Supersymmetric Backgrounds From Generalized Calabi-Yau Manifolds

Mariana Graña
Ecole Normale Supérieure

In collaboration with
Ruben Minasian
hep-th/0406137
Michela Petrini
Alessandro Tomasiello

Strings 2004-Paris

Fluxes \longleftrightarrow Geometry
Type II sugra on $\mathrm{M}_{10}=\mathrm{M}_{4} \times \mathrm{M}_{6}$
Minimal supersymmetry

$\mathrm{SU}(3)$ holonomy $\longrightarrow \mathrm{SU}(3)$ structure

$$
\nabla_{m} \eta=\mathrm{O} \longrightarrow \quad \nabla_{\substack{(T) \\ \text { Torsion } \sim \text { flux }}}^{(T)}
$$

\qquad Generalized

Outline

- Basic notions about $\mathrm{SU}(3)$ structure
- Torsion versus fluxes
- Generalized complex geometry / Generalized CY
- Generalized CY from supersymmetry equations
- Conclusions / open questions

Basic notions about SU(3) structure

$$
\mathrm{M}_{10}=\mathrm{M}_{4} \times \mathrm{M}_{6}
$$

- No flux) M_{6} is $\mathrm{CY} \quad \boldsymbol{\mp} \mathrm{U}(3)$ holonomy
-9 SU(3) invt. spinor $\eta \quad \begin{array}{ll}\eta^{\dagger} \gamma_{m n} \gamma \eta=i w_{m n} & w \wedge \Omega=0 \\ \eta^{\dagger} \gamma_{m n p}(1+\gamma) \eta=i \Omega_{m n p} & i \Omega \wedge \bar{\Omega}=w^{3}\end{array}$
$\cdot \eta$ is cov. constant: $\begin{aligned} & \mathrm{r} q=0 \quad \triangle d w=0 \\ & d \Omega=0\end{aligned} \quad \epsilon_{10}^{1,2}=\theta^{1,2} \otimes \eta \Rightarrow \mathcal{N}=2$
- Turn on flux) back-reaction
- $\mathrm{M}_{10}=\mathrm{M}_{4} \mathrm{x}_{\mathrm{w}} \mathrm{M}_{6} \quad\left[d s_{1 \mathrm{O}}^{2}=e^{\left.2 A(y)_{\eta_{\mu \nu}} d x^{\mu} d x^{\nu}+d s_{6}^{2}(y)\right]}\right.$
- $\mathrm{N}=2!\mathrm{N}=1$ (relation between an θ^{1}) θ^{2}
- M_{6} acquires torsion $\rightarrow \mathrm{SU}(3)$ structure
- 9 SU(3) invt. spinor $\eta<\sum_{\eta^{\dagger} \gamma_{m n p}(1+\gamma) \eta=i \Omega_{m n p}}$
- $r_{m}{ }^{(T)} \eta=0 \quad<\quad{ }^{\left.r_{m}{ }^{(T)} \mathrm{w}=0\right) d W \neq 0 / T}$

Torsion versus fluxes

	1 © 1	3 © $\overline{3}$	6 © $\overline{6}$	8 © 8
Torsion	$1\left(W_{1}\right)$	$2\left(\mathrm{~W}_{4}, \mathrm{~W}_{5}\right)$	$1\left(W_{3}\right)$	$1\left(W_{2}\right)$
H_{3}	1	1	1	0
IIA: $\mathrm{F}_{2 \mathrm{n}}$	$2\left(F_{0}, \mathrm{~F}_{2}, \mathrm{~F}_{4}\right)$	$2 \quad\left(F_{2}, F_{4}\right)$	0	$1\left(F_{2}, F_{4}\right)$
IIB: $\mathrm{F}_{2 n+1}$	$1 \quad\left(F_{3}\right)$	$3\left(F_{1}, F_{3}, F_{5}\right)$	$1 \quad\left(\mathrm{~F}_{3}\right)$	0

(sympleetic
geometry)

If also $\mathrm{W}_{1}=0 \rightarrow \mathrm{IB}: \mathrm{d} \Omega=\mathrm{W}_{5} \npreceq \Omega$
(true in all susy vacua)

$$
\text { IIA: d w }=\mathrm{W}_{4} Æ \mathrm{w}+\mathrm{H}^{(6)}
$$

M_{6} is complex
M_{6} is "twisted symplectic"

Is there a mathematical construction that
coxtenictamplex and symplectic geometry?

Generalized complex geometry

- Usual differential geometry

$\left.\rightarrow$| T | T |
| :---: | :---: |
| tangent bundle | |
| sections vector fields x | | \right\rvert\, | cotangent bundle |
| :---: |
| sections are 1-forms ζ |

- Want differential geometry on T © T^{*} sections are $X+\xi$

Natural metric I on $T \odot T^{*}:(X+\xi, X+\xi)=i_{X} \xi \quad I=\left(\begin{array}{cc}0 & 1_{d} \\ 1_{d} & 0\end{array}\right)$
On T © T* define Generalized Almost Complex Structure (GACS) J: T® T* ! T® T*

$$
\begin{gathered}
\mathrm{J}^{2}=-1_{2 \mathrm{ad}} \\
\mathrm{~J} \mathrm{t} \mathrm{~J}=\mathrm{I} \\
\hline
\end{gathered}
$$

$$
e^{B}(X+\zeta)=X+\zeta+i_{X} B \quad \rightarrow\left[e^{B}(X+\zeta), e^{B}(Y+\eta)\right]_{C}=e^{B}[X+\zeta, Y+\eta]_{C} \quad \text { autqmorphisms of }[,]_{C}
$$

_ A GACS has the form

$$
\begin{aligned}
& J=\left(\begin{array}{ll}
J & P \\
L & K
\end{array}\right) \begin{array}{|lc|}
\hline \mathrm{J}: \mathrm{TM}!\mathrm{TM} & \mathrm{Jm}_{\mathrm{n}} \\
\mathrm{P}: \mathrm{T}^{*} \mathrm{M}!\mathrm{TM} & \mathrm{P}^{m n} \\
\mathrm{~L}: \mathrm{TM}!\mathrm{T}^{*} \mathrm{M} & \mathrm{~L}_{m n} \\
\mathrm{~K}: \mathrm{T}^{*} \mathrm{M}!\mathrm{T}^{*} \mathrm{M} & \mathrm{~K}_{\mathrm{m}}{ }^{n} \\
\hline
\end{array} \\
& \text { Demanding } \\
& J^{2}=-1_{2 d} \\
& \text { J!リJ }=1 \\
& \text { Get conditions } \\
& \begin{array}{c}
K=-J^{t} \\
P^{t}=-P \\
L^{t}=-L
\end{array} \quad \rightarrow \quad \mathrm{~J}=\left(\begin{array}{cc}
J & P \\
L & -J^{t}
\end{array}\right)
\end{aligned}
$$

_ It is easy to guess how ACS _ GACS :

$$
J_{1}=\left(\begin{array}{cc}
J & 0 \\
0 & -J^{t}
\end{array}\right) \text { Integrability of GACS } J_{1} \text {) is } J_{\text {tegrable }}(\text { it is a CS in } \mathrm{T} \text {)) } \mathrm{M} \text { is complex }
$$

_ But GACS have more...

Consider $J_{2}=\left(\begin{array}{cc}0 & -w^{-1} \\ w & 0\end{array}\right)$ Integrability of $\left.J_{2}\right) d W=0$. If w is non-degenerate) M is symplectic
Complex manifolds

Complex: locally equivalent to $\mathrm{C}^{\mathrm{d} / 2}$
Symplectic: locally equivalent to ($\mathrm{R}^{\mathrm{d}}, \mathrm{w}$); $\mathrm{w}=\mathrm{dx}{ }^{1} \nVdash d x^{2}+\ldots+d x^{d-1} \nLeftarrow d x^{d}$
Generalized complex: locally equivalent to C^{k} _ ($\left.\mathrm{R}^{\mathrm{d}-2 \mathrm{k}}, \mathrm{W}\right)$ k: rank. $\mathrm{k}=0$ for symplectic $\mathrm{k}=\mathrm{d} / 2$ for complex

GACS \longleftrightarrow Pure spinors of Clifford (d,d)

- On a manifold with $\operatorname{SU}(3)$ structure in $T \quad$ 2pure spinors of $\operatorname{Clifford}(6,6) \quad \Omega ; e^{i w}$
-1-1 correspondence between pure spinors

$$
\begin{array}{cc}
\Omega & e^{i w} \\
\downarrow & \\
J_{1}=\left(\begin{array}{cc}
J & 0 \\
0 & -J^{t}
\end{array}\right) & J_{2}=\left(\begin{array}{cc}
0 & -w^{-1} \\
w & 0
\end{array}\right)
\end{array}
$$

Integrability of $\mathrm{J}, 9 \mathrm{v}$ and ξ s.t

$$
d \varphi=(\iota v+\xi \wedge) \varphi
$$

has one GCS
『

Supersymmetry equations written in terms of pure spinors

$\delta \psi_{\mathrm{m}}$:

$$
\begin{gathered}
I I A: D_{m}^{H} \eta_{+}+e^{\phi}\left(\bar{\Omega} F^{A}\right)_{m} \eta_{+}+e^{\phi}\left[\left(F_{m}^{A} e^{i w}\right)_{n}+\left(F^{A} e^{i w}\right)_{0} g_{m n}+\left(F^{A} e^{i w}\right)_{m n}\right] \gamma^{n} \eta_{-}=0 \\
\hat{\hat{v}} \\
\text { IIB : } D_{m}^{H} \eta_{+}+e^{\phi}\left(e^{-i w} F^{B}\right)_{m} \eta_{+}+e^{\phi}\left[\left(F_{m}^{B} \Omega\right)_{n}+\left(F^{B} \Omega\right)_{0} g_{m n}+\left(F^{B} \Omega\right)_{m n}\right] \gamma^{n} \eta_{-}=0
\end{gathered}
$$

NSNS sector: $\quad D_{m}^{H} \eta \equiv\left(\nabla_{m}+\frac{1}{8} H_{m n p} \gamma n p\right) \eta \quad$ We are not in CY) $\quad 0 \neq \nabla_{m} \eta \sim W \eta$

$$
D_{m}^{H} \eta_{+}=\left(W_{4}+W_{5}+i H^{(3)}\right)_{m} \eta_{+}+\left[\left(W_{1}+i H^{(1)}\right) g_{m n}+\left(W_{3}+i H^{(6)}+W_{2}\right)_{m n}\right] \gamma^{n} \eta_{-}
$$

RR fluxes:

$$
F^{A}=F_{0}+F_{2}+F_{4} \quad F^{B}=F_{1}+F_{3}+F_{5}
$$

$$
(F \Omega)_{m n} \equiv(F \Omega)_{m n}=\left(F_{i_{1} \ldots i_{k}} \Omega_{a b c} \gamma^{i_{1} \ldots i_{k}} \gamma^{a b c}\right)_{m n}
$$

IIA \$ IIB

$$
\mathrm{F}^{\mathrm{A}} \$ \mathrm{~F}^{\mathrm{B}}
$$

$$
\mathrm{e}^{\mathrm{iw}} \$ \Omega
$$

Take coefficient of term with 2γ 's
Ex: $\left(F_{1} \Omega\right)_{m n}=\frac{1}{2} F^{a} \Omega_{a m n}$
exchange of two pure spinors -- action of mirror symmetry

Using $\begin{gathered}\eta_{+} \otimes \eta_{+}^{\dagger}=e^{i \hbar \phi} \\ \eta_{+} \otimes \eta_{-}^{\dagger}=i \Omega\end{gathered}$ we can go further and find equations for pure spinors

$$
\begin{aligned}
& \text { IIA } \\
& e^{-f} d\left(e^{f} e^{i w}\right)=H \bullet c^{i w} \\
& e^{-g} d\left(e^{g} \Omega\right)=H \bullet \Omega+F_{A} e^{i w} \\
& e^{f} e^{i w_{\text {S }}} \text { "twisted" closed } \xrightarrow{\text { mirror symmetry }} e^{g} \Omega \text { is "twisted" closed } \\
& \mathbf{M} \text { is twisted symnlentin. } \mathbf{M} \text { is rnmnlex (no (2,2) piece in } H \bullet \Omega \\
& \text { Sugra "twisting": }\left[d-H_{m n p}\left(d x^{m} \wedge d x^{n} \iota^{p}-\frac{1}{3} \iota^{m} \iota^{n} \iota^{p}\right)\right]\left(e^{f} \varphi\right)=0 \quad \varphi=e^{i w} \text { in } I \mathrm{~A} \\
& \text { Susy vacua are ail } \downarrow \text { wisted generalized Calabi-Yau's ! } \\
& \mathrm{M} \text { twisted sympleqtic } \\
& \mathrm{d}^{H} \Omega \wedge \propto \mathrm{~F}^{\mathrm{A}} \\
& \text { Caveat: Hitchin considered twisting by H }
\end{aligned}
$$

$$
\begin{aligned}
& {[X+\zeta, Y+\eta] \mp \mathrm{B}[X+\zeta, Y+\eta]_{C}+\iota_{X} \iota_{Y} H}
\end{aligned}
$$

> Strominger '86
> (Maldacena - Nuñez)

Conclusions / Open questions

- Type II supersymmetric vacua are twisted generalized Calabi-Yau's
- What is the meaning of supergravity twisting by H ?
- How to compactify on these manifolds? (evade no-go theorems)
- Moduli spaces?

Generalized complex geometry is a nice tool for a systematic description of flux backgrounds.
But maybe strings see SO(d,d) structure of T@T* and we will learn more...

