck × T 2 does not have singularities. Finally we must check that the poles
of the fibre S2 are free of conical singularities for a suitable choice of the period of ψ .
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To investigate whether such solutions exist, first consider c 
= 0. In this case we can set
c = 1 without loss of generality. For k = 1, we have

ds̃2(S2) = dθ2 + sin2 θ dφ2 P̃ = −cos θ dφ. (5.6)

In this case, for the range 0 < a < 1 the cubic in the numerator of cos2 ζ has three real
roots. If we choose y to lie within the range between the two smallest roots we find that
all the conditions mentioned above are satisfied, if we choose the period of ψ to be 2π . In
other words, for 0 < a < 1 we have a two-parameter family of completely regular, compact,
complex solutions that are S2 bundles over S2 × T 2. For k = −1 we find that the analogous
solutions with −1 < a < 0 are singular.

For k = 1, still with c = 1, if one sets a = 0 it is straightforward to see that the resulting
space has curvature singularities. The solution with a = 1 is also singular, but in a milder and
more interesting way. It is convenient to perform a change of variables, defining

y = 1 − 3
2 sin2 σ (5.7)

so that the a = 1 metric becomes

m2 ds2 = dσ 2 +
1

4
sin2 σ(dθ2 + sin2 θ dφ2)

+
sin2 σ cos2 σ

1 + 3 cos2 σ
(dψ − cos θ dφ)2 +

1

1 + 3 cos2 σ
ds̃2(T 2). (5.8)

The range of σ is 0 � σ � π/2. It is easy to see that near σ = 1
2π one smoothly approaches

a bolt T 2 × S2 of co-dimension 2 if and only if ψ has period 2π . On the other hand, near to
σ = 0 the metric collapses to a co-dimension 4 bolt T 2. At constant σ , the collapsing fibre
turns out to be RP 3 = S3/Z2, rather than S3, due to the periodicity already enforced on ψ . In
fact, projecting out the T 2, the resulting 4-space is the weighted projective space WCP 2

[1,1,2].
This is a complex orbifold. Note the close similarity of the metric we have to the standard
Kähler–Einstein metric on CP 2.

If one now starts with WCP 2
[1,1,2], one can consider blowing up the Z2 singularity,

replacing it locally with T ∗S2. The resulting space is then clearly two copies of the cotangent
bundle of S2 glued back to back. This is precisely the topology of the non-singular spaces
described above, when 0 < a < 1. In fact, one can show that the resulting S2 bundle over S2

is topologically trivial. Thus, we can think of the limit a → 1 as a limit in which we blow
down an S2 in the non-singular family to obtain an orbifold, and it follows that the parameter
a measures the size of this cycle, with a → 1 the zero-size limit.

The remaining case to consider is c = 0. Clearly for the metric to have the correct
signature we must have k = 1. Without loss of generality, we can also set a = 3. With the
change of coordinates y = cos ω we find

6m2 ds2 = dθ2 + sin2 θ dφ2 + dω2 +
2 sin2 ω

2 + sin2 ω
(dψ − cos θ dφ)2 +

3

2 + sin2 ω
ds̃2(T 2)

(5.9)

where 0 � ω � π . The total space is a regular S2 bundle over S2 × T 2 provided that the
period of ψ is taken to be 2π . In this case, projecting out the T 2, the resulting space is an S2

bundle over S2, which furthermore is topologically trivial (for more details, see the discussion
in [38]).

In summary, we see that given k = 1 we have:

For 0 < a < 1 and c 
= 0 we have a one-parameter family of completely regular,
compact, complex solutions that are topologically trivial S2 bundles over S2 × T 2.
A single additional solution of this type is obtained when c = 0 and a 
= 0.

There are no non-singular solutions for k = −1.
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5.2. New type IIA and type IIB solutions

This family of solutions also leads to solutions of type IIA and IIB supergravity. First,
for any allowed value of the constants a and c, we can reduce the above solutions on one
of the torus directions to obtain supersymmetric type IIA solutions. Concretely, writing
ds̃2(T 2) = dx2

3 + dx2
4 and reducing along the x4-direction we get

ds2 = ds2(AdS5) +
k − cy

6m2
ds̃2(Ck) + e−6λ sec2 ζ dy2 +

1

9m2
cos2 ζ(dψ + P̃ )2 + e−6λ dx2

3

e2φ = e−6λ

GRR = − 2(k − cy)

9m2
dy ∧ (dψ + P̃ ) ∧ vol(Ck)

BNS = 1

6m2k

−2y + ky2c + ca

a − ky2
(dψ + P̃ ) ∧ dx3.

(5.10)

For k = 1, the S2 bundle is still smooth and in fact we have completely regular type IIA
solutions for the values of a, c and the ranges of y and ψ where the D = 11 solutions are
regular.

We can now T-dualize along the x4-direction to get type IIB solutions. The metric is given
by

ds2 = ds2(AdS5) +
k − cy

6m2
ds̃2(Ck) + e−6λ sec2 ζ dy2 +

1

9m2
cos2 ζ(dψ + P̃ )2

+ e6λ

[
dx3 +

1

6m2k

−2y + ky2c + ac

a − ky2
(dψ + P̃ )

]2

. (5.11)

We find that the dilaton is constant and the only other non-vanishing field is the self-dual
5-form. Thus the solutions should be the product of AdS5 with a locally Sasaki–Einstein
space. We have checked that it is Einstein with the appropriate factor of 4m2, and also locally
Sasaki.

The global structure of these solutions for k = 1 will be discussed in detail in [38].
In particular, we find the regular M-theory solution with c = 0 leads to a regular type IIA
solution and the resulting Sasaki–Einstein metric arising in the type IIB solution is simply
the standard one on T 1,1/Z2. The four-dimensional superconformal field theory dual to this
type IIB solution was identified in [4]. In [38], we will also show that for the solutions with
0 < a < 1 and c 
= 0, there is a countably infinite number of values of a for which the
type IIB solution gives a regular Sasaki–Einstein metric on S2 × S3. These should correspond
to new AdS5 duals of N = 1 superconformal field theories and it will be interesting to see
when the type IIB, type IIA or M-theory supergravity solutions are most useful. Interestingly,
the mildly singular D = 11 limiting solution with a = 1 (and c = 1) is dual to S5/Z2 in the
type IIB theory.

5.3. S2 × S2, S2 × H 2 and H 2 × H 2 bases: ki = ±1

We now consider ki = ±1, corresponding to warped products of S2 ×S2,H 2 ×H 2 or S2 ×H 2.
Note that we should at least recover the KE result for the first two of these cases, when the
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warping is the same for each space. In fact, the warping can be different, corresponding to
choosing the integration constants a1 
= a2. The general solution to (5.2) is given by

e6λ = 2m2(y2 − a1k1)(y
2 − a2k2)

2y2 + cy + k1a1 + k2a2

cos2 ζ = −3y4 − 2cy3 − 3(k1a1 + k2a2)y
2 + k1k2a1a2

(y2 − k1a1)(y2 − k2a2)

(5.12)

where c is an arbitrary integration constant. The 4-form flux is given by

G = k1k2

18m2(y2 − a1k1)(y2 − a2k2)

[
4y5 + 3cy4 + 4y3(a1k1 + a2k2)

− cy2(a1k1 + a2k2) − 2y
(
a2

1 + a2
2 + 4a1a2k1k2

) − ca1a2k1k2
]
vol1 ∧ vol2

+

{
k2

9m2(y2 − a1k1)2

[
y4 − y2(a2k2 + 5a1k1) − 2a1k1cy

− a1a2k1k2 − 2a2
1

]
vol2 + [1 ↔ 2]vol1

}
∧ dy ∧ (dψ + P̃ ). (5.13)

We therefore have a three-parameter family of solutions. These reduce, on setting
a1 = a2 = ±b, to the KE solutions considered in section 4.1 with base S2 × S2 or H 2 × H 2

(for the cases k1 = k2 = k = ±1, respectively).
As usual we are particularly interested in regular solutions where the (y, ψ) part of the

metric is a 2-sphere. This requires that y is bounded between two suitable roots y1 and y2 of
the quartic appearing in the numerator of cos2 ζ . As before, we find the 2-sphere will be free of
conical singularities if the period of ψ is taken to be 2π . A regular solution is obtained if, for
values of y between the roots, the warp factor e6λ and the Fi are positive and 0 � cos2 ζ � 1.
We find:

For various ranges of (a1, a2, c) there are regular solutions that are topologically S2

bundles over S2 × S2 and S2 × H 2.

In particular, for the S2 × S2 case, there are solutions when a1 is not equal to a2 and hence
this gives a broader class of solutions than in the Kähler–Einstein case considered above. The
existence of regular solutions is rather easy to see if one sets c = 0. It is also not difficult to
show that when c = 0 there are no regular solutions of the type being considered when the
base is H 2 × H 2, since the positivity conditions cannot be satisfied.

For the S2 × H 2 case there is a special degenerate limit which leads to a solution first
found in [10], as we show in the next subsection. This solution is of a different global type
from those considered thus far. First, the S2 fibres are not smooth but have conical singularities
at the poles. This is connected to the fact that the U(1) bundle specified by ψ is globally L1/2

rather than L. In addition, the volume of the S2 of the S2 × H 2 base goes to zero at the poles
of the (y, ψ) 2-sphere. Together these facts conspire to make the total space of S2 and (y, ψ)

a 4-sphere. In other words, the topology of these solutions is actually an S4 bundle over H 2.
Note that, for the class of regular solutions described in the last paragraph, the volume of the
S2 in the S2 × H 2 base is always finite and topologically we have an S2 bundle over S2 × H 2.
This combined with the fact that the ranges for the coordinate ψ are different indicate that
they should probably not be viewed as deformations of the solution found in [10]. Finally, we
comment that in the solution of [10] it was argued that the Killing spinors do not depend on
the coordinates on H 2 and hence this space can be replaced with H 2/� where � is a discrete
group of isometries. It would be interesting to know whether this is also possible for our more
general solutions with base S2 × H 2. This could be established with an explicit expression
for the Killing spinor.
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5.4. Recovering the N = 1 Maldacena–Núñez solution

Given our general formulation, it is a simple exercise to recover the regular solution withN = 1
supersymmetry constructed by Maldacena and Núñez in [10]. This solution corresponds to
setting k1 = −k2 = 1, so that the base 4-manifold is a warped product of S2 × H 2. Crucially
though, the (y, ψ)-fibre is not a smooth S2 and, in addition, the base metric is singular at
certain values of y. Thus, the topology of this solution is different to that of the regular
solutions we have considered so far.

For simplicity we set m = 1. One needs to make the following choice of integration
constants:

a ≡ a2 = 3a1, c = 0. (5.14)

In this case the expression for the quartic in the numerator of cos2 ζ factorizes, with one of the
factors cancelling a quadratic in the denominator. The result is

e6λ = y2 + a cos2 ζ = a − 3y2

a + y2
. (5.15)

In fact, it is simple to see that the constant a is redundant; writing y = √
a/3 cos α leads to

the six-dimensional metric

ds2
6 = 1

3
ds2(H 2) +

sin2 α

3(3 + cos2 α)
ds2(S2) +

1

3
dα2 +

sin2 α

3(3 + cos2 α)
(dψ + P̃ )2. (5.16)

If we write the metrics on S2 and H 2 as

ds2(S2) = dθ2 + sin2 θ dν2 ds2(H 2) = dX2 + dY 2

Y 2
(5.17)

then the connection P̃ is given by

P̃ = −cos θ dν − dX

Y
. (5.18)

Note that, as usual, the (α, ψ)-fibre is a smooth S2 only if we take the period of ψ to be 2π .
However, the full space will then be singular, since the metric on the base S2 is singular when
sin α = 0. Remarkably, the full space can be made smooth by instead choosing the period
of ψ to be 4π . The (θ, ν, ψ) part of the metric is then simply a round 3-sphere. Moreover,
combined with the α part we get the metric on a squashed 4-sphere.

Thus, topologically this solution is different from our previous examples. The U(1)

ψ-fibration is now given by L1/2 instead of L, where L is the canonical bundle on S2 × H 2

and the S2 fibre has conical singularities at sin α = 0. As a check, one notes that this choice
of period for ψ is still consistent with the integrated expression (2.45) for �̂.

To see the S4 explicitly, we introduce the new coordinates

ψ = −(φ1 + φ2) ν = φ1 − φ2 (5.19)

as well as the constrained variables on a 2-sphere

µ0 = cos α µ1 = sin α cos
θ

2
µ2 = sin α sin

θ

2
(5.20)

satisfying µ2
0 + µ2

1 + µ2
2 = 1. The full 11-dimensional solution then takes the form

ds2
11 = �1/3 ds2

7 +
1

4
�−2/3

{
e−4� dµ2

0 + e�

[
dµ2

1 + dµ2
2 + µ2

1

(
dφ1 +

1

2Y
dX

)2

+ µ2
2

(
dφ2 +

1

2Y
dX

)2]}
(5.21)
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where

� = e4�µ2
0 + e−�

(
µ2

1 + µ2
2

)
. (5.22)

The constant � is given by e5� = 4/3, and the 7-metric ds2
7 is a warped product of AdS5 and

H 2, given by

ds2
7 = e−8� ds2(AdS5)m=1 + e−3� dX2 + dY 2

4Y 2
(5.23)

where ds2(AdS5)m=1 is a unit-radius AdS5-space. The metric (5.21) is precisely that of the
solution, in the form they presented, found by Maldacena and Núñez.

6. Discussion

Let us summarize what we have found. First, we gave a geometric formulation of the general
conditions that a six-dimensional manifold M6 must satisfy in order to get a supersymmetric
solution of M-theory of the form of a warped product AdS5 × M6. These conditions are
summarized in equations (2.52)–(2.58). The 4-form flux is completely determined from the
geometry as in (2.50). We found that M6 is locally the product of a complex four-dimensional
space M4 and a two-dimensional space spanned by a Killing vector ∂/∂ψ and an orthogonal
direction with coordinate y. The complex structure on M4 is independent of y and ψ . The
six-dimensional metric is fixed by a one-parameter family of Kähler metrics on M4 depending
on y and a single angular function ζ , which also fixes the warp factor. The Bianchi identity
and the equations of motion for the 4-form are both implied by the supersymmetry conditions.

We then specialized to the case where M6 is a complex manifold and the metric is
Hermitian, and found a number of new classes of AdS5 solutions. The natural global structure
to consider is where the (y, ψ) directions form a holomorphic S2 bundle over the Kähler
base M4. For compact M6 we found a complete classification of such geometries, assuming
that the Goldberg conjecture is true. They fall into two classes, where the base M4 is either
(i) Kähler–Einstein (KE) or (ii) the product of two constant curvature Riemann surfaces. We
found three families of regular compact solutions: those with positive curvature KE base
(which are classified in [36, 37]) and those with S2 ×T 2 or S2 ×S2 base. We also constructed
several families of regular non-compact geometries, as well as singular geometries.

In the S2 × T 2 case discussed in 5.1 (or the KE case with base T 4), one can reduce on
one torus direction to obtain a supersymmetric type IIA solution which is the direct product
of AdS5 with a 5-manifold. If one further T-dualizes on the second torus direction, one gets a
supersymmetric type IIB Sasaki–Einstein solution. This family includes T 1,1/Z2 as a special
case. A detailed discussion of the new Sasaki–Einstein metrics is presented in [38]. It is
perhaps worth stressing that here the T-duality we implemented preserves supersymmetry,
unlike the dualities on the canonical Sasaki–Einstein U(1) Killing direction of S5 considered
in [42], or T 1,1 [43].

These new classes of AdS5 solutions give an array of new candidates for the supergravity
duals of N = 1 superconformal field theories. Of primary interest in this context are the regular
compact solutions that we have constructed, but it is possible that the singular solutions can be
resolved in physically interesting ways. Note that the general existence of the ∂/∂ψ Killing
vector simply reflects the R-symmetry of the field theory.

A supergravity solution will serve as a good M/string-theory background only if the fluxes
satisfy appropriate quantization conditions. This requirement puts additional constraints on
the classical solutions we have found. This issue will be analysed in more detail for the
solutions of section 5.1 that are S2 bundles over S2 × T 2 in [38], and for this case flux
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quantization reduces the continuous family of solutions to a countably infinite subclass. In
particular, quantization of the NS 3-form flux in the type IIA solution is T-dual to the classical
requirement in type IIB that the curvature of a connection on a U(1) bundle has integral
periods (see for example [44]). On the other hand, lifting to M-theory, the quantization of
the NS flux implies that the G-flux is also quantized. In general then, we expect that these
quantization conditions put constraints on (some of) the parameters in our solutions. The
continuous families of supergravity solutions that we have found would then only correspond
to true string theory backgrounds at discrete values, and from the analysis in [38], these may
be countably infinite in number.

It is natural to try to interpret our solutions in D = 11 in terms of wrapped or intersecting
M5-branes. A very concrete way to make this connection would be to construct more general
solutions with the property that the solutions presented here arise as near-horizon limits. For
the families of solutions with S2 × S2 × T 2 topology discussed in section 5.1, and which have
type II dual configurations, a standard interpretation would be as follows. Consider starting
on the type IIB side, where the solutions arise as the near-horizon limit of N D3-branes placed
at the tip of the Calabi–Yau cone over the Sasaki–Einstein manifold. Then T-duality along
an appropriate transverse direction maps to a IIA solution which is expected to arise from a
configuration of N D4-branes suspended between NS5-branes [43, 45]. Uplifting to D = 11,
the M-theory solution is interpreted as the near-horizon limit of intersecting M5-branes. We
expect that, depending on the choice of parameters, only one of the M-theory, type IIA or
type IIB solutions would provide a good supergravity description of the underlying
superconformal field theory. It would be interesting to see if in any of these limits one
can extract the exact configuration of branes or the nature of the singularity and hence identify
the corresponding conformal field theories.
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Appendix A. Conventions

We use the signature (−, +, . . . , +). In an orthonormal frame the gamma matrices satisfy

{�α, �β} = 2ηαβ (A.1)

and can be taken to be real in the Majorana representation. They satisfy, in our conventions,
�012345678910 = ε012345678910 = 1. Given a Majorana spinor ε its conjugate is given by ε̄ = εT C,
where C is the charge conjugation matrix in D = 11 and satisfies CT = −C. In the Majorana
representation we can choose C = �0.

The bosonic fields of D = 11 supergravity consist of a metric, g, and a 3-form potential
C with 4-form field strength G = dC. The action for the bosonic fields is given by

S = 1

2κ2

∫
d11x

√−gR − 1

2
G ∧ ∗G − 1

6
C ∧ G ∧ G. (A.2)

The Killing spinor equation is

∇µε +
1

288

[
�µ

ν1ν2ν3ν4 − 8δν1
µ �ν2ν3ν4

]
Gν1ν2ν3ν4ε = 0 (A.3)
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where ε is a Majorana spinor. The equations of motion are given by

Rµν − 1
12

(
Gµσ1σ2σ3Gν

σ1σ2σ3 − 1
12gµνG

2
) = 0

d ∗ G + 1
2G ∧ G = 0.

(A.4)

Note that in M-theory, the field equation for the 4-form receives higher-order gravitational
corrections—in our conventions they can be found in the appendix of [20].

The Hodge star of a p-form ω is defined by

∗ωµ1...µ11−p
=

√−g

p!
εµ1...µ11−p

ν1...νpων1...νp
. (A.5)

Appendix B. Differential conditions for spinor bilinears

We want to manipulate the Killing spinor equations (2.8) to define differential conditions on
fermion bilinears on M6. Following a similar calculation in [23], it is useful to write

ε+ = 1√
2
ξ ε− = − 1√

2
iγ7ξ. (B.1)

We then get

∇mε± ∓ m

2
γmε∓ ∓ 1

24
γ n1n2n3 e−3λGmn1n2n3ε

± = 0

γ m∇mλε± ± mε∓ ± 1

144
γ m1m2m3m4 e−3λGm1m2m3m4ε

± = 0.

(B.2)

Given that γ
†
m = γm, one can derive some useful identities

1

144
e−3λGpqrs ε̄

±[γ pqrs, A]−ε± ± ∇mλε̄±[γ m,A]−ε± + m(ε̄∓Aε± − ε̄±Aε∓) = 0

1

144
e−3λGpqrs ε̄

±[γ pqrs, A]+ε
± ± ∇mλε̄±[γ m,A]+ε

± + m(ε̄∓Aε± + ε̄±Aε∓) = 0

1

144
e−3λGpqrs ε̄

±[γ pqrs, A]±ε− + ∇mλε̄+[γ m,A]∓ε− + m(ε̄−Aε− ± ε̄+Aε+) = 0

(B.3)

where [·, ·]± refer to anticommutator or commutator, A is a general Clifford matrix and ε̄ ≡ ε†.
There are similar formulae involving ε±T.

Let us now consider the bilinears that can be constructed from ε±. We first analyse the
scalars. By definition ε̄+ε+ = ε̄−ε− = 1

2 ξ̄ ξ . Using (B.2) we find ∇(ε̄+ε+) = 0. Thus we can
normalize the spinor so that

ε̄+ε+ = ε̄−ε− = 1. (B.4)

On the other hand ∇(ε̄+ε−) 
= 0, and we parametrize this non-trivial function, which takes
values in the interval [−1, 1], as

ε̄+ε− ≡ sin ζ. (B.5)

Of the other possible scalars, note that ε+Tε− = 0 while ε+Tε+ = −ε−Tε− ≡ f is a priori
non-zero.

We can also construct the following tensor fields as bilinears:

K̃1
m = ε̄+γmε+ K̃2

m = iε̄+γmε−

Ymn = −iε̄+γmnε
+ Y ′

mn = iε̄+γmnε
−

�̃mn = ε+Tγmnε
− Xmnp = ε+Tγmnpε+

Vmnp = ε̄+γmnpε−.

(B.6)
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Consideration of other bilinears turns out to be redundant and we will not include them in the
following analysis.

Observe that the covariant derivative of K̃2 is given by

∇mK̃2
n = − 1

4 e−3λGmnpqY
′pq − mYmn. (B.7)

This implies that ∇(mK̃2
r) = 0 and therefore (K̃2)m are the components of a Killing vector.

Next, setting A = 1 in the last equation of (B.3) with the lower sign immediately gives the
useful condition

LK̃2λ = 0. (B.8)

Conditions on the exterior derivatives of all the bilinears can be obtained, and we find

d(e3λf ) = 0 (B.9)

e−3λ d(e3λ sin ζ ) = 2mK̃1 (B.10)

d(e3λK̃1) = 0 (B.11)

e−6λ d(e6λK̃2) = e−3λ ∗ G + 4mY (B.12)

d(e6λY ) = 0 (B.13)

e−6λ d(e6λ�̃) = 3mX (B.14)

e−6λ d(e6λX) = −f e−3λG (B.15)

e−6λ d(e6λV ) = e−3λG sin ζ + 2m ∗ Y ′. (B.16)

Note that, when m is non-zero, which is the focus of this paper, (B.11) is implied by (B.10),
and (B.13) is implied by (B.12) and the G equation of motion. Moreover, (B.14) together with
(B.15) implies the important fact that

f ≡ ε+Tε+ = 1
2ξTξ = 0. (B.17)

Appendix C. SU (3) and SU (2) structures in d = 6

We now rewrite the conditions on the spinor bilinears derived in appendix B in terms of an
explicit local SU(2) structure. We start by defining SU(3) and SU(2) structures in d = 6.
We work in a basis in which the gamma matrices are imaginary. A single unit-norm chiral
spinor in d = 6, satisfying

η̄1η = 1 −iγ7η = η (C.1)

defines an SU(3) structure with 2-form j and (3, 0)-form ω given by

j = −iη̄1γ(2)η1 ω = ηT
1 γ(3)η1 (C.2)

where γ(n) is the n-form 1
n!γi1...ine

i1 ∧ . . . ∧ ein . For further discussion, see for example [21].
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Now consider two orthogonal unit-norm chiral spinors η1, η2 satisfying

η̄1η1 = 1 η̄2η2 = 1 η̄1η2 = 0 (C.3)

and −iγ7ηa = ηa . Together these define two canonical SU(3) structures, specified by forms
(j1, ω1) and (j2, ω2) defined as in (C.2). Equivalently, η1, η2 define a canonical SU(2)

structure in d = 6. Such a structure is specified by two 1-forms K1,K2 and three 2-forms Jm

defined by

Jm = − i

2
σαβ

m η̄αγ(2)ηβ K1 − iK2 = −1

2
εαβηT

α γ(1)ηβ (C.4)

where σm are Pauli matrices. The d = 6 metric has the form

ds2 = eiei + (K1)2 + (K2)2 (C.5)

with Jm = 1
2Jm

ij ei ∧ ej satisfying the algebraic identities of a d = 4 SU(2) structure. We also
define

� ≡ J 2 + iJ 1 J ≡ J 3 (C.6)

so the SU(2) structure in d = 6 is equivalently specified by (J,�,K1,K2). We naturally
define vol6 = vol4 ∧ K1 ∧ K2 where vol4 = 1

2J ∧ J . In addition we have that each J i is
self-dual with respect to vol4 and also, after raising an index, we have J 1 · J 2 = J 3.

For completeness, we note that the two SU(3) structures defined by (C.2) can be written
in terms of the d = 6 SU(2) structure as

j1 = J − K1 ∧ K2 ω1 = −� ∧ (K1 − iK2)

j2 = −J − K1 ∧ K2 ω2 = −�̄ ∧ (K1 − iK2).
(C.7)

In doing calculations it is often easiest to specify the spinors in terms of some concrete
convenient projections. In particular, this provides a simple derivation of the above formulae.
For example, for the spinor η1 we take

γ12η1 = γ34η1 = −γ56η1 = iη1 γ135η1 = −η∗
1 . (C.8)

For the second spinor η2 we take

−γ12η2 = −γ34η2 = −γ56η2 = iη2 γ135η2 = −η∗
2 . (C.9)

In addition, the two spinors are related by

γ5η
∗
2 = η1. (C.10)

This then leads to J 1 = e14 + e23, J 2 = e13 − e24, J 3 = e12 + e34,K1 = e5 and K2 = e6.
Note that the Jm are indeed self-dual and that J 1 · J 2 = J 3.

We would now like to relate the non-chiral spinor ξ entering the Killing spinor
equations (2.8) to a canonical d = 6 SU(2) structure, as defined above. We first observe
that we can always take two non-orthogonal unit-norm chiral spinors to be η1 and aη1 + bη2

with |a|2 + |b|2 = 1. Therefore, a general non-chiral spinor ξ can be decomposed as

ξ ≡ ξ+ + ξ− = f1η1 + f2(aη1 + bη2)
∗ (C.11)

where ηi are uniquely defined up to phases. We fix this phase freedom10 by taking fi real
and b = (1 − |a|2)1/2. Now, since our spinor satisfies (B.4), we set f1 = √

2 cos α and
f2 = √

2 sin α. Moreover, since we found that f was zero (B.17), we conclude that we can
choose a = 0 and hence b = 1. Hence we have

ξ+ =
√

2 cos αη1 ξ− =
√

2 sin αη∗
2 (C.12)

10 To see this, note that two chiral spinors ξi , i = 1, 2, define four real scalars: ξ̄i ξi ≡ f 2
i and ξ̄1ξ2 ≡ f1f2a. One can

then define η1 = ξ1/f1 and η2 = (1 − |a|2)−1/2(ξ2/f2 − aξ1/f1).
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and consistency with (B.5) implies cos 2α = sin ζ . Note that this implies cos ζ = sin 2α

where we have fixed an arbitrary sign.
Having established how our spinor ξ is related to a canonically defined SU(2) structure

defined by η1, η2, we can now translate the bilinears defined in (B.6) into those naturally
defined by the SU(2) structure. We find

K̃1 = K1 cos ζ K̃2 = K2 cos ζ

Y = J − K1 ∧ K2 sin ζ Y ′ = −J sin ζ + K1 ∧ K2

�̃ = � cos ζ X = � ∧ (−K1 sin ζ + iK2)

V = J ∧ K2 cos ζ

(C.13)

together with

vol6 = 1
2J ∧ J ∧ K1 ∧ K2. (C.14)

We then find that (B.9)–(B.16) are equivalent to

e−3λ d(e3λ sin ζ ) = 2mK1 cos ζ

e−6λ d(e6λ� cos ζ ) = 3m� ∧ (−K1 sin ζ + iK2)

e−6λ d(e6λK2 cos ζ ) = e−3λ ∗ G + 4m(J − K1 ∧ K2 sin ζ )

e−6λ d(e6λJ ∧ K2 cos ζ ) = e−3λG sin ζ + m(J ∧ J − 2J ∧ K1 ∧ K2 sin ζ )

(C.15)

where in the last formula we have used ∗J = J ∧ K1 ∧ K2.

Appendix D. Minkowski5 solutions

Here we analyse the supersymmetry constraints on the geometry in the case of vanishing
five-dimensional cosmological constant, m = 0. This corresponds to the most general
supersymmetric solutions of D = 11 supergravity that are warped products of Minkowski5-
space with a six-dimensional manifold. It has been argued in [46], using an argument based on
an effective superpotential, that it is not possible to have such supersymmetric M-theory vacua
with non-trivial fluxes. Our results show that these are possible, if we consider a suitably
general spinor ansatz. The reason for this apparent discrepancy is that the argument of [46]
implicitly assumed that the internal manifold is Calabi–Yau, which indeed turns out to be
incompatible with flux.

Let us now turn to the detailed analysis of the supersymmetry constraints. The basic
conditions are given by equations (B.9)–(B.16), upon setting m = 0. From (B.11) we deduce
that we have an integrable almost-product structure. Next, from (B.7) (which must in fact
follow from (B.9)–(B.16)), we see that K̃2 = cos ζK2 is a Killing vector. Moreover, we also
have LK̃2λ = LK̃2ζ = LK̃2K1 = 0. Therefore, similar to the m 
= 0 case, the d = 6 metric
can be locally written as

ds2 = g4
ij (x, y) dxi dxj + e−6λ sec2 ζ dy2 + cos2 ζ(dψ + ρ)2 (D.1)

with

K1 = e−3λ sec ζdy K2 = cos ζ(dψ + ρ) (D.2)

and ∂ψλ = ∂ψζ = 0. Using equation (B.12), we get the following expression for the flux:

G = ∂y(e
6λ cos2 ζ )vol4 − e−3λ sec ζ ∗4 d4(e

6λ cos2 ζ ) ∧ K1 − cos3 ζ e6λ ∗4 ∂yρ ∧ K2

+ e3λ cos2 ζ ∗4 d4ρ ∧ K1 ∧ K2. (D.3)
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Note this expression is slightly different from that one would naively obtain by setting m = 0
in (2.50).

Now from (B.10) we see that there are two cases to consider separately, depending on
whether sin ζ vanishes or not (note that sin ζ = 0 is not possible when m 
= 0).

D.1. sin ζ = 0

For this case we have Y ′ = K1 ∧ K2, so taking the antisymmetric part of (B.7) we get

dρ = −e−3λ(K1 ∧ K2)�G. (D.4)

Substituting (D.3) into (D.4) we immediately conclude that ∂yρ = 0 and

(d4ρ)+ = 0. (D.5)

Note that in the present case the chiral spinors ξ± have constant norm, and hence they define
a global six-dimensional SU(2)-structure. Moreover, we find

d(e6λJ ) = 0 d(e6λ�) = 0 (D.6)

implying that the four-dimensional slices, at fixed y, are conformal to y-independent hyper-
Kähler manifolds. Therefore the general form of the metric is

ds2 = (dψ + ρ)2 + e−6λ
[
dŝ2

4(HK) + dy2
]
. (D.7)

It is a simple matter to check that (B.16) is trivially satisfied, while (B.15) forces f = 0. The
G-flux reads

G = −∂y(e
−6λ) ˆvol4 + ∗̂4 d4(e

−6λ) ∧ dy − d4ρ ∧ dy ∧ (dψ + ρ) (D.8)

and the (source-less) Bianchi identity dG = 0 implies

ˆe−6λ + ∂2
y e−6λ = − 1

2‖ ˆd4ρ‖2 (D.9)

which must be solved in order to complete the solution.
It is interesting to note that the geometries we have found arise when a 5-brane is transverse

to a hyper-Kähler manifold times a flat direction, with a single flat longitudinal direction of
the 5-brane fibred over the hyper-Kähler manifold. When ∂/∂y is a Killing vector, we can
reduce to type IIA theory and recover the results of [21], where the corresponding geometry
is related to wrapped NS5-branes. Examples of these solutions appeared in [47], where the
4-space was taken to be Eguchi–Hanson11.

Alternatively, we can also make a Kaluza–Klein reduction along the ψ-direction. We
thus obtain supersymmetric IIA solutions, with constant dilaton and non-trivial RR 2-form and
4-form, plus NS B-field BNS = −y d4ρ. Finally, we note that simply setting ρ = 0, we recover
the conditions on the local geometry obtained by Witten [48] for M-theory compactifications
to six-dimensional Minkowski space.

D.2. sin ζ 
= 0

We must now have e3λ sin ζ = c for some constant c. Hence, from (B.16), we see that G is
exact:

cG = d(e6λ cos ζJ ∧ K2) (D.10)

11 Note that the construction of [47] has been generalized in [21] to an arbitrary number of twisted directions. For
instance, twisted T 2 bundles over a hyper-Kähler 4-manifold yield potentially interesting flux compactifications to
four dimensions.
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so that the Bianchi identity is automatically satisfied (as expected from the argument in
section 2.2). The conditions on the base geometry can be conveniently expressed in terms of
rescaled quantities, ĝij = e6λgij , Ĵ = e6λJ and �̂ = e6λ�. We find

d4Ĵ = 0 d4(cos ζ �̂) = 0 (D.11)

which state that the base manifold, at fixed y, is almost Calabi–Yau. In addition, we have

∂yĴ = −c d4ρ ∂y(cos ζ �̂) = 0. (D.12)

Comparing the expressions for the flux computed from (D.3) and (B.16), we obtain an
additional constraint:

c ∗4 ∂yρ = J ∧ d4 sec2 ζ. (D.13)

Note that here we can derive an expression for J that is similar to that in the m 
= 0 case,
which reads

(d4ρ)+ = −c

sin ζ cos ζ
∂yζJ. (D.14)

It is now a simple matter to deal with the remaining conditions (B.15) and (B.9). Using
equations (D.11), (D.12), we find that (B.15) reduces to

f e−3λG = −cos ζdy ∧ � ∧
[

i∂yρ +
1

c
d4 sec2 ζ

]
. (D.15)

However, upon using (D.13), one shows that the right-hand side vanishes. Hence f = 0 in the
present case also. Observe that an integrability condition between the first equation in (D.12)
and (D.13) yields the following second-order equation

∂2
y (e6λJ ) − 2ci∂∂̄ sec2 ζ = 0. (D.16)

We conclude by presenting a simple example of a (singular) solution in this class. Consider
the ansatz for the four-dimensional base metric

dŝ2 = �(y) dŝ2
0 (D.17)

where the re-scaled metric is y-independent and hyper-Kähler, with associated hyper-Kähler
structure Ĵ 0, �̂0. Setting c = 1 for simplicity, it is straightforward to check that all the
conditions are satisfied, provided

� = sec ζ = 1 + y d4ρ = Ĵ 0 ∂yρ = 0. (D.18)

The corresponding flux reads

G = d

[
1

(1 + y)
Ĵ 0 ∧ (dψ + ρ)

]
(D.19)

and the six-dimensional metric is

ds2
6 = y(2 + y)

1 + y

[
dŝ2

0 + (1 + y) dy2
]

+
1

(1 + y)2
(dψ + ρ). (D.20)

It is interesting to note that in the limit y → ∞ (cos ζ → 0) the flux vanishes and,
correspondingly, the 11-dimensional metric asymptotes to

ds2 = ds2(Mink5) + y dŝ2
0 + y2 dy2 +

1

y2
(dψ + ρ)2. (D.21)

It is straightforward to check that the internal metric is indeed Calabi–Yau. This behaviour, in
fact, is not accidental. In general, when cos ζ → 0, the warp factor will become asymptotically
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constant12, and in this case, from the Einstein equation, it follows that the flux must vanish
(when m = 0). Therefore, this interpolating feature is likely to be quite generic. Unfortunately,
as y → 0 the metric develops a singularity.
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