Supersymmetric Backgrounds From Generalized Calabi-Yau Manifolds

Mariana Graña Ecole Normale Supérieure

In collaboration with Ruben Minasian Michela Petrini Alessandro Tomasiello

hep-th/0406137

Strings 2004 - Paris

Outline

- Basic notions about SU(3) structure
- Torsion versus fluxes
- Generalized complex geometry / Generalized CY
- Generalized CY from supersymmetry equations
- Conclusions / open questions

Basic notions about SU(3) structure

 $M_{10} = M_4 \times M_6$

- No flux) M_6 is CY U(3) holonomy
 - 9 SU(3) invt. spinor η $\langle \eta^{\dagger} \gamma_{mn} \gamma \eta = i w_{mn}$ $w \wedge \Omega = 0$ $\eta^{\dagger} \gamma_{mnp} (1+\gamma) \eta = i \Omega_{mnp}$ $i\Omega \wedge \overline{\Omega} = w^3$
 - η is cov. constant: $r_m \eta = 0$ $\int dw = 0$ $\epsilon_{10}^{1,2} = \theta^{1,2} \otimes \eta \Rightarrow \mathcal{N} = 2$
- Turn on flux) back-reaction
 - $M_{10} = M_4 X_w M_6$ $[ds_{10}^2 = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + ds_6^2(y)]$
 - N =2 ! N =1 (relation between an θ^1) θ^2
 - M_6 acquires torsion \rightarrow SU(3) structure

Gauntlett, Martelli, Pakis, Waldram '02

- 9 SU(3) invt. spinor $\eta < \eta^{\dagger} \gamma_{mn} \gamma \eta = i w_{mn}$ $\eta^{\dagger} \gamma_{mnp} (1 + \gamma) \eta = i \Omega_{mnp}$
- $r_m^{(T)}\eta = 0$ • $r_m^{(T)}\Omega = 0$) $dW \neq 0 / T$ • $r_m^{(T)}\Omega = 0$) $d\Omega \neq 0 / T$

Torsion versus fluxes

$$\mathbf{v} = \operatorname{Im} (W_1 \Omega) + W_4 \mathcal{A} = \mathbf{w} + W_3$$
$$1 \oplus 1 \qquad 3 \oplus \overline{3} \qquad 6 \oplus \overline{6}$$

$$d \Omega = \underset{1 \oplus 1}{\mathbb{W}_1} \underset{3 \oplus \overline{3}}{\mathbb{W}_5} \underset{8 \oplus 8}{\mathbb{H}} \Omega + \underset{8 \oplus 8}{\mathbb{W}_2} \underset{8 \oplus 8}{\mathbb{H}} W$$

		1 © 1	3 © 3	6 © 6	8 © 8		
	Torsion	1 (W ₁)	2 (W ₄ ,W ₅)	1 (W ₃)	1 (W ₂)		
	H ₃	1	1	1	0		
	IIA: F _{2n}	2 (F ₀ ,F ₂ ,F ₄)	2 (F ₂ , F ₄)	0	1 (F ₂ , F ₄)		
	IIB: F _{2n+1}	1 (F ₃)	3 (F ₁ ,F ₃ ,F ₅)	1 (F ₃)	0		
In IIB W ₂ = 0 (integrability of complex structure) In IIA W ₃ » H ⁽⁶⁾ (symplectic geometry)							
	W ₁ =0 →IB: ds Ill susy vacua)	$Ω = W_5 Æ Ω$	M ₆ is com	iplex	.: - "		

IIA: d w=
$$W_4 \not= W + H^{(6)}$$

M₆ is "twisted symplectic"

Is there a mathematical construction that

contenictsmplex and symplectic geometry?

Generalized complex geometry

• Usual differential geometry \rightarrow tangent bundle sections vector fields X cotangent bundle sections are 1-forms ζ

Т

• Want differential geometry on $T \odot T^*$ sections are X+ ζ

Natural metric I on T © T* : (X+ ζ , X+ ζ) = $i_X \zeta$ I = $\begin{pmatrix} 0 & 1_d \\ 1_d & 0 \end{pmatrix}$

On T © T* define Generalized Almost Complex Structure (GACS) J: T© T* ! T© T*

J ² = -1_{2d} J ^t | J = |

	т	T © T*	project down T © T* ──► T	
GACS	J s.t. $J^2 = -1_d$	J s.t. J ² = - 1 _{2d}	X+ζX	
Projectors	π _§ = (1 _d § i J)	Π_{\S} = (1 _{2d} § i J)	[,] _C ,]	
Integrability	π. [π _§ X, π _§ Y]=0	Π. [Π _§ (X+ζ), Π _§ (Y+ζ)] _C =0	J J ?	
[X+ζ, Y + η] _C =[X,Y] + L _X η – L _Y ζ – _ d (i _X η – i _Y ζ) when ζ = η = 0) [,] _C = [,]				
Aside: GCG h	sucomplex geome	By field bedded in generalized	d complex geometry?	

 $e^{B}(X+\zeta) = X+\zeta + i_{x}B \longrightarrow [e^{B}(X+\zeta), e^{B}(Y+\eta)]_{C} = e^{B}[X+\zeta,Y+\eta]_{C}$ automorphisms of [,]_C

T*

Huybrechts Kapustin Lindström Zabzine

 $_$ It is easy to guess how ACS $_$ GACS :

 $J_{1} = \begin{pmatrix} J & 0 \\ 0 & -J^{t} \end{pmatrix}$ Integrability of GACS J_{1} is *J* itegrable (it is a CS in T)) M is complex

_ But GACS have more...

Consider $J_2 = \begin{pmatrix} 0 & -w^{-1} \\ w & 0 \end{pmatrix}$ Integrability of J_2) dw=0. If w is non-degenerate) M is symplectic Complex manifolds admit GCS Symplectic manifolds Kahler

Complex: locally equivalent to C^{d/2}

Symplectic: locally equivalent to (\mathbb{R}^{d} , w); w = dx¹ Æ dx² + ... + dx^{d-1} Æ dx^d

Generalized complex: locally equivalent to C^k (R^{d-2k},W) k: rank. k=0 for symplectic k=d/2 for complex

GACS	←→Pure spinors of Clifford (d,d)
------	----------------------------------

Algebra	T Clifford 6 {γ ^m ,γ ⁿ }=g ^{mn}	$T @ T*$ Clifford (6,6) $\{\gamma^{m}, \gamma^{n}\}=\{\gamma_{m}, \gamma_{n}\}=0, \{\gamma^{m}, \gamma_{n}\}=\delta^{m}_{n}$	
Representation in terms of forms	γ^i =dz ⁱ Æ and γ -= g ^{-j} $\iota_{\partial j}$	γ^{m} =dx ^m Æ and $\gamma_{m} = \iota_{\partial_{m}}$	$e^{iw} = 1 + iw - \frac{1}{2}w^2 - i\frac{1}{3!}w^3$ ($\gamma_m + i W_{mn} \gamma^n$) $e^{iW} = 0$
Clifford vacuum	Ω	Ω	
Pure spinor	γ ⁱ Ω =0	$\gamma^{i} \Omega = \gamma \Omega = 0$	
Basis	Ω : (3,0) γ- Ω : (2,0) γ- ^j Ω : (1,0) $\overline{γ}$ → ^k Ω : (0,0)	$\begin{array}{lll} \Omega : (3,0) & \Omega : (3,0) \\ \gamma_{-} \Omega : (3,1) & \gamma_{i}\Omega : (2,0) \\ \gamma_{-}^{j} \Omega : (3,2) & \gamma_{ij} \Omega : (1,0) \\ \gamma_{ijk}^{\eta k} \Omega : (3,3) & \gamma_{ijk} \Omega : (0,0) \end{array}$	
	Spinors \$ (p,0) forms	Spinors \$ (p,q) forms	

• On a manifold with SU(3) structure in T

2 pure spinors of Clifford(6,6) ar⊬l GACS J • 1-1 correspondence between pure spinors

 Ω ; e^{iw}

Supersymmetry equations written in terms of pure spinors

$$\delta \psi_{m:} \begin{bmatrix} IIA : D_m^H \eta_+ + e^{\phi} (\bar{\Omega} F^A)_m \eta_+ + e^{\phi} \left[(F_m^A e^{iw})_n + (F^A e^{iw})_0 g_{mn} + (F^A e^{iw})_{mn} \right] \gamma^n \eta_- = 0 \\ \blacklozenge \\ IIB : D_m^H \eta_+ + e^{\phi} (e^{-iw} F^B)_m \eta_+ + e^{\phi} \left[(F_m^B \Omega)_n + (F^B \Omega)_0 g_{mn} + (F^B \Omega)_{mn} \right] \gamma^n \eta_- = 0 \\ NSNS \text{ sector:} \quad D_m^H \eta \equiv \left(\nabla_m + \frac{1}{8} H_{mnp} \gamma np \right) \eta \quad \text{ We are not in CY} \quad 0 \neq \nabla_m \eta \sim W \eta \\ \end{bmatrix}$$

$$D_m^H \eta_+ = (W_4 + W_5 + iH^{(3)})_m \eta_+ + \left[(W_1 + iH^{(1)})_{mn} + \left(W_3 + iH^{(6)} + W_2 \right)_{mn} \right] \gamma^n \eta_-$$

RR fluxes: $F^{A} = F_{0} + F_{2} + F_{4}$ $(F\Omega)_{mn} \equiv (\not F \ \varOmega)_{mn} = \left(F_{i_{1}...i_{k}}\Omega_{abc}\gamma^{i_{1}...i_{k}}\gamma^{abc}\right)_{mn}$ IIA \$ IIB $F^{A} \$ F^{B}$ $e^{iw} \$ \Omega$ $F^{A} \$ \Gamma^{B}$ $F^{A} \$ \Gamma^{A}$ $F^{A} \$ \Gamma^{A} \$ \Gamma^{A}$ $F^{A} \$ \Gamma^{A} \$ \Gamma$

exchange of two pure spinors -- action of mirror symmetry

Fidanza, Minasian, Tomasiello '03

Using $\eta_+ \otimes \eta_+^{\dagger} = e^{i\psi}$ we can go further and find equations **for** pure spinors IIA IIB $e^{-f}d(e^{f}e^{iw}) = H \bullet e^{iw}$ $e^{-f}d(e^{f}e^{iw}) = H \bullet e^{iw} + F_{B}e^{iw}$ $e^{-g}d(e^{g}\Omega) = H \bullet \Omega + F_{A}e^{iw}$ $e^{-g}d(e^{g}\Omega) = H \bullet \Omega$ $e^{f}e^{iw}$ is "twisted" closed $e^{g}\Omega$ is "twisted" closed $\begin{array}{c} \text{M is twisted symplectic} \\ \text{Sugra "twisting":} & \left[d - H_{mnp} \left(dx^m \wedge dx^n \iota^p - \frac{1}{3} \iota^m \iota^n \iota^p \right) \right] (e^f \varphi) = 0 \\ \varphi = e^{iw} \text{ in IIA} \\ \varphi = \Omega \\ \end{array} \begin{array}{c} \text{in IIB} \end{array}$ Susy vacua are all twisted generalized Calabi-Yau's ! M twisted symplectic Caveat: Hitchin considered twisting by $\overset{d^H \Omega}{H} \overset{\bullet}{} \overset{\bullet}{H} \overset{\bullet}{H} \overset{\bullet}{H}$ Hitchin 's twisting $[d + H \land I]_{\varphi}$ acua $O \rightarrow$ Associated GACS integrable: With $[II_{s}, I]_{s} !]_{c} = 0_{H}$ $[X + \zeta, Y + \eta]_{H} = [X + \zeta, Y + \eta]_C + \iota_X \iota_Y H$ Twisting by H in supergravity equations does not work a la Hitchin Strominger '86 (Maldacena - Nuñez)

Conclusions / Open questions

- Type II supersymmetric vacua are twisted generalized Calabi-Yau's
- What is the meaning of supergravity twisting by H?
- How to compactify on these manifolds? (evade no-go theorems)
- Moduli spaces?

Generalized complex geometry is a nice tool for a systematic description of flux backgrounds.

But maybe strings see SO(d,d) structure of T©T* and we will learn more...

