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1 Introduction and summary

M5 brane is an important object in M-theory, but numerous studies have shown that it is

also relevant for four dimensional field theories. It was used to give solutions of Coulomb

branches of a large class of N = 2 field theories [1] and also used to reveal strong coupling

dynamics of N = 1 theories [2, 3]. Furthermore, even new types of four dimensional field

theories can be constructed from M5 branes [4, 5]. The important building block of those

theories is the so-called TN theory [5]. It was discovered through the study of N = 2

S-dualities generalizing the Argyres-Seiberg duality [6] which involves the E6 theory [7].

The TN theory for N ≥ 3 does not have a Lagrangian description at present. The existence

of those theories enlarge the landscape of 4d quantum field theories.

The low energy world volume theory of N coincident M5 branes is given by the mys-

terious six dimensional N = (2, 0) theories of the AN−1 type. More generally, by taking

6d N = (2, 0) theories of ADE type and compactifying it on a Riemann surface C with

punctures, we get four dimensional field theories in the low energy limit. Theories of this

class are known as class S [5, 8]. Depending on how to twist the theory on the Riemann

surface, we get N = 2 or N = 1 gauge theories.

Although direct field theory analysis of class S theories is often difficult, there is a way

to study those theories in a unified way. The key idea is to compactify the theories on a

circle S1 [8, 9]. The six dimensional theories are put on R
1,2 × S1 × C. If we compactify

on C first, we get four dimensional theories on R
1,2 × S1. However, if we change the

order of compactification and compactify the S1 direction first, we get five dimensional

maximal Super-Yang-Mills (SYM) on R
1,2 × C. In the case where the four dimensional

theory has N = 2 supersymmetry, the condition for supersymmetric vacua gives Hitchin’s

equations [10, 11].1 The Coulomb moduli space of the four dimensional field theory on

R
1,2 × S1 is given by the moduli space of solutions of Hitchin’s equations. In the case in

which N = 1 supersymmetry remains, we get generalized Hitchin’s equations which has

been proposed in [15, 16], as we explicitly derive in section 2 from 5d SYM.

We argue that the 5d SYM twisted on the Riemann surface, as a whole, gives the

description of class S theories. There is a proposal [17, 18] (see also e.g., [19–24]) that

5d SYM contains all the degrees of freedom in the N = (2, 0) theories compactified on a

circle.2 If this is the case, twisted 5d SYM on R
1,2 × C should be somehow equivalent to

the class S theories on R
1,2 × S1 in the limit in which the area A of the Riemann surface

goes to zero. (See [43] for finite area effects.) The limit A → 0 is rather singular; the

effective coupling constant of 5d SYM, which is normalized to be dimensionless by using

A, goes to infinity at the scale of compactification on C. Then UV divergences of 5d

SYM [22] may become a serious problem. However, at least some protected quantities such

as holomorphic quantities have trivial dependence on the gauge coupling and A, and hence

we expect these quantities can be computed by using twisted 5d SYM. In this sense, we

might regard twisted 5d SYM as a “Lagrangian” of class S theories which often have no

Lagrangian description in terms of four dimensional fields.

1See e.g., [12–14] for readable physics discussions on Hitchin’s equations.
25d SYM on a curved five dimensional manifold is also considered in the context of localization calcula-

tions in e.g., [25–42] and relations to the proposal of [17, 18] are discussed. Our work has a relation to [34]

if we compactify R
1,2 to S3. It would be interesting to investigate this direction further.
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As mentioned above, Hitchin’s equations give solutions to the moduli space of Coulomb

branches of N = 2 theories. We will see in section 5 that twisted 5d SYM also reproduces

moduli spaces of Higgs and mixed Higgs-Coulomb branches. Twisted 5d SYM was used

also in [43, 44] for related purposes. In the N = 1 case, generalized Hitchin’s equations

and its spectral curve play the important role. Different approaches were discussed in [15,

45] and in [16], and in this paper we always follow the approach of [15, 45]. The field

theory dynamics of N = 1 class S theories or similar theories are discussed in [46–57]. As

demonstrated explicitly in [45], moduli spaces of solutions of generalized Hitchin’s equations

almost reproduce moduli spaces of those field theories. Based on twisted 5d SYM, we

will make this description of moduli spaces more complete. We also derive a formula for

dynamically generated superpotential vacuum expectation value (vev) which is relevant for

BPS tensions of domain walls [58]. The formula simplifies the one obtained by Witten [3]

from M-theory. Our construction does not directly rely on M-theory; we only need the 6d

N = (2, 0) theories, and hence any gauge group G of ADE type is possible.

Summary of results. Let us summarize the main results obtained in this paper. First,

the 5d space-time of the twisted 5d SYM is given by R
1,2 × C and the coordinates of R1,2

and C are denoted as x and z, respectively. The supersymmetry of the twisted 5d SYM

is realized as 3d N = 2 supersymmetry by regarding x as space-time coordinates and z as

“internal” coordinate. The chiral fields of the twisted 5d SYM are given by Az̄(x, z, θ) and

Φi(x, z, θ) (i = 1, 2), where θ is the superspace coordinates of 3d N = 2 supersymmetry.

The field Az̄ takes values in the canonical bundle K = T ∗C of the Riemann surface C, and

Φi takes values in a rank two bundle F over the Riemann surface which is constrained as

detF = K. We will mainly focus on the case [50] F = L1 ⊕ L2 for two line bundles L1

and L2 with L1⊗L2 = K. From the 3d point of view in which z is regarded as an internal

index, the gauge group G is the group of maps C → G, where G is a usual ADE type

group. The gauge transformation is given by Az̄ → g−1Az̄g+ g−1∂z̄g and Φi → g−1Φig for

g ∈ G. There is also the vector multiplet V (x, z, θ) of the above gauge group.

When there are no punctures, the Kahler potential and superpotential from the 3d

point of view are given by

K = − 2

g25

∫ √
g|d2z|Tr

(

gzz̄Az̄Az + hij̄ΦiΦ̄j̄

)

, (1.1)

W = −
√
2i

g25

∫

dz ∧ dz̄ ǫij Tr (ΦiDz̄Φj) , (1.2)

where gzz̄ and hij̄ are the metrics of K and F respectively, |d2z| = idz ∧ dz̄, g5 is the 5d

gauge coupling, ǫij is the totally antisymmetric tensor with ǫ12 = 1, Tr is a negative-definite

inner product on the space of Lie algebra, and Dz̄Φj = ∂z̄Φj + [Az̄,Φj ]. There are also

couplings between the chiral fields and the vector field V determined by the above gauge

transformation and the Kahler potential.

The conditions for supersymmetric vacua are obtained from the above Kahler potential

and superpotential as

gzz̄Fzz̄ + hij̄
[

Φi,Φ
†
j̄

]

= 0, Dz̄Φi = 0, ǫij [Φi,Φj ] = 0, (1.3)

Dz̄σ = 0, [σ,Φi] = 0, (1.4)
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where the σ is the real adjoint scalar field contained in the vector multiplet V . The first line

is generalized Hitchin’s equations, while the second line is also required by the twisted 5d

SYM. When the gauge group G is broken down to H by a solution of generalized Hitchin’s

equations, we can turn on σ and dual photons in the Cartan subalgebra of H. In particular,

if H is trivial, we get σ = 0 and generalized Hitchin’s equations capture the moduli space

completely. When σ is nonzero, the moduli fields coming from σ correspond to the moduli

coming from the chiral operators [59] Qi1i2i3 of the TN theory and their relatives.

Punctures are interpreted [60] as 3d N = 4 superconformal theories Tρ[G] introduced

by Gaiotto-Witten [61] coupled to the twisted 5d SYM. Let us focus on the case ρ = 0

for simplicity. (See section 3 for general ρ.) The T [G] theory has the Higgs branch global

symmetry G and Coulomb branch global symmetry G∨, where for the ADE type groups,

G∨ is the same as G. The corresponding holomorphic moment maps are denoted as µ
(3d)
H

for the Higgs branch and µ
(3d)
C for the Coulomb branch. The superpotential coupling to

the twisted 5d SYM is given by

W ⊃ −
√
2

(

∑

a∈A

Tr
(

µ
(3d)
a,HΦ1(za)

)

−
∑

b∈B

Tr
(

µ
(3d)
b,H Φ2(zb)

)

)

, (1.5)

where za (a ∈ A) and zb (b ∈ B) are positions of punctures on the Riemann surface,

and µ
(3d)
a,H and µ

(3d)
b,H are the Higgs branch moment maps of T [G] living at the respective

punctures. Generalized Hitchin’s equations with these source terms tell us that regular

singularities of the Higgs fields Φ1,2 at the punctures are given as

Φ2 →
c1µ

(3d)
a,H

z − za
(z → za), Φ1 →

c1µ
(3d)
b,H

z − zb
(z → zb), (1.6)

where c1 = −g25/4π is a constant. By adding a mass term tr(mµ
(3d)
C ), the vev of µ

(3d)
H is

given as µ
(3d)
H ∝ m. Therefore, the above formulas reproduce the usual regular singularities.

For irregular singularities, we just borrow the results from the literature, e.g., [8, 62–67].

Let us focus on the case G = SU(N) for concreteness. (See section 3.5 for general G.)

Field theory information is extracted from the twisted 5d SYM in the following way.

1. Flavor symmetries of field theory are identified as the Coulomb branch G∨ = SU(N)

symmetries of copies of T [SU(N)] at the punctures, and hence the moment maps of

these symmetries are given by µ
(3d)
a,C and µ

(3d)
b,C . The vevs of these operators can be

extracted from solutions for the Higgs fields Φ1,2. At the puncture z → za, we have

det(x− c2Φ1) → det
(

x− µ
(3d)
a,C

)

, Φ2 →
c3ma

z − za
(z → za) (1.7)

where c2 =
√
2/4π and c3 = g25/16π

2 are constants. At z → zb, similar equations

hold with Φ1 ↔ Φ2. The first equation means that the characteristic polynomial of

the matrix µ
(3d)
a,C is equal to the characteristic polynomial of the non-singular Higgs

field at za. From these formulas and solutions of generalized Hitchin’s equations, we

can obtain chiral ring relations such as deformed moduli constraints in Higgs phase.

– 4 –



J
H
E
P
0
1
(
2
0
1
4
)
1
4
2

2. The vev of superpotential for a given solution of the generalized Hitchin’s equations

is given as

W |solution = c4
∑

a∈A

∮

|z−zb|=ǫ
dzTr(Φ1Φ2) = −c4

∑

b∈B

∮

|z−za|=ǫ
dzTr(Φ1Φ2), (1.8)

where c4 = −2i
√
2/g25 is a constant and ǫ is an infinitesimal number. The two

expressions above are equivalent by Cauchy’s theorem. This superpotential vev gives

BPS tensions of strongly coupled domain walls in confining phase.

3. The spectral curve is defined by

0 =
1

N !
(xi1 − Φi1)

α1
β1

· · · (xiN − ΦiN )
αN

βN
ǫα1···αN

ǫβ1···βN , (1.9)

where ik = 1, 2 and (x1, x2) are the coordinates of the fiber of the rank two bundle

F (= L1 ⊕ L2). This equation defines a curve on the total space of F . It contains

informations of moduli space of field theory as in [45].3 This equation also gives the

Seiberg-Witten curve [68, 69] which determines the holomorphic gauge coupling of

low energy massless U(1) fields in N = 1 Coulomb phase [70].

For explicit examples, see section 5 for N = 2 theories and section 6 for N = 1 theories.

The above equations are written in the normalization which is natural in 5d SYM and 3d

field theory. There is more natural normalization from the point of view of 6d (2, 0) theory

and 4d field theory which is discussed in sections 2 and 3 and used in section 6.

The rest of this paper is organized as follows. In section 2, we perform the twisting

explicitly and derive the twisted 5d SYM. We also discuss generalized Hitchin’s equations

and spectral curve. In section 3, we introduce punctures. Formulas for the vevs of mesons

or moment maps, and also the superpotential, are derived there. In section 4, we review

the compactification of effective action of 4d N = 1 theories on S1 similar to the discussion

in [71]. We argue some nonrenormalization theorems which claim that vevs of holomorphic

quantities are independent of the radius of S1. In section 5, Higgs branches of N = 2

generalized quiver gauge theories are studied. We will see the meaning of σ in the vector

multiplet of the twisted 5d SYM. In section 6, a lot of N = 1 examples are examined

using our new tools. Appendix A reviews N = 1 class S theories relevant for this paper.

Appendix B gives explicit computations of spectral curves.

2 Twisted 5d Super-Yang-Mills and generalized Hitchin systems

The class of 4d theories we study in this paper is obtained from the 6d N = (2, 0) theories

compactified on a punctured Riemann surface C = Cg,n, where g is the genus and n is

the number of punctures. As discussed in the introduction, let us further compactify the

theory on S1 with radius R. Now the (2, 0) theories are on the space R
1,2 × S1 × C.

Suppose that our purpose is to study field theory quantities whose dependence on R are

3The spectral curve here might look different from the one in [45], but they are essentially the same.
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well-controlled, such as holomorphic quantities as we discuss in detail in section 4. In this

case, we may consider a very small R limit such that R is much smaller than the length

scale of C. Then we change the order of compactification; we first compactify the (2, 0)

theories on S1 and then on C. The compactification of the (2, 0) theories on S1 gives 5d

maximal SYM. Therefore, we are left with the 5d SYM compactified on C, which can be

described explicitly by Lagrangian. The change of the order of compactification induces [9]

a mirror symmetry [72] from the 3d point of view. Thus, in the case of 8 superchages,

hypermultiplets of twisted 5d SYM are related to vector multiplets of 4d field theory on

S1, and vice versa.

2.1 SUSY transformations in twisted 5d SYM

To preserve some of the supersymmetry, the compactification must be done with

twisting [73]. We perform a twisted compactification of 5d SYM on R
1,2 × C which pre-

serves at least 4 superchages (i.e. 4d N = 1 or 3d N = 2), and give explicit supersymmetry

transformations. The final result will be very simply summarized in terms of the super-

potential (2.46) and the Kahler potential (2.45), so the reader who is only interested in

the result can skip this subsection and go to subsection 2.2. The calculation here will be

somewhat similar to that of the twisting in [12].

5d SYM from 10d SYM. The 5d maximal SYM can be obtained from dimensional

reduction of the 10d maximal SYM. Our notation and conventions are as follows. We use

the metric signature −+· · ·+. We use indices I, J, · · · for 10 dimensions, i.e. I = 0, 1, · · · , 9,
and use µ, ν, · · · for 0, 1, 2, 3. For later convenience, we also define

z =
x4 + ix5√

2
, u1 =

x6 + ix7√
2

, u2 =
x8 + ix9√

2
. (2.1)

In these complex coordinates, upper and lower indices on tensors are related as, e.g.,

Az = Az̄ etc.

The ten dimensional gamma matrices are denoted as ΓI . We also define ΓI1···In =

Γ[I1 · · ·ΓIn], where [, ] represents anti-symmetrization. The charge conjugation matrix in

10d is denoted as C, which satisfies

(ΓI)
T = −CΓIC

†, CT = −C, (2.2)

where the superscript T represents transpose. The Majorana-Weyl conditions for a spinor

ǫ are given as

(Γ01···9)ǫ = ǫ, (2.3)

ǫ†Γ0 = ǫTC. (2.4)

If we use a basis in which all the gamma matrices are real, we might take C = Γ0 and then

ǫ is real. But we will not assume this specific basis.

Lie group generators are taken to be anti-Hermitian. For example, the field strength

tensor is F = dA + A ∧ A or FIJ = ∂IAJ − ∂JAI + [AI , AJ ]. The simbol Tr will denote

a negative definite inner product on Lie algebras. For SU(N), it is just the trace in the

fundamental representation. For a simply laced group G, if we take an SU(2) subalgebra,

then it coincides with the trace in the fundamental representation of SU(2).

– 6 –
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The action of the 10d SYM is given by

I10 =
1

e210

∫

d10xTr

(

1

2
FIJF

IJ − iλTCΓIDIλ

)

(2.5)

where λ is the Majorana-Weyl gaugino, and e10 is the ten dimensional gauge coupling.

This action is invariant under the following supersymmetry transformation;

δAI = iǫTCΓIλ, δλ =
1

2
ΓIJFIJǫ. (2.6)

The 5d SYM can be obtained by simply taking all the fields to be independent of five

coordinates. We take x0, x1, x2, x4, x5 as the space-time directions of 5d SYM, and then

all the fields are independent of the remaining directions x3, x6, x7, x8, x9. The motivation

for this unusual convention is as follows. When we relate 5d SYM on R
1,2 × C to the 6d

N = (2, 0) theories on R
1,2 × S1 × C, we want to take the S1 direction as x3. Then, in

the large radius limit of S1, the x0, x1, x2, x3 become the coordinates of four dimensional

flat Minkowski space R
1,3. We also note that the coordinate z =

(

x4 + ix5
)

/
√
2 defined

in (2.1) will be the holomorphic coordinate of the Riemann surface C.

Twisting. The 5d SYM has the Lorentz and R-symmetry groups SO(1, 4)×SO(5) which

is the subgroup of the 10d Lorentz group SO(1, 9). We consider the subgroup SO(1, 2) ×
U(1)z × U(2)u ⊂ SO(1, 4) × SO(5), where U(1)z and U(2)u = U(1)u × SU(2)u are the

rotation groups of z and
(

u1, u2
)

defined in (2.1) respectively, and SO(1, 2) is the Lorentz

group of x0, x1, x2. The 16 dimensional Majorana-Weyl spin representation of SO(1, 9) is

decomposed as

16 →
∑

±

[

(2,1)±
1
2
,+1 ⊕ (2,2)±

1
2
,0 ⊕ (2,1)±

1
2
,−1
]

(2.7)

where, for example, (2,1)±
1
2
,+1 means that it transforms as 2 under SO(2, 1), as 1 under

SU(2)u ⊂ U(2)u, and has charges ±1
2 and +1 under U(1)z and U(1)u ⊂ U(2)u, respectively.

By compactifying the 5d SYM on C, the U(1)z becomes the rotation group of the

tangent bundle of C. To preserve some of the supersymmetries, we introduce background

gauge field ωu coupled to the R-symmetry U(2)u. This connection ωu defines a rank two

vector bundle which we denote as F . The connections are supposed to satisfy the relation

ω + trωu = 0, (2.8)

where ω is the connection of the tangent bundle TC, and trωu is the connection on the

determinant bundle detF of the rank two bundle F . This condition means that detF = K,

where K = T ∗C is the canonical (cotangent) bundle of C. Then, the spin bundle in the

representations

2ℓ ≡ (2,1)+
1
2
,+1, 2r ≡ (2,1)−

1
2
,−1 (2.9)

becomes a trivial bundle and we can preserve the supersymmetries corresponding to these

representations.

– 7 –
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We denote the supersymmetry transformation parameters in the representations 2ℓ
and 2r as ǫℓ and ǫr, respectively. They satisfy, e.g.,

Γzz̄ǫℓ = Γu1ū1ǫℓ = Γu2ū2ǫℓ = ǫℓ, Γzǫℓ = Γuǫℓ = 0, (2.10)

Γzz̄ǫr = Γu1ū1ǫr = Γu2ū2ǫr = −ǫr, Γz̄ǫr = Γūǫr = 0. (2.11)

SUSY transformation. For convenience, we define the “holomorphic three form” Ω.

Let zi be complex coordinates,

z1 = u1, z2 = u2, z3 = z. (2.12)

Then, we define

Ω =
1

3!
Ωijkdz

i ∧ dzj ∧ dxk = du1 ∧ du2 ∧ dz. (2.13)

In components, Ω123 = 1 etc. Note that if indices are raised, Ω1̄2̄3̄ = 1 etc. The Ω̄ is defined

as the complex conjugate of Ω. The following calculation may be easier to understand if

we consider the subgroup SO(1, 3)×SO(6) ⊂ SO(1, 9) which is not a true symmetry group

of the 5d SYM but is technically convenient.

The gaugino λ transforms under the representation (2.7). It is convenient to

parametrize λ as

λ = −λℓ − λr +
1

4
Ωīj̄k̄Γīj̄ψℓ,k̄ +

1

4
Ω̄ijkΓijψr,k. (2.14)

Here, λℓ and ψℓ,̄i transform in the representation 2ℓ, and λr and ψr,i transform in the

representation 2r. The coefficients are chosen to agree with the conventions of Wess and

Bagger [74] later. The reality condition (2.4) gives

λ†ℓΓ0 = λTr C, ψ†
ℓ,̄i
Γ0 = ψT

r,iC, (2.15)

and equations with ℓ↔ r. In this sense, 2ℓ and 2r are complex conjugates of each other.

Let us study the supersymmetry transformation under ǫℓ, which we denote as δℓ. The

variation of the gaugino λ is given as

δℓλ =

(

1

2
FµνΓ

µν + FīiΓ
īi +

1

2
FijΓ

ij + FµiΓ
µi

)

ǫℓ

=

(

1

2
FµνΓ

µν − Fīi +
1

2
FijΓīj̄ −

1

8
Ω̄ijkFµiΓjkΓ

µΓ1̄2̄3̄

)

ǫℓ, (2.16)

where we have used (2.10). Comparing this with (2.14), we get

δℓλℓ =

(

−1

2
FµνΓ

µν + Fīi

)

ǫℓ, (2.17)

δℓλr = 0, (2.18)

δℓψℓ,̄i = Ω̄īj̄k̄Fjkǫℓ, (2.19)

δℓψr,i = −1

2
FµiΓ

µΓ1̄2̄3̄ǫℓ. (2.20)
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On the other hand, the variation of the gauge field is given as

δℓAI = iǫTℓ CΓI

(

−λr +
1

4
Ωīj̄k̄Γīj̄ψℓ,k̄

)

, (2.21)

where we have again used (2.10), and we have also used the fact that λℓ and ǫℓ transform

as (2,1) under SO(3, 1) × SU(3) ⊂ SO(9, 1) which rotate
(

x0, x1, x2, x3
)

and
(

z1, z2, z3
)

,

and hence ǫTℓ CΓµλℓ = ǫTℓ CΓīλℓ = ǫTℓ CΓiλℓ = 0. From these facts, we obtain

δℓAµ = −iǫTℓ CΓµλr, (2.22)

δℓAī =
i

2
ǫTℓ CΓ1̄2̄3̄ψℓ,̄i, (2.23)

δℓAi = 0. (2.24)

The supersymmetry transformations above can be rewritten in the form of the trans-

formations of 3d N = 2 supersymmetry, which is obtained from 4d N = 1 supersymmetry

by dimensional reduction on the x3 direction. For this purpose, we need some definitions.

First, notice that on the space of 2ℓ ⊕ 2r, we have

(Γ123 + Γ1̄2̄3̄)
2ǫℓ,r = −8ǫℓ,r. (2.25)

We represent this equation by writing

(Γ123 + Γ1̄2̄3̄)
2 ∼= −8. (2.26)

With this in mind, we define

γµ =
1

2
√
2
(Γ123 + Γ1̄2̄3̄)Γµ, C4 =

i

2
√
2
C(Γ123 + Γ1̄2̄3̄). (2.27)

They are interpreted as the four dimensional gamma matrices and the charge conjugation

matrix, respectively. For example, they satisfy

{γµ, γν} ∼= 2gµν , γµν ∼= Γµν , (2.28)

(γI)
T ∼= −C4γIC

†
4, CT = −C. (2.29)

The reality condition (2.15) is now given as

λ†ℓ(−iγ0) = λTr C4, ψ†
ℓ,̄i
(−iγ0) = ψT

r,iC4. (2.30)

Next, we introduce auxiliary fields D and Fī. We set

D = −iFīi, (2.31)

Fī =
1√
2
Ω̄īj̄k̄Fjk. (2.32)

Now we can rewrite the supersymmetry transformations. We can interpret

(Aµ, λℓ, λr, D) as a vector multiplet. Their transformation law is

δℓAµ = ǫTℓ C4γµλr , (2.33)

δℓλℓ =

(

−1

2
Fµνγ

µν + iD

)

ǫℓ, (2.34)

δℓλr = 0 . (2.35)
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The multiplets (Aī, ψℓ,̄i, Fī) can be interpreted as chiral multiplets. Their transformation

law is

δℓAī =
√
2ǫTℓ C4ψℓ,̄i , (2.36)

δℓAi = 0 , (2.37)

δℓψℓ,̄i =
√
2Fīǫℓ , (2.38)

δℓψr,i =
√
2DµAiγ

µǫℓ , (2.39)

where we have written Fµi = DµAi. These are precisely the transformation laws of 3d

N = 2 (or dimensionally reduced 4d N = 1) supersymmetry.4

The above calculation has been done very similarly to a compactification of the 10d

SYM on a Calabi-Yau threefold. But in our case, Aū1 and Aū2 are not gauge fields, but

scalar fields in the adjoint representation. Due to the background field ωu coupled to the

R-symmetry U(2)u, these adjoint fields take values in the rank 2 bundle F , on which ωu is

a connection. Let us rename the chiral multiplets Aū1 and Aū2 as

Φ1 = Aū1 , ψ1 = ψℓ,ū1 , F1 = Fū1 ,

Φ2 = Aū2 , ψ2 = ψℓ,ū2 , F2 = Fū2 . (2.41)

The anti-chiral multiplets are denoted as Φ̄1,2, ψ̄1,2, F̄1,2. Because we are taking gauge

group generators Ta to be anti-hermitian, Φ̄ is defined as Φ̄ = Ta(Φ
a)∗ = −Φ†. The chiral

multiplet which includes Az̄ and ψℓ,z̄ will be denoted by its lowest component Az̄, and the

vector multiplet which includes λℓ, λr and Aµ will be denoted by V .

The above analysis is valid for an orthogonal basis of the bundlesK and F . However, it

is more convenient to use a holomorphic basis. Let gzz̄ be the metric of C, and hij̄ (i, j̄=1, 2)

be the metric of F . Then, (2.31) and (2.32) are given more precisely as

D = −i
(

gzz̄Fzz̄ − hij̄
[

Φi, Φ̄j̄

]

)

, (2.42)

Fz̄ =
1√
2

[

Φ̄ī, Φ̄j̄

]

ǫīj̄ , (2.43)

gzz̄h
ij̄Fi = −

√
2ǫj̄k̄DzΦ̄k̄ , (2.44)

where ǫij is the totally anti-symmetric tensor with ǫ12 = 1. The metrics are introduced so

that the equations transform covariantly.

2.2 Kahler and superpotential

The result of the previous subsection is summarized in the following way. From the three

dimensional point of view, we have chiral multiplets Φ1(x, z, θ),Φ2(x, z, θ) and Az̄(x, z, θ)

4See page 50 of Wess and Bagger [74]. To make comparison, we identify λℓ → λα, λr → λ̄α̇, λT
ℓ C4 → λα,

λT
r C4 → λ̄α̇. The gamma matrices should be given as

γµ = i

(

0 σµ

σ̄µ 0

)

. (2.40)

We also need to change the orientation so that ℓ ↔ r.
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and a vector multiplet V (x, z, θ), where θ is the superspace coordinate. The x is the

space-time coordinates, while z is regarded as an “internal coordinate” from the point of

view of the 3d N = 2 supersymmetry. The fields Φi (i = 1, 2) take values in the bundle

F ⊗ ad(E), where ad(E) is the vector bundle associated to the gauge group in the adjoint

representation, and F is a rank two holomorphic vector bundle such that its determinant

bundle is the same as the canonical bundle, detF = K = T ∗C. This F was introduced in

the twisting.

The D-term and the F -terms of the previous subsection are reproduced by the Kahler

potential and superpotential given by

K3d = − 2

g25

∫ √
g|d2z|Tr

(

gzz̄Az̄Az + hij̄ΦiΦ̄j̄

)

, (2.45)

W3d = − 2

g25

∫

|d2z| 1√
2
ǫij Tr (ΦiDz̄Φj) , (2.46)

where |d2z| = idz ∧ dz̄, gzz̄ is the metric of C, hij̄ is the metric of the bundle F , Dz̄Φi =

∂z̄Φi+[Az̄,Φi], ǫ
ij is the totally antisymmetric tensor with ǫ12 = 1,

√
g = gzz̄, and g5 is the

5d gauge coupling. From them, the equations for the F -terms (2.43) and (2.44) are derived

straightforwardly. Note that the Kahler potential explicitly depends on the metrics, but

the superpotential is independent of them, thanks to the condition detF = K.

The D-term (2.42) can be obtained in the following way. (See [74] for an explanation

of how to couple general Kahler potentials to general gauge groups.) From the three

dimensional point of view, we can interpret the theory as a 3d gauge theory whose gauge

group G is the group of maps C → G. This is an infinite dimensional gauge group. The

fields Az̄ and Φi take values in an infinite dimensional space W. The transformation of

them under G is given as

δαAz̄ = −Dz̄α, δαΦi = [α,Φi], (2.47)

where α = α(z) is an infinitesimal gauge transformation parameter. The space W is a

flat Kahler manifold with the Kahler potential (2.45), and G is a symmetry group of this

Kahler manifold. Let us compute the moment map under the transformation (2.47). First,

the Kahler form ω (excluding g5) is given as

ω = −
∫ √

g|d2z|Tr
(

igzz̄δAz̄ ∧ δAz + ihij̄δΦi ∧ δΦ̄j̄

)

, (2.48)

where δ means the exterior derivative on the space W. Let V (α) be the vector field which

generates (2.47) on the spaceW. The moment map µ(α) is defined as δµ(α)= ιV (α)ω, where

ι means to contract the vector V (α) with the two form ω, giving a one form. Explicitly, it

is given as

ιV (α)ω=−
∫ √

g|d2z|Tr
(

−igzz̄((Dz̄α)δAz−(Dzα)δAz̄)+ih
ij̄
(

[α,Φi]δΦ̄j̄ −
[

α, Φ̄ī

]

δΦj

)

)

.

(2.49)

– 11 –



J
H
E
P
0
1
(
2
0
1
4
)
1
4
2

From δµ(α) = ιV (α)ω, we get

µ(α) = i

∫ √
g|d2z|Trα

(

gzz̄Fzz̄ − hij̄ [Φi, Φ̄j ]
)

≡ −
∫ √

g|d2z|Trαµ. (2.50)

If the gauge multiplet Aµ, λ, λ̄,D (where λ = λℓ, λ̄ = λr) has the kinetic term,5

−
∫

d2θ

∫ √
g|d2z| 1

2g25
Tr(WαWα) ≡

1

4g25

∫

d2θ [WαWα] , (2.51)

then the equation of motion of the auxiliary field D gives D = µ. The equation (2.42) is

precisely this equation of motion of D.

In total, the 3d Lagrangian is given by

L3d =

∫

d2θd2θ̄K3d +

∫

d2θW3d +

∫

d2θ
1

4g25
[WαWα] + h.c. (2.52)

The Kahler potential K should be coupled appropriately to the vector multiplet as in [74].

Before closing this subsection, let us comment on the dependence on the radius R of

the compactified direction x3. As explained in [8], we redefine Φi as

Φ
(6d)
i = R−1Φi, (2.53)

so that Φ
(6d)
i has mass dimension two. In this normalization, Φ

(6d)
i can have direct inter-

pretation as the scalars of the 6d N = (2, 0) theories. Furthermore, g5 is given as

1

g25
=

1

8π2R
. (2.54)

Taking into account the fact that the action is multiplied by 2πR by dimensional reduction,

we define the four dimensional superpotential as

W4d ≡ 1

2πR
W3d

=
1√

2(2π)3i

∫

dz ∧ dz̄ ǫij Tr
(

Φ
(6d)
i Dz̄Φ

(6d)
j

)

. (2.55)

Notice that this formula is independent of R and the metrics gzz̄ and hij̄ . This superpo-

tential is well-defined thanks to detF = K = T ∗C.

5We take vector multiplets V a to be real, and define V = TaV
a with anti-hermitian generators Ta. Then

Wα is defined as Wα = i
8
D̄2
(

e2iV De−2iV
)

, which is slightly different from the Wess and Bagger convention.
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2.3 Generalized Hitchin’s equations and spectral curve

Let us consider a field configuration such that the 3d Lorentz invariance is preserved. Then

the conditions for supersymmetry to be preserved in the above Lagrangian are given as

0 = gzz̄Fzz̄ − hij̄
[

Φi, Φ̄j̄

]

, (2.56)

0 = Dz̄Φi, (2.57)

0 = ǫij [Φi,Φj ] , (2.58)

0 = Dz̄σ, (2.59)

0 = [σ,Φi], (2.60)

where σ = A3 is the real adjoint scalar in the 3d N = 2 vector multiplet. Solutions of these

equations describe the vacuum moduli space of the low energy three dimensional theory.

We should also divide the space of solutions by the gauge group G.

2.3.1 Spectral curves

Let us suppose σ = 0 for a while. The equations (2.56), (2.57), and (2.58) are precisely

the generalized Hitchin’s equations [15, 16]. As we have seen in the previous subsection,

the equation (2.56) comes from the D-term condition of the gauge group G. As is usually
done in physics literature, instead of imposing (2.56) and dividing by G, we may divide the

space W by the complexification GC of G.6 In any case, we get a Kahler quotient W//G.
On this quotient space, we need to impose (2.57) and (2.58) which are holomorphic. Note

that (2.57) and (2.58) are covariant under GC, so they are consistent with the Kahler

quotient. In this way, we get a Kahler manifold for the moduli space, as expected from the

3d N = 2 supersymmetry.

In the following discussion of this subsection, we take the gauge group G = SU(N).

There is a very useful way to study the moduli space of solutions of (generalized) Hitchin’s

equations, known as spectral curve.

Spectral curve for N = 2 theory. First we briefly review the case of the original

Hitchin systems, which describe Coulomb branches of N = 2 theories as discussed in [75].

In this section, we only consider the case in which there is no puncture.

In the original Hitchin systems, we take F = O ⊕ K, where O represents the trivial

bundle. We set Φ1 = 0, and there is only one adjoint Higgs field Φ = Φ2 which is a section

of K ⊗ ad(E). Then we write down an equation

0 = det(x− Φ(z)) = xN +
N
∑

k=2

φk(z)x
N−k, (2.61)

where x is the coordinate of the fiber of the canonical bundle K. We omit the unit matrix;

more precisely the equation is det(x · 1N − Φ(z)) = 0 for the N ×N unit matrix 1N . The

equation (2.61) defines a curve in the total space (z, x) of the canonical bundle K. This

curve is called the spectral curve. Notice that the φk is a holomorphic section of the line

bundle Kk, ∂z̄φk = 0, because of the equation Dz̄Φ = 0.

6There should be some stability condition as in the original Hitchin systems. We neglect the stability in

this paper, assuming that it is not essential in generic situations we are going to study in this paper.
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The moduli space of solutions of Hitchin’s equations, denoted asMH , has the following

structure. We define the base BH as

BH =
N
⊕

k=2

H0
(

C,Kk
)

, (2.62)

where H0
(

C,Kk
)

is the space of holomorphic sections of Kk. Then, let us define a map

π :MH → BH as

π : (Az̄,Φ) 7→ {φk}2≤k≤N , (2.63)

where (Az̄,Φ) is a solution of the Hitchin’s equations, and φk are defined in (2.61). Then,

it is known that (i) the map π is surjective, π(MH) = BH , and (ii) at a generic point

p ∈ BH , the fiber π−1(p) is a complex torus given by (a subspace of) the Jacobian variety7

of the spectral curve (2.61). See [75] for explanations.

The physical meaning of the above structure of MH is the following. The sections

φk parametrize Coulomb branches of N = 2 theories. Thus BH is the Coulomb moduli

space. When 4d space is compactitfied on S1, massless U(1) gauge fields are dual to

complex scalars whose target space is a complex torus, as we will review in section 4.

The complex torus given by the fiber π−1(p) is precisely the moduli space of these dual

complex scalars. The spectral curve (2.61) is precisely the Seiberg-Witten curve describing

low energy holomorphic gauge coupling matrix of massless U(1) vector fields. We will

briefly review M5 brane interpretation below.

Spectral curve for N = 1 theory. Now let us consider N = 1 theories described by

the generalized Hitchin’s equations. In this case, the Higgs fields Φi take values in the rank

two bundle F . Then, for example, an equation like det(x−Φ1) = 0 is not covariant under

the U(2) which acts on F . A generalization of the spectral curve which is covariant under

U(2) is given by

0 = Pi1···iN ≡ 1

N !
(xi1 − Φi1)

α1
β1

· · · (xiN − ΦiN )
αN

βN
ǫα1···αN

ǫβ1···βN , (2.64)

where (x1, x2) are the coordinates of the fiber of the bundle F and i1, · · · , iN take values 1 or

2. For example, the above definition gives P11···1 = det(x1−Φ1) and P22···2 = det(x2−Φ2).

There are N + 1 equations in (2.64) since i1, · · · , iN are totally symmetric. Because

there are only 3 variables z, x1, x2, the equations (2.64) look overdetermined and not defin-

ing a curve in the total space of F . However, (2.64) really defines a curve thanks to the

commuting condition (2.58). Due to this equation, we can diagonalize Φ1 and Φ2 simulta-

neously by complex gauge transformations if their eigenvalues are generic. We get

Φi → diag(λi,1(z), · · · , λi,N (z)). (2.65)

Now the curve Σ = {(z, x1, x2) ∈ F : Pi1···iN = 0} is equivalently given as

Σ = {(z, x1, x2) ∈ F : Pi1···iN (z, x1, x2) = 0}
= {(z, x1, x2) ∈ F : (x1, x2) = (λ1,k(z), λ2,k(z)), k = 1, · · · , N}, (2.66)

7We will describe the Jacobian variaty very explicitly in subsection 5.2 in a simple case.
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as one can check explicitly from the definition (2.64). Therefore, Σ defines is an N -covering

of the base Riemann surface C. The branching points of the curve are the points where

some of the eigenvalues degenerate, i.e., typically, some of the N sheets meet smoothly at

those degenerate points to form a single connected curve Σ.8

The curve (2.66) has a clear meaning in terms of M5 branes. Suppose N M5 branes

are wrapping a cycle in a Calabi-Yau threefold. We assume that the Calabi-Yau locally

looks like the total space of the bundle F , and the holomorphic cycle is given by the zero

section of F , which is the Riemann surface C. Then, the eigenvalues of Φ1 and Φ2 are

interpreted as the positions of these M5 branes in the transverse directions to the world

volume of the M5 branes. As in [1], the N M5 branes become a single M5 brane wrapping

a holomorphic curve in the Calabi-Yau threefold. The curve (2.66) can be interpreted as

this curve of the M5 brane.

From the above interpretation in terms of the M5 branes, we can clearly see the

following physical identifications. First, the space of normalizable deformations of the

curve Σ corresponds to the moduli space of low energy 4d gauge theory. Second, if the

genus of the curve Σ, gΣ, is nonzero, then this curve is precisely the Seiberg-Witten curve

which gives the low energy holomorphic coupling matrix of massless U(1) gauge fields. This

is because the two-form gauge field in the world volume of a single M5 brane gives massless

U(1) gauge fields in the low energy 4d field theories [1, 76].

Therefore the curve (2.66) is very important for extracting the physical information

from generalized Hitchin systems. A method of determining the curve is explained in detail

in [45]. In appendix B, we will explain another method which directly uses (2.64).

Generalized Hitchin systems have not yet been studied mathematically. Although we

have used the M5 brane interpretation above, it would be very interesting to deduce the

above properties purely mathematically. We just summarize some properties which are

expected from the M5 brane intuition. We do not try to give a proof, or we do not even

attempt to make our claims mathematically precise.

Let us define φ
(k)
i1···ik

as

φ
(k)
i1···ik

=
(−1)k

k!(N − k)!
(Φi1)

α1
β1

· · · (Φik)
αk

βk
ǫα1···αkαk+1···αN

ǫβ1···βkαk+1···αN . (2.67)

The φ(k) is a section of SymkF , i.e., the symmetric part of F ⊗ · · · ⊗F where F appears k

times. Then the curve (2.64) is given by

0 =
(

xN
)

i1···iN
+

N
∑

k=2

φ
(k)
(i1···ik

(

xN−k
)

ik+1···iN )
, (2.68)

where (xk)i1···ik = xi1 · · ·xik , and (, ) represents symmetrization.

Let MGH be the moduli space of solutions of generalized Hitchin’s equations. We also

define a map π :MGH →⊕N
k=2H

0(C, SymkF ) such that

π : (Az̄,Φi) 7→
{

φ
(k)
i1···ik

}

2≤k≤N
, (2.69)

8In some cases, the curve Σ is not connected but has several connected components, as in the Higgs

branches of 4d N = 2 theories discussed in section 5.2.
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where (Az̄,Φi) is a solution of the generalized Hitchin’s equations. We define the base

BGH as

BGH = π(MGH) ⊂
N
⊕

k=2

H0
(

C, SymkF
)

. (2.70)

We expect (but do not prove) the following properties;

1. The base BGH is given by the subspace of
⊕N

k=2H
0
(

C, SymkF
)

such that the equa-

tions (2.68) define a consistent curve in the total space of F . In other words, for each

set
{

φ
(k)
i1···ik

}

2≤k≤N
for which the curve (2.68) makes sense as an N covering of the

base Riemann surface C, there exists a solution of the generalized Hitchin’s equations

satisfying (2.67).

2. For a generic point of BGH , p ∈ BGH , the fiber π−1(p) is a complex torus given by

(a subspace of) the Jacobian variety of the curve (2.68).

The second claim above may be shown in a similar way to the proof sketched in [75].

The crucial difference from the N = 2 case is that BGH is not the same as the linear space
⊕N

k=2H
0
(

C, SymkF
)

. BGH is a nonlinear space in general. This is because (2.68) is an

overdetermined set of equations (i.e., N + 1 equations for three variables (z, x1, x2)), and

hence there should be nontrivial relations among parameters inside φ
(k)
i1···ik

. This property

makes it possible to reproduce very rich dynamics of N = 1 theories.

In the above discussion, we have assumed that there are no punctures. When we

include punctures, there are new degrees of freedom living at the punctures, and the above

statements need modification. Inclusion of punctures will be discussed in section 3.

Twisted Higgs bundle. There is a particularly simple branch of the full moduli space

MGH . Suppose that the bundle F has a holomorphic sub-bundle L, L ⊂ F , with rank one.

For example, if F is a direct sum of two line bundles F = L1 ⊕ L2, we can take L = L1 or

L = L2. Then, we have a branch in which Φ is taken as a section of the bundle L⊗ ad(E).

In this case, the commuting condition (2.58) is trivially satisfied since we are considering a

rank one subspace of F . This case is studied mathematically and it is called twisted Higgs

bundle; see e.g., [77].

We can write down the spectral curve as

0 = det(x− Φ) = xN +
N
∑

k=2

φ̃k(z)x
N−k, (2.71)

where φ̃k is a holomorphic section of Lk. The moduli space of a twisted Higgs bundle,

MTH , has the following structure. We define the base BTH as BTH =
⊕N

k=2H
0
(

C,Lk
)

and the map π :MTH → BTH as

π : (Az̄,Φ) 7→
{

φ̃k

}

2≤k≤N
. (2.72)

Then, (i) the map π is surjective, π(MTH) = BTH , and (ii) a generic fiber π−1(p) is given

by a complex torus which is (a subspace of) the Jacobian variety of the curve (2.71). In

particular, there are no constraints on φ̃k. This structure is similar to the N = 2 case, just

by replacing Kk with Lk.
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2.3.2 Turning on σ

Up to now, we have assumed that the real adjoint scalar σ in the vector multiplet is zero.

Here we discuss what happens when they are nonzero.

First, note that any gauge invariant polynomial of σ, such as Trσk (k = 2, · · · , N) is

a section of the trivial bundle. Thus, from (2.59), we conclude that they are constants on

the Riemann surface C. Up to gauge transformations, we can diagonalize it, and then σ

has constant eigenvalues. Therefore, we can consider σ to be a constant matrix on C. The

constant vev of σ breaks the gauge group G to a subgroup H ′ whose elements commute

with σ. The equations Dz̄σ = 0 and [σ,Φi] = 0 impose that Az̄ and Φi take values in this

subgroup H ′. They satisfy generalized Hitchin’s equations with the gauge group H ′.

Another, equivalent way of describing the situation is the following. Let us consider a

subset of solutions of generalized Hitchin’s equations such that the pair (Az̄,Φi) breaks the

gauge group G to a subgroup H. (Do not confuse this H with the above H ′.) Then we can

turn on a nonzero constant vev for σ in the Cartan subalgebra of H. This vev generically

breaks H to U(1)r, where r is the rank of H. In 3d, we can dualize U(1)r vector fields

to r dual photons which are real scalars. The r real scalars coming from σ are combined

with the r dual photons to give r complex scalars. In this way, we get a new branch of

the moduli space of the twisted 5d SYM, which cannot be captured by generalized Hitchin

systems alone. We will get more insight on this type of branches in sections 5 and 6.

3 Punctures, operators and superpotential

In this section, we study punctures in the context of the twisted 5d SYM. Our main

purposes are; (i) to get identification of chiral operators, especially holomorphic moment

maps or mesons, and (ii) to derive a formula for dynamically generated superpotential vev.

3.1 Tρ[SU(N)] theories

Here we focus on the case G = SU(N) for concreteness. More general gauge groups will

be discussed in subsection 3.5. Although N = 1 supersymmetry allows a large class of

punctures [15], we will focus on the locally half-BPS punctures of [5].

We take the following point of view [60]. At a puncture z = zp, there is a three dimen-

sional N = 4 superconformal theory Tρ[SU(N)] introduced by Gaiotto and Witten [61].

This 3d theory has codimension two in 5d space-time and is located at zp. At this point, the

3d theory is coupled to twisted 5d SYM in a way which preserves half of the supersymmetry

locally. Let us review basic things about Tρ[SU(N)] theories.

First we consider the T [SU(N)] theory, i.e., ρ = 0, which gives a maximal puncture

when it is coupled to twisted 5d SYM. The T [SU(N)] theory is the low energy limit of a

3d N = 4 quiver gauge theory. The quiver is given as

U(1)−U(2)− · · · −U(N − 1)− SU(N)H |flavor , (3.1)

where SU(N)H is a flavor symmetry and other U(k) (k = 1, · · · , N − 1) are gauge symme-

tries. Between each adjacent groups U(k) and U(k+ 1) (or SU(N)H for k+ 1 = N), there
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Figure 1. (a): the brane realization of the T [SU(N)] theory in type IIB string theory for N = 3.

Horizontal lines are D3 branes, vertical solid lines are NS5 branes, and vertical dashed lines are D5

branes. The NS5 branes and the D5 branes are extended to different directions in ten dimensions,

but we do not explicitly show that in the figure. The U(k) vector multiplets in (3.1) are coming

from D3 branes suspended between adjacent NS5 branes. (b): a 4d quiver superconformal gauge

theory in type IIA brane construction. Horizontal lines are D4 branes, vertical solid lines are NS5

branes, and vertical dashed lines are D6 branes. There are two maximal punctures realized at the

two sets of N D6 branes at the ends of D4 branes, and several other simple punctures. (c): D4

branes ending on D6 branes give a maximal puncture of figure (b). By S1 compactification of the

x3 direction and taking a T -dual, we get D3 branes ending on D5 branes in type IIB string theory.

The S-dual of it gives the T [SU(N)] theory at the end of the D3 branes, which is realized by D3

branes suspended between NS5 branes.

are bifundamental multiplets Ak and Bk in the representations (k+ 1)×k and k× (k+ 1)

of U(k + 1) × U(k), respectively. In type IIB string theory, this theory is realized by the

brane construction as in figure 1-(a).

The fact that a maximal puncture of [5] is realized by a copy of the T [SU(N)] theory

can be seen along the lines of [43, 44, 60, 78]. Here we sketch the reasoning. Let us consider

a 4d linear quiver superconformal theory constructed as in figure 1-(b) in type IIA string

theory [1]. A maximal puncture is realized as N D4 branes ending on N D6 branes. In

this paper, we are compactifying the x3 direction. In this case we can take T -dual in this

direction, and get a configuration in which D3 branes are ending on D5 branes. Taking

S-dual as in figure 1-(c), we get the T [SU(N)] theory at the end of the bunch of D3 branes.

Therefore, we may interpret that the T [SU(N)] is the S-dual of the maximal puncture.

What we are actually doing in this paper, in the type IIA context, is to consider the linear

quiver configuration, uplift it to M-theory, and compactify it on the x3 direction and going

again to type IIA string theory by regarding the S1 of x3 as the M-theory circle [9]. Our

twisted 5d SYM is realized by D4 branes in type IIA string theory. The S-dual of type IIB

string theory used above is naturally realized by the exchange of M-theory circle from the

x10 direction to the x3 direction. The S-dual induces mirror symmetry from the 3d point

of view [79].

Let us see some properties of the T [SU(N)] theory. From the brane construction of

figure 1-(a) and using the interpretation of mirror symmetry as S-duality of type IIB string
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theory [79], one can see that it is self-dual under mirror symmetry; its Higgs branch and

Coulomb branch have completely the same structure, and their difference is that they are

acted by different R-symmetries, which we denote as SO(3)X and SO(3)Y . The hyperkahler

holomorphic moment map of the Higgs branch SU(N)H symmetry is given by

µ
(3d)
H = AN−1BN−1 −

1

N
tr(AN−1BN−1), (3.2)

where Ak and Bk are considered as (k + 1) × k and k × (k + 1) matrices, respectively.

By mirror symmetry, the Coulomb branch also has an SU(N)C flavor symmetry, which is

realized quantum mechanically. We denote its homomorphic moment map as µ
(3d)
C .

Let us next consider more general Tρ[SU(N)] theories. Those theories are classified by

an embedding of SU(2) in SU(N),

ρ : SU(2) → SU(N). (3.3)

Under this embedding ρ, the fundamental representation of SU(N) is decomposed into

irreducible representations of SU(2) asN → n1+n2+· · ·+nℓ, where ni is the ni dimensional

spin (ni − 1)/2 representation of SU(2). Without loss of generality, we can assume n1 ≥
n2 ≥ · · · ≥ nℓ. When this theory is coupled to the twisted 5d SYM, it gives a puncture

corresponding to the partition (n1, · · · , nℓ) discussed in [5].

The Tρ[SU(N)] theory has a quiver description and brane construction. However, for

our purpose, it is enough to note the following fact [60, 61, 78]. Let us take a copy of the

T [SU(N)] theory and give a nilpotent vev to the Coulomb branch operator µ
(3d)
C as

〈

µ
(3d)
C

〉

∝ ρ(σ+), (3.4)

where σ+ = σ1 + iσ2 is the raising operator of SU(2). Then, the low energy limit of this

theory is the Tρ[SU(N)] theory with some decoupled Nambu-Goldstone multiplets associ-

ated with the spontaneous symmetry breaking of the Coulomb branch SU(N)C symmetry

by 〈µ(3d)C 〉.9
The adjoint representation of SU(N) is decomposed into SU(2) representations as

adj →
⊕

a∈A

(2ja + 1) (3.5)

where (2ja + 1) is the spin ja representation, and {ja}a∈A represents the set of all spins

appearing in the decomposition. Then µC is decomposed as

µ
(3d)
C = ρ(σ+) +

∑

a∈A

ja
∑

m=−ja

Ta,m µa,mC , (3.6)

9The reason is as follows. In the setup of [80], 4d N = 4 SYM is put on a half space x3 ≥ 0. The

hyperkahler moment map ~µ
(3d)
C which is a triplet of an SO(3)X R-symmetry is given by ~µ

(3d)
C ∝ ~X(0) in

an appropriate S-dual frame, where ~X is the adjoint scalars in the triplet of SO(3)X . By giving a vev
~X(0) ∝ ρ(~σ), the vev becomes effectively infinity in the IR limit and it gives a Nahm pole of ~X at x3 = 0.

This Nahm pole is the necessary ingredient of the Tρ[SU(N)] theory [61].
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where Ta,m (−ja ≤ m ≤ ja) are generators of SU(N) corresponding to the decomposi-

tion (3.5). They satisfy e.g., [ρ(σ3/2), Ta,m] = mTa,m and [ρ(σ+), Ta,m] ∝ Ta,m+1. We have

set the proportionality factor in (3.4) to be unity for simplicity. Because of the vev ρ(σ+),

one can see that the fields µa,mC for m > −ja are just Nambu-Goldstone multiplets. By a

complex SU(N)C transformation µC → UµCU
−1 which eliminates the Nambu-Goldstone

multiplets, we get

µ
(3d)
C = ρ(σ+) +

∑

a∈A

Ta,−ja µ
a,−ja
C . (3.7)

A subset of Lie algebra of this form is called the Slodowy slice Sρ(σ+) transverse to a

nilpotent orbit Oρ(σ+). See [80] for more details on this slice.

3.2 Coupling Tρ[SU(N)] to twisted 5d SYM

In this subsection, for the moment, we restrict ourselves to the 4d N = 2 (or 3d N = 4)

case so that we can see our formalism in the context of perhaps more familiar N = 2

Gaiotto type theories [5]. Let us very briefly review this case (see e.g., [12]). The bundle

F is taken as O ⊕K, where O is the trivial bundle and K is the canonical bundle. From

the point of view of the 3d N = 4 supersymmetry, the pair (V,Φ1) is a vector multiplet and

the pair (Az̄,Φ2) is a hypermultiplet. (The role of Φ1 and Φ2 can of course be exchanged

by a simple relabeling of 1 and 2. The only important point is that one of the Φi in the

same multiplet as V is a section of O, while the other one in the same multiplet as Az̄ is a

section of K.)

The space of (Az̄,Φ2), which we denote as W ′, spans an infinite dimensional flat

hyperkahler manifold (see e.g., [81] for a review of hyperkahler manifold). The metric is

ghk = − 1

g25

∫

|d2z|Tr
(

δAz̄ ⊗ δAz + δAz ⊗ δAz̄ + δΦ2 ⊗ δΦ̄2 + δΦ̄2 ⊗ δΦ2

)

, (3.8)

where δ means exterior derivative on the space W ′ as in section 2, and we have used the

fact that gzz̄
√
g = 1 on the Riemann surface. There are three complex structures I, J and

K, which satisfy I2 = J2 = K2 = −1 and JK = I, KI = J, IJ = K. They act on the

tangent space of W ′, and their actions are defined as

IT
(

δAz̄, δΦ2, δAz, δΦ̄2

)

=
(

iδAz̄, iδΦ2,−iδAz,−iδΦ̄2

)

, (3.9)

JT
(

δAz̄, δΦ2, δAz, δΦ̄2

)

=
(

−δΦ̄2, δAz,−δΦ2, δAz̄

)

, (3.10)

KT
(

δAz̄, δΦ2, δAz, δΦ̄2

)

=
(

−iδΦ̄2, iδAz, iδΦ2,−iδAz̄

)

, (3.11)

where IT , JT and KT are the transpose of I, J and K respectively. The I is the complex

structure which is present in the less supersymmetric 3d N = 2 (or 4d N = 1) case.

The Kahler forms associated to the complex structures I, J and K are given as ωI =

IT ⊗ 1(ghk), i.e., one of the indices of IT is contracted with one of the indices of ghk, and

similarly for J and K. The ωI is given by (2.48) with the replacement hij̄δΦi ∧ δΦ̄j̄ →
gzz̄δΦ2 ∧ δΦ̄2. The Kahler forms associated to J and K are combined as

ωJ + iωK = −
∫

|d2z|2Tr[δAz̄ ∧ δΦ2], (3.12)
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where we have omitted the gauge coupling g−2
5 for the moment. The holomorphic moment

map µ
(5d)
C

(α) under the gauge transformation (2.47) is defined by δµ
(5d)
C

(α)= ιV (α)(ω2+iω3)

as in the case of the real moment map in section 2, and it is given as

µ
(5d)
C

(α) = −
∫

|d2z|2Tr [α(Dz̄Φ2)]

≡ −
∫ √

g|d2z|Tr
[

αµ
(5d)
C

]

. (3.13)

Now, let us put a copy of the T [SU(N)] theory at z = zp in the 5d space-time, and

couple the Higgs branch SU(N)H symmetry to the twisted 5d SYM. The contribution to

the holomorphic moment map from this sector is given as
√

g−1δ2(z−zp)µ(3d)H , where µ
(3d)
H

is explicitly given by (3.2). The total of the holomorphic moment maps µC = g−2
5 µ

(5d)
C

+
√

g−1δ2(z − zp)µ
(3d)
H is coupled to the adjoint chiral multiplet Φ1 in the vector multiplet

(V,Φ1) as

W3d = −
∫ √

g|d2z|
√
2Tr(Φ1µC)

= −
√
2

(

Tr
(

µ
(3d)
H Φ1(zp)

)

+

∫

|d2z| 2
g25

Tr(Φ1Dz̄Φ2)

)

. (3.14)

The second term is exactly the same as (2.46) which was already derived previously. The

first term gives a coupling between T [SU(N)] and the twisted 5d SYM.

Now suppose that Φ1(zp) has a generic diagonal vev. Then the first term of (3.14)

gives a mass term for the T [SU(N)] theory. Let us study the effect of this mass term on

the Coulomb branch of the T [SU(N)]. For this purpose, we use mirror symmetry. As

mentioned earlier, the mirror of T [SU(N)] is also T [SU(N)], but the Coulomb branch is

mapped to the Higgs branch, and masses are mapped to FI-parameters. By holomorphy,

the holomorphic masses are mapped to holomorphic FI terms in the superpotential. Let us

denote the FI parameter of U(1) ⊂ U(k) in (3.1) as ξk. The superpotential contains terms√
2ξk trφk, where φk is the adjoint scalar of U(k). Then, the F -term conditions of φk give

B′
kA

′
k −A′

k−1B
′
k−1 = ξk (2 ≤ k ≤ N − 1),

B′
1A

′
1 = ξ1 , (3.15)

where we denote bifundamentals in the mirror side as A′
k and B′

k. We define M ′ =

A′
N−1B

′
N−1. From the equations above, we get

M ′(M ′ − ξN−1) =
(

A′
N−1B

′
N−1A

′
N−1B

′
N−1 − ξN−1A

′
N−1B

′
N−1

)

= A′
N−1A

′
N−2B

′
N−2B

′
N−1.

Similarly, noting that for k ≥ 2

B′
kB

′
k+1 · · ·B′

N−1

(

A′
N−1B

′
N−1−

N−1
∑

i=k

ξi

)

= B′
kB

′
k+1 · · ·B′

N−2

(

A′
N−2B

′
N−2−

N−2
∑

i=k

ξi

)

B′
N−1

= · · · = A′
k−1B

′
k−1B

′
k+1 · · ·B′

N−1
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and also B′
1(A

′
1B

′
1 − ξ1) = 0, we get [61]

M ′(M ′ − ξN−1)(M
′ − ξN−1 − ξN−2) · · ·

(

M ′ −
N−1
∑

k=1

ξk

)

= 0. (3.16)

This equation gives the characteristic polynomial of M ′. In particular, the eigenvalues of

M ′ are given as
∑N−1

i=k ξi.

The moment map µ
(3d)
C of the original theory is the moment map of the Higgs branch of

the mirror theory, µ
(3d)
C =M ′ − 1

N trM ′. The characteristic polynomial of µ
(3d)
C is given as

P (x) ≡ det(x− µ
(3d)
C ) =

N
∏

k=1

(x− λk), (3.17)

λk =
N−1
∑

i=k

ξi −
1

N

N−1
∑

i=1

iξi, (3.18)

for arbitrary variable x. Now recall that the FI parameters ξk of this mirror theory come

from the mass parameters of the original theory, which are given by the eigenvalues of

Φ1(zp). By the symmetry under the Weyl group of SU(N), or more directly from the

brane picture of figure 1-(a), the λk must be proportional to the eigenvalues of Φ1(zp).

The factor of proportionality in mirror symmetry between masses and FI parameters

can be determined by comparing a quark mass in one theory and a vortex mass in the mirror

theory [82]. As the most simple example, let us consider 3d N = 4 U(1) gauge theory with

one hypermultiplet q, q̃. The superpotential is W =
√
2φ(q̃q − ξ). One can explicitly

calculate (see e.g., [83]) that the BPS bound for a vortex mass is given by 4πξ. The mirror

of this theory consists of a single hypermultiplet p, p̃ with a mass mp̃p. Therefore we get

m = 4πξ. By inspection of a brane construction of this simple theory and more general

theories, one obtains
√
2Φ1(zp) = 4π diag(λ1, · · · , λN ) up to a phase which we neglect.

Thus we get

det
(

x− µ
(3d)
C

)

= det

(

x−
√
2

4π
Φ1(zp)

)

. (3.19)

In the class S theories which we are studying in this paper, there is a flavor SU(N)

symmetry associated to each maximal puncture. In the context of the twisted 5d SYM,

this flavor symmetry associated to the puncture z = zp comes from the Coulomb branch

SU(N)C symmetry of the T [SU(N)] theory at the puncture. The operator µ
(3d)
C is the

holomorphic moment map associated to this flavor symmetry. Therefore (3.19) gives us

the way to identify the vev of the moment map in field theory with a quantity in twisted

5d SYM. In the following, we will often write

µ
(3d)
C ≈

√
2

4π
Φ1(zp). (3.20)

The meaning of this equation is that the characteristic polynomial of both sides agree with

each other. If the eigenvalues are generic, i.e., if all the eigenvalues are distinct, (3.20)

means that they are conjugate matrices.
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For more general Tρ[SU(N)] theories, we simply use the renormalization group inter-

pretation of the previous subsection 3.1. In this case we just need to restrict µ
(3d)
C to the

form (3.7). Assuming that the eigenvalues of Φ1(zp) are generic, we define the orbit of

λ ≡
√
2Φ1(zp)/4π as the set

Oλ =
{

gCλg
−1
C

; gC ∈ SU(N)C
}

, (3.21)

where SU(N)C = SL(N) is the complexification of SU(N). Then µ
(3d)
C is in the intersection

of Oλ and the Slodowy slice Sρ(σ+), Sρ(σ+)∩Oλ. See e.g., [8, 13, 14, 60, 61] for explanations

on non-generic cases where some of the eigenvalues degenerate.

Before closing this subsection, let us consider the dependence on the radius R of S1.

As in section 2, the three dimensional Kahler and superpotential are related to the four

dimensional ones as

(2πR)K4d = K3d, (2πR)W4d =W3d, (3.22)

where K3d contains both the bulk contribution of the twisted 5d SYM and the contribution

from the Coulomb branch of the T [SU(N)] theory. Moment maps are proportional to

Kahler metrics, so the vevs of 4d moment maps are related to 3d moment maps as

µ(4d) =
1

2πR
µ
(3d)
C ≈

√
2

8π2R
Φ1(zp) =

√
2

8π2
Φ
(6d)
1 (zp), (3.23)

where Φ
(6d)
1 (zp) was introduced in section 2.2. In this way, µ(4d) is independent of R.

3.3 Dynamical superpotential

In the above discussion, we have concentrated on the 4d N = 2 or 3d N = 4 case with

one puncture. However, the class of theories discussed in appendix A is locally the same

as this 3d N = 4 case, so we can easily generalize the result. We only consider the case

F = L1⊕L2 as in the appendix. Then Φ1 and Φ2 are sections of L1⊗ad(E) and L2⊗ad(E),

respectively.

Suppose that Φ1 is coupled to copies of Tρ[SU(N)] theories at the punctures za (a ∈ A),

and Φ2 is coupled to them at zb (b ∈ B), where A and B are sets labeling the punctures.

The choice of whether to couple Tρ[SU(N)] to Φ1 or Φ2 corresponds to what N = 1 theory

we consider; it is the choice of ± of punctures discussed in appendix A. The superpotential

is now given by

W3d=−
√
2

(

∑

a∈A

Tr
(

µ
(3d)
a,HΦ1(za)

)

−
∑

b∈B

Tr
(

µ
(3d)
b,H Φ2(zb)

)

+

∫

|d2z| 2
g25

Tr(Φ1Dz̄Φ2)

)

, (3.24)

where the minus sign in the second term comes from the fact that the third bulk term

is antisymmetric in Φ1 ↔ Φ2. The normalizations of Φ1 and Φ2, and hence the above

couplings, depend on the basis of L1 and L2 at the punctures. We can, e.g., canonically

normalize the Kahler potential of them at the positions of the punctures. We will make

some comments later on normalization of fields.
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The F -term equations are given by

0 =
∑

a∈A

µ
(3d)
a,H δ

2(z − za) +
2

g25
Dz̄Φ2, (3.25)

0 =
∑

b∈B

µ
(3d)
b,H δ

2(z − zb) +
2

g25
Dz̄Φ1. (3.26)

Due to the delta function sources, the Higgs fields Φ1 and Φ2 develop singularities as

Φ2 → − g25
4π

µ
(3d)
a,H

z − za
(z → za), (3.27)

Φ1 → − g25
4π

µ
(3d)
b,H

z − zb
(z → zb). (3.28)

Here we assumed that the singular part of Az̄ (if any) commutes with the singular parts of

Φ1 and Φ2. These equations will be the expected singular behaviors at regular punctures

as we will see later.

Using (3.25) and (3.28), the superpotential (3.24) evaluated at a solution of the F -term

equations are given by

W3d|solution =
√
2
∑

b∈B

Tr
(

µ
(3d)
b,H Φ2(zb)

)

=
2
√
2i

g25

∑

b∈B

∮

|z−zb|=ǫ
dzTr(Φ1Φ2), (3.29)

where ǫ is an infinitesimal number. This is the formula for dynamically generated super-

potential vev. In field theory side, it is generated typically by gaugino condensation in

theories with a mass gap such as 4d pure N = 1 SYM. When there are distinct vacua,

the difference of the superpotential vevs between two of the vacua is a physical observable

since it gives tensions of BPS domain walls [58].

Let us check the R dependence. The 4d superpotential is given by

W4d|solution =
1

2πR
W3d|solution

= −
∑

b∈B

∮

|z−zb|=ǫ

dz

2πi

√
2

4π2
Tr
(

Φ
(6d)
1 Φ

(6d)
2

)

, (3.30)

where we have used g25 = 8π2R. This is independent of R. By using dz ∧
dz̄∂z̄ Tr

(

Φ
(6d)
1 Φ

(6d)
2

)

=0 and integration by parts, we can also rewrite the superpotential as

W4d|solution =
∑

a∈A

∮

|z−za|=ǫ

dz

2πi

√
2

4π2
Tr
(

Φ
(6d)
1 Φ

(6d)
2

)

. (3.31)

In the above discussions, we have only considered regular singularities which can be

realized by Tρ[SU(N)] theories. However, we expect that the formula (3.30) is valid even if

there are irregular singularities. The reason is that irregular singularities (which have type

IIA brane realization) can be achieved by renormalization group flows from regular ones

by taking some of the masses to infinity.
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3.4 Regular singularity

At a puncture zp, we can add a mass term associated to the flavor symmetry at that

puncture. Suppose that the puncture is maximal and we add a mass term

W4d ⊃ tr
(

mµ(4d)
)

↔ W3d ⊃ tr
(

mµ
(3d)
C

)

. (3.32)

Then, the mirror of (3.20) tells us that we get

µ
(3d)
H ≈ 1

4π
m. (3.33)

Combined with (3.27) and g25 = 8π2R, we get

Φ
(6d)
2 = R−1Φ2 →

1

2

m

z − zp
. (3.34)

This is the standard behavior of regular singularity. The factor 1/2 may look unusual,

but it is necessary so that ma,b can be directly interpreted as quark masses in 4d N = 2

theories.10

Using the relation (3.23), we get the superpotential vev as

W4d|solution =
∑

a∈A

∮

|z−za|=ǫ

dz

2πi
2Tr

(

Φ
(6d)
1 µ(4d)a

)

=
∑

a∈A

tr
(

maµ
(4d)
a

)

, (3.35)

where ma,b are mass matrices at the punctures za and zb. This formula is valid only

for the vev.

We have been careful about the normalization of the fields in the above discussion,

but their meaning is limited in 4d N = 1 theories. In the case of 4d N = 2 theories, a

holomorphic moment map µ(4d) is in a current multiplet of a global symmetry, and hence

it is not renormalized. Correspondingly, a mass in 4d N = 2 theories are not renormalized.

However, there is no such nonrenormalization for µ(4d) and masses in 4d N = 1 theories.

Let us see it more explicitly. Consider flavors of quarks q and q̃ coupled to 4d N = 2

or N = 1 gauge multiplets. In the N = 2 case, it is known that the Kahler potential

of the quarks is not renormalized [84]. Therefore, we can normalize the quarks so that

they have canonical kinetic terms in the Kahler potential. The normalization of µ(4d) = q̃q

is also fixed. However, in the N = 1 case, the Kahler potential receives perturbative

corrections, and in particular there are wave function renormalizations, K = Zq†q+ Z̃q̃†q̃.

These corrections are not holomorphic. As long as we only consider holomorphic quantities,

there is no way to fix the normalization of q and q̃. Canonically normalizing the quarks

requires non-holomorphic wave function renormalizations of the quarks which depend on

renormalization scales.
10By carefully examining BPS tensions of M2 branes of M-theory, strings of (2, 0) theory and particles of

4d theories, the Seiberg-Witten differential is determined as λSW = (x/π)dz [8], where det(x−Φ(6d)(z)) = 0

as in section 2.3.1. Then, by computing
∮

λSW for a massive quark with a large mass, one can see that

singularities of x must be x ∼ m/(2z).
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Although the normalizations of m and µ(4d) are not uniquely fixed, their product

mµ(4d) is renormalization group invariant due to the usual nonrenormalization theorem

of superpotential. In general, exact results in supersymmetric field theories are invariant

under wave function renormalization of fields [85].

With the above facts in mind, we renormalize Φ
(6d)
1,2 as

Φ̃1 =

√
2

8π2
Φ
(6d)
1 , Φ̃2 = 2Φ

(6d)
2 , (3.36)

and we define their limits at z → za,b as

Φ̃1 → µ(4d)a , Φ̃2 →
ma

z − za
(z → za), (3.37)

Φ̃2 → µ
(4d)
b , Φ̃1 →

mb

z − zb
(z → za). (3.38)

The normalization of ma and µ
(4d)
a are the same as before, but the normalization of mb

and µ
(4d)
b are changed in such a way that their products mbµ

(4d)
b are unchanged. The

superpotential (3.30) or (3.31) is now given as

W4d|solution =
∑

a∈A

∮

|z−za|=ǫ

dz

2πi
Tr
(

Φ̃1Φ̃2

)

. (3.39)

Note that the coefficients of (3.37), (3.38) and (3.39) are very simple now.

The reason that we are so serious about the numerical coefficients of the above equa-

tions (aside from phases) is that we can actually check them. In SQCD, numerical coef-

ficients of exact results are really determined precisely [86], at least in a certain class of

renormalization schemes. See [87] for those exact results including the coefficients. Thus,

by comparing the results of twisted 5d SYM and field theories, we can obtain important

consistency checks including these coefficients.

3.5 General gauge groups and Tρ[G] theories

In this subsection we discuss the case of general gauge groups G = A,D,E which appear

in the 6d N = (2, 0) theories.11 Our discussion will be very brief and the reader should

consult [61, 80] for essential ingredients.

At each puncture, there is a copy of the 3d theory Tρ[G]. First let us recall the

definition of the simplest theory T [G], i.e., ρ = 0. Consider 4d N = 4 SYM with the theta

angle taken to be zero. We divide the theory into two parts, x3 < 0 and x3 > 0. Then

the theory can be regarded as two 4d N = 4 SYM defined on the half spaces x3 < 0 and

x3 > 0 which are connected by a boundary condition at x3 = 0 smoothly. Now we take

S-dual of the theory in x3 > 0. In this region we get N = 4 SYM with the dual gauge

group G∨. For a simply laced gauge group G = A,D,E, the dual group G∨ is the same as

G (at the level of Lie algebra), but we continue to write it as G∨ to distinguish between

the original N = 4 SYM and the dual one. We have the N = 4 SYM with gauge group G

11There is a further generalization including outer-automorphism twist [88]. We do not study this direc-

tion in this paper.
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for x3 < 0 and gauge group G∨ for x3 > 0, and there must be some boundary condition at

x3 = 0. The boundary condition is such that there is a copy of the T [G] theory at x3 = 0

which is coupled to both of the N = 4 SYM. The Higgs branch of the T [G] theory has a

flavor G symmetry, and the Coulomb branch of it has the flavor G∨ symmetry, and each

of these flavor symmetries are gauged by the corresponding bulk N = 4 SYM.

For our purpose, we take a copy of the T [G] theory and couple its Higgs branch moment

map µ
(3d)
H to twisted 5d SYM as

√
2Tr

(

µ
(3d)
H Φ1(zp)

)

. Then we want to know the Coulomb

branch moduli space of the T [G] theory when Φ1(zp) is nonzero.

This problem can be studied as follows. Let us consider the above setup of two N = 4

SYM coupled to the T [G] theory. We ungauge the gauge group G∨ by introducing the

Dirichlet boundary condition of gauge fields at, say x3 = L > 0. Furthermore, in the

region x3 < 0, we turn on the vev of the adjoint chiral field ΦN=4 in the vector multiplet

of N = 4 SYM on the half space. We take the vev as 〈ΦN=4〉 = Φ1(zp). Because ΦN=4 is

coupled to the T [G] theory as
√
2Tr

(

µ
(3d)
H ΦN=4

)

, we can realize the same situation in this

4d setup as in our twisted 5d SYM setup. Actually, this is more than just an analogy. If we

take the Riemann surface C of the twisted 5d SYM to be a cigar geometry and put the T [G]

theory at the tip of the cigar, then, by dimensional reduction on the S1 direction of the

cigar, we get 4d N = 4 SYM on a half space with the T [G] theory at the boundary [44, 60].

The Coulomb branch of the T [G] theory in this 4d setup is determined as follows. We

take S-dual of the N = 4 SYM on x3 < 0. Then, recalling the way the T [G] theory was

introduced above, one can see that we get a smooth N = 4 SYM with the gauge group G∨

in the entire region x3 < L. For a simply laced gauge group G = A,D,E, the vev of ΦN=4

is mapped to the vev of the dual adjoint field Φ∨
N=4 as (see e.g., [12])

〈

Φ∨
N=4

〉

=
(e∨)2

4π
〈ΦN=4〉 , (3.40)

where e∨ is the gauge coupling of the N = 4 gauge group G∨. It is related to the gauge

coupling e of G as (e∨)2/4π = 4π/e2 since we have taken the theta angle to be zero. The

equation (3.40) should be interpreted as the statement that their eigenvalues match, be-

cause the eigenvalues have the physical meaning as BPS masses ofW -bosons and monopoles

in N = 4 SYM. The S-dual exchanges the masses of W -bosons and monopoles.

The moduli space of the system is described by Nahm’s equations on the space x3 < L.

We have imposed the Dirichlet boundary condition at x3 = L and we also impose the

boundary condition Φ∨
N=4 → 〈Φ∨

N=4〉 at x3 → −∞. The result is that the moduli space,

as a complex manifold, is the orbit of 〈Φ∨
N=4〉. In particular, Φ∨

N=4 at x = L is conjugate

to 〈Φ∨
N=4〉. The holomorphic moment map is given as

µ
(3d)
C =

√
2

(e∨)2
Φ∨
N=4(x

3 = L) ≈
√
2

(e∨)2
〈

Φ∨
N=4

〉

=

√
2

4π
Φ1(zp), (3.41)

where ≈ means that both sides are conjugate by complexified GC, assuming that the

eigenvalues are generic. The first equality, including the coefficient
√
2/(e∨)2, can be de-

termined by careful calculation of the hyperkahler moment map. The second equality is

a consequence of the Nahm’s equations. In the third equality we have used (3.40) and
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〈ΦN=4〉 = Φ1(zp). This result generalizes (3.20) which was derived for SU(N) to arbitrary

simply laced gauge groups. It is pleasant that we get the same result from two different

lines of arguments in subsection 3.2 and in this subsection.

For more general Tρ∨ [G] theories, we simply note that the above discussions are almost

unchanged other than the fact that we need to include a Nahm pole ρ∨/(y−L) at y → L.

Then the moduli space is the intersection of the Slodowy slice Sρ∨ and the orbit Oλ of

λ =
(√

2/4π
)

Φ1(zp).

The discussions on superpotential vev in subsection 3.3 and regular singularities in

subsection 3.4 are the same. Lagrangian descriptions of the Tρ[G] theories are not known

for general G, but for many purposes the equations (3.37), (3.38) and (3.39) are enough

and we do not need more explicit information about Tρ[G].

4 Nonrenormalization theorems

One of the main claims in this paper is that the holomorphic dynamics of 4d field theories

of class S are described by classical solutions of twisted 5d SYM. We are considering 6d

N = (2, 0) theories on a Riemann surface C, and we further compactify the theory on

S1. Taking the radius R to be smaller than the length scale of C, denoted as L, we get

twisted 5d SYM on R
1,2 × C. On the other hand, taking the limit that the length scale

L to be much smaller than R, we get a 4d theory on R
1,2 × S1. The limit that the 5d

SYM is reliable (R/L→ 0) is different from the limit that we obtain purely 4d field theory

(R/L → ∞). Therefore, it is not evident whether the 5d SYM can describe the dynamics

of 4d field theory.

There are at least two points which need to be justified. First, we have to show that field

theory quantities we are interested in have rather trivial (or well controlled) dependence on

R. If a quantity receives complicated quantum corrections which depend on R and cannot

be controlled, we have no justification of the above argument at all to study that quantity.

Second, we have to justify that quantum corrections in twisted 5d SYM can be neglected,

and we can treat it classically. In this section, we investigate these two points. We will

only assume 4d N = 1 supersymmetry and discuss holomorphic quantities. If the theory

has N = 2 supersymmetry, we can also control the Kahler potential, but we do not discuss

that in this paper.

4.1 Nonrenormalization in field theory

Let us consider a 4d N = 1 field theory. In the low energy limit, we assume that the

theory is described by neutral massless moduli fields ui and massless U(1) vector fields V I .

Massless charged particles may appear at some points of the moduli space, but we focus our

attention on generic points of the moduli space where there are no such massless charged

particles. The low energy theory can be empty. For example, there is a mass gap in N = 1

pure SYM and there are no massless particles at low energies below the confinement scale.

Our discussion below includes such cases.

The low energy effective Lagrangian is given by

L(4d)
eff =

∫

d2θd2θ̄2K
(4d)
eff

(

u, u†
)

+

∫

d2θW
(4d)
eff (u) +

∫

dθ2
τIJ(u)

8πi
WαIW J

α + h.c., (4.1)
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where τIJ(u) = (4πi/e2+θ/2π)IJ is the holomorphic gauge coupling matrix of the massless

gauge fields V I . The theory is very weakly coupled (almost free) in the IR. For example,

if the theory is N = 1 pure SYM, there are no massless fields and we only have a constant

superpotential W
(4d)
eff = NΛ3 generated by gaugino condensation.

Now we compactify the theory on S1 and perform dimensional reduction at the classical

level. We take the radius R to be very large so that the effective theory (4.1) is valid at

the scale of compactification. The kinetic term for U(1) gauge fields in 4d are
∫

d4xL(4d)
eff ⊃

∫

( τIJ
4πi

F I
+ ∧ ∗F J

+ − τ̄IJ
4πi

F I
− ∧ ∗F J

−

)

(4.2)

where F± = (F ±∗F )/2, the ∗ means the Hodge star, and we are using Euclidean signature

(+ + ++). By dimensional reduction to 3d, we get

2πR

∫

d3xL(4d)
eff ⊃ 2πR

∫ (

e−2
IJ

(

F ′I∧ ∗F ′J +R−2daI∧ ∗daJ
)

− iθIJ
4π2

R−1F ′I ∧ daJ
)

, (4.3)

where F ′I is the gauge field strength in three dimensions, and aI = RAI
3 is the gauge field

in the S1 direction. This aI is the U(1) Wilson loop in the S1 direction 2πaI =
∮

dx3AI
3

and it has a period aI ∼= aI + 1.

In R
1,2 × S1, we can dualize the vector multiplets to chiral multiplets. Let us see it

for the bosonic fields. We consider F ′
I as a fundamental variable in the path integral, and

change the action as
∫ (

2πRe−2
IJ

(

F ′I ∧ ∗F ′J +R−2daI ∧ ∗daJ
)

− iθIJ
2π

F ′I ∧ daJ + ibIdF
′I

)

. (4.4)

The bI is a Lagrange multiplier scalar field to impose the Bianchi identity dF ′I = 0. If

there exist some monopole-like objects with a magnetic density jI such that dF ′I = 2πjI

and
∫

jI ∈ Z, we may change the bI term in the above action as ibI
(

dF ′I − 2πjI
)

. Then

we can see that bI has a periodicity bI ∼= bI + 1 due to
∫

jI ∈ Z. (The argument here is

heuristic and not rigorous. See [71] for more rigorous treatment.)

Integrating over F ′I , we get

1

2R

∫

(

(

4π

e2

)

IJ

daI ∧ ∗daJ +

(

e2

4π

)IJ (

dbI +
θIK
2π

daK
)

∧ ∗
(

dbJ +
θJL
2π

daL
)

)

=

∫ (

e2

8πR

)IJ

dϕI ∧ ∗ϕ†
J + · · · , (4.5)

where ellipsis denotes terms involving derivatives of τIJ(u), and we have defined complex

scalar fields ϕI as

ϕI = bI + τIJa
J . (4.6)

Because of the periodicity of aI and bI , the scalars ϕI have the periodicity

ϕI
∼= ϕI +mI + τIJn

J , (4.7)

where mI and nI are integers. This means that the scalars ϕI live on a complex torus

(or more precisely an Abelian variety) with the complex structure τIJ .
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Therefore we get an effective 3d theory described by ui and ϕI with the Kahler potential

and superpotential given as

K
(3d)
eff = 2πRK

(4d)
eff

(

u, u†
)

+
1

R

(

(Im τ)−1
)IJ

ImϕI ImϕJ , (4.8)

W
(3d)
eff = 2πRW

(4d)
eff (u). (4.9)

One can check that the above Kahler potential for ϕI reproduces the kinetic term (4.5) and

it is invariant under (4.7) up to irrelevant holomorphic+anti-holomorphic terms. Therefore,

the total moduli space M is spanned by ui and ϕI . It has a fiber structure π : M → B

where B is the moduli space of ui, B =
{

ui : ∂W
(3d)
eff /∂ui = 0

}

, and the fiber π−1(u) is

the torus spanned by ϕI . This is the same structure discussed in subsection 2.3, and we

identify M = MGH and B = BGH if σ is zero and there are no punctures. The fiber

structure π :M → B is generally true due to the above field theory analysis.

Nonrenormalization. In the above discussion, we have compactified the effective theory

at the classical level. Now we argue that the superpotential W
(3d)
eff and other holomorphic

quantities are not renormalized by the compactification.

First, let us show that the superpotential cannot depend on ϕI . The superpotential

must be a holomorphic function of ϕI and u
i. The important point is that there is no strong

coupling gauge dynamics below the scale of compactification, since by our assumption, the

theory consists of neutral moduli fields and massless U(1) fields at the energy scale of

compactification and there are no charged fields at low energies on generic points of the

moduli space of ui.12 Then a singularity cannot appear in the superpotential as a function

of ϕI for a fixed generic ui, and the superpotential must be holomorphic. However, there

is no holomorphic function on a complex torus (or compact complex manifolds in general)

other than constants. We conclude thatW
(3d)
eff does not depend on ϕI . The crucial point in

the above discussion is that the gauge group of 4d theory is broken and/or confined already

above the compactification scale and there are only U(1)’s and neutral moduli fields. If the

unbroken gauge group was non-Abelian at the compactification scale and was broken down

to U(1)’s at or below the compactification scale, the story would be completely different.

See [89, 90] for careful discussions on such a case.

Next, we argue that there is no renormalization at all to the superpotentialW
(3d)
eff (u) =

2πRW
(4d)
eff (u). For this purpose, we use holomorphy and symmetry argument [91]. In the

UV, our 4d theory consists of matters and gauge multiplets. By “matters”, we mean free

chiral multiplets and also some isolated superconformal theories such as the TN theory.

Gauge multiplets are coupled to global symmetries of the matters. If we turn off all

gauge and superpotential interactions, the matter sector is N = 1 superconformal and

has chiral primary operators Oa whose dimensions ∆a and R-charges Ra are related as

∆a = 3
2Ra [92–94].

Now let us turn on a UV superpotential as

W
(4d)
UV =

∑

a

ξaOa. (4.10)

12If there is a cubic term in the superpotential, Weff ∼ u3, the 3d theory gets strongly coupled at low

energies. However, we believe that this kind of strong coupling does not affect the following discussions.
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We also turn on gauge interactions. Each gauge group has a holomorphic dynamical scale

(or one instanton factor) Λb = µb exp
(

−8π2/g2 + iθ
)

, where b is the coefficient of one-loop

beta function and µ is a renormalization scale. Here, “one-loop” beta function means

the beta function of a gauge coupling in the limit that all the gauge and superpotential

couplings are going to zero. This definition is well-defined even for theories without La-

grangian descriptions such as the TN theory. Contributions from non-Lagrangian sector

can be parametrized by two-point current correlators.

We assign mass dimensions and R-charges to the parameters so that the interactions

preserve the scaling and R symmetries discussed above. From the superpotential, it is

easy to see that ξa has dimension ∆ξa = 3 − ∆a and R-charge Rξa = 2 − Ra, and hence

it satisfies ∆ξa = 3
2Rξa . The mass dimension of Λb is evidently b. The R-charge of Λb is

determined by anomaly. In general, R-symmetry becomes anomalous when matters are

coupled to gauge fields, and this anomaly can be cancelled by a shift of the theta angle θ.

This shift determines the R-charge of Λb = µb exp
(

−8π2/g2 + iθ
)

. It is known [95] that

this R-charge is given by 2
3b. Therefore, we conclude that all the holomorphic operators

and parameters have the relation ∆ = 3
2R.

Now, notice that the radius R of the circle S1 has mass dimension −1 and R-charge 0.

Thus this parameter has a “wrong” relation between mass dimension and R-charge. Note

also that the R is the only quantity which has wrong mass dimension and R-charge and also

could possibly appear in the superpotential. (For example, wave function renormalizations

also have wrong scaling dimensions due to quantum corrections in general, but they can be

extended to real vector superfields and cannot appear in holomorphic quantities.) However,

since W
(3d)
eff /(2πR) has mass dimension 3 and R-charge 2, the radius R cannot appear in

this quantity to preserve the spurious symmetries. In the decompactifying limit R →
∞, we should recover the 4d effective superpotential W

(3d)
eff /(2πR) → W

(4d)
eff . Since it is

independent of R, we get the exact relation W
(3d)
eff /(2πR) = W

(4d)
eff . Therefore we have

established the nonrenormalization of the superpotential in the compactification. By the

same reasoning, the vevs of holomorphic operators and τIJ do not depend on R and they

are not renormalized.

We stress again that W
(3d)
eff /(2πR) is equal to the IR effective superpotential of the

4d theory, and not UV tree level superpotential. For example, in the case of N = 1 pure

SYM, there is no UV superpotential. But the IR superpotential is generated by gaugino

condensation as W
(4d)
eff = NΛ3. Therefore we get W

(3d)
eff = 2πRNΛ3.

In the above discussion we have assumed that the radius R is very large. But the

result should be valid for all the values of R under the assumption that there is no phase

transition as we change R.

4.2 (Non)renormalization in twisted 5d SYM

Here we argue that we can use classical equations of twisted 5d SYM. As discussed in

section 2, the structure of supersymmetry in twisted 5d SYM is the same as that of 3d

N = 2 supersymmetry. In 3d N = 2 case, the gauge coupling g5 can be extended to real

vector multiplets after some redefinition of chiral fields. This is because the field strength

TrWαWα can be written as −2TrWαWα = D̄2(TrΣ2) for the gauge invariant operator
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TrΣ2, where Σ = i
4D̄

α
(

e2iVDαe
−2iV

)

is gauge covariant in 3d N = 2 supersymmetry.

Then the kinetic term for the gauge field can be written as an integral
∫

d2θd2θ̄2, and

hence g−2
5 can be extended into a background real vector field. Therefore, holomorphic

quantities do not receive quantum corrections of g5. The twisted 5d SYM has another

parameter L which is the length scale of the Riemann surface C. Because of the relation

∆ = 3
2R of the previous subsection, the only quantity which could potentially appear is

the combination R/L ∝ g25/L. Since there is no correction due to g5, L cannot also appear.

Thus we can take a limit L → ∞ and g25 ∝ R → 0 to compute field theory holomorphic

quantities. In this limit, the twisted 5d SYM can be treated classically. However, note

that we have to treat the Tρ[G] theories at punctures quantum mechanically. For example,

the Coulomb branch SU(N)C symmetry of the T [SU(N)] theory appears only quantum

mechanically at the low energy fixed point of (3.1).

A possible loophole of the above argument is the following. Below the compactification

scale of C, we get a 3d theory. If the gauge group G is broken to U(1)’s and there are no

massless charged fields, the 3d theory remains weakly coupled in the IR. However, if some

non-Abelian groups remain and/or there are massless charged fields, the theory becomes

strongly coupled in the far IR by renormalization group flows in the low energy 3d theory.

3d mirrors. Actually, it is interesting to study more explicitly the case that the gauge

group is unbroken at the length scale of C. Suppose that the vevs of the fields Φ1,Φ2, Az̄

and V are negligible at the compactification scale of C, and the gauge group G is unbroken

at this scale. Then the correct physical procedure is to do Kaluza-Klein reduction of fields,

Az̄(x, θ, z) =
∑

n

A
(n)
z̄ (x, θ)ψ

(n)
z̄ (z), (4.11)

Φi(x, θ, z) =
∑

n

Φ
(n)
i (x, θ)ψ

(n)
i (z), (4.12)

V (x, θ, z) =
∑

n

V (n)(x, θ)ψ
(n)
V (z), (4.13)

where ψ(z)’s are wave functions on C, and θ is the superspace coordinate.

For simplicity, we only consider the case F = L1⊗L2. We denote holomorphic sections

of Li and K as s
(n)
i (z) and s

(n)
K (z). Then, by taking only zero modes in the above Kaluza-

Klein decomposition, we get

Az̄(x, θ, z) →
g
∑

n=1

A
(n)
z̄ (x, θ)

(

s
(n)
K

)∗
(z), (4.14)

Φi(x, θ, z) →
gi
∑

n=1

Φ
(n)
i (x, θ)s

(n)
i (z), (4.15)

V (x, θ, z) → V (x, θ), (4.16)

where gi = dimH0(C,Li) and g = dimH0(C,K). Therefore, we get a 3d theory composed

of the gauge multiplet V of the gauge group G, adjoint chiral multiplets A
(n)
z̄ and Φ

(n)
i ,

and Tρ[G] theories. Here we have assumed that the gauge symmetry of Az̄ on C is fixed

in an appropriate way so that Az̄ can be treated just as matter field.
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For example, let us consider the 3d N = 4 case in which L1 is the trivial bundle and

L2 = K. Then, the theory is an 3d N = 4 theory with g hypermultiplets
(

A
(n)
z̄ ,Φ

(n)
2

)

(n = 1, · · · , g) and the vector multiplet (V,Φ1) coupled to Tρ[G] theories. Note that the

couplings between Tρ[G] and (V,Φ1) at a puncture z = zp become just standard couplings

of matters and vector multiplets of 3d N = 4 theory after the dimensional reduction.

The above 3d theory has been obtained in the chain of dimensional reduction

(2, 0) theory on R
1,2 × S1 × C

→ 5d SYM on R
1,2 × C

→ 3d theory on R
1,2.

On the other hand, we can also consider a 3d theory obtained as

(2, 0) theory on R
1,2 × S1 × C

→ 4d theory on R
1,2 × S1

→ 3d theory on R
1,2.

Assuming that the above two processes lead to the same IR fixed point, we get 3d mirror

symmetry between the above two theories. Actually, the theory with (V,Φ1),
(

A
(n)
z̄ ,Φ

(n)
2

)

(n = 1, · · · , g) and Tρ[G] was really obtained as the 3d mirror of the low energy limit of 4d

theory on S1 [44] by using a different (but related) method. Our method may also give a

large class of 3d N = 2 mirrors. Obviously it would be interesting to investigate it further,

which we leave for future work.

Comment on (2,0) theory and 5d SYM. Before closing this section, let us comment

on the relation between the N = (2, 0) theories and 5d SYM. Throughout this paper

we are assuming the existence of the N = (2, 0) theories and discussing its implications

on 4d field theories. However, we are only using 5d SYM on C by forgetting about the

compactified S1 direction. Then, very naively, the moduli space of solutions of twisted 5d

SYM might seem to correspond to the moduli space of a genuine 3d theory and not 4d

theory on S1, since we are forgetting the existence of S1. However, it is not the case. There

is a crucial difference between a genuine 3d theory and a 4d theory compactified on S1.

In a genuine 3d theory, a scalar field in a vector multiplet is just a scalar and there is no

periodicity. However, in a 4d theory on S1, this scalar comes from the component of gauge

field in the S1 direction and it has a periodicity due to gauge symmetry. Moduli spaces

of Hitchin systems, which are derived from twisted 5d SYM, reproduce this periodicity.

This is because a generic fiber π−1(p) of the moduli spaces of Hitchin systems discussed in

subsection 2.3.1 is a complex torus, and the fact that it is a torus is closely related to the

periodicity (4.7) which comes from gauge symmetries. Therefore, in a sense, the 5d SYM

“remember” the existence of the S1 direction of the N = (2, 0) theories. This is consistent

with the proposal [17, 18] that all the degrees of freedom of the N = (2, 0) theories on S1

are contained in 5d SYM.
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5 Higgs branch of N = 2 theories

In this section, we apply twisted 5d SYM to Higgs branches of 4d N = 2 theories. We

do not aim to determine the complete structure of Higgs branches. Rather than that, our

main purpose is to understand the role of the adjoint scalar σ in the vector multiplet V

of twisted 5d SYM. As we will see explicitly in section 6, twisted 5d SYM becomes most

powerful when σ is forced to be zero by the vevs of other fields, but N = 2 Higgs branches

allow nonzero vevs σ and we can get some insight about them by studying N = 2 Higgs

branches. However, we will reproduce the moduli spaces on generic points of the Higgs

branches. We will also see that our formalism can be used to derive chiral ring relations

involving holomorphic moment maps for arbitrary gauge groups G = A,D,E.

5.1 Field theory

In this subsection we only consider the case G = SU(N). Theories we are going to study

are the generalized quiver gauge theories introduced in [5] which can be constructed by

copies of the TN theory. (This TN theory is different from the T [SU(N)] theory discussed

in section 3.) The results in this subsection are obtained in [55] (see also [48, 96]) and we

review them for completeness.

Let us first recall a few properties of the TN theory. It has flavor SU(N)A×SU(N)B ×
SU(N)C symmetries. There are Higgs branch chiral operators µA, µB and µC in the adjoint

representations of the flavor groups SU(N)A, SU(N)B and SU(N)C respectively. They are

the holomorphic moment maps of the respective flavor groups. The TN theory also has

chiral operators QiAiBiC and QiAiBiC which are trifundamental and anti-trifundamental

representations of SU(N)A × SU(N)B × SU(N)C respectively [59].13 Here iA, iB and iC
are flavor indices.

In the case N = 2, the T2 theory is just eight free chiral multiplets QiAiBiC in the

trifundamental representation of SU(2)A × SU(2)B × SU(2)C . In this case, QiAiBiC ∝
ǫiAjAǫiBjBǫiCjCQ

jAjBjC , (µA)
iA
jA

∝ QiAiBiCQjAiBiC and so on.

Chiral ring relations. There are many chiral ring relations of the operators [47, 55, 97].

First, let us define the characteristic polynomials of matrices µA,B,C as

PX(x) = det(x− µX) (X = A,B,C). (5.1)

Then the chiral ring relations we will use are given as [55]

PA(x) = PB(x) = PC(x) ≡ P (x), (5.2)

(µA)
iA
jA
QjAiBiC = (µB)

iB
jB
QiAjBiC = (µC)

iC
jC
QiAiBjC ,

(µA)
jA
iA
QjAiBiC = (µB)

jB
iB
QiAjBiC = (µC)

jC
iC
QiAiBjC , (5.3)

(

QiAiBiCQjAjBiC

)

=

[(

P (x)− P (y)

x− y

)

(x = µA ⊗ 1, y = 1⊗ µB)

]iAiB

jAjB

, (5.4)

1

N !
QiA,1iB,1iC,1 · · ·QiA,N iB,N iC,N ǫiB,1···iB,N

ǫiC,1···iC,N
=
(

µ0A
)(iA,1

jA,1
· · ·
(

µN−1
A

)iA,N )

jA,N
ǫjA,1···jA,N ,

(5.5)

13There are more general operators Q(k) (k = 2, · · · , N −1) in the TN theory [55], but we will not discuss

them. We believe that their existence does not affect the conclusions in this subsection.
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where µkX is the k-th power of the matrix µX . The meaning of (5.4) is that we first

compute a polynomial of x and y given as (P (x) − P (y))/(x − y) and then substitute

matrices x = µA ⊗ 1 and y = 1 ⊗ µB and evaluate components (iAiBjAjB). The last

equation (5.5) is not explicitly written in [55], but can be derived from more fundamental

chiral ring relations written there.

Higgs branch of the TN theory. Let us use the above chiral ring relations to study

the Higgs branch of the TN theory. First, (5.2) tells us that the eigenvalues of µA, µB and

µC are the same. Assuming that the eigenvalues are generic, we have

UXµXU
−1
X = diag(λ1, · · · , λN ) ≡ λ (X = A,B,C), (5.6)

where UX ∈ SL(N)X and
∑N

k=1 λk = 0.

We define

Q̃iAiBiC = (UA)
iA
jA
(UB)

iB
jB
(UC)

iC
jC
QjAjBjC , (5.7)

Q̃iAiBiC =
(

U−1
A

)jA
iA

(

U−1
B

)jB
iB

(

U−1
C

)jC
iC
QjAjBjC . (5.8)

Using (5.3), we can see that the only nonzero components of Q̃iAiBiC and Q̃iAiBiC are given

by iA = iB = iC ,

Q̃kkk = qk, Q̃kkk = qk, (5.9)

and other components are zero.

Using (5.4), we get

qkqk =
∏

ℓ6=k

(λk − λℓ), (5.10)

where there is no sum or product over k. Thus, all the qk are fixed in terms of qk and λℓ.

Furthermore, (5.5) gives us

N
∏

k=1

qk =
∏

1≤k<ℓ≤N

(λℓ − λk). (5.11)

Therefore, there are only N − 1 independent moduli parameters in qk (k = 1, · · · , N). The

Higgs branch of the TN theory is spanned by λk, q
k, and UX (X = A,B,C).

Higgs branch of generalized quiver. Now we study Higgs branches of generalized

quiver gauge theories as in figure 2. We take copies of the TN theory glued by N = 2

vector multiplets. Each vector multiplet is coupled to two copies of the TN theory.

Each trivalent vertex represents a copy of the TN theory, T
(V )
N . Each internal line with

a circle inserted represents an N = 2 vector multiplet,
(

V(I), φ(I)
)

, with the gauge group

SU(N)(I). Each external line connected to a box represents a flavor group SU(N)(E).

The holomorphic moment maps of T
(V )
N are denoted as µ(V,I) or µ(V,E) depending on

the group SU(N)(I) or SU(N)(E) of which they are adjoint representations. Similarly, we

denote Q operators of the T
(V )
N theory as e.g., Q

iI iI′ iE
(V ) if the T

(V )
N is connected to SU(N)I ,

SU(N)I′ and SU(N)E .
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Figure 2. Generalized quiver gauge theory. Trivalent vertices are copies of the TN theory, circles

are N = 2 SU(N) vector multiplets, and boxes are flavor SU(N) symmetries. In this example,

there is g = 1 loop, and there are n = 8 flavor groups. The g and n correspond to the genus of the

Riemann surface and the number of punctures, respectively, in the corresponding twisted 5d SYM.

Two copies of the TN theory, say T
(V )
N and T

(V ′)
N , are glued as follows. Take a flavor

symmetry SU(N)(V,I) of T
(V )
N and SU(N)(V ′,I) of T

(V ′)
N . Then, we gauge the diagonal

subgroup SU(N)(I) ⊂ SU(N)(V,I) × SU(N)(V ′,I) given as

SU(N)(I) ∋ g 7→
(

g, tg−1
)

∈ SU(N)(V,I) × SU(N)(V ′,I), (5.12)

where the superscript tmeans transpose. Corresponding to this gauging, the superpotential

for the adjoint chiral multiplet φ(I) is given as

W ⊃
√
2 trφ(I)

(

µ(V,I) − tµ(V ′,I)

)

. (5.13)

The minus sign and the transpose in the second term is the result of the above embedding

of SU(N)(I).

Let us study the Higgs branch of the theory. Equations of motion of φ(I) give µ(V,I) =
tµ(V ′,I). This equation says in particular that the eigenvalues of µ(V,I) and

tµ(V ′,I) are the

same. Combined with the result (5.6) for a single copy of the TN theory, we get

U(V,I)µ(V,I)U
−1
(V,I) = U(V,E)µ(V,E)U

−1
(V,E) = diag(λ1, · · · , λN ) ≡ λ, (5.14)

for all I and E. Then, as in (5.9), we get

Q̃kkk
(V ) = qk(V ),

(

Q̃(V )

)

kkk
= (q(V ))k. (5.15)

The (q(V ))k are determined as in (5.10) and qk(V ) satisfy the relation (5.11).

The vevs of µ’s break each SU(N)(I) gauge symmetry to the Cartan U(1)N−1
(I) subgroup.

The vevs of qk(V ) further break these U(1) gauge symmetries. Suppose that the vertex T
(V )
N
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is connected to SU(N)(I), SU(N)(J) and SU(N)(K) gauge groups. Then, the vev of q(V )

imposes that massless vector multiplets satisfy

(−1)h(V,I)V(I) + (−1)h(V,J)V(J) + (−1)h(V,K)V(K) = 0 (5.16)

where h(V, I) = 0 if SU(N)(I) is embedded in SU(N)(V,I) as g 7→ g, and h(V, I) = 1 if it is

embedded as g 7→ tg−1. There are similar constraints if some of the SU(N)(I), SU(N)(J)
and SU(N)(K) are flavor groups. From these constraints, one can see that there is unbroken

U(1)N−1 gauge group for each loop of the generalized quiver diagram. Denoting the number

of loops as g, we get (N−1)g massless U(1) vector fields. Therefore, gauge symmetry cannot

be completely Higgsed for g > 0 and it is actually a mixed Higgs-Coulomb branch.

Each qk(V ) is not gauge invariant. We can construct gauge invariant operators as

qktot =
∏

V

qk(V ), (5.17)

where the product is over all the vertices. We also need to divide the space by an appro-

priate Weyl group.

Let us summarize what we have found.

1. There is a set of eigenvalues λ = diag(λ1, · · · , λN ) (
∑

k λk = 0) which is a part of

the moduli fields. The holomorphic moment map of the flavor symmetry SU(N)(V,E)

is in the orbid

µ(V,E) ∈ O(E)
λ ≡

{

U−1
(V,E)λU(V,E)

}

. (5.18)

These orbits for flavor symmetries SU(N)(V,E) also contribute to the moduli space.

2. There are N gauge invariant operators qktot (k = 1, · · · , N), up to Weyl group actions.

They satisfy one constraint,

N
∏

k=1

qktot =





∏

1≤k<ℓ≤N

(λℓ − λk)





NV

, (5.19)

where NV is the number of vertices. Therefore, N − 1 of them are independent and

contributes to the dimension of the moduli space.

3. There are (N − 1)g massless U(1) vector multiplets.

5.2 Twisted 5d SYM

We study the same system using the twisted 5d SYM. We take a genus g Riemann surface

with maximal punctures labelled by E, corresponding to the flavor symmetries SU(N)(E)

in the field theory. At each puncture there is a copy of the T [G] theory, which will be

denoted as T [G](E).
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In the twisted 5d SYM, Φ1 is a section of ad(E) and Φ2 is a section of K ⊗ ad(E). In

this case, the following set of equations hold;

0 = Fzz̄ −
[

Φ2, Φ̄2

]

, (5.20)

0 = Dz̄Φ2, , (5.21)

0 = Dz̄σ = Dz̄Φ1 = Dz̄Φ̄1, (5.22)

0 = [σ,Φ2] = [Φ1,Φ2] =
[

Φ̄1,Φ2

]

, (5.23)

0 = [σ,Φ1] = [Φ1, Φ̄1], (5.24)

and complex conjugates of some of them. At the points where there are punctures, delta

function source terms as in section 3 need to be included, but we do not write them

explicitly. These equations can be derived from the equations (2.56)–(2.60) as follows. We

consider the trace of the square of (2.56),

0 =
√
gTr

(

gzz̄Fzz̄ − gzz̄
[

Φ2, Φ̄2

]

−
[

Φ1, Φ̄1

])2
(5.25)

=
√

g−1Tr
(

Fzz̄ −
[

Φ2, Φ̄2

])2
+
√
gTr

([

Φ1, Φ̄1

])2 − 2Tr
((

Fzz̄ −
[

Φ2, Φ̄2

]) [

Φ1, Φ̄1

])

.

By a little computation, we get

Tr
(

Fzz̄

[

Φ1, Φ̄1

])

= Tr
(

Φ̄1 ([Dz, Dz̄] Φ1)
)

, (5.26)

Tr
([

Φ2, Φ̄2

] [

Φ1, Φ̄1

])

= Tr
([

Φ1, Φ̄2

] [

Φ2, Φ̄1

])

+Tr
(

[Φ1,Φ2]
[

Φ̄1, Φ̄2

])

. (5.27)

Then, by using Dz̄Φ1 = 0 and [Φ1,Φ2] = 0, we obtain

0 =

∫

|d2z|
√

g−1Tr
(

Fzz̄ −
[

Φ2, Φ̄2

])2
+

∫

|d2z|√gTr
([

Φ1, Φ̄1

])2

− 2

∫

|d2z|Tr
(

Dz̄Φ̄1DzΦ1

)

+ 2

∫

|d2z|Tr
([

Φ1, Φ̄2

] [

Φ2, Φ̄1

])

, (5.28)

where the integral is performed excluding infinitesimally small regions around punctures.

In using integration by parts, we have used the fact that Φ1 is not singular at punctures.

Recalling that our definition is such that Φ̄ = −Φ†, we can see that each term in (5.28) is

non-negative. Therefore, (5.28) can be zero if and only if (5.20)–(5.24) are satisfied. This

result is expected since there is an SU(2) R-symmetry which rotates
√
2ReΦ1,

√
2 ImΦ1

and σ as a triplet.

Let us study the moduli space of solutions of (5.20)–(5.24). For the moment we restrict

our attention to G = SU(N), although it is straightforward to extend the results to general

gauge groups. Because of the commutation relations (5.24), we can simultaneously diago-

nalize Φ1 and σ by a gauge transformation. Furthermore, (5.22) says that the eigenvalues

are constant. Let us set

λ = diag(λ1, · · · , λN ) =

√
2

8π2R
Φ1. (5.29)

We assume that λk are generic.
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At each puncture, there is an operator µ
(4d)
(E) =

(

µ
(3d)
C

)

(E)
/2πR which is the holo-

morphic moment map of the flavor SU(N)(E) symmetry of T [SU(N)](E) as explained in

section 3. As shown in (3.23), for generic λ we have

µ
(4d)
(E) = U−1

(E)λU(E), (5.30)

for U(E) ∈ SL(N)(E). This is exactly the structure (5.18) obtained in the field theory.

Next, let us consider (Az̄,Φ2). The equations (5.22) and (5.23) impose that (Az̄,Φ2) be

in the Cartan subalgebra when Φ1 is generic. The unbroken gauge group is U(1)N−1. In this

case, (5.20) requires Fzz̄ = 0, so Az̄ is a flat connection. Equivalently, we may forget (5.20)

and divide the space of Az̄ by the complexified gauge group. This complexified group can

be used to set Az̄ = 0, and hence the connections define N − 1 holomorphic line bundles.

Therefore the moduli space of Az̄ divided by the gauge group is given by the moduli space

of these holomorphic line bundles.

For simplicity, let us pretend as if the gauge group is U(N) instead of SU(N), and it

is broken to U(1)N . The moduli space of each U(1) line bundle is given by the Jacobian

variety of C, which we denote as J(C). The J(C) is the space of Wilson loops exp(−
∮

γ A)

for flat U(1) connections A satisfying Fzz̄ = 0, where γ is one of the 2g cycles in C. Thus

J(C) is a torus with real dimension 2g or complex dimension g.14 Now, the moduli space

of the U(1)N connections Az̄ is given by J(C)N = J(C) × · · · × J(C). Let the curve

Σ = C + · · · + C be N copies of disconnected C’s. Then J(Σ) = J(C)N , i.e., the moduli

space of Az̄ is given by the Jacobian variety of the curve Σ. The traceless condition in the

SU(N) requires that the actual moduli space is the (N − 1)g dimensional subspace of the

Ng dimensional space J(Σ). This space is identified with the moduli space of the (N −1)g

massless vector fields found in the field theory, after dualizing them to complex scalars as

explained in subsection 4.1.

The Φ2 is expanded as Φ2 =
∑N−1

k=1 Φ2,kHk, where Hk are generators of the Cartan

subalgebra. Each Φ2,k is invariant under U(1)N−1, and they are holomorphic sections of

the canonical bundle K. Since dimH0(C,K) = g, there are (N − 1)g moduli parameters

in Φ2. These are the 4d N = 2 superpartners of the massless vector fields discussed above.

The remaining field in the twisted 5d SYM is the vector multiplet V , which contains

the σ and 3d vector field Aµ (µ = 0, 1, 2). The zero modes of these fields do not depend

on z, and we consider them as 3d fields. They are also diagonal,

σ = diag(σ1, · · · , σN ), Aµ = diag((A1)µ, · · · , (AN )µ). (5.31)

14The J(C) for a Riemann surface C as a complex manifold is explicitly given as follows. Let αI and

βI (I = 1, · · · , g) be the usual real basis of closed one forms H1(C,Z) on C, satisfying e.g.,
∫

C
αI ∧ βJ =

δJI ,
∫

C
αI ∧ αJ =

∫

C
βI ∧ βJ = 0. Then a holomorphic basis λI ∈ H1,0(C), ∂z̄λI = 0, is given as

λI = αI + τIJβ
J for some τIJ which is a symmetric matrix τIJ = τJI , with Im τIJ positive definite. A

flat U(1) connection is parametrized as A = 2πi
(

aIαI − bIβ
I
)

for parameters aI and bI with periodicity

aI ∼= aI + 1, bI ∼= bI + 1 coming from large gauge transformations. The anti-holomorphic part of A is

given as Az̄dz̄ =
(

bI + τIJa
J
) (

π(Im τ)−1,JK λ̄K

)

. Therefore, we can take complex coordinates of J(C) as

ϕI = bI + τIJa
J which have the periodicity ϕI

∼= ϕI +mI + τIJn
J for mI , n

J ∈ Z.
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For simplicity, let us again pretend as if the gauge group is U(N) and there are no traceless

conditions on σk and (Ak)µ. Taking the dual of (Ak)µ, we get real scalars ρk with the

period ρk ∼= ρk + 1. They are combined with σk to form chiral fields as

ϕk = ρk +
2iA
g25

σk = ρk +
iA
4π2

σ
(6d)
k (5.32)

where A =
∫ √

g|d2z| is the area of the Riemann surface C, g25 = 8π2R is the 5d gauge

coupling, and σ(6d) = R−1σ. The traceless condition in SU(N) is imposed as
∑N

k=1 ϕk = 0.

Because of the periodicity ρk ∼= ρk + 1, we may define

q̃k = exp(2πiϕk). (5.33)

Then, the traceless condition is translated into

N
∏

k=1

q̃k = 1. (5.34)

This constraint looks similar to the constraint (5.19) found in the field theory. Therefore,

we may roughly identify

q̃k ∼ qktot. (5.35)

Probably the relation between them may be something like qktot = q̃k
∏

ℓ6=k(λk − λℓ)
NV
2 .

We leave it for future work to determine the precise relation. At least the dimension of the

moduli space matches between the field theory and the twisted 5d SYM. Our conclusion

is that the vector multiplet V ∋ (σ,Aµ) contains the information about the moduli fields

contained in the operators Qi1i2i3 of the TN theory.

General gauge groups. The moduli space of the twisted 5d SYM for a general group G

can be studied in the same way as is done above. The result should have implications for

the corresponding field theory, which have not yet been fully investigated in the literature.

Here we simply note a simple consequence of our result. As discussed in subsection 3.5, the

equation (5.30) is valid for generic λ, and hence we get the following chiral ring relation.

Let E and E′ be two punctures on the Riemann surface. The holomorphic moment maps

µ
(4d)
(E) and µ

(4d)
(E′) of the flavor groups G∨

(E) and G∨
(E′) at the punctures satisfy the chiral

ring relation

p
(

µ
(4d)
(E)

)

= p
(

µ
(4d)
(E′)

)

, (5.36)

where p is any invariant polynomial of the Lie algebra of G∨.

6 Examples of N = 1 theories

Having done enough preparations, we can finally discuss dynamics of N = 1 field theories.

We only discuss the case G = SU(N). Most of the examples in this section has been

discussed in [45]. Our new tools developed in this paper make it possible to compare field

theories and generalized Hitchin systems in great detail. Although spectral curves are

determined in [45], we give self-contained derivations of the curves for completeness and

also because we want to explain a new method to determine spectral curves in this section

and in appendix B.
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6.1 Preliminary

In this section, we use the normalization of fields discussed in subsection 3.4. However, we

write Φ̃i of that section simply as Φi in this section.

Irregular singularity. Although we have been focusing on regular singularities at punc-

tures, we will also use irregular singularities which are locally the same as the N = 2

singularities obtained from M-theory uplift of type IIA brane configurations. In a gauge

where Az̄ = 0 and Φi are diagonal, the singularities we use are given by

Nf = 0 : Φ → ζ

(z − zp)1+1/N
diag

(

1, ωN , · · · , ωN−1
N

)

, (6.1)

Nf < N : Φ → ζ

(z − zp)1+1/(N−Nf )
diag

(

0, · · · , 0, 1, ωN−Nf
, · · · , ωN−Nf−1

N−Nf

)

+
1

(z − zp)
diag(m1, · · · ,mNf

,m, · · · ,m)− (trace part), (6.2)

Nf = N : Φ → 1

(z − zp)
diag(m1, · · · ,mN ), (6.3)

where
∑Nf

k=1mk+(N−Nf )m = 0 and ωk = exp(2πi/k). The Nf corresponds roughly to the

“number of flavors” at the puncture. See also appendix A for field theory interpretation.

The Nf = N case is just the regular singularity we have discussed in subsection 3.4.

Another, probably more familiar, way of writing the singularities is

Nf = 0 : det(x− Φ) → xN − ζN

(z − zp)N+1
+ (less singular), (6.4)

Nf < N − 1 : det(x− Φ) → xN− ζN−Nf

(z−zp)N−Nf+1

Nf
∏

k=1

(

x− mk

z−zp

)

+(less singular), (6.5)

Nf = N : det(x− Φ) →
N
∏

k=1

(

x− mk

z − zp

)

+ (less singular). (6.6)

The case Nf = N − 1 is obtained by shifting x in (6.5) so that the coefficient of the

xN−1 term vanishes. These singularities can be obtained directly from the type IIA brane

construction as in [1, 5, 8].

In the equations (6.1) and (6.2), Φ is not single-valued. This is an artifact of taking

Az̄ = 0 and making Φ to be diagonal. They can be made single-valued by an appropri-

ate change of basis of the bundle ad(E) [8]. After the change of the basis, some of the

fields become non-diagonal and the gauge symmetry is broken down to a subgroup at the

puncture. For Nf < N , the gauge symmetry is reduced to U(Nf ) for massless case and

U(1)Nf for generic masses at the puncture. As discussed in subsection 2.3.2, σ must be

in the Cartan subalgebra of unbroken gauge group. Therefore, in the presence of irregular

singularities, σ is only allowed to be in the Cartan subalgebra of U(Nf ). For example, if

there is an irregular singularity of the Nf = 0 type, σ must be set to zero. This is only

a local constraint at the punctures, and σ is also constrained by the global structure of a

solution for Φ.
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The behaviors at irregular singularities constrain not only σ, but also Φi. Suppose

that Φ2 has the Nf = 0 type irregular singularity. Then, the condition [Φ1,Φ2] = 0 gives

a constraint Φ1 → 0;

If Φ2 →
ζ

(z − zp)1+1/N
diag

(

1, ωN , · · · , ωN−1
N

)

, then Φ1 → 0 and vice versa. (6.7)

This fact can be seen e.g., by noting that Tr[Φk
1Φ2] must be a single-valued function of z.

See appendix B for more details.

The phase of ζ is not single valued and only its power ζN−Nf is well-defined. Therefore,

if ζ appears without the power N −Nf in a solution, that means there are discrete vacua

labelled by the phase of ζ.

In the case of irregular singularities, we have not studied how to identify holomorphic

moment maps or meson operators. Suppose that Φ1 has a singularity of the type (6.2).

There is a U(Nf ) flavor symmetry associated to the puncture and we have the corresponding

moment map µ which is an Nf ×Nf matrix. If it is constructed from quarks qi and q̃
i, it

is given as µij =M i
j = q̃iqj , i.e., it is just a meson matrix. We propose, but do not prove,

that this operator is identified as

Φ2 ≈
(

µ− 1
N (trµ)1Nf

0

0 − 1
N (trµ)1N−Nf

)

, (6.8)

where ≈ means that the characteristic polynomials of both sides agree. This proposal

would be a straightforward generalization of the regular case (3.38) if the trace of µ were

zero. The above form of the trace part which is proportional to trµ may be motivated by

the fact that the superpotential formula (3.35) gives
∮

dz

2πi
tr(Φ1Φ2) = tr(mµ) + · · · , (6.9)

where m = diag(m1, · · · ,mNf
) is the mass matrix, and the ellipsis represents possible

terms coming from subleading terms in the singularities which depend on explicit solu-

tions of generalized Hitchin’s equations. The term tr(mµ) looks precisely as the tree level

mass term.

Singularities and redefinition of Φ. Let us perform a slight redefinition of Φi which

is not essential but makes the analysis of spectral curves a little bit simpler. First, the

following mathematical fact is known. For a given set of points {zb}b∈B on a Riemann

surface, there exists a holomorphic line bundle which we denote as LB with the following

property. Up to normalization, LB has a unique holomorphic section s1 which has simple

zeros at {zb}b∈B and has no other zeros.15 The degree of the bundle LB is the same as the

number of points in {zb}b∈B, which we denote as n1.

More explicitly, in the case of a Riemann sphere C = C ∪ {∞}, sB is given as

s1 =
∏

b∈B

(z − zb), (6.10)

15If some of the points coincide, e.g., z1 = z2 = · · · = zk, the section s has a zero of degree k there.
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where z is the coordinate of C = C−{∞}. Since s1 is a section of the line bundle LB with

degree degLB = n1, the behavior near z → ∞ is described as

(s1)∞ ≡ z−n1s1 → 1 (z → ∞). (6.11)

Thus sB as a section goes to a nonzero finite constant at z → ∞. If one of the points in

{zb}b∈B is at z∞ = ∞, the product is taken as s1 =
∏

b∈B−{∞}(z−zb). Then, near z → ∞,

the section behaves as (s1)∞ → 1/z.

Now suppose that the singularities of Φ1 are at {zb}b∈B. Then, we define

Φ′
1 = s1Φ1. (6.12)

The new adjoint field Φ′
1 takes values in the line bundle

L′
1 = L1 ⊗ LB. (6.13)

The degree of the bundle L′
1 is

degL′
1 = degL1 + n1 = p, (6.14)

where p is defined in appendix A as the number of copies of the TN theory of “+ type” [51,

53]. (In the notation of appendix A, we have n1 = n+ and n2 = n−.) Furthermore, because

s1 has simple zeros at {zb}b∈B, the behavior of Φ1 near the punctures is , e.g., for the Nf

type puncture,

Φ′
1 →

ζ

(z − zb)
1/(N−Nf )

diag
(

0, · · · , 0, 1, ωN−Nf
, · · · , ωN−Nf−1

N−Nf

)

+ diag(m1, · · · ,mNf
,m, · · · ,m)− (trace part). (6.15)

Similarly, let {za}a∈A be the positions of the singularities of Φ2, LA be the line bundle

associated to {za}a∈A, s2 be the section of LA which has zeros at {za}a∈A, and Φ′
2 = s2Φ2.

Now Φ′
2 takes values in the line bundle L′

2 = L2 ⊗ LA which has the degree detL′
2 =

degL2 + n2 = q, where q is defined in the appendix A as the number of copies of the TN
theory of “− type”. The Φ′

2 has similar behavior as (6.15) at the punctures.

6.2 SQCD

We will consider supersymmetric QCD (SQCD) realized as a Riemann sphere with two

punctures at z = 0 and z = ∞. The Φ1 will have a singularity at z = ∞, and Φ2 will have

a singularity at z = 0. The degrees of the line bundles L′
1 = L1 ⊗ LB and L′

2 = L2 ⊗ LA

are both zero, degL′
1 = degL′

2 = 0, or in other words degL1 = degL2 = −1 [15, 45]. This

fact can be seen by considering RG flows from the theories discusses in appendix A, or

from the type IIA brane construction [2, 3]. See [87] for a review of exact results of SQCD

including precise numerical coefficients.
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6.2.1 Massive SQCD with Nf < N flavors

Let us consider an SU(N) SQCD with Nf flavors of quarks qi and q̃
i (i = 1, · · · , Nf ) in the

fundamental and anti-fundamental representations of the gauge group, respectively. We

assume Nf < N − 1 for simplicity, although the Nf = N − 1 case is very similar.

The mass term is given as trmM , where M i
j = q̃iqj are mesons and the trace is over

flavor indices. The effective superpotential including the Affleck-Dine-Seiberg superpoten-

tial [98] is given as

W = trmM + (N −Nf )

(

Λ3N−Nf

detM

)

1
N−Nf

, (6.16)

where Λ3N−Nf is the dynamical scale (or more precisely the one instanton factor). Inte-

grating out the mesons, we get the vevs of M and W as

M =
(

Λ3N−Nf detm
)

1
N m−1, (6.17)

W = N
(

Λ3N−Nf detm
)

1
N . (6.18)

Our purpose is to reproduce these results from the twisted 5d SYM.

The Φ1 has a singularity of the type (6.5) at z = ∞, and Φ2 has a singularity of the

type (6.4) at z = 0. The singularities suggest that

det
(

x′1 − Φ′
1

)

= x′N1 − zζ
N−Nf

1

Nf
∏

k=1

(

x′1 −mk

)

+
N
∑

k=2

ukx
′N−k
1 , (6.19)

det
(

x′2 − Φ′
2

)

= x′N2 − ζN2
z

+
N
∑

k=2

u′kx
′N−k
1 , (6.20)

where we have used the definition (6.12). However, since Φ2 has the singularity (6.4) and

there is a constraint (6.7), the moduli parameters uk in Φ1 must be set to zero. Therefore,

the spectral curve is

0 = det
(

x′1 − Φ′
1

)

= x′N1 − zζ
N−Nf

1

Nf
∏

k=1

(

x′1 −mk

)

. (6.21)

Next, let us determine Φ′
2. A detailed derivation is given in appendix B, and here we

only give a heuristic argument. From (6.21), we can see that Φ′
1 behaves at z → 0 as

Φ′
1 →



(−1)Nf ζ
N−Nf

1

Nf
∏

k=1

mk





1
N

z
1
N diag

(

1, ωN , · · · , ωN−1
N

)

, (6.22)

up to complexified gauge transformations. Then, the singular behavior of Φ′
2 at z = 0 is

reproduced if we set

Φ′
2 ∼

(

Λ3N
eff

)
1
N
(

Φ′
1

)−1
, (6.23)
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where we have defined

Λ3N
eff = (−1)Nf ζ

N−Nf

1 ζN2

Nf
∏

k=1

mk. (6.24)

An important point of the ansatz (6.23) is that the commuting condition [Φ′
1,Φ

′
2] = 0 is

automatic. One can also check that Φ′
2 given by (6.23) is finite other than at the puncture

z = 0. However, we must impose the traceless condition TrΦ′
2 = 0. By using the equation

det((x′1)
−1 − (Φ′

1)
−1) = (−x′1)−N (detΦ′

1)
−1 det(x′1 −Φ′

1), one can see from (6.21) that the

traceless condition is achieved by

Φ′
2 = Λ3

eff





(

Φ′
1

)−1 − 1N
N

Nf
∑

k=1

1

mk



 . (6.25)

In the spectral curve, the pair (x′1, x
′
2) is given by pairs of eigenvalues of (Φ′

1,Φ
′
2), so we

get the curve

x′1x
′
2 = Λ3

eff



1− x′1
N

Nf
∑

k=1

m−1
k



 . (6.26)

See appendix B for more rigorous derivation of (6.26).

Let us calculate the meson vev using the above results. We can see that Φ′
2 at z → ∞

is given as

Φ′
2 → Λ3

eff



diag
(

m−1
1 , · · · ,m−1

Nf
, 0, · · · , 0

)

− 1N
N

Nf
∑

k=1

m−1
k



 . (6.27)

Comparing this result with the proposal (6.8), we obtain

M ≈ Λ3
eff diag

(

m−1
1 , · · · ,m−1

Nf

)

. (6.28)

This result agrees with the field theory result if we identify

(−1)Nf ζ
N−Nf

1 ζN2 = Λ3N−Nf . (6.29)

The vev (6.28) is determined up to conjugation, but we expect the result is exactly given

by M = Λ3
effm

−1.

The superpotential vev can be calculated easily. First, we note that Φ′
1 = Φ1 and Φ′

2 =

zΦ2. Then we get Φ1Φ2 → Λ3
eff1N/z at z → 0. The superpotential formula (3.39) gives

W =

∮

z∼0

dz

2πi
Tr(Φ1Φ2) = NΛ3

eff . (6.30)

This is in perfect agreement with the field theory result with the identification (6.29).
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6.2.2 Massless SQCD with Nf = N = N1 + N2 flavors

Here we consider theories with the total flavor number Nf = N . We assume that Φ1 has

a singularity of the type (6.2) with Nf → N2 at z = ∞ and Φ2 has a singularity of the

type (6.2) with Nf → N1 at z = 0. We assume Nf = N = N1 +N2 and N1, N2 ≥ 1.

Note that theories with different pairs (N1, N2) are really different theories. There are

quarks qi, q̃
i (i = 1, · · · , N1) which are in the (anti-)fundamental representations of the fla-

vor group U(N1), and there are also quarks pℓ, p̃
ℓ (ℓ = 1, · · · , N2) in the (anti-)fundamental

representations of the flavor group U(N2). We define mesons as

M =

(

q̃i

p̃ℓ

)

(qj , pm) =

(

(M1)
i
j Li

m

L̃ℓ
j (M2)

ℓ
m

)

. (6.31)

As reviewed in appendix A, there is a quartic superpotential,

W = c

(

qαi q̃
i
β −

δαβ
N
qγi q̃

i
γ

)

(

pβℓ p̃
ℓ
α − δβα

N
pγℓ p̃

ℓ
γ

)

= c

(

tr
(

LL̃
)

− 1

N
(trM1)(trM2)

)

, (6.32)

where α, β = 1, · · · , N are gauge indices. This quartic superpotential explicitly depends

on N1 and N2, and hence theories with different values of (N1, N2) are different theories

even if their sum N1 +N2 = N is the same.

SU(2) theory. Consider the SU(2) theory with N1 = N2 = 1. The superpotential,

including the deformed moduli constraint [99], is given as

W = X
(

M1M2 − LL̃−BB̃ − Λ4
)

+ c

(

LL̃− 1

2
M1M2

)

, (6.33)

where B and B̃ are baryons and anti-baryons, respectively. There are three branches.

(1) : X = c/2, M1M2 = Λ4, L = L̃ = B = B̃ = 0. (6.34)

(2) : X = c, LL̃ = −Λ4, M1 =M2 = B = B̃ = 0. (6.35)

(3) : X = 0, BB̃ = −Λ4, M1 =M2 = L = L̃. (6.36)

We would like to recover these branches from the twisted 5d SYM.

Let us first determine the spectral curve. For SU(2), the curve (2.64) is

x′21 =
1

2
TrΦ′2

1 , x′22 =
1

2
TrΦ′2

1 , x′1x
′
2 =

1

2
TrΦ′

1Φ
′
2. (6.37)

The singularities of Φ′
1 and Φ′

2 give

x′21 =
1

4
ζ21z

2 + u1, x′22 =
1

4

ζ22
z2

+ u2, x′1x
′
2 = h(z). (6.38)
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Then, we have to impose that h(z)2 = x′21 x
′2
2 is a square of some holomorphic function

h(z). There are three possibilities;

(1) : u1u2 =
1

16
ζ21ζ

2
2 , x′1x

′
2 =

ζ1
√
u2

2z

(

z2 +
ζ22
4u2

)

, (6.39)

(2) : u1 = u2 = 0, x′1x
′
2 = +

1

4
ζ1ζ2, (6.40)

(3) : u1 = u2 = 0, x′1x
′
2 = −1

4
ζ1ζ2. (6.41)

In the first equation, possible ± signs in the equation for x′1x
′
2 are absorbed in the definition

of the moduli field
√
u2. However, in the second and third equations, there are no moduli

fields to absorb the ± signs and we have to distinguish the different signs.

The identification (6.8) suggests that we identify mesons as M2
1 = 4u1 and M2

2 = 4u2.

Then, (6.39) gives M2
1M

2
2 = ζ21ζ

2
2 . The sign of M1M2 can be fixed by the equation of x′1x

′
2.

We should get x′1x
′
2 → −M1ζ2/(4z) as z → 0, and x′1x

′
2 → −M2ζ1z/4 as z → ∞. Then

we identify M1 = −ζ1ζ2/
(

2
√
u2
)

and M2 = −2
√
u2. We finally get M1M2 = ζ1ζ2. This

reproduces the field theory result (6.34) by identifying ζ1ζ2 = Λ4.

In the other two branches (6.40) and (6.41), we have M1 = −2
√
u1 = 0 and M2 =

−2
√
u2 = 0. Therefore these branches should correspond to the branches (6.35) and (6.36).

Where is the moduli field contained in L, L̃ or B, B̃? In these cases, we can explicitly write

down Φ′
1 and Φ′

2 as

(2) : Φ′
1 =

1

2

(

−ζ1z 0

0 +ζ1z

)

, Φ′
2 =

1

2

(

−ζ2/z 0

0 +ζ2/z

)

, (6.42)

(3) : Φ′
1 =

1

2

(

−ζ1z 0

0 +ζ1z

)

, Φ′
2 =

1

2

(

+ζ2/z 0

0 −ζ2/z

)

. (6.43)

As is clear from these solutions, there is an unbroken U(1) symmetry in each case. Then,

we can turn on σ as

σ =

(

σ0 0

0 −σ0

)

, (6.44)

for constant σ0. This σ0 is combined with the dual photon of unbroken U(1) to give a

single chiral field as explained in section 5. In the field theory result (6.35) and (6.36),

there is one modulus field in each case, parametrized by L/L̃ or B/B̃ respectively. This

one modulus should be identified with the chiral field containing σ0. Indeed, L, L̃ and B, B̃

are operators which are not associated to punctures, but are kind of “baryon” operators

similar to QiAiBαQiC iDα, where the Q’s are the TN theory operators discussed in section 5.

As discussed there, they are interpreted as coming from the σ. In the present case, we have

to replace QiAiBα →
(

qαi , q̃
iα
)

, QiC iDα →
(

pℓα, p̃ℓα
)

and QiAiBαQiC iDα →
(

B, B̃, L, L̃
)

. We

conclude that, at least qualitatively, the field theory and the twisted 5d SYM match.

The σ is forced to be zero in the case of the branch (6.39), and we can recover the

deformed moduli space structure M1M2 = Λ4. On the other hand, if σ is nonzero, we

have not yet succeeded in determining the precise relation LL̃ = −Λ4 or BB̃ = −Λ4 from

the twisted 5d SYM. We leave it for future work to study the precise relations between

L, L̃, B, B̃ and σ. However, we stress that there is no mismatch between the field theory

and the twisted 5d SYM.
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SU(N) theory. Now let us see the SU(N) theory with Nf = N = N1+N2. For simplicity

we assume N1, N2 > 1.

The low energy effective superpotential is given as

W = X
(

detM −BB̃ − Λ2N
)

+ c

(

tr
(

LL̃
)

− 1

N
(trM1)(trM2)

)

. (6.45)

We can see that there is a baryonic branch where BB̃ 6= 0 and we focus on this branch. In

this branch, the equations of motion of baryons give X = 0. Then, L, L̃, trM1 and trM2

are massive and set to zero by equations of motion. Therefore the remaining moduli fields

are µ1 =M1− 1
N1

trM1, µ2 =M2− 1
N2

trM2, B and B̃ with the constraint (detµ1)(detµ2)−
BB̃ = Λ2N .

In the twisted 5d SYM, the structure of the singularities allows the following form of

solutions,

Φ′
1 =

(

Φ′
1,1 0

0 Φ′
1,2

)

, Φ′
2 =

(

Φ′
2,1 0

0 Φ′
2,2

)

, σ =

(

σ01N1/N1 0

0 −σ01N2/N2

)

, (6.46)

where Φ′
1,1 and Φ′

2,1 are N1 × N1 matrices, Φ′
1,2 and Φ′

2,2 are N2 × N2 matrices, and

TrΦ′
1,1 + TrΦ′

1,2 = TrΦ′
2,1 + TrΦ′

2,2 = 0. This is the most general form consistent with

nonzero σ. The singularities of these fields are given as

Φ′
1,1 → ζ1z

1/N1 diag
(

1, ωN1 , · · · , ωN1−1
N1

)

, z → ∞ (6.47)

Φ′
2,2 →

ζ2

z1/N2
diag

(

1, ωN2 , · · · , ωN2−1
N2

)

, z → 0. (6.48)

The Φ′
1,2 and Φ′

2,1 are nonsingular.

The singularity structure requires that Φ′
2,1 → 0 at z → 0. Furthermore, Φ′

2,1 is

nonsingular on the entire Riemann sphere. This means that Tr
(

Φ′
2,1

)k
are holomorphic

functions on the Riemann sphere which go to zero at z → 0 and do not have poles. Then

these functions must be zero, and we set Φ′
2,1 = 0. In the same way we set Φ′

1,2 = 0.

The spectral curves are given as

det
(

x′1 − Φ′
1

)

= x′N2
1

(

x′N1
1 +

N1
∑

k=2

u1,kx
′N1−k
1 − zζN1

1

)

, (6.49)

det
(

x′2 − Φ′
2

)

= x′N1
2

(

x′N2
2 +

N2
∑

k=2

u2,kx
′N2−k
2 − z−1ζN2

2

)

. (6.50)

There are no constraints on the moduli fields u1,k and u2,k. The identification (6.8) suggests

that the characteristic polynomials of the fields µ1 and µ2 in the field theory are given by

det
(

x′1 − µ1
)

= x′N1
1 +

N1
∑

k=2

u1,kx
′N1−k
1 , (6.51)

det
(

x′2 − µ2
)

= x′N2
2 +

N2
∑

k=2

u2,kx
′N2−k
2 . (6.52)

A degree of freedom coming from the baryons B/B̃ is identified as σ0 and the dual photon.
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6.3 TN theory

Let us consider a Riemann sphere with three singularities. This theory corresponds to a

copy of the TN theory coupled to some vector multiplets. The number of singularities of

Φ1 is n1, and that of Φ2 is n2, with n1 + n2 = 3. The degrees of the line bundles are

degL′
1 = degL1 + n1 = 0, degL′

2 = degL2 + n2 = 1. (6.53)

As discussed in appendix A, an irregular singularity of type (6.1) for Φ2 corresponds to an

N = 2 vector multiplet coupled to the TN theory, and an irregular singularity of type (6.1)

for Φ1 corresponds to an N = 1 vector multiplet coupled to the TN theory.

As reviewed in section 5, the TN theory has flavor symmetries SU(N)A × SU(N)B ×
SU(N)C . In the subsection 6.3.1 and 6.3.2, we will only consider the cases in which at least

one of the three SU(N)’s is gauged by an N = 1 vector multiplet. Let us gauge SU(N)C by

an N = 1 vector multiplet. Before the gauging of SU(N)C , there are chiral ring relations

of the TN theory given in (5.2),

det(x− µA) = det(x− µB) = det(x− µC), (6.54)

for arbitrary x, where µA,B,C are the holomorphic moment maps associated to the flavor

symmetry groups. After gauging SU(N)C , the low energy theory is described by the gauge

invariant fields µA and µB satisfying the deformed moduli constraint [55]

det(x− µA) = det(x− µB)− Λ2N
C , (6.55)

for arbitrary x.

In the twisted 5d SYM, the gauging of SU(N)C introduces an irregular singularity of

Φ1 which we take at z = ∞,

Φ′
1 → ζCz

1/N diag
(

1, ωN , · · · , ωN−1
N

)

. (6.56)

The Φ1 and/or Φ2 may have other singularities depending on the theory we consider.

6.3.1 TN theory coupled to N = 1 vector multiplet(s)

Let us consider the case where only Φ1 has irregular singularities. All the singularities of

Φ2 are regular with mass parameters taken to be zero. Then the residues of poles of Φ2 take

values in nilpotent cones [60], which can be zero. Therefore, in this case, it is consistent

to set Φ2 = 0 on the entire Riemann surface.16 Furthermore, irregular singularities of Φ1

set σ = 0 as discussed in subsection 6.1. Then we get a twisted Higgs bundle discussed

in subsection 2.3.1. Spectral curves are easily determined similar to the case of N = 2

field theories.

16We believe that it is not only consistent to set Φ2 = 0, but Φ2 is forced to be zero by generalized

Hitchin’s equations for the theories studied in this subsection. However, we will not prove this claim.
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One SU(N) gauge group: (n1, n2) = (1, 2). When the TN theory is coupled to one

N = 1 SU(N) vector multiplet, the field theory is described by the deformed moduli

space (6.55). Let us reproduce this deformed moduli constraint from the twisted 5d SYM.

From the singularity (6.56), we get

det
(

x′1 − Φ′
1

)

= x′N1 +
N
∑

k=2

ukx
′N−k
1 − ζNC z. (6.57)

Suppose that the other two regular punctures of Φ2 are at z = 0 and z = 1. The identifi-

cation (3.37) gives us

det
(

x′1 − µA
)

= det
(

x′1 − Φ′
1

)

|z=0 = x′N1 +
N
∑

k=2

ukx
′N−k
1 , (6.58)

det
(

x′1 − µB
)

= det
(

x′1 − Φ′
1

)

|z=1 = x′N1 +
N
∑

k=2

ukx
′N−k
1 − ζNC . (6.59)

From these equations, we obtain

det(x′1 − µA) = det(x′1 − µB) + ζNC . (6.60)

This is exactly the relation (6.55) with the identification ζNC = −Λ2N
C . Thus the twisted 5d

SYM perfectly reproduces the deformed moduli constraint of the field theory.

Two SU(N) gauge groups: (n1, n2)=(2, 1). When SU(N)C and SU(N)B are gauged

by N = 1 vector multiplets, we obtain the following low energy theory. First, by taking

ΛC to be large, the theory is described by µA and µB with the constraint (6.55). The

µA is gauge invariant, but µB is now an adjoint chiral field of the gauge group SU(N)B.

A generic vev of µB breaks SU(N)B to U(1)N−1. Gauge invariant polynomials of µB are

fixed by µA due to the relation (6.55). Thus the low energy theory is described by µA and

N − 1 massless vector multiplets. See [70] for the SU(2) case.

The spectral curve of this theory is given by

0 = det
(

x′1 − Φ′
1

)

= x′N1 +
N
∑

k=2

ukx
′N−k
1 − ζNB z

z − 1
− ζNC z, (6.61)

where we have chosen the origin of uN such that the characteristic polynomial of µA is

given by

det
(

x′1 − µA
)

= det
(

x′1 − Φ′
1

)

|z=0 = x′N1 +
N
∑

k=2

ukx
′N−k
1 . (6.62)

The curve (6.61) is identified as the Seiberg-Witten curve describing the holomorphic cou-

pling matrix τIJ of the low energy massless U(1)N−1 fields.

For example, let us consider the SU(2) case. The curve can be rewritten as

y2 = w3 +
(

ζ2C + ζ2B − detµA
)

w2 + ζ2Cζ
2
Bw, (6.63)
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where w = ζ2C(z − 1) and y = ζ2C(z − 1)x′1. This is exactly the same as the curve found

by Intriligator and Seiberg [70] for this SU(2) theory, with the identification Λ2N
C = ζNC

and Λ2N
B = ζNB . Notice that the moduli space of the theory is spanned by µA and it

has dimension N2 − 1 = 3. However, only the flavor singlet operator detµA appears in

the curve.

Three SU(N) gauge groups: (n1, n2) = (3, 0). If all the three SU(N) groups are

gauged by N = 1 vector multiplets, the low energy theory is described by U(1)2(N−1)

massless vector multiplets and N − 1 gauge invariant fields trµkA ∼ trµkB ∼ trµkC (k =

2, · · · , N). The spectral curve is given as

0 = det
(

x′1 − Φ′
1

)

= x′N1 +

N
∑

k=2

ukx
′N−k
1 − ζNA

z
− ζNB z

z − 1
− ζNC z. (6.64)

This is exactly the same as the Seiberg-Witten curve derived in [48, 55] for ζNA,B,C = Λ2N
A,B,C .

In this theory, the moduli fields uk are not composites of more fundamental gauge

invariant operators. They are just independent fields parametrizing the moduli space

similar to the case of Coulomb moduli of N = 2 theories. There are no chiral ring relations

among them, and the moduli space is just CN−1.

6.3.2 TN theory coupled to N = 1 and N = 2 vector multiplets

Here we are going to study the theory defined by a Riemann sphere with two irregular

singularities for Φ1 and one irregular singularity for Φ2. All of the irregular singularities

are of the type (6.1). In this case, both Φ1 and Φ2 are nonzero.

Field theory. The field theory dynamics of this theory is interesting. There will be no

massless moduli fields, and gaugino condensation will occur which leads to discrete vacua.

However, there will be massless U(1) vector multiplets. So the moduli space is a set of

discrete points with massless vector fields at each point. The Seiberg-Witten curve will

only depend on dynamical scales of the theory.

Let us gauge SU(N)C and SU(N)A by N = 1 vector multiplets and SU(N)B by an

N = 2 vector multiplet. We assume that the dynamical scale of SU(N)C , ΛC , is very large.

The effective superpotential after confinement of SU(N)C is given as

W =
√
2 trφBµB +

N
∑

k=2

Xk

(

trµkA − trµkB −NΛ2N
C δk,N

)

, (6.65)

where φB is the adjoint scalar in the N = 2 vector multiplet of SU(N)B, and Xk are

Lagrange multipliers imposing the deformed moduli constraint (6.55). In the effective

superpotential, µB and φB have a mass term trφBµB and can be integrated out. The

F -term equation of φB set µB = 0, and then the deformed moduli constraint requires that

µA = Λ2
C diag

(

1, ωN , · · · , ωN−1
N

)

, µB = 0, (6.66)

up to SU(N)A rotations.
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As a result of integrating out φB and µB, the SU(N)B becomes pure N = 1 SYM

at low energies. Then the SU(N)B develops gaugino condensation, and gives N isolated

vacua. The vev (6.66) for µA breaks the SU(N)A gauge group to U(1)N−1 and there are

N − 1 massless vector fields. We need a Seiberg-Witten curve which determines the low

energy coupling constant matrix of these massless U(1)N−1 fields.

The curve will be determined by using the spectral curve later, but we can also see how

the curve looks like by field theory consideration. The SU(N)A vector multiplet combined

with the adjoint chiral field µA is very similar to an N = 2 pure SYM. The Seiberg-Witten

curve for this pure N = 2 SYM may be given as [100, 101]

det

(

x− µA
ΛC

)

− Λ2N
A

z
+ z ∼ 0, (6.67)

where we have divided µA by ΛC so that µA/ΛC has mass dimension one, which is the

correct mass dimension for a chiral field with a canonical kinetic term. After using (6.66)

and rescaling the variables x→ x/ΛC and z → zΛN
C , we get

xN − Λ2N
C − Λ2N

A

z
+ Λ2N

C z ∼ 0. (6.68)

This curve is derived in the limit ΛC ≫ ΛA, so we can have a small correction like Λ2N
C →

Λ2N
C + cΛ2N

A in some terms. The original field theory has a symmetry under the exchange

A ↔ C. Requiring this symmetry which is accompanied with z ↔ z−1 and xN ↔ −xN ,

we expect that the curve is given as

xN − Λ2N
A

z
+ Λ2N

C z −
(

Λ2N
C − Λ2N

A

)

= 0. (6.69)

This derivation is only heuristic. We will derive it using the spectral curve.

The gaugino condensation of SU(N)B induces a constant superpotential vev. The

dynamical scale of the low energy SU(N)B is given by

Λ3N
B,low ∼ ΛN

BΛ2N
C . (6.70)

This Λ3N
B,low is determined as follows. The high energy one instanton factor of SU(N)B is

given as ΛN
B , and hence Λ3N

B,low should be proportional to it. Assuming that the mass of the

fields φB and µB is of order ΛC , we get the factor Λ2N
C in Λ3N

B,low when the adjoint fields

φB and µB are integrated out.

The Λ3N
B,low is derived for ΛC ≫ ΛA,B, but the symmetry under the exchange A ↔ C

may require that the exact form is

Λ3N
B,low = ΛN

B

(

Λ2N
C + Λ2N

A

)

(6.71)

up to an overall numerical coefficient. The gaugino condensation induces the superpotential

Wcondense = NΛ3
B,low = N

[

ΛN
B

(

Λ2N
C + Λ2N

A

)

] 1
N
. (6.72)

The presence of the N -th root suggests the existence of N -vacua as usual.
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Twisted 5d SYM. The field Φ1 has irregular singularities of the type (6.1) at z = 0

and z = ∞. Then we have

det
(

x′1 − Φ′
1

)

= x′N1 +
N
∑

k=2

ukx
′N−k
1 − ζNA

z
+ ζNC z, (6.73)

for some moduli uk. However, because Φ2 has a singularity at z = 1 of the type (6.1), Φ′
1

must be zero at z = 1 by the constraint (6.7). Then the spectral curve for x′1 is completely

fixed as

0 = det
(

x′1 − Φ′
1

)

= x′N1 − ζNA (1− z)

z
− ζNC (1− z). (6.74)

One can see that this curve is precisely the Seiberg-Witten curve (6.69) in the field theory

if the parameters are identified as ζNA = Λ2N
A and ζNC = Λ2N

C .

Next let us determine Φ′
2. A detailed derivation is given in appendix B, and here we

only give a heuristic derivation. If we only look at the behavior at the punctures, we can

see that (Φ′
1)

−1 almost reproduces the behavior of Φ′
2 at z = 0, 1,∞; at the punctures

zp = 0,∞, the fields Φ′
2 and (Φ′

1)
−1 both behave as (z − zp)

1/N diag
(

1, ωN , · · · , ωN−1
N

)

because of the constraint (6.7), and at the puncture zp = 1, they both behave as

(z − zp)
−1/N diag

(

1, ωN , · · · , ωN−1
N

)

. Furthermore, (Φ′
1)

−1 manifestly commutes with Φ′
1,

as required by the generalized Hitchin’s equations. So we might hope that we can find a

solution for Φ′
2 by setting

Φ′
2 ∼ (Φ′

1)
−1. (6.75)

There are two problems in this proposal. First, the line bundle L′
1 has degree degL

′
1=0,

but the L′
2 has degree degL′

2 = 1. Thus (6.75) does not make sense. Second, the

curve (6.74) indicates that Φ′
1 behaves near z = −

(

ζNA /ζ
N
C

)

as

Φ′
1 → const.

(

z + ζNA /ζ
N
C

)1/N
diag

(

1, ωN , · · · , ωN−1
N

)

. (6.76)

Then, (Φ′
1)

−1 is singular at this point. These two problems can be solved simultaneously.

We take a holomorphic section of the degree 1 line bundle L′
2 as,

λ =
ζB

(

ζNA + ζNC
)1−1/N

(

ζNC z + ζNA
)

, (6.77)

and set

Φ′
2 = λ(Φ′

1)
−1. (6.78)

Now both the left and right hand side are sections of the same bundle. Due to the zero of

λ at z = −(ζNA /ζ
N
C ), the singular behavior is avoided. The overall factor of λ is chosen so

that Φ′
2 behaves at z = 1 as Φ′

2 ∼ ζB(1 − z)−1/N diag
(

1, ωN , · · · , ωN−1
N

)

. In this way, Φ′
2

has all the desired property.
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We summarize the above solution as the spectral curve,

x′N1 =

(

ζNC z + ζNA
)

(1− z)

z
, (6.79)

x′1x
′
2 =

ζB
(

ζNC + ζNA
)1−1/N

(

ζNC z + ζNA
)

, (6.80)

where (x′1, x
′
2) are the eigenvalues of (Φ′

1,Φ
′
2). See appendix B for a rigorous derivation of

this curve.

Let us compute the superpotential vev. We use the general formula (3.39). First we

have to go back to the original fields Φ1 = s−1
1 Φ′

1 and Φ2 = s−1
2 Φ′

2. The sections s1 and s2
introduced in subsection 6.1 are given as

s1 = z, s2 = (z − 1), (6.81)

where s1 is a section of the degree two line bundle and s2 is a section of the degree one line

bundle. Then we get

x1x2 =
ζB

(

ζNC + ζNA
)1−1/N

(

ζNC z + ζNA
z(z − 1)

)

. (6.82)

The formula (3.39) gives

W =

∮

z∼1

dz

2πi
x1x2N

= NζB
(

ζNC + ζNA
)1/N

, (6.83)

where the factor N comes from the fact that Φ1Φ2 ∝ 1N and Tr1N = N . This result

agrees with the field theory estimate (6.72) if the parameters are identified as ζNA = Λ2N
A ,

ζNC = Λ2N
C , and ζNB = ΛN

B . Therefore, the spectral curve contains both the information of

the Seiberg-Witten curve and the dynamical superpotential vev.

6.3.3 TN theory coupled to singlets

Here we do not gauge any flavor groups of the TN theory. Instead, we introduce singlets

MA in the adjoint representation of the flavor group SU(N)A. We take a superpotential,

W = tr(MAµA). (6.84)

The moduli spaces studied in 6.3.1 and 6.3.2 are “Higgs branch” in the sense that the

Higgs branch operators of the original TN theory have nonzero vevs. In this subsection,

we consider “Coulomb branch” in the sense that the vevs of Coulomb branch operators of

the TN theory are turned on.

Let us give a nonzero generic vev to MA. From the point of view of the Coulomb

branch of the TN theory, the superpotential (6.84) gives a mass term associated to the

flavor symmetry SU(N)A, with the mass matrix given by the vev ofMA. Thus the Seiberg-

Witten curve is the same as that of the TN theory with the mass MA. Our purpose is to

reproduce this result from the twisted 5d SYM.
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As explained in appendix A, the above theory is realized by a Riemann sphere with

three regular punctures. At two of the punctures, z = 1 and z = ∞, the Φ2 has singularities.

These punctures are associated to SU(N)B and SU(N)C . The Φ1 has a singularity at one

puncture z = 0 which is associated to SU(N)A. The degrees of the line bundles are

degL′
1 = 0 and degL′

2 = 1, or equivalently degL1 = −1 and degL2 = −1. From the

result (3.38), we have

Φ2(z = 0) ≈MA. (6.85)

Notice we have taken MA instead of µA. Actually, in the present theory we get µA = 0 by

the equation of motion of MA, and Φ2(z = 0) should be identified as MA. See appendix A.

Now, let us take a section s of the degree −1 line bundle given as s = 1/z, and define

Φ′′
2 = sΦ2 =

Φ2

z
. (6.86)

Now Φ′′
2 takes values in the degree −2 line bundle, which is the canonical bundle K on the

Riemann sphere. If we set Φ1 = 0, the spectral curve is given as

0 = det
(

x′′ − Φ′′
2

)

. (6.87)

Because Φ′′
2 takes values in the canonical bundle, the spectral curve is the same as that of

the original Coulomb branch of the TN theory. The only change from the N = 2 case is

that the singularity at z = 0 is given as

Φ′′
2 → MA

z
. (6.88)

This singularity exactly matches with the fact that MA gives the mass of the TN theory as

discussed above from the field theory point of view.

In the actual N = 2 case with the singularity Φ2 → m/z, the mass m is a non-

normalizable deformation. The Kahler potential (2.45) gives an infinite kinetic term for

m, and hence m is frozen and it is not a moduli field. However, in the theory considered in

this subsection, the pole (6.88) has been introduced in an artificial way. The singlets MA

have finite kinetic terms and they are moduli field.
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A N = 1 theories of class S and dualities

In this appendix, we review N = 1 class S theories and their dualities, mainly based

on [15, 45, 51, 53]. An important ingredient is the TN theory.17 The TN theory has flavor

symmetries SU(N)A × SU(N)B × SU(N)C , and there are chiral multiplets µA, µB and µC
in the adjoint representations of the corresponding flavor groups. See section 5 for more

detailed review.
17This is different from the T [SU(N)] theory discussed in section 3.
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Field theory. Take two copies of the TN theory. One of them has global symmetries

SU(N)A × SU(N)B × SU(N)1 and the other one has SU(N)C × SU(N)C × SU(N)2. We

will specify the copies of the TN theory by their flavor symmetries as TN (A,B, 1) and

TN (C,D, 2). First let us briefly recall N = 2 dualities. We gauge the diagonal subgroup

SU(N)g ⊂ SU(N)1 × SU(N)2 which is embedded as SU(N)g ∋ g 7→
(

g, tg−1
)

∈ SU(N)1 ×
SU(N)2. The superpotential is

tr
(

φ
(

µ1 − tµ2
))

, (A.1)

where φ is the adjoint chiral field of the N = 2 vector multiplet, and we have omitted the

usual
√
2 factor for simplicity. We may say that the two copies of the TN theory are glued

by the N = 2 vector multiplet.

This theory is dual to the following theory. We take TN (A,C, 1) with flavor symmetry

SU(N)A×SU(N)C ×SU(N)1 and TN (B,D, 2) with flavor symmetry SU(N)B×SU(N)D×
SU(N)2. The diagonal subgroup of SU(N)1×SU(N)2 is gauged. This theory is dual to the

above theory. There are precise correspondences of the flavor symmetries SU(N)A,B,C,D in

the original and dual theories, but SU(N)1 and SU(N)2 are gauged and hence there are

no gauge invariant relations of these groups between the original and dual theories. In this

duality, the UV coupling constant τ is mapped as τ ↔ −τ−1.

The N = 1 dualities discussed in [53] are similar to the N = 2 dualities, but we need

more labels to specify the theories. A sign ± is assigned to each copy of the TN theory. Each

flavor symmetry also has a sign ±. Thus each TN theory is labeled like T
(±)
N (A±, B±, 1).

For example, let us glue T
(+)
N (A+, B+, 1) and T

(−)
N (C−, D−, 2). They are glued by an

N = 1 vector multiplet, and the superpotential is taken as

W = c tr
(

µ1
tµ2
)

, (A.2)

where c is an exactly marginal coupling at the IR fixed point. This theory is dual to

a theory in which T
(+)
N (A+, C−, 1) and T

(−)
N (B+, D−, 2) are glued by an N = 1 vector

multiplet with a superpotential

W = c′ tr
(

µ1
tµ2
)

+ tr(µBMB) + tr(µCMC), (A.3)

where we have introduced new singletsMB andMC which are in the adjoint representations

of SU(N)B and SU(N)C , respectively. The µB,C of the original theory are dual to MB,C ,

similar to the case in Seiberg duality [102]. Furthermore, the theory is dual to a theory in

which T
(+)
N (C−, D−, 1) and T

(−)
N (A+, B+, 2) are glued by an N = 1 vector multiplet with

a superpotential

W = c′′ tr
(

µ1
tµ2
)

+ tr(µAMA) + tr(µBMB) + tr(µCMC) + tr(µDMD). (A.4)

The general rule is the following.

1. When two copies of the TN theory are glued, the vector multiplet used in the gluing is

an N = 2 vector multiplet with the coupling (A.1) if the two TN have the same sign,

i.e., if the combinations are T
(+)
N and T

(+)
N , or T

(−)
N and T

(−)
N . If they have different

– 56 –



J
H
E
P
0
1
(
2
0
1
4
)
1
4
2

signs, that is, if T
(+)
N and T

(−)
N are glued, we use an N = 1 vector multiplet with a

superpotential

c tr
(

µ1
tµ2
)

. (A.5)

2. If the sign of TN and one of its flavor symmetries, say A, are different, such as

T
(+)
N (A−, ∗, ∗) and T (−)

N (A+, ∗, ∗), then we introduce singlets MA in the adjoint rep-

resentation of the flavor group SU(N)A. The MA are mesons. We also take a super-

potential

tr(µAMA). (A.6)

If the sign of TN and a flavor symmetry is the same as T
(+)
N (A+, ∗, ∗) and

T
(−)
N (A−, ∗, ∗), there is no new ingredient.

In a generalized quiver, there are following data:

1. The number of T
(+)
N , denoted as p, and the number of T

(−)
N , denoted as q.

2. The number of flavor symmetries with + sign, denoted as n+, and the number of

flavor symmetries with − sign, denoted as n−.

For example, in the example discussed above, all the dual theories have (p, q, n+, n−) =

(1, 1, 2, 2). The claim is that theories with the same set of numbers (p, q, n+, n−) are dual

to each other. (More precisely, dual theories are specified by (p, q) and the set of flavor

symmetries {A±, B±, · · · }.) The class of theories are constructed by following the general

rule described above.

We will soon discuss that the set {A±, B±, · · · } corresponds to punctures on a Riemann

surface. In the above discussion, we have only considered the case that all the punctures

are maximal. However, it is possible to use more general punctures. Let us consider

the case in which A+ and D− are simple punctures and B+ and C− are maximal ones.

Then, for example, T
(+)
N (A+, B+, 1) is no longer the TN theory, but it is a bifundamental

qαi , q̃
i
α, where i = 1, · · · , N is a flavor index for SU(N)B and α is a gauge index. Similarly,

T
(−)
N (C−, D−, 2) is now a bifundamental pαℓ , p̃

ℓ
α where ℓ = 1, · · · , N is a flavor index for

SU(N)C . The theory constructed by gluing these two bifundamentals is an Nf = 2N

SQCD with a superpotential (A.5), where

(µ1)
α
β = qαi q̃

i
β −

δαβ
N
qγi q̃

i
γ , (A.7)

(tµ2)
β
α = pβℓ p̃

ℓ
α − δβα

N
pγℓ p̃

ℓ
γ . (A.8)

The dual theory with T
(+)
N (A+, C−, 1) and T

(−)
N (B+, D−, 2) as bifundamentals are con-

structed similarly using (A.3). This is essentially the same as Seiberg duality. The dual

theory using T
(+)
N (C−, D−, 1) and T

(−)
N (A+, B+, 1) is more nontrivial. See [53] for details.

All of the above theories are conformal and all the punctures are regular. However,

we can also consider non-conformal cases. Let us start from the theory constructed by
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Figure 3. S-duality in N = 2 theory. Both the left and right figures are just a Riemann sphere

with four punctures A,B,C and D, but different degeneration limits give different field theory

realizations.

T
(+)
N (A+, B+, 1) and T

(−)
N (C−, D−, 2). Then, for example, we introduce an N = 2 vector

multiplet coupled to the group SU(N)B. We also introduce Nf flavors of quarks qi, q̃
i

(i = 1, · · · , Nf ) coupled to the SU(N)B gauge group. The superpotential is

W ⊃ trφB
(

µB + qiq̃
i
)

. (A.9)

For Nf < N , the puncture B+ corresponds to a irregular puncture. (It corresponds to (6.2)

of section 6).

The above puncture B+ is “locally” an N = 2 irregular puncture, but we can get

an N = 1 dual of this puncture. Going to the dual theory which is constructed by

T
(+)
N (A+, C−, 1) and T

(−)
N (B+, D−, 2), we get

W ⊃ trφB
(

MB + qiq̃
i
)

+ tr(MBµB), (A.10)

where we have used the fact that µB of the original theory is dual to MB. The adjoint

fields φB and MB become massive and can be integrated out. Then we get

W ⊃ − tr
(

µBqiq̃
i
)

. (A.11)

Therefore, the N = 1 dual of the N = 2 irregular puncture is given by the N = 1

vector multiplet and quarks with the superpotential (A.11). When Nf = N , one can see

that (A.11) is just the same as (A.5). In this Nf = N case, we get one simple and one

maximal regular punctures instead of one irregular puncture.

(2,0) theory interpretation. The dualities discussed above have a nice interpretation

in terms of the N = (2, 0) theories compactified on a Riemann surface. First, let us recall

the N = 2 dualities. The theory constructed by gluing TN (A,B, 1) and TN (C,D, 2) is

realized as a Riemann sphere with four punctures A,B,C and D as in figure 3. The theory

is manifestly dual to the theory constructed by gluing TN (A,C, 1) and TN (B,D, 2), and so

on. Different degeneration limits give different field theory realizations as in the figure.

We decompose the Riemann surface into several pieces as in figure 4. In the figure, a

Riemann sphere with three holes corresponds to the “body” of a copy of TN . There are

also cap-like pieces with a puncture on it. These caps are glued to a hole of the Riemann
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Figure 4. Decomposition of the Riemann surface into pieces. By gluing them, we can get a 4d

field theory. Although each piece does not have a direct field theory interpretation, it is convenient

to consider this decomposition to understand the N = 1 dualities.

sphere. Gauging the diagonal subgroup of SU(N)1×SU(N)2 of two copies of TN is realized

by gluing two holes of the Riemann spheres. Near the boundaries of these pieces, the metric

is flat and the Riemann surface locally looks like S1 × R.

On each piece of the Riemann surface, we take two line bundles. These two line bundles

are the ones in F = L1⊕L2 which are used in the twisting of the (2, 0) theory (or 5d SYM)

as in section 2. We take one line bundle to be the canonical bundle, denoted as K, and the

other is the trivial bundle, denoted as O. In the N = 2 case, canonical bundles are glued

together and trivial bundles are glued together, defining the canonical bundle and trivial

bundle on the entire Riemann surface. We get L1 = K and L2 = O in this case.

Now let us discuss the N = 1 case. We use different gluing of the line bundles from

the N = 2 case. The general rule is the following:

1. For T
(+)
N , the line bundles of the corresponding Riemann sphere with three holes are

taken such that L1 → K and L2 → O. If it is T
(−)
N , we take L1 → O and L2 → K.

2. For A+, the line bundles of the corresponding cap are taken such that L1 → K and

L2 → O. The field Φ1 has a singularity at the puncture. If it is A−, we take L1 → O
and L2 → K. In this case, the Φ2 has a singularity.

As we mentioned above, the metric near boundaries are flat, so the canonical bundle is

trivial near the boundaries and hence the gluing of the line bundles are straightforward.

The gluing requires complex parameters which determine the complex moduli of the line

bundles. These parameters, combined with the complex moduli of the Riemann surface,

correspond to exactly marginal couplings of the field theory.

The above rule matches with the field theory rule very well. Let us glue two copies of

TN . If both of them has the same sign, the above gluing of pieces of the Riemann surface is

locally very similar to the case of N = 2, aside from the possible complex parameters in the

gluing. Therefore, it is natural that we get an N = 2 vector multiplet. Complex parameters

in the gluing correspond to changing (A.1) as tr
(

φ
(

cµ1 − c−1tµ2
))

for a parameter c. On

the other hand, if two TN ’s of different signs are glued, the gluing process breaks half of

the supersymmetry. Our interpretation is that this gluing gives an N = 1 vector multiplet

with the superpotential (A.5). A similar thing can happen in the gluing of TN and a cap
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0,1,2,3 4 5 6 7 8 9

D4 ◦ ◦
NS5 ◦ ◦ ◦
D6 ◦ ◦ ◦ ◦
NS5’ ◦ ◦ ◦
D6’ ◦ ◦ ◦ ◦

Table 1. Branes which preserve 4d N = 1 supersymmetry, and their extended directions.

labeled by A. If they have the same sign, the gluing is locally N = 2. On the other hand,

if they have different signs, the gluing breaks half of the supersymmetry. We interpret that

this process introduces the meson MA and the coupling (A.6).

Actually, the above picture can be checked in type IIA brane construction [15]. We

prepare several branes as in table 1. These branes preserve 4d N = 1 supersymmetry and

can be used to construct gauge theories [2, 3]. Let us denote a simple puncture as S and a

maximal puncture as M . Then, an NS5 brane corresponds to T (+)(∗, ∗, S+) and an NS5’

brane corresponds to T (−)(∗, ∗, S−). N D6 branes correspond to M+ and N D6’ branes

corresponds to M−, etc. Gluing pieces of the Riemann surface corresponds to suspending

N D4 branes between these NS5, NS5’, D6 and D6’ branes. From this interpretation, we

can see the properties described above.

The degrees of the line bundles L1 and L2 are determined as follows. A Riemann

sphere with three holes has the Euler number 2− 3 = −1 and hence the canonical bundle

K has degree degK = +1. A cap region surrounding a puncture has the Euler number

2− 1 = +1 and hence K has degree degK = −1. Here the degree is defined as the integral

of the first Chern class
∫

c(K), which is well defined under the condition that the metric

is flat near the boundaries. Therefore, using the above general rule, we get

degL1 = p− n+, degL2 = q − n−. (A.12)

This is an important equation to construct the twisted 5d SYM from field theory data.

The above gluing rule is not the most general one consistent with the N = 1 super-

symmetry. Take two copies of TN , denoted as T
(1)
N and T

(2)
N . Then they have rank two

bundles F (1) = O(1) ⊕ K(1) and F (2) = O(2) ⊕ K(2). In general, we can glue the two

bundles F (1) and F (2) in more complicated ways using a U(2) matrix. The same is true

for a gluing of TN and A. See [47] where such gluing has essentially appeared as Wilson

lines of SU(2) ⊂ U(2). It would be interesting to study this case more systematically.

B Solving generalized Hitchin’s equations

Here we develop a method to determine spectral curves based on the set of equations (2.64),

0 = Pi1···iN (x1, x2) ≡
1

N !
(xi1 − Φi1)

α1
β1

· · · (xiN − ΦiN )
αN

βN
ǫα1···αN

ǫβ1···βN . (B.1)
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We only consider the case F = L1 ⊗ L2, i.e., Φ1 and Φ2 are sections of L1 ⊗ ad(E) and

L2 ⊗ ad(E), respectively. In this case, it is convenient to define

φk,ℓ(z) = (−1)k+ℓ
(Φ1)

α1
β1

· · · (Φ1)
αk

βk
(Φ2)

αk+1

βk+1
· · · (Φ2)

αk+ℓ

βk+ℓ
δ
β1···βkβk+1···βk+ℓγk+ℓ+1···γN
α1···αkαk+1···αk+ℓγk+ℓ+1···γN

k!ℓ!(N − k − ℓ)!
,

(B.2)

where δβ1···βN
α1···αN

= ǫα1···αN
ǫβ1···βN . The φk,ℓ is a section of line bundle Lk

1 ⊗Lℓ
2. Then, Pi1···iN

is given as

P1···12···2 = xN−m
1 xm2 +

∑

k,ℓ

(N −m)!m!(N − k − ℓ)!

N !(N −m− k)!(m− ℓ)!
φk,ℓ(z)x

N−m−k
1 xm−ℓ

2 , (B.3)

where we have taken i1 = · · · = iN−m = 1 and iN−m+1 = · · · = iN = 2 in Pi1···iN .

Particularly important equations in the following discussions are

0 = P1 ≡ xN1 +
N
∑

k=2

φk,0(z)x
N−k
1 , (B.4)

0 =
∂P1(x1, z)

∂x1
x2 +

N−1
∑

k=1

φk,1(z)x
N−1−k
1 . (B.5)

The second equation (B.5) can be explicitly checked using (B.2) and (B.3). These equations

defines an N -covering Σ of the Riemann surface C. An equation similar to (B.5) was also

discussed in [16], but our equation is more explicitly given in terms of the Higgs fields Φ1,2.

We claim (without complete proof) that these two equations are enough to determine

the curve Σ = {Pi1···iN = 0} in the case where the eigenvalues of Φ1 are distinct on generic

points of the Riemann surface. The motivation of this claim is as follows. As explained

in (2.66), the curve Σ is given by (x1, x2) = (λ1,k, λ2,k) (k = 1, · · · , N), where (λ1,k, λ2,k)

are pairs of eigenvalues of (Φ1,Φ2). The equation P11···1 = 0, (B.4), sets x1 = λ1,k for some

k. Then, the equation P21···1 = 0, (B.5), gives

(x2 − λ2,k)
∏

ℓ6=k

(λ1,k − λ1,ℓ) = 0, (B.6)

where we have used x1 = λ1,k. Therefore, when λ1,k 6= λ1,ℓ for k 6= ℓ, we get (x1, x2) =

(λ1,k, λ2,k) as desired.

Note that we have only assumed that the eigenvalues of Φ1 do not degenerate at generic

points. At some discrete points on the Riemann surface, degeneration of the eigenvalues

can occur. In fact, such points are important to determine the curve as we will see below.

The above result is also represented as follows. A generalization of the Cayley-Hamilton

theorem is that the commuting matrices Φ1 and Φ2 satisfy Pi1···iN (Φ1,Φ2) = 0 where we

have substituted the matrices (Φ1,Φ2) for (x1, x2) in Pi1···iN (x1, x2) defined in (B.1). When

eigenvalues are not degenerate, this formula is proved by simultaneously diagonalizing Φ1

and Φ2. The case where some of the eigenvalues are degenerate can be reached as a limit

– 61 –



J
H
E
P
0
1
(
2
0
1
4
)
1
4
2

of the non-degenerate case, and hence the theorem is proved. If we are given a solution for

Φ1, (B.5) tells us

Φ2 = −
[

∂P1

∂x1
(x1 = Φ1)

]−1 N−1
∑

k=1

φk,1Φ
N−1−k
1 . (B.7)

This is the motivation for our claim that (B.4) and (B.5) are enough in generic case; the

curve (B.4) and the points of its Jacobian variety may determine (Az̄,Φ1) as in the original

Hitchin systems’ case, and Φ2 is uniquely determined by (B.7). We do not try to give a

complete mathematical proof here.

B.1 Constraint from commuting condition

The crucial difference between generalized Hitchin systems and original Hitchin systems is

that there is the commuting condition [Φ1,Φ2] = 0. Here we explain why this commuting

condition strongly constrains solutions of generalized Hitchin’s equations [45].

If eigenvalues of Φ1 and Φ2 are generic, the commuting condition just implies that the

two matrices Φ1 and Φ2 are simultaneously diagonalizable. However, when some of the

eigenvalues of Φ1 or Φ2 become degenerate, the commuting condition even constrain the

eigenvalues of them.

Let us first see a simple SU(2) example. Suppose that near z ∼ 0, Φ1 behaves as

det(x1 − Φ1) = x21 − z. The two eigenvalues of Φ1 are degenerate at z = 0. In a diagonal

form, Φ1 is given as Φ1 = diag
(

z1/2,−z1/2
)

. However, this is not single valued. In a more

appropriate basis, Φ1 may be given as

Φ1 =

(

0 1

z 0

)

. (B.8)

Then, imposing [Φ1,Φ2] = 0, one can easily see that Φ2 at z = 0 must be of the form

Φ2(z = 0) =

(

0 c

0 0

)

. (B.9)

Therefore, the eigenvalues of Φ2 must also degenerate at z = 0.

Another way of seeing this condition is the following. For the SU(2) case, (B.1) gives

x21 = f(z), x22 = g(z), x1x2 = h(z), (B.10)

where f(z) = Tr(Φ2
1)/2, g(z) = Tr(Φ2

2)/2 and h(z) = Tr(Φ1Φ2)/2. For these equations to

be consistent, we need to have f(z)g(z) = h(z)2. Then, if f(z) has a simple zero at z = 0,

g(z) must also have a zero of odd degree at the same point so that h(z) is holomorphic. In

this way we get the same conclusion as above about the degeneracy of the matrices Φ1 and

Φ2. The argument based on (B.10) might look quite different from the argument based on

the commuting condition. However, recall that the commuting condition was the essential

reason that the over-determined equations (B.10) or (B.1) define a consistent curve, as

explained in subsection 2.3.
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Now let us consider a general constraint for SU(N) case. The commuting condition

[Φ1,Φ2] = 0 tells us that the matrices Φ1 and Φ2 are generically simultaneously diagonal-

izable. Suppose that the eigenvalues of Φ1 are generic enough so that all the eigenvalues

are distinct at generic points of the Riemann surface C. Then, we can expand Φ2 as

Φ2 =

N−1
∑

k=0

fkΦ
k
1. (B.11)

The coefficients fk may be determined by solving e.g.,

N−1
∑

k=0

tr
(

Φm+k
1

)

fk = tr(Φm
1 Φ2), (m = 0, · · · , N − 1). (B.12)

In the following discussion, we do not need the explicit form of fk. The important point is

that fk are given by gauge invariant polynomials of Φ1 and Φ2, i.e., tr Φ
m
1 Φk

2. Therefore,

they are single-valued on the Riemann surface C.

We have assumed above that the eigenvalues of Φ1 are distinct at generic points of the

Riemann surface. However, at discrete set of points, their eigenvalues degenerate. These

points are the branching points of the cover det(x1 − Φ1) = 0. Suppose that z = 0 is one

of these points and det(x1 − Φ1) behaves as

det(x1 − Φ1) ∼
∏

ℓ

[

(x1 − aℓ)
nℓ − bnℓ

ℓ z
mℓ
]

, (B.13)

where aℓ and bℓ are constants, nℓ andmℓ are relatively prime integers such that
∑

ℓ nℓ = N .

The integers mℓ can be negative so that we can also treat behaviors at punctures. The

constants aℓ may or may not be zero, but we assume bℓ 6= 0. Then the eigenvalues of Φ1

behave as

Φ1 ∼ diag

[

⊕

ℓ

(

aℓ + bℓz
mℓ/nℓ , · · · , aℓ + (ωnℓ

)nℓ−1bℓz
mℓ/nℓ

)

]

, (B.14)

where ωnℓ
= exp(2πi/nℓ).

Now we use (B.11) to determine the behavior of Φ2. Because fk are single-valued on

the Riemann surface and cannot have fractional powers of z around z = 0, we obtain

Φ2 ∼ diag

[

⊕

ℓ

(

cℓz
rℓ + dℓz

pℓ+qℓmℓ/nℓ , · · · , cℓzrℓ + (ωqℓ
nℓ
)nℓ−1dℓz

pℓ+qℓmℓ/nℓ

)

]

, (B.15)

where pℓ, qℓ and rk are integers such that qℓ is not a multiple of nℓ.

As a special case of (B.14) and (B.15), the following simple observation will be useful.

When nℓ = N , the traceless condition TrΦ1 = TrΦ2 = 0 suggests that aℓ = cℓ = 0.

Therefore, if Φ1 behaves as Φ1 ∼ zmℓ/N diag
(

1, ωN , · · · , ωN−1
N

)

with mℓ and N relatively

prime, Φ2 must behave as Φ2 ∼ zpℓ+qℓmℓ/N diag
(

1, ωqℓ
N , · · · ,

(

ωqℓ
N

)N−1
)

for qℓ which is not

a multiple of N . In particular, if Φ2 does not diverge at z = 0, it must actually vanish,

Φ2 → 0;

If Φ1 → zmℓ/N diag
(

1, ωN , · · · , ωN−1
N

)

, then Φ2 → 0 and vice versa. (B.16)
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The above condition about degeneracy of eigenvalues of Φ1 and Φ2 indicates that the

degeneration points give constraints on the solutions of generalized Hitchin’s equations.

This observation suggests the following strategy to determine (B.4) and (B.5). First, note

that some of the eigenvalues degenerate when we can find a solution to P1 = ∂P1/∂x1 = 0.

Then, from (B.5), we can see that
∑N−1

k=1 φk,1(z)x
N−1−k
1 must be zero at these points. This

condition fixes parameters inside φk,1.

B.2 Solutions

We give a derivation of the spectral curves of subsection 6.2.1 and 6.3.2 based on the

strategy discussed above. Here we use Φ′
1=s1Φ1 and Φ′

2=s2Φ2 as defined in subsection 6.1.

We use φ′k,ℓ which denote sections defined by using Φ′
1 and Φ′

2 in (B.2).

Massive SQCD with Nf < N flavors. Here we determine the curve of subsec-

tion 6.2.1. The behavior at z → 0 is given as

Φ′
1 → c1z

1/N diag
(

1, ωN , · · · , ωN−1
N

)

(B.17)

Φ′
2 →

ζ2

z1/N
diag

(

1, ω−1
N , · · · , ω−N+1

N

)

(B.18)

where we have used the result of subsection B.1 for the behavior of Φ1. The constant c1
is to be determined by solving the generalized Hitchin’s equations. Similarly, at z = ∞,

we have

Φ′
1 → ζ1z

1/(N−Nf ) diag
(

0, · · · , 0, 1, ωN−Nf
, · · · , ωN−Nf−1

N−Nf

)

+ diag
(

m1, · · · ,mNf
,m′, · · · ,m′

)

, (B.19)

Φ′
2 → diag

(

c′1, · · · , c′Nf
, c′, · · · , c′

)

, (B.20)

where
∑Nf

i=1mi + (N −Nf )m = 0,
∑Nf

i=1 c
′
i + (N −Nf )c

′ = 0 and we have again used the

result of subsection B.1.

The singular behaviors above suggest the following:

1. At z → 0, φ′k,ℓ behaves as

φ′k,ℓ →











O
(

z1
)

k > ℓ

O
(

z0
)

ℓ 6= N

O
(

z−1
)

(k, ℓ) = (0, N)

. (B.21)

2. At z → ∞, φ′k,ℓ behaves as

φ′k,ℓ →
{

O
(

z0
)

k < N −Nf

O
(

z1
)

k ≥ N −Nf
. (B.22)

In determining the above behaviors, it is important to note that φ′k,ℓ are single valued

functions of z, and hence, for example, if φ′k,ℓ → O
(

z1/N
)

at z → 0, we must have

φ′k,ℓ → O
(

z1
)

etc.
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The curve det (x′1 − Φ′
1) = 0 is uniquely fixed by the above singular behaviors. For

example, φ′k,0 for 2 ≤ k < N −Nf must be zero to be consistent with the above behavior.

For k ≥ N − Nf , φ
′
k,0 must be proportional to z, and their coefficients are fixed by the

singularity (B.19). We get

0 = P1 = x′N1 − ζ
N−Nf

1 zQ1

(

x′1
)

, (B.23)

where we have defined

Q1(x
′
1) =

Nf
∏

i=1

(

x′1 −mi

)

. (B.24)

Our remaining task is to determine the curve (B.5).

From the singular behavior described above, we get

N−1
∑

k=1

φ′k,1x
′N−1−k
1 = ax′N−2

1 + z
N−1
∑

k=N−Nf

bN−1−kx
′N−1−k
1 , (B.25)

where a and bN−1−k are constants. Then (B.5) becomes

0 =

(

Nx′N−1
1 x′2 − zζ

N−Nf

1

∂Q1

∂x′1
x′2

)

+



ax′N−2
1 + z

Nf−1
∑

k=0

bkx
′k
1



 . (B.26)

By multiplying x′21 and using (B.23), we get

0 =

(

NQ1 − x′1
∂Q1

∂x′1

)

x′1x
′
2 +



aQ1 +

Nf−1
∑

k=0

b′kx
′k+2
1



 , (B.27)

where b′k = bk/ζ
N−Nf . This equation suggests that the polynomial aQ1 +

∑Nf−1
k=0 b′kx

′k+2
1

must vanish at the zeros of the polynomial NQ1 − x′1(∂Q1/∂x
′
1). Because they are poly-

nomials of x′1 of degree Nf + 1 and Nf respectively, the constants b′k must be such that

aQ1 +

Nf−1
∑

k=0

b′kx
′k+2
1 = c′

(

1 + cx′1
)

(

Q1 −
x′1
N

∂Q1

∂x′1

)

, (B.28)

where c and c′ are constants. Comparing the x′01 and x′11 terms, we get

c′ = a, c = − 1

N

Nf
∑

i=1

1

mi
. (B.29)

Note that the zeros of NQ1 − x′1(∂Q1/∂x
′
1) occur at the points where P1 = ∂P1/∂x

′
1 = 0.

As explained in subsection B.1, these points constrain the moduli parameters.

The curve is now

x′1x
′
2 +

a

N



1− x′1
N

Nf
∑

i=1

1

mi



 = 0. (B.30)
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The constant a is determined from the behavior of x′1 and x′2 at z → 0. Since x′N2 →
ζN2 z

−1 and x′N1 → (−1)Nf ζ
N−Nf

1 z
∏Nf

i=1mi, we get (x′1x
′
2)

N → (−1)Nf ζ
N−Nf

1 ζN2
∏Nf

i=1mi.

Therefore, the final result is

0 = x′1x
′
2 − Λ3

eff



1− x′1
N

Nf
∑

i=1

1

mi



 , (B.31)

Λ3
eff =



(−1)Nf ζ
N−Nf

1 ζN2

Nf
∏

i=1

mi





1
N

. (B.32)

This is the curve discussed in subsection 6.2.1.

TN theory coupled to N = 1 and N = 2 vector multiplets. Here we derive the

curve of the theory discussed in subsection 6.3.2. The line bundle L′
1 = L1 ⊗ LB and

L′
2 = L2 ⊗ LA have degrees degL′

1 = 0 and degL′
2 = 1, respectively.

The singular behaviors of the Higgs fields are the following. At z → 0, we have

Φ′
1 →

ζA
z1/N

diag
(

1, ωN , · · · , ωN−1
N

)

, (B.33)

Φ′
2 → cz1/N diag

(

1, ω−1
N , · · · , ω−N+1

N

)

, (B.34)

where we have used the result of subsection B.1 to determine the behavior of Φ′
2. Similarly,

at z → ∞, we require

Φ′
1 → ζCz

1/N diag
(

1, ωN , · · · , ωN−1
N

)

, (B.35)

Φ′
2 → z

c

z1/N
diag

(

1, ω−1
N , · · · , ω−N+1

N

)

, (B.36)

where the factor z in Φ′
2 comes from the fact that degL′

2 = 1. Finally, at z → 1 we require

Φ′
1 → c(z − 1)1/N diag

(

1, ωN , · · · , ωN−1
N

)

(B.37)

Φ′
2 →

ζB
(z − 1)1/N

diag
(

1, ω−1
N , · · · , ω−N+1

N

)

. (B.38)

These behaviors suggest the following behaviors of φ′k,ℓ;

1. At z = 0, φ′k,ℓ behaves as

φ′k,ℓ →











O
(

z1
)

ℓ > k

O
(

z0
)

k 6= N

O
(

z−1
)

(k, ℓ) = (N, 0)

. (B.39)

2. At z = ∞, φ′k,ℓ behaves as

φ′k,ℓ →











O
(

zℓ−1
)

ℓ > k

O
(

zℓ
)

k 6= N

O
(

z1
)

(k, ℓ) = (N, 0)

. (B.40)
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3. At z = 1, φ′k,ℓ behaves as

φ′k,ℓ →



















O
(

(z − 1)1
)

k > ℓ

O
(

(z − 1)0
)

ℓ 6= N

O
(

(z − 1)−1
)

(k, ℓ) = (0, N)

. (B.41)

The only possible solution for P1 ≡ det(x′1 − Φ′
1) is given as

P1 = x′N1 −
(

ζNA
z

+ ζNC

)

(1− z). (B.42)

Next, let us determine (B.5). Using the above singular behaviors, we get,

0 = x′N−1
1 x′2 + (a1z + a2)x

′N−2
1 + (1− z)

N−1
∑

k=2

bkx
′N−1−k
1 , (B.43)

for some constants a1,2 and bk. Multiplying x′21 and using (B.42), we get

0 =
(

ζNC z + ζNA
) (

x′1x
′
2 + a1z + a2

)

+ z

N−1
∑

k=2

bkx
′N+1−k
1 . (B.44)

Let us see the behavior at
(

ζNC z + ζNA
)

→ 0. In this limit, we have x′1 ∼
(

ζNC z + ζN1
)1/N

as

one can see from (B.42). Since the first term of (B.44) vanishes linearly as
(

ζNC z + ζNA
)

→ 0,

we must set bk = 0 for (B.44) to be consistent. Then we get x′1x
′
2 + a1z + a2 = 0.

By considering the limit
(

ζNC z + ζNA
)

→ 0 again, a1 and a2 must be such that x′1x
′
2 =

a
(

ζNC z + ζNA
)

. Note that the point
(

ζNC z + ζNA
)

= 0 is exactly the point P1 = ∂P1/∂x
′
1 =

0 where solutions of x′1 degenerate. This point is important to constrain the curve, as

explained in subsection B.1.

The constant a is determined by considering the limit z → 1. The final result for the

curve is

x′1x
′
2 =

(

ζNB
(

ζNC + ζNA
)N−1

)1/N
(

ζNC z + ζNA
)

. (B.45)

This is the curve discussed in subsection 6.3.2.
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