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1 Introduction

The study of type II supergravity on the conifold has provided much insight into the low-

energy limit of string theory. The explicit Ricci flat metric on the singular conifold, its

small resolution and its deformation were all computed in [1] and immediately after the
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advent of the AdS-CFT correspondence [2–4] it was realized that the singular conifold,

suitably embedded in IIB string theory admits a near horizon limit that contains an AdS5

factor, and describes the supergravity dual of a certain superconformal field theory [5].

This system and its generalizations have proved to be a fertile ground for the study of

the gauge/gravity duality. In particular the “warped deformed conifold” non-conformal

deformation found in [6] (which we will denote KS) is an explicit supergravity realization

of confinement and chiral symmetry breaking. The solution found in [7, 8] (which we

will denote CV/MN) is the holographic dual of a field theory whose infra-red limit is

four-dimensional N = 1 Yang-Mills theory. The rich physics of the above supergravity

solutions led to the proposal of an anzatz (which we will call the PT ansatz) [9] that

describes the solutions interpolating between the KS and the CV/MN flows. Following

the perturbative analysis of [10], a fully backreacted supersymmetric solution interpolating

between the KS and the CV/MN solutions was constructed in [11] (since this solution

is dual to the baryonic branch of the warped deformed conifold we will denote it BB).

Recently an interesting conceptual development regarding this system was provided [12].

The current work constitutes a step towards improving our understanding of the spec-

trum of both supersymmetric and nonsupersymmetric deformations around the warped

deformed conifold and its baryonic branch (KS and BB). A thorough understanding of

these deformations is important for many problems in string cosmology and phenomenol-

ogy and there has been much work on computing the spectrum of fluctuations around KS

(for example [13–18]) but to our knowledge certain SU(2) × SU(2) invariant modes which

lie within our ansatz have not been considered. These modes are crucial for constructing a

supersymmetric five-dimensional theory and thus are needed to arrange the spectrum into

supermultiplets.

The PT ansatz was constructed so as to contain a variety of conifold solutions in

IIB supergravity and indeed families of new solutions were found within this ansatz [11].

However this ansatz is deficient is several ways, firstly it does not contain one-form or two-

form fields in five dimensions and secondly there are seven SU(2) × SU(2) invariant scalar

modes which are absent. By systematically including all singlets under this symmetry we

are able to construct an explicitly supersymmetric action in five dimensions. This has been

an open problem for some time (it is ten years since the PT ansatz was written down and

six years since explicit solutions were found) but recent progress in Kaluza-Klein reductions

(see [19, 20] for early work and [21–24] for more recent additions) has demonstrated clearly

that a promising strategy is at hand. These works were focused on finding infinite classes of

reductions on manifolds using minimal information about the internal manifolds (namely

the Sasaki-Einstein structure) whereas we will focus solely on T 1,1. See also [25] for recent

consistent (non-supersymmetric) truncations on T 1,1.

One central motivation for the current work is to compute a superpotential in five

dimensions for a reduction which includes PT. Such a superpotential would provide an or-

ganizing principle for the spectrum of supersymmetric and non-supersymmetric modes [26].

Recently, several of the current authors [27] have computed a certain sector of the spectrum

around the warped deformed conifold in search of the modes sourced by a stack of anti-D3

branes placed at the tip of the deformed conifold. Having a superpotential at hand for this
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sub-sector was a crucial step in the calculation and also considerable help in the physical

interpretation. With this superpotential it is manifestly clear which modes are BPS and

which modes are not.

There exists a very interesting conjecture that a stack of anti-D3 branes at the tip

of the warped deformed conifold will create a meta-stable vacuum and ultimately decay

by brane-flux annihilation to the BPS vacuum [28]. In the work [27] we have carefully

imposed IR boundary conditions compatible with anti-D3 branes and have found a seem-

ingly unphysical singularity. We have interpreted this singularity as evidence that the IR

boundary conditions of anti-D3 branes are incompatible with the UV boundary condi-

tions of KS. Since there must exist good IR boundary conditions we conclude that the UV

boundary conditions must be changed. Establishing this conjecture to be true is probably

tantamount to constructing the supergravity solution dual to this state explicitly. Then

to demonstrate that such a candidate solution is in fact a metastable vacuum, it behooves

one to check that indeed it does not have runaway directions. Rigorously, this would en-

tail checking all modes but this not a reasonable task in general. Having this consistent

truncation may be helpful in this regard in checking at least a closed subsector should

such a solution ever be constructed. However recently there has been an example found

where a non-supersymmetric solution [29] is stable within a consistent truncation but has

runaway directions which lie outside the truncation [30]. This is a general limitation of

consistent truncations.

This paper is organized as follows: In section two we present our ansatz and proceed

to derive the five-dimensional action. Then in section three we demonstrate that this is

consistent with N = 4 supersymmetry and compute the embedding tensor. In section

four we consider various additional consistent truncations including the PT ansatz. The

reduction techniques used in this paper are very similar to those used in [20] and the

manifest supersymmetry is demonstrated following closely the strategy of [21, 22]. In an

attempt to minimize the amount of labor required for interpreting our work, we have tried

to use notation quite similar to [22] for the bulk of the computation. The same day we

submitted this paper to the arxiv a paper appeared by D. Cassani and A. Faedo [31] which

has some overlap with this work.

2 The Kaluza-Klein Reduction on T 1,1

Our Kaluza-Klein reduction on T 1,1 is best thought of as a consistent truncation of the

standard reduction of IIB on T 5 (where of course only massless modes are retained), fol-

lowed by a very specific gauging which preserves N = 4 supersymmetry in five-dimensions.

This gauging is due to the curvature of T 1,1 as well as the topological flux which we include.

To perform this Kaluza-Klein reduction, we can simply dimensionally reduce many

parts of the ten-dimensional action, namely the kinetic terms for the dilaton-axion, three-

forms and metric but the five-form kinetic terms and the Chern-Simons terms require

much more care. We will proceed by deriving five-dimensional equations of motion for

components of the five-form and then reconstructing a five-dimensional action from these.

Since our reduction is based on a symmetry principle, it is guaranteed to be consistent.
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2.1 The ansatz

We will motivate our full ansatz by first understanding the structures we wish to preserve

on the metric of T 1,1. Then we will make an ansatz for the three-forms and five-form and

solve the Bianchi identities. The dilaton and axion are additional fields which have trivial

Bianchi identities.

2.1.1 The metric

Our ansatz for the ten-dimensional metric is

ds210 = e2u3−2u1ds25 + e2u1+2u2E′

1E
′

1 + e2u1−2u2E′

2E
′

2 + e−6u3−2u1E5E5, (2.1)

where

E1 =
1√
6

(
σ1 + iσ2

)
, E2 =

1√
6

(
Σ1 + iΣ2

)
, (2.2)

E′

1 = E1 E′

2 = E2 + vE1, (2.3)

E5 = g5 +A1, g5 =
1

3

(
σ3 + Σ3

)
, (2.4)

(σi,Σj) are internal left-invariant SU(2) one-forms (see appendix B), the scalar fields uj are

real, v is complex and A1 is a real one-form, all in the reduced five-dimensional theory. The

particular parameterization we have chosen for the scalar fields in (2.1) might seem convo-

luted but is motivated by getting canonical kinetic terms in the five-dimensional action.

This is the most general SU(2) × SU(2) invariant metric we can put on T 1,1 and

consequently, by introducing a radial co-ordinate in five dimensions and allowing for the

fields to have radially dependent profiles this ansatz contains the most general SU(2)×SU(2)

invariant metric on the conifold (singular, resolved or deformed).

In terms of G-structures, this is a U(1) structure on T 1,1, namely we have restricted

to all U(1) neutral fields where the U(1) in question is embedded in SO(5) as follows:

U(1) ⊂ SU(2)D ⊂ SO(4) ⊂ SO(5) (2.5)

and SU(2)D is diagonally embedded in SO(4). As can be seen from tables 1 and 2 in

appendix A, this leaves 16 scalars, 9 one-forms and 1 graviton. Under this U(1) the

vielbeins transform as

E1 → eiαE1, E2 → e−iαE2, E5 → E5

and from this it is simple to observe that the invariant fundamental forms are

J1 =
i

2
E1 ∧ E1, J2 =

i

2
E2 ∧ E2,

Ω = E1 ∧ E2, Ω = E1 ∧E2, (2.6)

as well as g5. From (2.3) we see that these forms behave nicely under the exterior derivative

dg5 = 2(J1 + J2),

dJ1,2 = 0, (2.7)

dΩ = 3iΩ ∧ g5
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but it turns out to be prudent to introduce a twisted set of fundamental forms which behave

nicely under the Hodge star operation (our conventions for Hodge dualizing are given in

appendix C).

J ′

1 =
i

2
E′

1 ∧ E
′

1, J ′

2 =
i

2
E′

2 ∧ E
′

2,

Ω′ = E′

1 ∧ E′

2, Ω
′

= E
′

1 ∧E
′

2. (2.8)

In fact this truncation can also be thought of as the K-invariant truncation where in stan-

dard co-ordinates on the conifold, K is a particular Z2 symmetry acting on the conifold as

K : (ψ, θ2) → (ψ + π,−θ2). (2.9)

Consequently, since our ansatz contains all modes invariant under this symmetry it must

be consistent.1

2.1.2 The three-forms

The three-forms in our ansatz are

H(3) = H3 +H2 ∧ (g5 +A1) +H11 ∧ J1 +H12 ∧ J2 +

+
(
M1 ∧ Ω +M0 Ω ∧ (g5 +A1) + c.c

)
, (2.10)

F(3) = P (J1 − J2) ∧ (g5 +A1) +G3 +G2 ∧ (g5 +A1) +G11 ∧ J1 +G12 ∧ J2 +

+
(
N1 ∧ Ω +N0 Ω ∧ (g5 +A1) + c.c

)
(2.11)

where we have included a topological term in F(3)

P (J1 − J2) ∧ (g5 +A1) (2.12)

which is proportional to the volume form on the topologically nontrivial S3 ⊂ T 1,1. One

can also include an independent topological term for the NS flux2 but by using the IIB

SL(2,Z) symmetry, this can always be rotated to a frame where the charge is just in F(3).

To establish the spectrum from our ansatz we must first solve the Bianchi identi-

ties. From

dH(3) = 0 (2.13)

we find

H3 = dB2 +
1

2
(db− 2B1) ∧ F2,

H2 = dB1,

H11 = d(b+ b̃) − 2B1, (2.14)

H12 = d(b− b̃) − 2B1,

3iM1 = DM0

= dM0 − 3iA1M0

1See the introduction of [30] for a review of the argument why a truncation to a sector invariant under

a symmetry is consistent and a discussion of its limitations.
2In a forthcoming publication we will analyze more formal geometric and non-geometric properties of

the general embedding tensor.
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where F2 = dA1. Then from

dF(3) = −F(1) ∧H(3) (2.15)

we find

G3 = dC2 − a dB2 +
1

2
(dc− adb− 2C1 + 2aB1) ∧ F2,

G2 = dC1 − a dB1,

G11 = d(c + c̃) − 2C1 − a
(
d(b+ b̃) − 2B1

)
− PA1, (2.16)

G12 = d(c − c̃) − 2C1 − a
(
d(b− b̃) − 2B1

)
+ PA1,

3iN1 = DN0 +M0da

= dN0 − 3iA1N0 +M0da

and a is the RR axion C(0). From these relations we discover that the fluxes contribute

8 scalars

(b, b̃, c, c̃,M0,M 0, N0,N 0) (2.17)

a pair of two-form potentials

(B2, C2) (2.18)

and two one-form potentials

(B1, C1). (2.19)

Using these fields one can of course write the three-form field strengths in terms of two-

form potentials:

H(3) = dB(2),

⇒ B(2) = B2 +
1

2
bF2 +B1 ∧ (g5 +A1) + (b+ b̃)J1 + (b− b̃)J2 +

(
1

3i
M0Ω + c.c.

)
, (2.20)

F(3) = P (J1 − J2) ∧ (g5 +A1) + dC(2) − a dB(2),

⇒ C(2) = C2 +
1

2
cF2 + C1 ∧ (g5 +A1) + (c+ c̃)J1 + (c− c̃)J2 +

(
1

3i
N0Ω + c.c

)
. (2.21)

2.1.3 The five-form

We take the five-form to be manifestly self-dual

F(5) = eZe8(u3−u1)vol5 + eZJ ′

1 ∧ J ′

2 ∧ (g5 +A1)

+K ′

1 ∧ J ′

1 ∧ J ′

2 − e−8u1(∗5K
′

1) ∧ (g5 +A1)

+K ′

21 ∧ J ′

1 ∧ (g5 +A1) + e−4u2+4u3(∗5K
′

21) ∧ J ′

2

+K ′

22 ∧ J ′

2 ∧ (g5 +A1) + e4u2+4u3(∗5K
′

22) ∧ J ′

1

+
(
L′

2 ∧ Ω′ + c.c
)
∧ (g5 +A1) + e4u3

(
(∗5L

′

2) ∧ Ω′ + c.c
)
, (2.22)

where we have defined the primed forms such as K ′

1 in appendix E.

Due to this self-duality of the five-form, the Bianchi identity for the five-form must be

disentangled from the equation of motion

dF(5) = H(3) ∧ F(3)
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and we find (see appendix E)

eZ = Q− 2P b̃+
4i

3

(
M0N0 −M0N0

)
(2.23)

K1 = Dk + 2(bDc− b̃Dc̃) +
2i

3

(
M0N1 −N0M1 −M0N1 +N0M1

)
(2.24)

K21 = Dk11 +
1

2

[
Db ∧Dc+Db ∧Dc̃+Db̃ ∧Dc

]
(2.25)

K22 = Dk12 +
1

2

[
Db ∧Dc−Db ∧Dc̃−Db̃ ∧Dc

]
(2.26)

where

Dk = dk + 4cB1 −QA1 − 2(k11 + k12),

Dk11 = dk11 + PB2, Dk12 = dk12 − PB2, (2.27)

Db = db− 2B1, Db̃ = db̃,

Dc = dc−C1, Dc̃ = dc̃− PA1

and Q is a constant corresponding to the D3 Page charge. So from the five-form we get:

scalar − k

1 − form − (k11, k12) (2.28)

2 − form − (L2, L2)

Deriving the equations of motion for the five-form is one of the more involved steps in the

analysis, the results are presented in appendix E. The equations of motion are of course

necessary to construct the five-dimensional Lagrangian, to which we now turn.

2.2 The five-dimensional lagrangian

There are several subtleties in producing a five-dimensional Lagrangian whose equations

of motion match those of the ten dimensional theory, largely due to the Chern-Simons

terms in ten dimensions. We have checked that the Lagrangian we present below indeed

reproduces the ten dimensional equations of motion with the most non-trivial task being

to check the flux equations of motion.

The five-dimensional action is the sum of several terms

L = Lgr + Ls,kin + Lg,kin + Lpot + LCS (2.29)

which correspond to the five-dimensional Einstein-Hilbert term, the scalar kinetic terms,

the kinetic terms for the gauge fields and two-forms, the scalar potential and the Chern-

Simons terms. We find the scalar kinetic terms to be

Ls,kin = −1

2
e−4(u1+u2)−φH ′

11 ∧ ∗H ′

11 −
1

2
e−4(u1−u2)−φH12 ∧ ∗H12 − 4e−4u1−φM ′

1 ∧ ∗M ′

1

−1

2
e−4(u1+u2)+φG′

11 ∧ ∗G′

11 −
1

2
e−4(u1−u2)+φG12 ∧ ∗G12 − 4e−4u1+φN ′

1 ∧ ∗N ′

1

−8du1 ∧ ∗du1 − 4du2 ∧ ∗du2 − 12du3 ∧ ∗du3 − e−4u2Dv ∧ ∗Dv

−1

2
e−8u1K1 ∧ ∗K1 −

1

2
dφ ∧ ∗dφ− 1

2
e2φda ∧ ∗da, (2.30)
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where we have twisted some of the one-forms

H ′

11 = H11 − |v|2H12 − 4 Im (vM1), (2.31)

M ′

1 = M1 +
i

2
vH12, (2.32)

G′

11 = G11 − |v|2G12 − 4 Im (vN1), (2.33)

N ′

1 = N1 +
i

2
vG12 (2.34)

and φ is the dilaton. The kinetic terms for the gauge fields are

Lg,kin = −1

2
e−8u3F2 ∧ ∗F2 −

1

2
e4u1−4u3−φH3 ∧ ∗H3 −

1

2
e4u1+4u3−φH2 ∧ ∗H2

−1

2
e4u1−4u3+φG3 ∧ ∗G3 −

1

2
e4u1+4u3+φG2 ∧ ∗G2

−4e4u3
(
1 + |v|2e−4u2

)
L2 ∧ ∗L2 + 4e−4u2+4u3

(
v2L2 ∧ ∗L2 + c.c

)

−1

2
e4u2+4u3

(
1 + |v|2e−4u2

)2
K22 ∧ ∗K22 −

1

2
e−4u2+4u3K21 ∧ ∗K21

+|v|2e−4u2+4u3K22 ∧ ∗K21 + 2e4u3
(
1 + |v|2e−4u2

)(
ivK22 ∧ ∗L2 + c.c

)

−2e−4u2+4u3

(
ivK21 ∧ ∗L2 + c.c

)
(2.35)

where the somewhat off-diagonal last four lines come from the five-form.

The scalar potential has several contributions which we distinguish for clarity:

Lpot = −
(
Vgr + VH(3)

+ VF(3)
+ VF(5)

)
, (2.36)

Vgr = −12e−4u1−2u2+2u3
(
1 + |v|2 + e4u2

)
+ 9|v|2e−4u2+8u3

+2e−8u1−4u3
(
e4u2 + e−4u2(1 − |v|2)2 + 2|v|2

)
, (2.37)

VH(3)
= 4e−4u1+8u3−φ

(
|M0|2 + 2e−4u2 [Im (M0v)]

2
)
, (2.38)

VF(3)
=

1

2
e−4u1+8u3+φ

(
8|N ′

0|2 + e4u2P 2 + e−4u2
(
P (|v|2 − 1) + 4 Im (N ′

0v)
)2

)
, (2.39)

VF(5)
=

1

2
e2Ze−8u1+8u3 (2.40)

where

N ′

0 = N0 −
i

2
Pv. (2.41)

As expected this scalar potential is almost but not quite a sum of squares. The only term

which spoils this property is Vgr. Finally the gravitational term is of course

Lgr = R vol5 (2.42)

where R is the Ricci scalar in Einstein frame. The Chern-Simons terms are particularly

long and unspectacular so we will not write them explicitly. In the ungauged case which we

deal with below, they are somewhat simpler and also extremely crucial so we will present

them explicitly there.
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3 Manifest N = 4 supersymmetry

A particularly insightful aspect of the works [21, 22] was the construction of manifest

N = 4 supersymmetry (by which we mean 16 supercharges). In that case, the reason this

was unexpected was that this particular gauging of N = 4 supergravity does not have a

vacuum which preserves all the supercharges, the maximally supersymmetric vacuum is an

AdS5 which preserves only N = 2. Still more surprisingly, despite the fact that we have

generalized the reduction considered there by including 5 new scalars and one new vector,

the N = 4 supersymmetry is still present in our work. We find that these extra fields

constitute just one additional N = 4 vector multiplet compared to those works.

3.1 The scalar coset

In five dimensional, N = 4 supergravity there are the following multiplets

• graviton multiplet: (gµν , 6 ×Aµ, φ)

• vector multiplet: (Aµ, 5 × φ)

so clearly our reduction has the bosonic field content of N = 4 gauged supergravity cou-

pled to three vector multiplets.3 The scalar coset of this five-dimensional N = 4 gauged

supergravity is [35]
SO(5, 3)

SO(5) × SO(3)
× SO(1, 1) (3.1)

and a particular basis for this coset was given in [36] eq. (3.31). In the conventions of that

paper we take our coset element to be

V = e2
3/2φ1H1e2

−3/2φ2H2e2
−3/2φ3H3ex1E3

2ex2E3
1ex3E2

1

.ex7U1
1 ex8U2

1 ex9U3
1 ex10U1

2 ex11U2
2 ex12U3

2

.ex4V 23
ex5V 13

ex6V 12
(3.2)

and the scalar Kinetic terms are

Ls,kin = −3Σ−2dΣ ∧ ∗dΣ +
1

8
Tr(dM ∧ ∗dM−1) (3.3)

where

M = TrVVT . (3.4)

Explicitly we find

− Tr(dM ∧ ∗dM−1) = 2
(
dφ2

1 + dφ2
2 + dφ2

3

)

+4e−φ2+φ3dx2
1 + 4e−φ1+φ3(dx2 − x1dx3)

2 + 4e−φ1+φ2dx2
3

+4eφ1+φ2(dx4 + x7dx8 + x10dx11)
2

+4eφ1+φ3
(
dx5 + x7dx9 + x10dx12 − x1(dx4 + x7dx8 + x10dx11)

)2

3The half maximal gauged supergravity theories in four and five dimensions are quite rigid and are

summarized nicely in [32, 33]. Another very useful source of information is the nice lecture notes [34].
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+4eφ1dx2
7 + eφ2

(
dx8 − x3dx7

)2

+4eφ3
(
dx9 − (x2 − x1x3)dx7 − x1dx8

)2

+4eφ1dx2
10 + eφ2

(
dx11 − x3dx10

)2

+4eφ3
(
dx12 − (x2 − x1x3)dx10 − x1dx11

)2

+4eφ2+φ3
[
dx6 + x2dx4 + x2x7dx8 + x2x10dx11 − x3dx5

+(x8 − x3x7)dx9 + (x11 − x3x10)dx12

]2
. (3.5)

It may be helpful to describe how this basis (which we will refer to as the “heterotic basis”)

is related to a more common basis in the gauged supergravity literature [33, 34] (which we

will refer to as the “gsg basis”) where generators of SO(5, 3) are given by

(tMN ) Q
P = δQ[MηN ]P (3.6)

M,N . . . = 1, . . . , 8 and η = diag{+ + + + + − −−}. Of course only a subset of the tMN

generate the coset SO(5, 3)/(SO(5) × SO(3)). The two basis (where the Heterotic basis is

completed to a full set of generators of SO(5, 3)) are related by conjugation with C:

C = D1 +D2 +D3 + E44 + E55, (3.7)

where

Di =
(
Ei,i − Ei,i+5 + Ei+5,i + Ei+5,i+5

)
/
√

2 i = 1, . . . , 3 (3.8)

and where Eij is a matrix with 1 in the i-th row and j-th column and zero’s elsewhere.

This is most easily seen by relating η and η̃ where

η̃16 = η̃61 = −1

η̃27 = η̃72 = −1

η̃38 = η̃83 = −1

η̃44 = η̃55 = 1

(3.9)

and VT η̃V = η̃.

Matching (3.5) to our scalar kinetic terms (2.30) obtained from dimensional reduction

we find the rather nonlinear (but invertible) mapping

e2u3 = Σ

−4u2 = φ1

−4u1 − φ = φ2

−4u1 + φ = φ3

√
2 v = x7 + ix10

a = x1
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b− b̃ = x3

b+ b̃ = −x4 −
1

2
x3(x

2
7 + x2

10)

c− c̃ = x2 (3.10)

c+ c̃ = −x5 −
1

2
x2(x

2
7 + x2

10)

2
√

2

3
M0 = −

(
x8 − x3x7

)
+ i(x11 − x3x10)

= −(x8 − ix11) + x3(x7 − ix10)

2
√

2

3
N0 = −

(
x9 − (x2 − x1x3)x7 − x1x8

)
+ i

(
x12 − (x2 − x1x3)x10 − x1x11

)

= −(x9 − ix12) + (x2 − x1x3)(x7 − ix10) + x1(x8 − ix11)

k = x6 + x2x4 +
1

2
x2x3(x

2
7 + x2

10)

+
1

2

(
x2

(
x7x8 + x10x11

)
+ x9(x8 − x3x7) + x12(x11 − x3x10)

)
.

3.2 The gauge kinetic and Chern-Simons terms in the ungauged reduction

In ungauged N = 4 supergravity, the kinetic and Chern-Simons terms for the gauge fields

take a particularly simple form:

Lg,kin+LCS = −1

2
Σ−4H0

2 ∧∗H0
2 −

1

2
Σ2MMNHM

2 ∧∗HN
2 +

1√
2
ηMNA0

1 ∧HM
2 ∧HN

2 (3.11)

where HM
2 = DAM are field strengths for the gauge fields. Indeed this is what we find by

setting the topological fluxes (P,Q) to zero and altering the differential relations (2.7) to

dg5 = 0, dJ1,2 = 0, dΩ = 0. (3.12)

With these alterations, massaging the Lagrangian (2.29) into this form allows one to identify

the correct basis to take for the nine gauge fields, however first we must integrate out the

pair of two-forms (B2, C2). The central difference between the gauged reduction and the

ungauged reduction is the Bianchi identities and their solution: instead of (2.14), (2.16)

and (2.23)-(2.26) we have for H(3):

H3 = dB2 −B1 ∧ F2, H2 = dB1,

H11 = d(b+ b̃), H12 = d(b− b̃),

3iM1 = dM0, (3.13)

for F(3)

G3 = dC2 − adB2 − (C1 − aB1) ∧ F2, G2 = dC1 − a dB1,

G11 = d(c+ c̃) − a d(b+ b̃), G12 = d(c− c̃) − a d(b− b̃), (3.14)

3iN1 = dN0 − adM0,
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and for F(5)

K1 = dk + 2(bdc− b̃dc̃) +
2i

3

(
M 0N1 −N0M1 −M0N1 +N0M1

)
,

K21 = dk11 + (b+ b̃)dC1 − (c+ c̃)dB1,

K22 = dk12 + (b− b̃)dC1 − (c− c̃)dB1, (3.15)

L2 = dD1 +
1

3i

(
M0dC1 −N0dB1

)
.

We find that before integrating out (B2, C2), the Chern-Simons terms are

Ltop = −A1 ∧
[
K22 ∧K21 +K1 ∧ (−C1 ∧H2 +B1 ∧G2) + 4L2 ∧ L2

+K21 ∧
[
d(b− b̃) ∧ C1 − d(c− c̃) ∧B1

]

+K22 ∧
[
d(b+ b̃) ∧ C1 − d(c + c̃) ∧B1

]

+
(
(4i/3)L2 ∧ (M 0C1 −N0B1) + c.c

)]

−dC2 ∧ S2 + dB2 ∧ T2 (3.16)

where

S2 =

(
k +

4

9
Re(M0N0)

)
dB1 −

(
b2 − b̃2 +

1

9
|M0|2

)
dC1

−(b− b̃)dk11 − (b+ b̃)dk12 −
8

3
Im

(
M0dD1

)
(3.17)

T2 =

(
k − 4

9
Re(M0N0)

)
dC1 +

(
c2 − c̃2 +

1

9
|N0|2

)
dB1

−(c− c̃)dk11 − (c+ c̃)dk12 −
8

3
Im

(
N0dD1

)
. (3.18)

First we introduce Lagrange multiplers (B̃1, C̃1)

∆L = C̃1 ∧ dH̃3 + B̃1 ∧ dG̃3 (3.19)

where

H̃3 = dB2, G̃3 = dC2,

and then we integrate out (H̃3, G̃3) and after some algebra we find

Lg,kin = −1

2
e−8u3F2 ∧ ∗F2 −

1

2
e−4(u1−u3)−φH̃2 ∧ ∗H̃2 −

1

2
e−4(u1−u3)+φG̃2 ∧ ∗G̃2

−1

2
e4(u1+u3)−φH2 ∧ ∗H2 −

1

2
e4(u1+u3)+φG2 ∧ ∗G2

−4e4u3
(
1 + |v|2e−4u2

)
L2 ∧ ∗L2 + 4e−4u2+4u3

(
v2L2 ∧ ∗L2 + c.c

)
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−1

2
e4u2+4u3

(
1 + |v|2e−4u2

)2
K22 ∧ ∗K22 −

1

2
e−4u2+4u3K21 ∧ ∗K21

+|v|2e−4u2+4u3K22 ∧ ∗K21 + 2e4u3
(
1 + |v|2e−4u2

)(
ivK22 ∧ ∗L2 + c.c

)

−2e−4u2+4u3

(
ivK21 ∧ ∗L2 + c.c

)
, (3.20)

Ltop = −A1 ∧
[
dk12 ∧ dk11 + 4dD1 ∧ dD1 − dB1 ∧ dC̃1 − dC1 ∧ dB̃1

]
, (3.21)

Identifying (3.20) with (3.11) we construct the SO(5, 3) vector of one-form potentials:

A0 = −A1/
√

2, (3.22)

A1 = −k11/
√

2, A2 = B̃1/
√

2, (3.23)

A3 = C̃1/
√

2, A4 = 2Im (D1), (3.24)

A5 = 2Re (D1), A6 = k12/
√

2, (3.25)

A7 = C1/
√

2, A8 = B1/
√

2. (3.26)

So we have now shown that the ungauged theory, corresponding to a particular con-

sistent truncation on the five-torus T 5 has N = 4 supersymmetry. Of course this is not

the theory of most interest to us but was a necessary step in developing the gauged theory,

which corresponds to a consistent truncation on T 1,1.

3.3 The embedding tensor for the gauged theory

Having successfully demonstrated the manifest supersymmetry of the ungauged theory,

the content of the gauged theory can be neatly summarized in the embedding tensor. For

our purposes, the embedding tensor has components (fMNP , ξMN ) which can be computed

from the scalar kinetic terms:

DMMN = dMMN + 2AP f Q
P (M MN)Q + 2A0ξ P

(M MN)P . (3.27)

We have found the heterotic basis (3.2) to be computationally efficient but the em-

bedding tensor is most naturally expressed in the “gsg basis” (3.6) where it is completely

antisymmetric (with all indices lowered):

fMNP = f[MNP ], ξMN = ξ[MN ]. (3.28)

Note that our expressions (3.26) are in the heterotic basis. After some work explicitly

computing (3.27), we find that the non-vanishing components in the basis (3.6) are

f123 = −f128 = f137 = f178 = 2, (3.29)

ξ23 = −ξ28 = ξ37 = ξ78 = −Q/
√

2, (3.30)

ξ45 = −3
√

2 (3.31)

ξ36 = ξ68 =
√

2P (3.32)

and permutations.
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From this one can read off the covariant field strength of N = 4 gauged supergravity:

HM = dAM +
1

2
f M
NP AN ∧ AP +

1

2
ξ M
P A0 ∧AP (3.33)

and for example we have

H1 + H6 = d(A1 + A6) − 2
√

2A7 ∧ A8,

H7 = dA7, (3.34)

H8 = dA8

here we have used the basis of gauged fields in the “heterotic basis” (3.26). From this

we see the same Heisenberg algebra which was observed in [21, 22]. The only additional

gaugings in our ansatz arise from the topological flux we have turned on (3.32). So the

additional vector multiplet we have included has enhanced the complexity of the embedding

tensor somewhat indirectly through the additional degrees of freedom required to allow for

non-trivial topology and thus the flux P .

3.4 The scalar potential

A useful check of our computations is to compute the scalar potential from the gauged

supergravity formula

V =
1

2
fMNP fQRSΣ−2

(
1

12
MMQMNRMPS − 1

4
MMQηNRηPS +

1

6
ηMQηNRηPS

)

+
1

8
ξMNξPQΣ4

(
MMPMNQ − ηMP ηNQ

)
+

1

6

√
2fMNP ξQRΣMMNPQR. (3.35)

where

MMNPQR = ǫabcdeV a
MV b

NV c
P V d

Q V e
R . (3.36)

a = 1, . . . , 5 are SO(5) indices and V is the coset element (3.2). To work with the SO(5)

indices it is best to transform to the “gsg” basis for the coset. Note that the three separate

terms in this expression are distinguished by the power of Σ = e2u3 and each such term

is easily identified in (2.36). After some calculation, we find agreement between the two

expressions.

4 Further consistent truncations

4.1 The PT ansatz

As mentioned in the introduction, one central motivation for the current work is to under-

stand in detail the Kaluza-Klein reduction employed in [9]. Since we have the most general

SU(2) × SU(2) invariant reduction, it is guaranteed that the reduction of [9] lies within

ours but the former has no vector fields and so clearly cannot be supersymmetric. In the

scalar sector it is obtained from our truncation by setting the following fields to zero

(a, ImM0,ReN0, c, c̃, k, Im v) → 0 (4.1)

– 14 –



J
H
E
P
0
4
(
2
0
1
1
)
0
2
1

leaving nine scalars. Although it is conceivable that this scalar sector alone could be

supersymmetrized in some other way, we in fact find that the supersymmetrization of this

ansatz requires further scalar fields to be included.

We now demonstrate that indeed the PT truncation is consistent. Partial results in

this direction were presented in the nice work [13]. The most striking feature of the PT

ansatz is that there is a distinct asymmetry between the RR and NS three-forms. One

can understand this as a direct consequence of setting the axion to zero and satisfying the

equation of motion for the axion (D.2). Following this logic explicitly in our new truncation,

requires as a first step, certain choices in setting the source for the axion to zero:

− d(∗e2φda) = e4(u1−u3)H3 ∧ ∗G3 + e−4(u1−u3)H2 ∧ ∗G2

+e−4(u1+u2)H ′

11 ∧ ∗G′

11 + e−4(u1−u2)H12 ∧ ∗G12

+4e−4u1
(
M ′

1 ∧ ∗N ′

1 + c.c.
)

+
(
4e−4u1+8u3

(
M0N

′

0 + c.c.
)

−4e−4u1−4u2+8u3 Im(M0v)
(
P (1 − |v|2) − 4Im(N ′

0v)
))

vol5. (4.2)

We achieve this by setting

(Im M0,Re N0, Im v, c, c̃) → 0 (4.3)

along with

(C2, C1) → 0. (4.4)

Further inspection of the equations of motion which arise from the ten-dimensional three

form equations of motion (D.3) and (D.4) reveal that in addition we must have

(k,B2, B1, k11, k12, L2, L2) → 0. (4.5)

From our formalism these steps are quite straightforward but one equation requires addi-

tional work. Since we have set B1 → 0 we must set the various source terms in (F.5) to zero

and this would appear to give a differential constraint amongst several of the remaining

scalars (b, b̃,Re v,ReM0):

0 = H11(1 − |v|2)e−4u2 +H12

(
e4u2 − |v|2(1 − |v|2)e−4u2 + 2|v|2

)

+4 Im (vM1)
(
1 − (1 − |v|2)e−4u2

)
. (4.6)

However if we take the exterior derivative of the Hodge star of (4.6) we in fact recover a

linear combination of (F.6),(F.7),(F.8). This is the only non-trivial step in showing that

the ansatz employed in [9] is indeed a consistent truncation.

Since it has appeared quite straightforward within our N = 4 truncation to show the

consistency of the PT ansatz, it is natural to wonder if there is an internal symmetry at

work and we now follow a brief digression with regards to this idea. Such a symmetry

must differentiate between the NS and RR three-forms and as such the best candidate is

worldsheet parity reversal under which:

Ωp : (g, φ,B(2), C(0), C(2), C(4)) → (g, φ,−B(2),−C(0), C(2),−C(4)).
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A geometric symmetry is also needed and the best candidate appears to be reversal of all

internal co-ordinates:

σ : (σ1,Σ1, g5) → −(σ1,Σ1, g5),

(σ2,Σ2) → (σ2,Σ2),

which translates to

σ : (g5, J1, J2, Im Ω) → −(g5, J1, J2, Im Ω),

Re Ω → ReΩ.

At this point we see that vol5 and volT 1,1 transform with opposite sign:

Ωp · σ : (vol5, volT 1,1) → (−vol5, volT 1,1) (4.7)

so we are forced to append five-dimensional parity P5 and finally

J = Ωp · σ · P5 (4.8)

appears to be our best candidate for a symmetry principle which restricts one to the PT

ansatz. However J does not commute or anti-commute with the exterior derivative, to

be more precise it anti-commutes with the external exterior derivative but commutes with

the internal one. This means that even if terms in the potential have equal J -charge, the

field strength will not. As a result we conclude that there is no symmetry principle which

restricts one to the PT ansatz, this is of course not a disaster at all because in the current

work we have provided an explicitly supersymmetric embedding of the PT ansatz into a

consistent truncation which is based on a symmetry principle.

4.2 The I truncation

Another interesting truncation is the restriction to modes which are invariant under the

so-called I symmetry:

I = Ωp · (−1)FL · σ,
σ : (θ1, φ1, θ2, φ2) → (θ2, φ2, θ1, φ1). (4.9)

This is the Z2 symmetry which is broken away from the origin of the baryonic branch in the

Klebanov-Strassler gauge theory [10]. This truncation of our N = 4 reduction eliminates

(b, c) from the three form fluxes and the metric mode which is the coefficient of E1E1 −
E2E2. In addition only two vector fields remain, namely A1 and the combination k11 +k12.

It seems plausible that this is the bosonic content of an N = 2 gauged supergravity in five

dimensions with one vector multiplet and three hypermultiplets, it would be interesting to

develop this further.
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5 Conclusions

In this work we have constructed a five-dimensional gauged supergravity theory by explicit

dimensional reduction on T 1,1, including the entire set of modes which are singlets under

the global SU(2)×SU(2) . The motivation for the current work is to better understand the

physics of the linearized spectrum, both supersymmetric and non-supersymmetric, around

the warped deformed conifold and the baryonic branch. Since the PT ansatz can be

embedded within our theory, it is clear that the resolved, deformed and singular conifolds

can all be found as solutions and there is also some possibility that new solutions may exist

within our extended ansatz.

While the five-dimensional, N = 4 theory we have constructed is uniquely specified by

the number of vector multiplets and the embedding tensor, we also have explicit uplift for-

mulas to ten-dimensional IIB supergravity. This is something which is often quite difficult

to obtain, for example a closely related system is the SU(2) × U(1) gauged supergravity

constructed in [37] which contains in its solution space the Klebanov-Witten flow [5], but

explicit uplift formula are not available and one is forced to work directly in ten dimen-

sions [38]. In fact it would be interesting to see if the Heisenberg algebra found here arises

as a contraction of the SU(2) gauging in [37].

There are several direct generalizations of the current work which could provide new

insight into the physics of lower dimensional gauged supergravities and string theory. There

exists a family of Einstein manifolds related to T 1,1 called T p,q, all of which can be viewed

as U(1) fibrations over S2 × S2 however these do not admit a covariantly constant Killing

spinor and thus appear to not preserve any supersymmetry. It would be interesting to

determine whether reduction on these manifolds results in a non-supersymmetric theory or

a supersymmetric theory with no (canonical) supersymmetric vacuum. Another interesting

direction is to consider reductions of IIA on T 1,1 and compare the resulting embedding

tensor of the gauged supergravity to the one found here. By T -duality, the spectrum of

the ungauged theory is identical to that here, the only difference must lie in the embedding

tensor. This will presumably shed some light on the work [39] where evidence was presented

that KS cannot have a mirror which is even locally geometric.

Finding a superpotential for this N = 4 supersymmetric theory we have presented is

a small step further than we have completed in the current work but would be extremely

useful and should have direct application to the physics of flux backgrounds. We will return

to these issues in a forthcoming publication.
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field SO(5) → SO(4) → SU(2)D U(1)

→ U(1) neutral field

gmn 15 → 10 + 4 + 10 + 9 → 10 + 2 × 2 + 10 + 3 × 3 v, v, u1, u2, u3

→ 10 + 2(11 + 1
−1) + 10 + 3(10 + 11 + 1

−1)

Bmn 10 → 4 + 6 → (2 + 2) + (10 + 10 + 10 + 3) b, b̃,M0,M0

→ 2(11 + 1
−1) + (10 + 10 + 10 + (10 + 11 + 1

−1))

Cmn 10 → 4 + 6 → (2 + 2) + (10 + 10 + 10 + 3) c, c̃, N0, N̄0

→ 2(11 + 1
−1) + (10 + 10 + 10 + (10 + 11 + 1

−1))

Cmnpq 5 → 10 + 4 → 10 + (2 + 2) k

→ 10 + 2(11 + 1
−1)

φ 10 → 10 → 10 → 10 φ

a 10 → 10 → 10 → 10 a

Table 1. Decomposition of scalar fields under the structure group.

field SO(5) → SO(4) → SU(2)D U(1)

→ U(1) neutral field

gµm 5 → 10 + 4 → 10 + (2 + 2) → 10 + 2(11 + 1
−1) A1

Bµm 5 → 10 + 4 → 10 + (2 + 2) → 10 + 2(11 + 1
−1) B1

Cµm 5 → 10 + 4 → 10 + (2 + 2) → 10 + 2(11 + 1
−1) C1

Cµmnp 10 → 4 + 6 → (2 + 2) + (10 + 10 + 10 + 3) k11, k12, D1, D1

→ 2(11 + 1
−1) + (10 + 10 + 10 + (10 + 11 + 1

−1))

Bµν 10 → 10 → 10 → 10 B2

Cµν 10 → 10 → 10 → 10 C2

Table 2. Decomposition of form fields under the structure group.

A G-structures

Here we collate the branching rules required to compute the spectrum of singlets under the

U(1) structure group. This provides an alternative way to understand the spectrum in our

IIB supergravity ansatz:

B The one-forms

In our ansatz in section 2.1.1 we have used the following standard invariant one-forms on

T 1,1 (see [40, 41]):

σ1 = cψ/2dθ1 + sψ/2sθ1dφ1

σ2 = sψ/2dθ1 − cψ/2sθ1dφ1

σ3 =
1

2
dψ + cθ1dφ1 (B.1)

Σ1 = cψ/2dθ2 + sψ/2sθ2dφ2
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Σ2 = sψ/2dθ2 − cψ/2sθ2dφ2

Σ3 =
1

2
dψ + cθ2dφ2,

where cψ/2 = cos ψ2 etc.

C Hodge dualizing

In signature (d− 1, 1) the Hodge star squares to

∗d ∗dωr = (−1)1+r(d−r)ωr (C.1)

where ωr is an r-form. So in d = 5

∗5 ∗5ωr = −ωr (C.2)

and in d = 10

∗10 ∗10ωr = (−1)1+rωr. (C.3)

Here we set up some conventions for embedding the five-dimensional Hodge star in

ten dimensions:

∗10 ωp = (−1)pe(2−2p)(u3−u1)(∗ωp) ∧ J ′

1 ∧ J ′

2 ∧ (g5 +A1)

∗10

(
ωp ∧ (g5 +A1)

)
= e2pu1+(8−2p)u3(∗ωp) ∧ J ′

1 ∧ J ′

2

∗10

(
ωp ∧ J ′

1

)
= (−1)pe(−6+2p)u1−4u2+(2−2p)u3(∗ωp) ∧ J ′

2 ∧ (g5 +A1)

∗10

(
ωp ∧ J ′

2

)
= (−1)pe(−6+2p)u1+4u2+(2−2p)u3(∗ωp) ∧ J ′

1 ∧ (g5 +A1)

∗10

(
ωp ∧ J ′

1 ∧ (g5 +A1)
)

= e(−4+2p)u1−4u2+(8−2p)u3(∗ωp) ∧ J ′

2 (C.4)

∗10

(
ωp ∧ J ′

2 ∧ (g5 +A1)
)

= e(−4+2p)u1+4u2+(8−2p)u3(∗ωp) ∧ J ′

1

∗10

(
ωp ∧ Ω′

)
= (−1)pe(−6+2p)u1+(2−2p)u3(∗ωp) ∧ Ω′ ∧ (g5 +A1)

∗10

(
ωp ∧ Ω′ ∧ (g5 +A1)

)
= e(−4+2p)u1+(8−2p)u3(∗ωp) ∧ Ω′

∗10

(
ωp ∧ J ′

1 ∧ J ′

2

)
= (−1)pe(−10+2p)u1+(2−2p)u3(∗ωp) ∧ (g5 +A1)

where ∗10 is the Hodge star in d = 10 and ∗ is the Hodge star in d = 5.

D IIB conventions

The d = 10, IIB action in Einstein frame is4 [43]

SEIIB =
1

2

∫
d10x

(√
GR− 1

2
dφ ∧ ∗dφ− 1

2
e2φdC(0) ∧ ∗dC(0) −

e−φ

2
H(3) ∧ ∗H(3)

−e
φ

2
F(3) ∧ ∗F(3) −

1

4
F(5) ∧ ∗F(5) −

1

2
C(4) ∧H(3) ∧ F(3)

)
. (D.1)

4our conventions are taken from [42] page 12.
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The full set of equations of motion are

d(∗e2φF(1)) = −eφH(3) ∧ ∗F(3) (D.2)

d(∗eφF(3)) = F(5) ∧H(3) (D.3)

d(∗e−φH(3)) = eφF(1) ∧ ∗F(3) + F(3) ∧ F(5) (D.4)

d ∗ dφ = e2φF(1) ∧ ∗F(1) −
1

2
e−φH(3) ∧ ∗H(3) +

1

2
F(3) ∧ ∗F(3) (D.5)

F(5) = ∗F(5) (D.6)

dF(5) = H(3) ∧ F(3) (D.7)

RMN =
1

2
∂Mφ∂Nφ+

1

2
e2φ∂MC(0)∂NC(0) +

1

96
FMPQRSF

PQRS
N

+
e−φ

4

(
H PQ
M HNPQ − 1

12
gMNH

PQRHPQR

)

+
eφ

4

(
F PQ
M FNPQ − 1

12
gMNF

PQRFPQR

)
(D.8)

E The five-form

Due to the self-duality in ten dimensions the most involved part of reconstructing the five-

dimensional action is the equations of motion for components of the five-form. Here we

summarize various steps we have taken. To facilitate computing the exterior derivative, we

first write the ansatz (2.22) in terms of untwisted fundamental forms

F5 = eZe8(u3−u1)vol5 + eZJ1 ∧ J2 ∧ (g5 +A1)

+K1 ∧ J1 ∧ J2 − e−8u1(∗K̃1) ∧ (g5 +A1)

+K21 ∧ J1 ∧ (g5 +A1) + e−4u2+4u3(∗K̃21) ∧ J2

+K22 ∧ J2 ∧ (g5 +A1) + e4u2+4u3(∗K̃22) ∧ J1

+
(
L2 ∧ Ω + c.c

)
∧ (g5 +A1) + e4u3

(
(∗L̃2) ∧ Ω + c.c

)
(E.1)

where the unprimed forms are given in terms of the primed ones by

K1 = K ′

1 (E.2)

K21 = K ′

21 − |v|2K ′

22 + 4 Im vL′

2 (E.3)

K22 = K ′

22 (E.4)

L2 = L′

2 −
iv

2
K ′

22. (E.5)
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The Hodge star creats a bit of a mess as well so we have defined some new fields

K̃1 = K ′

1

= K1 (E.6)

K̃21 = K ′

21

= K21 − |v|2K22 − 4Im (vL2) (E.7)

K̃22 = K ′

22 − |v|2e−8u2K ′

21 + 4e−4u2 Im (vL′

2)

=
(
1 + |v|2e−4u2

)2
K22 − |v|2e−8u2K21 + 4e−4u2

(
1 + |v|2e−4u2

)
Im (vL2) (E.8)

L̃2 = L′

2 −
iv

2
e−4u2K ′

21

= L2

(
1 + |v|2e−4u2

)
+
iv

2

(
1 + |v|2e−4u2

)
K22 −

iv

2
e−4u2K21 − v2e−4u2L2 (E.9)

and then the five-dimensional equations of motion are

DL2 − 3ie4u3 ∗ L̃2 = −M0G3 +N0H3 −H2 ∧N1 +M1 ∧G2

K21 ∧ F2 + d
(
e4(u2+u3) ∗ K̃22

)
− 2e−8u1 ∗ K̃1 = H11 ∧G3 +H3 ∧G11 (E.10)

K22 ∧ F2 + d
(
e4(−u2+u3) ∗ K̃21

)
− 2e−8u1 ∗ K̃1 = H12 ∧G3 +H3 ∧G12 (E.11)

L2 ∧ F2 +D(e4u3 ∗ L̃2) = M1 ∧G3 +H3 ∧N1 (E.12)

−d
(
e−8u1 ∗ K̃1

)
= H3 ∧G2 −H2 ∧G3 (E.13)

where the two-form L2 is charged

DL2 = dL2 − 3iA1 ∧ L2. (E.14)

The five-dimensional kinetic terms which we get from these equations are rather off-diagonal

LF(5),kin = −4e4u3
(
1 + |v|2e−4u2

)
L2 ∧ ∗L2 + 4e−4u2+4u3

(
v2L2 ∧ ∗L2 + c.c

)

−1

2
e4u2+4u3

(
1 + |v|2e−4u2

)2
K22 ∧ ∗K22 −

1

2
e−4u2+4u3K21 ∧ ∗K21

+|v|2e−4u2+4u3K22 ∧ ∗K21 + 2e4u3
(
1 + |v|2e−4u2

)(
ivK22 ∧ ∗L2 + c.c

)

−2e−4u2+4u3

(
ivK21 ∧ ∗L2 + c.c

)
. (E.15)

The Bianchi identities are

deZ = P (H12 −H11) + 4
(
M1N0 −M0N1 + c.c

)
(E.16)

eZF2 + dK1 + 2K21 + 2K22 = H11 ∧G12 +H12 ∧G11 + 4
(
M1N1 + c.c.

)
(E.17)

dK21 = P H3 +H11 ∧G2 −H2 ∧G11 (E.18)

dK22 = −P H3 +H12 ∧G2 −H2 ∧G12 (E.19)

which we have solved in (2.23)-(2.26).
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F The three-forms

The three-forms are given in terms of twisted fundamental forms by

H(3) = H3 +H2 ∧ (g5 +A1) +H ′

11 ∧ J ′

1 +H12 ∧ J ′

2

+
(
M ′

1 ∧ Ω′ +M0Ω
′ ∧ (g5 +A1) + c.c

)

−4 Im (M0v)J
′

1 ∧ (g5 +A1) (F.1)

F(3) = P (J ′

1 − J ′

2) ∧ (g5 +A1) +G3 +G2 ∧ (g5 +A1) +G′

11 ∧ J ′

1 +G12 ∧ J ′

2

+
(
N ′

1 ∧ Ω′ +N ′

0Ω
′ ∧ (g5 +A1) + c.c

)

−
(
P |v|2 + 4 Im (N ′

0v)
)
J ′

1 ∧ (g5 +A1), (F.2)

where

H ′

11 = H11 − |v|2H12 − 4 Im (vM1)

M ′

1 = M1 +
i

2
vH12

G′

11 = G11 − |v|2G12 − 4 Im (vN1) (F.3)

N ′

1 = N1 +
i

2
vG12

N ′

0 = N0 −
i

2
Pv.

The equations of motion are

d
(
e4(u1−u3)−φ ∗H3

)
= −eZG3 +G2 ∧K1 −G12 ∧K ′

21 −G′

11 ∧K ′

22

−4
(
N ′

1 ∧ L
′

2 + c.c
)

+ 4e4u3
(
N ′

0 ∗ L
′

2 + c.c.
)

+P
(
1 − |v|2 − 4Im (N ′

0v)
)
e−4(u2−u3) ∗K ′

21

−Pe4u2+4u3) ∗K ′

22 + e4(u1−u3)+φda ∧ (∗5G3) (F.4)

d
(
e4(u1+u3)−φ ∗H2

)
= 2(1 − |v|2)e−4(u1+u2)−φ ∗H ′

11 + 2e−4(u1−u2)−φ ∗H12

+e4(u1−u3)−φ ∗H3 ∧ F2 + 8e−4u1−φIm (v ∗M ′

1)

+G3 ∧K1 + e−4(u2−u3)G′

11 ∧ ∗K ′

21 + e4(u2+u3)G12 ∧ ∗K ′

22

+4e4u3
(
N ′

1 ∧ ∗L′

2 + c.c.
)

+ e4(u1+u3)+φda ∧ ∗G2 (F.5)

d
(
e−4(u1−u2)−φ ∗H12

)
= −4e−4u1−φIm (∗M ′

1 ∧Dv) + 12e−4u1+8u3−φRe (M0v)vol5

+
(
P (1 − |v|2) − 4Im (N ′

0v)
)
eZe8(u3−u1)vol5 + e−8u1G′

11 ∧ ∗K1

+e4(u2+u3)G2 ∧ ∗K ′

22 −G3 ∧K ′

21 + e−4(u1−u2)+φda ∧ ∗G12 (F.6)

d
(
e−4(u1+u2)−φ ∗H ′

11

)
= −PeZe8(u3−u1)vol5 + e−8u1G12 ∧ ∗K1 + e−4(u2−u3)G2 ∧ ∗K ′

21

−G3 ∧K ′

22 + e−4(u1+u2)+φda ∧ ∗G′

11 (F.7)

D
(
e−4u1−φ ∗M ′

1

)
= −3ie−4u1+8u3−φM0vol5

+6e−4u1−4u2+8u3−φvIm (vM0)vol5 −
1

2i
e−4(u1+u2)−φ ∗H ′

11 ∧Dv
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eZe8(u3−u1)N ′

0 vol5 + e−8u1N ′

1 ∧ ∗K1

−G3 ∧ L′

2 + e4u3G2 ∧ ∗L′

2 + e−4u1+φda ∧ ∗N ′

1 (F.8)

d
(
e4(u1−u3)+φ ∗G3

)
= eZH3 −K1 ∧H2 +K ′

22 ∧H ′

11 +K ′

21 ∧H12

+4e−4u2+4u3Im (vM0) ∗K ′

21 + 4
(
L′

2 ∧M
′

1 + c.c.
)

−4e4u3
(
∗ L′

2M0 + c.c.
)

(F.9)

d
(
e4(u1+u3)+φ ∗G2

)
= e4(u1−u3)+φ ∗G3 ∧ F2 + 2(1 − |v|2)

(
e−4(u1+u2)+φ ∗G′

11

)

+2e−4(u1−u2)+φ ∗G12 − 8e−4u1Im (v ∗N ′

1) +K1 ∧H3

−4e4u3
(
M ′

1 ∧ ∗L′

2 + c.c.
)

+ e−4u2+4u3 ∗K ′

21 ∧H ′

11

+e4u2+4u3 ∗K ′

22 ∧H12 (F.10)

d
(
e−4(u1−u2)+φ ∗G12

)
= −4e−4u1+φIm (∗N ′

1 ∧Dv) + 12e−4u1+8u3+φRe (N ′

0v)vol5

K ′

21 ∧H3 − e4(u2+u3) ∗K ′

22 ∧H ′

2 − e−8u1 ∗K1 ∧H ′

11

+4Im (M0v)e
Ze8(u3−u1) (F.11)

d
(
e−4(u1+u2)+φ ∗G′

11

)
= K ′

22 ∧H3 − e−4u2+4u3 ∗K ′

21 ∧H2 − e−8u1 ∗K1 ∧H12 (F.12)

D
(
e−4u1+φ ∗N ′

1

)
= −3ie−4u1+8u3+φN ′

0vol5 −
1

2i
e−4u1−4u2(∗G′

11) ∧Dv

+
3v

2
e−4u1−4u2+8u3+φ

(
P |v|2 + 4Im (N ′

0v)
)
vol5

+L′

2 ∧H3 − e4u3 ∗ L′

2 ∧H2 − e−8u1 ∗K1 ∧M ′

1

−M0e
Ze−8(u1−u3)vol5 (F.13)

G Dilaton-axion

For the dilaton axion equations of motion is necessary to construct the follows quantities:

F(1) ∧ ∗10F(1) = J ′

1 ∧ J ′

2 ∧ (g5 +A1)
[
da ∧ ∗da

]
(G.1)

H(3) ∧ ∗10H(3) = J ′

1 ∧ J ′

2 ∧ g5 ∧
[
e4(u1−u3)H3 ∧ ∗H3 + e4(u1+u3)H2 ∧ ∗H2

+e−4(u1+u2)H ′

11 ∧ ∗H ′

11 + e−4(u1−u2)H12 ∧ ∗H12

+8e−4u1M ′

1 ∧ ∗M ′

1 + 8e−4u1+8u3 |M0|2vol5
+16e−4u1−4u2+8u3[Im (M0v)]

2vol5

]
(G.2)

F(3) ∧ ∗10F(3) = J ′

1 ∧ J ′

2 ∧ (g5 +A1) ∧
[
e4(u1−u3)G3 ∧ ∗G3 + e4(u1+u3)G2 ∧ ∗G2

+e−4u1−4u2G′

11 ∧ ∗G′

11 + e−4u1+4u2G12 ∧ ∗G12 + 8e−4u1N ′

1 ∧ ∗N ′

1

+e−4u1+8u3

(
8|N ′

0|2 + e4u2P 2 + e−4u2
(
P (|v|2 − 1) + 4 Im (N ′

0v)
)2

)
vol5

]

H(3) ∧ ∗10F(3) = J ′

1 ∧ J ′

2 ∧ (g5 +A1) ∧
[
e4(u1−u3)H3 ∧ ∗G3 + e4(u1+u3)H2 ∧ ∗G2

+e−4(u1+u2)H ′

11 ∧ ∗G′

11 + e−4(u1−u2)H12 ∧ ∗G12

+4e−4u1
(
M ′

1 ∧ ∗N ′

1 + c.c.
)

+
(
4e−4u1+8u3

(
M0N

′

0 + c.c.
)

−4e−4u1−4u2+8u3 Im(M0v)
(
P (1 − |v|2) − 4Im(N ′

0v)
))

vol5

]
(G.3)

then (D.2) and (D.5) give the relevant equations of motion.
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