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Abstract: For BPS black holes with at least four unbroken supercharges, we describe

how the macroscopic entropy can be used to compute an appropriate index, which can be

then compared with the same index computed in the microscopic description. We obtain

exact results incorporating all higher order quantum corrections in the limit when only

one of the charges, representing momentum along an internal direction, approaches infinity

keeping all other charges fixed at arbitrary finite values. In this limit, we find that the

microscopic index is controlled by certain anomaly coefficients whereas the macroscopic

index is controlled by the coefficients of certain Chern-Simons terms in the effective ac-

tion. The equality between the macroscopic and the microscopic index then follows as a

consequence of anomaly inflow. In contrast, the absolute degeneracy does not have any

such simple expression in terms of the anomaly coefficients or coefficients of Chern-Simons

terms. We apply our analysis to several examples of spinning black holes in five dimensions

and non-spinning black holes in four dimensions to compute the index exactly in the limit

when only one of the charges becomes large, and find perfect agreement with the result of

exact microscopic counting. Our analysis resolves a puzzle involving M5-branes wrapped

on a 5-cycle in K3 × T 3.
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1 Introduction and summary of results

In a class of supersymmetric string theories with sixteen or more unbroken supercharges we

now have a near complete understanding of the spectrum of BPS states [1–35]. This makes

these theories ideal testing ground for a comparison between the statistical entropy of an

ensemble of states and the thermodynamic entropy of the corresponding BPS black hole. In

particular, given such an exact knowledge of the microscopic degeneracy, one can aim for a

possibly exact comparison with an appropriately defined macroscopic entropy that includes

all subleading corrections. On the macroscopic side the subleading classical corrections

arising from local higher derivative terms in the effective action can be incorporated using

the Wald formula [36] whereas the subleading quantum corrections, both perturbative and
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nonperturbative, can be incorporated using the framework of quantum entropy function [37,

38]. These can then be compared with the subleading corrections on the microscopic side

after carrying out a systematic asymptotic expansion of the exact formula.

In carrying out such a comparison one needs to be careful about an important subtlety.

On the macroscopic side, the black hole entropy defined from the first law of thermody-

namics calculates the logarithm of the absolute degeneracy as required by the Boltzmann

relation. On the other hand, on the microscopic side, one normally computes a super-

symmetric index which receives contribution only from BPS states and hence is protected

from any change under continuous deformations of the moduli of the theory. A priori the

index and the degeneracy are not the same, and one could question the rationale behind

comparing the degeneracy computed in the macroscopic side with the index computed on

the microscopic side.

One can proceed nevertheless following the dictum that whatever can get paired up

will generically get paired up, and hence in the interacting theory the index equals the

degeneracy. In many examples this strategy has worked very well for the leading entropy.

However, there is no guarantee that it will work also for the subleading corrections. Indeed,

there are a number of puzzles in the context of four-dimensional black holes where an

appropriate index in the conformal field theory describing a system of branes and the

macroscopic degeneracy computed from black hole entropy apparently differ at a subleading

order [39, 40]. In the context of certain five-dimensional black holes in M-theory on K3×T 2

and T 6 even the leading asymptotics of the microscopic index apparently disagrees with the

black hole entropy since the microscopic index vanishes [41]. One can remedy the situation

in some cases by considering a modified index as suggested in [31, 42–45]. However, there

are examples such as the one-sixteenth BPS black hole in AdS5 where no microscopic index

appears to have the right asymptotic growth that agrees with the black hole entropy [46–

50]. It is thus desirable both conceptually and practically to develop clear physical criteria

for deciding when the black hole degeneracy is captured by a microscopic index and which

particular index is relevant under what conditions.

An argument based on the symmetries of the near horizon geometry of the black

hole was suggested in [38]. The basic idea is to use the black hole degeneracy as an

input to compute an index on the macroscopic side and then compare this with the index

computed on the microscopic side. This relies on the existence of an AdS2 factor in the

near horizon geometry of extremal black holes. The natural boundary condition on the

various fields in AdS2 is such as to fix all the charges (including angular momentum) and

let the dual chemical potentials fluctuate. In particular a spherically symmetric horizon,

being invariant under rotation, will represent an ensemble of states all of which carry zero

angular momentum. Thus if J denotes the third component of the angular momentum,

and we define an index with the weight factor (−1)F := exp (2πiJ), then all the states

which account for the entropy associated with the horizon will have (−1)F = 1 and hence

Tr(−1)F = Tr (1) . (1.1)

Furthermore, if the black hole preserves at least four supersymmetries, then spherical sym-

metry is forced on us since the closure of the symmetry algebra implies that the supergroup
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of symmetries is SU(1, 1|2). This contains an SU(2) factor which can be identified with a

subgroup of spatial rotations. Thus for such black holes (1.1) holds and the index equals

the degeneracy.

This general argument needs to be further supplemented by taking into account the

possible contribution from degrees of freedom living outside the horizon, — the hair

modes [51, 52]. These include in particular the fermion zero modes associated with the

broken supersymmetry generators which account for the supermultiplet structure of a BPS

state. The end result of this analysis expresses an appropriate index (helicity trace index)

for the full black hole as the product of the degeneracy associated with the horizon (or hori-

zons in case of multi-centered black holes) and the same helicity trace index for the hair

degrees of freedom [38]. Since the contribution from the hair modes is usually small this

explians why the black hole entropy represents the logarithm of an index to leading order.

But this argument also tells us that at the subleading order we must take into account the

effect of the hair modes while comparing the black hole entropy with the logarithm of the

microscopic index. Indeed, without the hair modes one runs into internal inconsistencies

when two different black hole solutions have identical near horizon geometries [51, 52].

The above line of argument thus gives us a precise route for computing an index from

the macroscopic viewpoint which can then be compared with the microscopic results for

the same index. However, explicit computation of the index on the macroscopic side is

often quite challenging for two reasons. First, computing the entropy associated with the

horizon requires us to carry out a path integral over the string fields in the near horizon

geometry of the black hole. Second this procedure requires us to explicitly identify the

hair modes by analyzing supersymmetric deformations of the (multi-) black hole solution

and then quantizing them. These difficulties have been overcome in special cases in various

approximations, often leading to non-trivial agreement between the macroscopic and micro-

scopic results not only at the perturbative level [2, 6, 11] but also at the non-perturbative

level [29, 38, 53–56]. Furthermore this formalism also predicts correctly the sign of the

index from the macroscopic side which agrees with the results of the microscopic analysis

in a wide class of theories [38, 57].

In this paper we develop an alternative line of argument for computing the index

on the macroscopic side in a special limit when only one of the charges carried by the

black hole, representing momentum along an internal circle S1 in some duality frame,

becomes large. Even though this does not allow us to access the most general charge

configuration, it provides a practical method for an exact computation for sufficiently

general configurations for which all charges except the momentum can take any finite

value. Moreover, by changing duality frames, one can choose different charges to play the

role of the momentum that is becoming large and thus explore different regions of the

charge lattice.

In the limit described above, the near horizon geometry of the black hole coincides

with the near horizon geometry of an extremal BTZ black hole times a compact internal

space K [58–60]. Furthermore, by taking the limit in which the asymptotic radius of S1

approaches infinity, we can ensure that the full black hole geometry has an intermediate

region where the space-time has the form of AdS3 × K, and the near horizon geometry is
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embedded in this geometry as an extremal BTZ black hole [61]. In this case, up to some

additional contributions described below, the degeneracy associated with this black hole

can be regarded as the degeneracy of states in the CFT2 dual to the AdS3, and in the limit

of large momentum along S1 this is given by the Cardy formula. Thus computation of the

degeneracy reduces to the computation of the central charge of the dual CFT2, which, as

will be reviewed below, can be computed in terms of coefficients of the Chern-Simons term

in the action of the bulk theory [60].1 Note that this degeneracy includes the contribution

from the black hole horizon, any hair modes which live outside the black hole horizon but

inside the asymptotic AdS3×K geometry, and also multi-centered black hole configurations

in AdS3 (if they exist). This is not a problem since these must be included in the counting

of states anyway. On the other hand this does not include the contribution from any modes

which might live at the boundary of AdS3 × K or between AdS3 × K and the asymptotic

space-time. By an abuse of notation we shall call these the exterior modes, — these will

include for example the analog of the U(1) gauge fields for string theory in AdS5 ×S5 [64–

67]. Thus the contribution from these exterior modes need to be computed explicitly and

combined with the CFT2 contribution to get the full microscopic degeneracy.

Let us now turn to the computation of the index in the macroscopic theory. For this

we first need to know which index in we should calculate. In order that we can compare the

macroscopic results with the microscopic results it is important that we begin with an index

whose definition does not require any prior knowledge of either the macroscopic geometry

or the microscopic description of the system, but only on the charges and angular momenta

of the state which can be measured unambiguously by an asymptotic observer. We shall

call such an index a space-time index. In order that the index can be reliably computed

on both sides we need to pick an appropriate space-time index which receives contribution

from the BPS states under consideration but not from non-BPS states. In four dimensions

this involves computing appropriate helicity supertraces [42–44] whereas in five dimensions

one can use a slightly different version described e.g. in [31]. In either case this index

involves computing a trace of P multiplied by some polynomial in the angular momenta

over states carrying a fixed set of charges, where P — the analog of (−1)F for the Witten

index — is a Z2 symmetry generator under which the unbroken supersymmetry generators

have odd parity. The role of the angular momentum factor is to soak up the fermion zero

modes arising from the P -odd broken supersymmetries. In the macroscopic description

the contribution to this index comes from two separate sources: the bulk of AdS3 and the

exterior modes. By carefully analyzing the traces over these modes,and taking into account

the fact that the fermion zero modes arising from the P -odd broken supersymmetries are

part of the exterior modes, one finds that the full index involves a trace of P in the CFT2

dual to the bulk of AdS3 and the trace of P together with the angular momentum factors

over the exterior modes.

For black holes which preserve at least four supercharges, the AdS3 background that

appears in the intermediate region has at least (0, 4) supersymmetry in the associated

1Although we are using the language of the holographically dual CFT2, the computation is based on

macroscopic analysis since the central charge is calculated from the effective action rather than from a

microscopic calculation. This is also reinforced by the fact that for BTZ black holes Wald’s formula [36] for

the entropy takes the form of Cardy formula [60, 62, 63].
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supergravity theory. Thus the dual CFT2 is actually a (0,4) superconformal theory with

an SU(2) R-symmetry group. Furthermore this R-symmetry group can be identified with

the spatial rotation group or one of its subgroups. One finds that the operator P restricted

to this CFT2 can be identified as Tr((−1)2JR) where JR denotes the generator of the U(1)

subgroup of SU(2)R. Thus the relevant CFT2 index that appears in the expression for the

space-time index is Tr((−1)2JR), with the trace taken over the Ramond sector states of the

CFT2 carrying different values of JR but fixed values of (L0−L̄0) ≡ p, and fixed values of all

the U(1) charges associated with left-moving currents. This index receives non-vanishing

contribution only from the Ramond sector ground states of the right-moving excitations of

the CFT2, i.e. only from states with L̄0 = 0, L0 = p. Now in the absence of the (−1)2JR

insertion in the trace the large p behaviour of this index is given by the Cardy formula and

is determined by the left-moving Virasoro central charge cL as well as the levels of various

left-moving U(1) current algebras under which the state carries charges. We shall argue

in section 2 that the insertion of (−1)2JR does not change this behaviour since the effect

of (−1)2JR under a modular transformation is to introduce a twist on the right-movers

but does not affect the left-moving ground state. Thus the contribution to the index from

the CFT2 is given by the Cardy formula. Combining this with the contribution from the

exterior modes we can then recover the full macroscopic index.

While this gives a procedure for computing the index, the explicit computation still

suffers from various technical complications. First of all in this approach we need to identify

the exterior modes and compute their contribution to the index explicity. Furthermore to

compute the contribution to the index from the bulk of AdS3 we need the central charge

and the levels of the U(1) current algebra. While these can be related to the coefficients of

various Chern-Simons terms in the intermediate geometry that contains the AdS3 factor,

we still need to compute these coefficients after taking into account the effect of higher

derivative and quantum corrections. There is however a further simplification that allows

us to calculate the total index directly without having to compute separately the exterior

and the bulk contribution. We shall argue that when one combines the contribution to the

index from the bulk of AdS3 and the exterior modes to compute the total index, the result

is determined in terms of coefficients of Chern-Simons terms computed in the asymptotic

space-time in which the black hole is embedded instead of in the intermediate geometry

containing the AdS3 factor. The former can be calculated explicitly, yielding an exact

expression for the total contribution to the index in the p→ ∞ limit. Note that if instead

of computing the index we had been computing the degeneracy, then no such simplification

occurs, and we really need to compute separately the contribution from the bulk and the

exterior modes and combine them to get the full result.

Armed with this result, we carry out explicit computation of the macroscopic results

for the space-time index for four and five dimensional black holes in type IIB string theory

compactified on K3 × T 2, T 6, K3 × S1 and T 5 in different limits in which only one of

the charges becomes large keeping the other charges fixed. We then compute the same

space-time index on the microscopic side and compare this with the macroscopic results.

For the microscopic computation we use two different techniques: we can begin with the

exact formula for the index in string theories with 16 or 32 unbroken supersymmetries and
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M Limit log dmacro log dmicro

K3 Type-IIB
Cardy 2π

√
Q1Q5

(
n− J2

4Q1Q5

)
2π

√
Q1Q5

(
n− J2

4Q1Q5

)

K3 Type IIA
Cardy 2π

√
Q5(n+ 3)

(
Q1 − J2

Q5(n−1)

)
2π

√
Q5(n+ 3)

(
Q1 − J2

Q5(n−1)

)

T 4 Type-IIB
Cardy 2π

√
Q1Q5

(
n− J2

4Q1Q5

)
2π

√
Q1Q5

(
n− J2

4Q1Q5

)

Table 1. Results for five-dimensional black holes for Type-IIB compactification on M× S1.

study its limit when one of the charges becomes large, or we can represent the microscopic

system as a configuration of M5-brane wrapped on P ×S1 where P and S1 are appropriate

four and one cycles of the compact space and then calculate its index in the limit of large

momentum along S1 using a Cardy like formula. Note that in the latter approach we need

to use a generalization of the Cardy formula that determines the growth of the index rather

than the degeneracy. In all cases, we find that the macroscopic prediction for the index

always agrees with the microscopic index in the large momentum limit even for finite values

of the other charges.

The results of our analysis are summarized in tables 1 and 2. In these tables dmacro

denotes the macroscopic result for the appropriate space-time index and dmicro denotes

the result of microscopic computation of the same space-time index. Below we give more

detailed explanation of the various entries in these tables.

• Five-dimensional black holes table 1 shows the results for spinning five-dimensional

black holes in Type-IIB string theory compactified on M × S1, carrying Q5 units

of D5-brane charge wrapped on M × S1, Q1 units of D1-rane charge wrapped on

S1, momentum n along S1 and angular momentum J . The second column of this

table contains information about the limits we consider and the frame that we use

for computing dmacro in these limits. In particular while in the Type-IIB Cardy limit(
n− J2

4Q1Q5

)
→ ∞, we carry out the macroscopic computation directly in the type

IIB frame, in the Type-IIA Cardy limit
(
Q1 − J2

Q5(n−1)

)
→ ∞, we need to go to a

dual type IIA frame where Q1 appears as the momentum.

• Four-dimensional black holes table 2 shows the results for four-dimensional non-

spinning black holes in M-theory compactified on M× T 2 ×S1, carrying Q1 units of

M5-brane charge wrapped on C2 × T 2 × S1, Q5 units of M5-brane charge wrapped

on C̃2 × T 2 × S1, K units of M5-brane charge wrapped on M × S1 and n units of

momentum along S1. Here C2 and C̃2 denote a pair of dual 2-cycles of M. The limit

we consider is n → ∞ which corresponds to taking the L0 eigenvalue large in the

boundary CFT2.

The results in both tables clearly show that the macroscopic prediction dmacro for the

space-time index always agrees with the microscopic prediction dmicro for the same index.
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M log dmacro log dmicro

K3 2π
√

(Q1Q5K + 4K)n 2π
√

(Q1Q5K + 4K)n

T 4 2π
√

(Q1Q5K)n 2π
√

(Q1Q5K)n

Table 2. Results for four-dimensional black holes for M-theory compactified on M× T 2 × S1.

There are several novelties in our analysis which are worth emphasizing:

1. The formulæ quoted in the two tables are exact in the limits mentioned, i.e. they hold

even when the charges other than the one which is taken to infinity are finite. Thus,

they go far beyond the supergravity approximation and incorporate the effects of α′

and string loop corrections. On the macroscopic side this is achieved by an exact

computation of the coefficients of certain Chern-Simons terms in the action whereas

on the microscopic side this is achieved by the use of an exact microscopic formula

for the index evaluated in the same limits as described above.

2. In all cases, the limits that we consider can be regarded as a Cardy limit of a CFT2

in an appropriate duality frame. If the underlying CFT2 is weakly coupled in this

duality frame, we can calculate dmicro with the help of the Cardy like formula for

the index and degeneracy. This is the case for the Type-IIB Cardy limit in table 1.

However in some cases, the microscopic configuration may contain a set of NS5-branes

and as a result, a weakly coupled description of the CFT2 may not be available. This

is the case for the type IIA Cardy limit in table 1.

3. Since dmicro is an index which does not change under duality,2 one might expect

that dmicro can always be computed in an appropriate duality frame where a weakly

coupled CFT2 description is available. Indeed for all the examples in table 1, a weakly

coupled CFT2 description is available in the Type-IIB frame, and this allows us to

compute dmicro. However, under this duality, the type IIA Cardy limit corresponds

to an ‘anti-Cardy’ limit (L0 eigenvalue fixed and c large) in the Type-IIB frame.

As a result, usual methods of asymptotic evaluations are not applicable. One can

nevertheless compute the asymptotics in this limit from the exact formula using the

methods of [68, 69] which cleverly exploit the additional symmetries of the exact

counting function.

4. Our result for four dimensional black holes resolves a puzzle raised in [39, 40] involving

black holes in M-theory compactified on K3× T 3. A naive application of the results

of [60] without accounting for the different treatment required for the CFT2 dual to

the bulk of AdS3 and the exterior modes led to an apparent mismatch between black

hole entropy and the logarithm of the microscopic degeneracy. For example, if one

evaluates the absolute degeneracy in the microscopic theory at weak coupling, then

one obtains 2π
√

(Q1Q5K + 6K)n for the logarithm of the absolute degeneracy which

differs from the correct macroscopic answer at sub-leading order. In contrast, our

2In general, the index can also jump because of wall-crossings but in the N = 4 context these are

exponentially subleading corrections not relevant to the present analysis.
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analysis leads to a perfect agreement between the microscopic and the macroscopic

results as shown in table 2. This example thus underscores the necessity and utility

of defining a macroscopic supersymmetric index from black hole entropy for correct

comparisons with microscopic computations.

5. Our analysis also gives explicit form of the entropy of five dimensional spinning black

holes after taking into account the effect of higher derivative corrections. Previous

attempts to do this involved using a specific set of higher derivative terms in the

five dimensional effective action [70–72]. In contrast our analysis relies on the ability

to express the entropy in terms of coefficients of certain Chern-Simons terms in the

action, and is exact in the limit considered. This also agrees with the prediction from

the microscopic side based on the exact formula for the index.

For M5 branes wrapped on S1 times a four cycle of a generic Calabi-Yau manifold,

ref. [60] presented an argument explaining why the microscopic and the macroscopic entropy

would always agree in the Cardy limit. This argument was based on the observation that

in a (1+1) dimensional conformal field theory with (0,4) world-sheet supersymmetry, the

Virasoro central charge cR carried by the right movers is related to the level of the right-

moving SU(2) R-symmetry current. This in turn is related to the anomaly in this R-

symmetry current. Using anomaly inflow and identifying the SU(2) R-symmetry current

as (a subgroup of) the spatial rotation one can relate this to the coefficient of the SU(2)

Chern-Simons terms in the effective action. Furthermore the difference cL − cR between

the left- and right-moving central charges is related to the gravitational anomaly in the

world-sheet theory of the brane system which in turn is related to the coefficient of the

gravitational Chern-Simons term in the effective action of string theory. Using these one

can express the central charge cL of the left-moving Virasoro algebra — which controls the

growth of the microscopic degeneracy — in terms of the gravitational and SU(2) Chern-

Simons terms in the effective action. The latter in turn controls the black hole entropy,

leading to the equality between the macroscopic and the microscopic entropy.

In our examples, the Calabi-Yau manifold is either K3 × T 2 or T 6. Since the systems

we analyze also have four unbroken supersymmetries, it is natural to ask if similar argu-

ment can be used to explain the agreement between the microscopic and the macroscopic

entropies in our systems. The main additional complication that arises in our case is the

failure of the identification of the R-symmetry current of the microscopic theory with the

spatial rotation group. We find that while for the part of the microscopic system that

controls most of the entropy this identification is correct; it fails for a small component.3 A

simple example of this is provided by the scalar modes representing transverse oscillation

of the brane. These are non-chiral modes on the brane world-volume and transform in the

(2L, 2R) representation of the rotation group SU(2)L × SU(2)R in five dimensions and 3

representation of the rotation group SU(2) in four dimensions. For definiteness let us focus

on the five dimensional case. In order to identify the SU(2)R subgroup of the rotation

3A similar mismatch was found in [73] between the modes living on the Coulomb and the Higgs branch

of the D1-D5 system. Here the disagreement is between different components of the CFT at the same point

in the moduli space.
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group in five dimensions as the right-moving R-symmetry on the brane world-volume this

must act trivially on the left-movers. This clearly fails for the left-moving part of the above

scalars which transform in the fundamental representation of SU(2)R. As a result the total

anomaly in the SU(2)R spatial rotation symmetry is not related to the level of the SU(2)

R-symmetry current in the world-sheet theory, and the growth of the degeneracy of the mi-

croscopic system is no longer controlled by the anomaly coefficients which can be directly

related to the coefficients of the Chern-Simons terms in the effective action. A similar

problem occurs in the macroscopic description. For the CFT that is holographically dual

to the bulk of the AdS3 factor appearing in the near horizon geometry, the R-symmetry

can be identified as the spatial SU(2)R rotational symmetry acting on the space transverse

to AdS3. But this identification need not hold for the exterior modes which might live

on the boundary of AdS3 — the analog of the U(1) super Yang-Mills theory for type IIB

supergravity on AdS5 × S5 — or between AdS3 and the asymptotic infinity. In particular

these modes include the transverse oscillation modes of the brane which fail to satisfy the

conditions needed for identifying the R-symmetry with spatial SU(2)R rotation. For this

reason the coefficients of the Chern-Simons terms in the effective action do not directly give

us information about the growth of the degeneracy obtained by combining the black hole

entropy with the contribution from these additional exterior modes. Remarkably however

we find that the results on both sides simplifiy when we focus on an appropriate index

rather than the absolute degeneracy. In the microscopic theory we find that the growth

of the index is directly controlled by the gravitational and rotational anomaly coefficients

exactly as they would have controlled the growth of the degeneracy if the subtle difference

between the R-symmetry transformation and spatial rotation had been absent. On the

macroscopic side we find that total contribution to the index from the black hole living

in the bulk of AdS3 and the exterior modes is controlled by the coefficients of the Chern-

Simons terms in the effective action in the asymptotic space-time in which the black hole is

embedded. Since the latter are related to the anomaly coefficients in the microscopic theory

this allows us to establish the equality between the microscopic and the macroscopic index.

The rest of the paper is organized as follows. In section 2 we review the argument

relating the black hole entropy to an index, and give an alternative argument leading to

similar results for special class of black holes whose near horizon geometry contains a lo-

cally AdS3 factor. In section 3 we compute the macroscopic index of a class of spinning

five dimensional black holes and non-spinning four dimensional black holes in appropriate

limit in which the near horizon geometry develops an AdS3 factor. In section 4 we com-

plement the analysis of section 3 by including the effect of the exterior contribution to the

macroscopic index. In section 5 we use the known expressions for the exact microscopic

index of these systems to extract its behaviour in the various Cardy limits and find perfect

agreement with the macroscopic results of section 3 and 4. In section 6 we repeat the

analysis of section 5 using the M-theory description for the four dimensional black holes.

While in this description we cannot calculate the index exactly, we can compute it in the

Cardy limit and find precise agreement with the results of section 5. Both in section 5 and

section 6 we also calculate the microscopic degeneracy whenever there is an underlying two

dimensional weakly coupled conformal field theory, and find that in some cases they differ

from the microscopic values of the space-time index. In section 7 we give a general proof
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of why the microscopic and the macroscopic computation of the index must always agree.

This argument is a generalization of the argument of [60] by taking into account existence

of degrees of freedom for which the R-symmetry generators of the world-sheet theory do

not always match with the spatial rotation generators — a fact that was crucial in the

argument of [60]. This analysis also explains why the degeneracy and index do not always

grow at the same rate. In appendix A we describe the computation of the coeffcients of the

Chern-Simons terms which arise from dimensional reduction of gauge invariant Lagrangian

density in higher dimensions. In appendix B we complement the analysis of asymptotic

growth of the exact microscopic index in section 5 by demonstrating that some terms, which

were ignored in the analysis of section 5, are indeed small compared to the leading terms.

2 Computing the index in the macroscopic theory

In this section we first introduce the relevant indices for counting BPS states in four and five

dimensional black holes and then review the argument of [38, 74] as to how the degeneracy

of a supersymmetric black hole, computed by exponentiating the entropy, can be used to

compute a macroscopic index that can be compared with a microscopic index. We then

give an alternative version of this argument that applies to the special case of black holes

with locally AdS3 factors in their near horizon geometry.

We begin by defining the helicity trace index in four dimensions. Due to Lorentz

invariance the number of supercharges in a four dimensional theory is always a multiple of

4; furthermore the number of supersymmetries preserved by a state is also a multiple of

4. If we consider a black hole that breaks altogether 4k supercharges, then the standard

index for counting these states is the helicity trace index B2k defined as [42–44]

B2k =
1

(2k)!
Tr
[
(−1)F (2h)2k

]
=

1

(2k)!
Tr
[
e2πih (2h)2k

]
, (2.1)

where h is the third component of the angular momentum of a state in the rest frame,

and the trace is taken over all states carrying a given set of charges. In order that a given

state gives a non-vanishing contribution to this index, the number of supersymmetries

broken by the state must be less than or equal to 4k; otherwise trace over the fermion zero

modes associated with the broken supersymmetries will make the trace vanish. On the

other hand if we have states with precisely 4k broken supersymmetries then B2k receives

contribution from these states, but not from any other state with more than 4k broken

supersymmetries. Since quantization of each pair of fermion zero modes produces a pair

of states carrying h = ±1
4 , the trace over the 4k fermion zero modes associated with the

broken supersymmetries is given by

(eiπ/2 − e−iπ/2)2k(2k)!/22k = (−1)k(2k)! . (2.2)

The (2k)! term arises from the binomial expansion of (2h)2k after expressing h as the sum

of contributions from different pairs. This cancels the similar factor in the denominator

in (2.1), leaving behind a contribution of (−1)k.

It is easy to find a generalization of this in five dimensions. The spatial rotation

group in five dimensions is SU(2)L × SU(2)R. We shall denote by JL and JR their U(1)

– 10 –



J
H
E
P
0
4
(
2
0
1
1
)
0
3
4

generators. Among the set of all the supersymmetry generators of the theory, half belong

to (2L, 1R) representation of SU(2)L × SU(2)R and the other half belong to the (1L, 2R)

representation of SU(2)L×SU(2)R. For a state preserving 4 supersymmetries, the unbroken

supersymmetry generators can be either in the (2L, 1R) or in the (1L, 2R) representation;

we shall choose the convention in which they are in the (1L, 2R) representation. The rest of

the supersymmetry generators will be broken, giving rise to fermion zero modes carrying

the quantum numbers of the broken generators. Let 4k be the number of broken generators

in the (1L, 2R) representation. We now consider the index [31]

C2k ≡ (−1)k

(2k)!
Tr
[
(−1)2JR (2JR)2k

]
, (2.3)

where the trace is taken over all states carrying a fixed value of JL and fixed set of charges

but all possible values of JR. Without the (2JR)2k factor the trace over the (1L, 2R) fermion

zero modes carrying (JL, JR) = (0,±1
2 ) would make the trace vanish. However the (2JR)2k

factor soaks up the 2k pairs of fermion zero modes exactly as in the case of four dimensional

black holes and gives a non-vanishing result. There are also (2L, 1R) fermion zero modes

carrying (JL, JR) = (±1
2 , 0), but they do not make the trace vanish since the trace is taken

over states carrying a fixed JL. It is also easy to see that the non-BPS states do not

contribute to this index. They would have additional fermion zero modes in the (1L, 2R)

representation and hence trace over these fermion zero modes would make the index vanish.

As an example, we can consider the BMPV black hole [75] in type IIB string theory

compactified on K3 × S1. This breaks 12 out of 16 supersymmetries. Eight of the broken

supersymmetry generators are in the (2L, 1R) representation, four of the broken generators

are in the (1L, 2R) representation and the four unbroken generators are in the (1L, 2R)

representation. Since there are four broken generators in the (1L, 2R) representation the

argument given above shows that the relevant index is C2. Similarly if we consider BMPV

black hole in type IIB string theory on T 4 × S1 then it breaks 28 of the 32 supersym-

metries, with 16 broken generators in the (2L, 1R) representation, 12 broken generators in

the (1L, 2R) representation and 4 unbroken generators in the (1L, 2R) representation. The

index required for counting these states is C6.

Let us now compute the contribution to these indices from BPS black holes with four

supercharges. For definiteness we begin with a four dimensional black hole breaking 4k

supersymmetries and compute the index B2k. The net contribution to the index from a

black hole can be expressed as a sum of products of the contributions from the horizon

and the hair [38, 51, 52]; this could involve contribution from multiple horizons for multi-

centered black holes. Let us first focus on the contribution from single centered black

holes. Since the fermion zero modes associated with broken supersymmetries live outside

the horizon and hence are part of the hair degrees of freedom of the black hole [51, 52],4

4The fermion zero mode associated with a broken supersymmetry generator can be constructed as

follows. We make a supersymmetry transformation of the original solution by an infinitesimal parameter

that approaches a constant spinor corresponding to the broken generator at infinity and vanishes for r < a

for some constant a. By choosing a such that the horizon lies at r < a we can ensure that such deformations

live outside the horizon and hence are part of the hair degrees of freedom.
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we can express the contribution to the index from the black hole as

B2k =
1

(2k)!

[
Trhor(−1)2hhor

] [
Trhair(−1)2hhair(2hhair)

2k
]
, (2.4)

where hhor and hhair denote the helicities carried by the hair and the horizon. For states

carrying a fixed set of charges ~q this can be expressed as

B2k(~q) =
∑

~qhor

B0;hor(~qhor)B2k;hair(~q − ~qhor) , (2.5)

where

B0;hor(~q) = Trhor;~q(−1)2hhor , (2.6)

and

B2k;hair(~q) = Trhair;~q(−1)2hhair (2hhair)
2k . (2.7)

Here ~q in the subscript of Tr denotes that the trace is being taken over states carrying a

fixed set of charges ~q. We now argue that if the black hole has 4 unbroken supersymmetries

and if its near horizon geometry has an AdS2 factor, then it must carry hhor = 0. The

argument goes as follows. The closure of the SL(2,R) isometry of the near horizon geometry,

and the unbroken supersymmetries requires that the near horizon geometry has the full

su(1, 1|2) symmetry algebra. This includes su(2) as a subalgebra, forcing the horizon to

be spherically symmetric and hence carry zero angular momentum.5 This gives

B0;hor(~q) = Trhor;~q(−1)2hhor = Trhor;~q(1) = dhor(~q) , (2.8)

where dhor(~q) is the degeneracy associated with the horizon degrees of freedom for charge

~q. In the classical limit it is given by the exponential of the Wald entropy, but more

generally it can be computed from the path integral over the string fields in the near

horizon geometry [37]. Using (2.5) and (2.8) we get the contribution to B2k from the black

hole

B2k(~q) =
∑

~qhor

dhor(~qhor)B2k;hair(~q − ~qhair) . (2.9)

B2k;hair(~q) can be computed once we have identified the hair degrees of freedom of the

black hole. Thus (2.9) can be used to make a prediction for the index B2k(~q) from the

macroscopic side. Note also that since dhor(~q) is positive (2.9) makes a definite prediction

for the sign of B2k provided we have sufficient knowledge of B2k;hair. In particular in

situations where the only hair modes are the fermion zero modes associated with broken

supersymmetries, we have ~qhair = 0, B2k;hair = (−1)k and hence (−1)kB2k = dhor > 0. As

5In asymptotically Minkowski space-time or AdSd space-time with d ≥ 4, where the asymptotic bound-

ary conditions are set by the chemical potentials instead of the charges, the spherical symmetry of the

background will correspond to evaluating the partition function at zero value of the chemical potential

conjugate to the angular momentum. However the path integral over the string fields in the near horizon

AdS2 geometry that is used to compute the horizon degeneracy must be carried out over configurations

carrying fixed values of the total charges including angular momentum [37, 76]. Thus in this case spherical

symmetry implies zero value of the angular momentum carried by the black hole.
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was shown in [38, 57], the macroscopic prediction for the sign of B6 agrees with the result of

explicit microscopic computation for all the N = 4 supersymmetric string theories for which

this index has been computed. The generalization of (2.9) to multi-centered black holes is

straightforward; since each center carries zero angular momentum due to supersymmetry,

the contribution to B2k will be given by a formula analogous to (2.9), with dhor replaced

by the product of dhor from each center and we have to sum over all possible ways of

distributing the total charge among the horizon and the hair.

This argument has a straightforward generalization to five dimensions with h replaced

by JR. Incidentally, this reasoning also implies the well-known facts that the horizon of a

supersymmetric black hole cannot carry any spin in four dimensions, and that the horizon

of a supersymmetric black hole can carry only the SU(2)L spin in five dimensions. Also this

argument does not generalize to the problematic one-sixteenth BPS black holes in AdS5

since they have too little supersymmetry, and the completion of the algebra containing the

supersymmetry generators and the SL(2,R) isometry of AdS2 do not force us to have an

SU(2) symmetry in the near horizon geometry.

While this argument explains the relation between the index and degeneracy, applying

this argument to compute the contribution to the index from the macroscopic side requires

identifying explicitly the hair modes of the black hole which is not always an easy task [51,

52]. Also this would require computing dhor by evaluating the path integral over string

fields in the near horizon background geometry [37] — another difficult problem. For

these reasons we shall now give an alternative approach to computing the index on the

macroscopic side which is in the same spirit but differs in details. If we consider a black

hole for which one of the charges can be identified as an internal momentum along some

circle S1, and if we consider a limit in which this momentum becomes large keeping all

the other charges fixed, then the near horizon geometry of such a black hole is known

to develop a locally AdS3 factor by combining the near horizon AdS2 geometry with this

internal circle S1 [58, 59]. Furthermore if we now adjust the asymptotic moduli fields in

such a way that we take the asymptotic value of the radius of S1 to infinity keeping all the

other moduli fixed, then the solution also develops a global AdS3 factor in the intermediate

region, and the black hole solution can now be regarded as the BTZ black hole living in

this asymptotically AdS3 space-time [61, 77, 78]. The classical entropy of this black hole

has the form of a Cardy formula, with the central charge given by some specific function

of the parameters of the Lagrangian [60, 62, 63]. Thus the classical black hole entropy can

be reinterpreted as the Cardy formula of the CFT2 that is holographically dual to string

theory in this geometry. Since the Cardy formula in CFT2 is expected to hold in the full

quantum theory this suggests that we can use Cardy formula as the quantum generalization

of the black hole entropy. The problem of computing the quantum corrected entropy of the

black hole then reduces to the problem of computing the quantum corrected central charge.

Since we do not have direct knowledge of the CFT2, this has to be computed using the

data in the bulk theory after taking into account quantum corrections to the bulk effective

action. In this sense the entropy computed this way is still the macroscopic entropy.

There are however several subtleties overlooked in the above discussion. First of all

the Cardy formula is supposed to count total degeneracy of states in CFT2 without caring
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about whether they are represented as single or multicentered black holes inside AdS3, or

whether the contribution comes from the horizon or the hair modes. So the above definition

of the black hole entropy includes all of these contributions. This is not a serious problem

since in order to compare the macroscopic result with the microscopic result we need to sum

over all the contributions on the macroscopic side in any case. The microscopic degeneracy

may also receive contribution from configurations with multiple AdS3 throat [61], but this

can be avoided by working in appropriate domains in the moduli space. In any case in

theories with 16 or more supercharges the contribution from the multicentered black holes

is small and we shall ignore their contribution in our analysis. The main complication arises

from the fact that the degeneracy of the CFT2 dual to the theory living on the bulk of AdS3

does not capture all the degrees of freedom of the system. There may be additional degrees

of freedom living on the boundary of AdS3 (analogous to the U(1) factor for AdS5 [79]),

or in the region between AdS3 and the asymptotic infinity. This will in particular include

the Goldstino fermion zero modes associated with supersymmetries which are broken by

the AdS3 background. We shall collectively call all such modes exterior modes.6 Since in

the limit we are considering — taking the asymptotic radius of S1 to infinity keeping the

momentum quantum number fixed — the physical momentum vanishes, part of the black

hole solution lying between the asymptotic space-time and the intermediate AdS3 region

has full 1+1 dimensional Lorentz symmetry. Thus we would expect the dynamics of the

exterior modes to be described by some (1+1) dimensional field theory. Their contribution

has to be combined with the Cardy formula to recover the total degeneracy of states.

So far we have talked about degeneracy, but our real interest is in the index. Let us

now see how the above discussion will change when we try to compute the index instead of

the degeneracy. Again for definiteness we shall first consider four dimensional black holes

and compute the index B2k. Denoting by hbulk and hexterior the contribution to h from the

degrees of freedom living in the bulk and the exterior of AdS3, we can express the trace

appearing in (2.1) as

B2k =
1

(2k)!
Tr
[
e2πi(hbulk+hexterior) (2hbulk + 2hexterior)

2k
]
. (2.10)

For simplicity we shall assume that the supersymmetries broken by the black hole are also

broken by the intermediate AdS3 region, i.e. the black hole, when regarded as a solution in

6The need for separating out the exterior modes can be seen as follows. In the microscopic theory where

the dynamics is described by that of an oscillating string there are a set of degrees of freedom associated with

the center of mass motion which are decoupled from the rest of the degrees of freedom. This decoupling in

the infrared limit follows from Goldstone’s theorem and is expected to be exact even in the full interacting

theory. Thus if the CFT2 dual to AdS3 had contained the full set of degrees of freedom of the black hole

then this CFT will be given by a sum of two (or more) CFT’s which do not interact with each other. Thus

we can define two stress tensors and hence there must be two gravitons in the bulk theory, in contradiction

to what we see. Furthermore in the bulk theory the SU(2) R-symmetry group of (0,4) supersymmetry can

be directly related to the spatial rotation group for four dimensional black holes and the SU(2)R subgroup

of the spatial rotation group for five dimensional black holes. This identification fails to hold for the CFT

containing the center of mass modes, showing again that these modes must live outside the bulk of AdS3.
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AdS3, does not break any further supersymmetry.7 In this case all the fermion zero modes

associated with broken supersymmetry are part of the exterior degrees of freedom, and in

order to get a non-vanishing contribution to the trace in (2.10) we need to pick the factor

of (2hexterior)
2k from the binomial expansion of (2hbulk + 2hexterior)

2k. This gives

B2k =
1

(2k)!
Tr
[
e2πi(hbulk+hexterior) (2hexterior)

2k
]

=
∑

~q

Bbulk(~qbulk)B2k;exterior(~q − ~qbulk) ,

(2.11)

where Bbulk = Trbulke
2πihbulk in a fixed charge sector.

In the Cardy limit one of the charges, which we shall call p, becomes large. We shall

denote by ~Q the rest of the charges and denote by ˜ the Fourier transform of various

quantities B2k, B2k;exterior etc. with respect to the charge p. For example

B̃2k( ~Q, τ) =
∑

p

B2k( ~Q, p) e
2πipτ , (2.12)

etc. We shall now make the assumption that the exterior modes do not carry any charge

other than p, so that in the sum in (2.11) ~Qbulk is always equal to ~Q. Then (2.11) takes

the form:

B̃2k( ~Q, τ) = B̃bulk( ~Q, τ)B̃2k;exterior(τ) . (2.13)

Our goal is to compute the behaviour of B2k( ~Q, p) for large p. This is controlled by the

behaviour of B̃2k( ~Q, τ) for small τ . To determine this we need to find the small τ behaviour

of B̃bulk( ~Q, τ) and B̃2k;exterior(τ). First we focus on B̃bulk( ~Q, τ). If instead of the index

Bbulk( ~Q, p) we had been interested in the degeneracy dbulk( ~Q, p) ≡ Tr(1) of left-moving

excitations in the CFT2, then for large p it would grow as exp[2π
√
cbulk
L p/6] according to

the Cardy formula, where cbulk
L is the central charge of the left-moving Virasoro algebra of

the CFT2. This implies

d̃bulk( ~Q, τ) ∼ exp[πicbulk
L /12τ ] , (2.14)

for small τ . We shall now argue that for small τ the behaviour of B̃bulk(~Q, τ) is given by the

same formula. The argument goes as follows. With the help of a modular transformation

in the two dimensional CFT, the behaviour of dbulk in the Cardy limit can be related to

the ground state energy of the left-moving sector, and this is what leads to (2.14), with

−cbulk
L /24 interpreted as the ground state energy of the left-moving sector. Now if instead

of d̃bulk we consider the index B̃bulk, then following the same logic we can relate its small

τ behaviour to the ground state energy in the left-moving sector, but this time with a

(−1)2hbulk twisted boundary condition under σ → σ + 2π, σ being the world-sheet space

coordinate. Now quite generally when the black hole (and the associated AdS3) has four

unbroken supersymmetry generators, they combine with the conformal symmetry of the

AdS3 to generate a (0, 4) superconformal algebra. This includes an SU(2) R-symmetry

current whose global part can be identified as the spatial rotation symmetry. Due to this

7In some cases the unbroken supersymmetry generators get modified when we switch on the charges on

the black hole, e.g. when we switch on M2-brane charges on an M5-brane [31, 80]. For the systems we shall

analyze this does not happen.

– 15 –



J
H
E
P
0
4
(
2
0
1
1
)
0
3
4

identification, hbulk can be interpreted as the zero mode of the U(1) ⊂ SU(2) R-symmetry

current of the CFT2. Since the twist by the zero mode of the right-moving U(1) ⊂ SU(2)

R-symmetry current of the CFT2 is not expected to affect the ground state energy in the

left-moving sector, this energy will continue to be given by −cbulk
L /24, and hence the small

τ behaviour of B̃bulk is also given by the Cardy formula:

B̃bulk( ~Q, τ) ∼ exp[πicbulk
L /12τ ] . (2.15)

We shall see in section 4 that for small τ B̃2k;exterior(~0, τ) is given by a formula similar

to (2.15):8

B̃2k;exterior(~0, τ) ∼ exp[πicexterior
L,eff /12τ ] , (2.16)

for some constant cexterior
L,eff . Substituting (2.14) and (2.16) into (2.13) we get

B̃2k( ~Q, τ) ∼ exp[πicmacro
L,eff /12τ ], cmacro

L,eff ≡ cbulk
L + cexterior

L,eff , (2.17)

and hence, for large p,

B2k( ~Q, p) ∼ exp[2π
√
cmacro
L,eff p/6] . (2.18)

This is our general expression for the index B2k for four dimensional black holes computed

in the macroscopic theory. We shall describe the computation of cbulk
L and cexterior

L,eff in

sections 3 and 4 respectively. We shall in fact see that cmacro
L,eff is simpler to calculate than

the individual contributions from the bulk and the exterior since the former is directly

related to the coefficients of certain Chern-Simons terms in the effective action in the

asymptotic space-time in which the black hole is embedded.

Let us now consider five dimensional black holes. The analysis goes through more

or less in the same manner with h replaced by JR provided that all the SU(2)L singlet

supersymmetry generators which are broken by the black hole solution are also broken by

the AdS3. The main difference arises from the fact that the exterior modes of the five

dimensional black holes carry both JL and JR quantum numbers besides the momentum

along S1. Since we are summing over JR but keeping JL and the momentum along S1 fixed

in defining the index, the analog of (2.11) now takes the form

C2k(~q) =
∑

~qbulk

Cbulk(~qbulk)C2k,exterior(~q − ~qbulk) , (2.19)

where the charge vector ~q now also includes the JL quantum number, and Cbulk denotes

the trace of e2πiJR . We now separate out two charges from the set ~q, — the momentum

p along S1 and the U(1)L ⊂ SU(2)L charge JL = J/2 — and call the rest of the charges
~Q. Denoting by ˜ the Fourier transforms in the charges p and J , by τ and z the variables

conjugate to p and J , and assuming that the exterior modes only carry p and J quantum

numbers, we can express (2.19) as

C̃2k( ~Q, τ, z) = C̃bulk( ~Q, τ, z)C̃2k;exterior(τ, z) . (2.20)

8We should emphasize here that while the modularity of eB2k;bulk( ~Q, τ ) follows from the fact that in the

CFT2 dual to the AdS3 the action of hbulk is chiral, the function eB2k;exterior( ~Q, τ ) is not a priori a modular

form since the action of hbulk on the exterior modes is not chiral. Hence, to derive this asymptotics it is

necessary to examine the behavior of eB2k;exterior(τ ) explicitly as we describe in section 4.
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In order to find the behaviour of C2k in the Cardy limit we need to find the behaviour of

C̃2k for small τ . The behaviour of C̃bulk( ~Q, τ, z) for small τ can be found as follows. First

we note that in CFT2 dual to the bulk of AdS3 the SU(2)L and SU(2)R spatial rotations

can be identified as the left- and right-moving SU(2) R-symmetry currents. From this it

follows that if instead of Cbulk we had considered the degeneracy dbulk of the left-moving

excitations then for large p and J <
∼

√
p, dbulk( ~Q, p, J) grows as exp

[
2π

√
cbulk
L

(
p− J2

4kbulk
L

)]
.

Equivalently for small τ and z<
∼1 we have

d̃bulk( ~Q, τ, z) ≡
∑

p,J

dbulk(~Q, p, J)e2πipτ+2πiJz ∼ exp

[
πicbulk

L

12τ
− 2πi

kbulk
L z2

τ

]
. (2.21)

(2.21) is a consequence of the modular symmetry of the CFT2, and the exponent − cbulk
L

12 +

kbulk
L z2 has the interpretation of the ground state energy of the left-moving sector of the

CFT with the boundary condition twisted by e2πiJz under σ → σ+ 2π. Now following the

same logic as in the case of B̃bulk we can argue that for small τ , C̃bulk will have the same

behaviour as d̃bulk, since under modular transformation the extra insertion of (−1)2JR in

the trace will mapped to a twist by (−1)2JR , and this, being a twist by the zero mode of a

right-moving current, should not affect the ground state energy of the left-moving sector.

Thus we get

C̃bulk( ~Q, τ, z) ∼ exp

[
πicbulk

L

12τ
− 2πi

kbulk
L z2

τ

]
. (2.22)

Furthermore we shall find in section 4 that for small τ and z<
∼1, C̃2k;exterior(τ, z) is given

by a similar formula

C̃2k;exterior(τ, z) ∼ exp

[
πicexterior

L,eff

12τ
− 2πi

kexterior
L,eff z2

τ

]
. (2.23)

eq.(2.20) now gives

C̃2k( ~Q, τ, z) ∼ exp

[
πicmacro

L,eff

12τ
− 2πi

kmacro
L,eff z

2

τ

]
,

cmacro
L,eff ≡ cbulk

L + cexterior
L,eff , kmacro

L,eff ≡ kbulk
L + kexterior

L,eff , (2.24)

and hence

C2k( ~Q, p, J) ∼ exp


2π

√√√√cmacro
L,eff

(
p− J2

4kmacro
L,eff

)
 . (2.25)

Again we shall find that cmacro
L,eff and kmacro

L,eff are given in terms of the coefficients of certain

Chern-Simons terms in the effective action in the asymptotic space-time, and hence are

easier to calculate than the individual contributions from bulk and the exterior modes.
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3 Macroscopic results for four and five dimensional black holes

In this section we examine the macroscopic formulæ for the entropy of a certain class of

four and five dimensional black holes in appropriate limits. Much work has been devoted

to the study of corrections to black hole entropy due to a specific class of higher derivative

terms obtained by supersymmetrizing the curvature squared terms, both in four and five

dimensions [6, 10, 11, 39, 70, 71, 81–83]. However in this approach there is no a priori jus-

tification of including only a specific subset of higher derivative corrections to the effective

action for computing the entropy. Our approach will be based on the method advocated

in [60] where in certain limits the higher derivative corrections to the black hole entropy

can be related to the coefficients of certain Chern-Simons terms in the effective action.

Since these coefficients are integers, possible corrections to them are severely limited, and

hence can often be computed. This will allow us to compute the black hole entropy in

appropriate limits after including the effect of all possible higher derivative corrections.

In all subsequent discussions we shall use units in which α′ = 1, normalize the ten

dimensional Einstein-Hilbert + dilaton action so that it takes the form

(2π)−7

∫
d10x

√
− detGe−2Φ

[
R+ 4(∇Φ)2

]
(3.1)

and normalize the p-form field strength so that its kinetic term has the form

− 1

2

1

p!
(2π)−7

∫
d10x

√
− detGeκΦ FM1···MpF

M1···Mp (3.2)

for some appropriate constant κ.

3.1 D1-D5-p system in type IIB on K3 × S1

We consider a system of Q5 D5-branes wrapped on K3×S1, (Q1 +Q5) D1-branes wrapped

on S1 and n units of momentum along S1. We choose the convention in which positive

n denotes left-moving momentum along S1 and take n to be positive. Since a D5-brane

wrapped on K3 carries −1 unit of D1-brane charge, Q1 represents the physical D1-brane

charge carried by this system. Besides these charges we also make the system carry angular

momentum. In five dimensions the spatial rotation group is SU(2)L × SU(2)R. We shall

consider D1-D5-p system of the type described above carrying U(1)L ⊂ SU(2)L charge

JL = J/2. Supersymmetry then forces the corresponding black hole solution to be invariant

under SU(2)R, i.e. carry zero SU(2)R charge. The entropy of a supersymmetric black hole

carrying these charges, calculated using the two derivative action of the supergravity theory

and the classical Bekenstein-Hawking formula, is given by [75]

2π

√
Q1Q5n− J2

4
. (3.3)

Our goal will be to understand corrections to this formula in two different limits:

1. Type IIB Cardy limit: n→ ∞ with Q1, Q5 fixed. |J | must be bounded by a term of

order
√
n so that Q1Q5n− J2

4 scales as n.
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2. Type IIA Cardy limit: Q1 → ∞ with Q5, n fixed. |J | must be bounded by a term of

order
√
Q1 so that Q1Q5n− J2

4 scales as Q1.

The type IIB Cardy limit clearly corresponds to taking the momentum along the circle S1

to infinity keeping other charges fixed in a type IIB frame. As we shall see, the type IIA

Cardy limit corresponds to taking the momentum along the dual circle to infinity keeping

the other charges fixed in a dual type IIA frame.

3.1.1 Type IIB Cardy limit

We begin by writing down the near horizon geometry of the black hole [75, 84] in the

normalization convention of [51, 85] for the action and the solution:

dS2 = r0
dρ2

ρ2
+ dy2 + r0(dx

4 + cos θdφ)2 +
Jλ2

8r0RV
dy(dx4 + cos θdφ) − 2

√
r0ρdydτ

+r0
(
dθ2 + sin2 θdφ2

)
+ ĝmndu

mdun , y ≡ y + 2πR

eΦ = λ ,

F (3) =
r0
λ

[
ǫ3 + ∗ǫ3 +

Jλ2

16 r20RV
dy ∧

(
1

ρ
dρ ∧ (dx4 + cos θ dφ) + sin θ dθ ∧ dφ

)]
,

(3.4)

where dS2 denotes the string metric, Φ denotes the dilaton, F (3) is the RR 3-form field

strength, gmn is the metric on K3 with volume (2π)4 V , um’s are the coordinates on K3,

(x4, θ, φ) are the coordinates labelling a 3-sphere S3, ǫ3 ≡ sin θ dx4 ∧ dθ ∧ dφ is the volume

form on this 3-sphere satisfying
∫
S3 ǫ3 = 16π2 and ∗ǫ3 denotes the Hodge-dual of ǫ3 in six

dimensions. The attractor equations determine the near horizon parameters in terms of

the charges via the relations

r0 =
λQ5

4
, V =

Q1

Q5
, R =

√
λn

Q1
. (3.5)

Note that λ, labeling the string coupling, is undetermined on the horizon. If Q1, Q5, n

are large but finite then by adjusting λ we can keep the string coupling small, and the

parameter r0, that controls the length scale of the near horizon geometry, large. Thus in

this case we have a systematic expansion in α′ and the string coupling, with the leading

term in the expansion given by the Bekenstein-Hawking entropy. We shall try to go beyond

this by taking only one of the charges to be large, keeping the other charges finite.

By a coordinate change

x4 = x̃4 − Jλ2

16r20RV
y, y = ỹ

(
1 − J2λ4

256r30R
2V 2

)−1/2

= ỹ

(
1 − J2

4Q1Q5n

)−1/2

,

τ = τ̃

(
1 − J2

4Q1Q5n

)1/2

, (3.6)

we can bring the metric to the form

dS2 = r0

(
dρ2

ρ2
− ρ2dτ̃2

)
+ (dỹ −√

r0 ρdτ̃)
2 + ĝmndu

mdun

+r0
(
(dx̃4 + cos θdφ)2 + dθ2 + sin2 θdφ2

)
. (3.7)
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Except for the global identification implicit in the periods of the coordinates (x4, θ, φ, ỹ)

this metric has no dependence on J . In fact it has locally an AdS3 × S3 factor, with the

coordinates (ρ, τ, y) labelling AdS3 and (θ, φ, x4) labelling S3 [86]. The appearance of the

AdS3 ×S3 factor allows us to apply the general reasoning given in [60] which we shall now

review.

We begin with the observation that the classical Wald entropy given in (3.3) can be

written in the form [60, 62, 63, 87]

SBH = 2π

√
cbulk
L

6

(
n− J2

4kbulk
L

)
, (3.8)

where

cbulk
L = 6Q1Q5, kbulk

L = Q1Q5 . (3.9)

A physical explanation of this formula may be given as follows. If we take the limit in which

the asymptotic radius Ras of the circle S1 goes to infinity keeping fixed all the quantized

charges and adjusting the other moduli so that the asymptotic geometry approaches a finite

six dimensional background, then the black hole solution develops an intermediate region

which contains an AdS3×S3 factor and the near horizon configuration given in (3.4) appears

as the near horizon geometry of an extremal BTZ black hole sitting inside the AdS3 [61].9

Furthermore this black hole carries a U(1)L charge J/2, with the U(1)L interpreted as the

abelian subgroup of the SU(2)L ⊂ SU(2)L×SU(2)R gauge group arising out of dimensional

reduction on S3. By AdS/CFT correspondence the states represented by this charged

extremal BTZ black hole in this asymptotically AdS3 geometry can now be regarded as

RR sector states with (L̄0 = 0, L0 = n) in the holographically dual CFT2. Furthermore in

CFT2 the SU(2)L×SU(2)R rotational symmetry of S3 appears as the zero mode subalgebra

of an SU(2)L × SU(2)R current algebra, with SU(2)L being a left-moving current algebra

and SU(2)R a right-moving current algebra. Thus J/2 represents the charge carried by the

global part of the U(1)L ⊂ SU(2)L current algebra. Eq. (3.8) can now be interpreted as the

Cardy formula for the growth of states in the two dimensional conformal field theory, with

cbulk
L representing the central charge carried by the left moving component of the stress

tensor of the CFT2, and kbulk
L representing the level of the SU(2)L current algebra.

In order to check that this interpretation is correct we must independently compute

cbulk
L and kbulk

L from first principles and check that the result agrees with (3.9) computed

from black hole entropy. For this it is also useful to introduce the quantities cbulk
R which

represents the central charge carried by the right moving component of the stress tensor of

9The asymptotic boundary of this AdS3 space is the (1+1) dimensional space labelled by y and τ , and

the symmetry of the intermediate AdS3×S3 includes the Lorentz transformation in this (1+1) dimensional

space as well as the full rotation group of S3. This may appear surprising since the black hole carries −n

units of momentum along S1 which breaks Lorentz symmetry in the y − τ plane and angular momentum

JL = J/2 which breaks the SO(4) rotational symmetry of S3 to its SU(2)R subgroup. The reason that this is

not inconsistent is that if we take Ras to infinity keeping n and J fixed then the physical momentum n/Ras

and the angular momentum per unit length J/Ras both vanish. Since these are the parameters which enter

directly the black hole solution, it is not surprising that from the point of view of an asymptotic observer

we recover the Lorentz invariance in the τ − y plane as well as the SO(4) rotational invariance in this limit.
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this CFT2 and kbulk
R that gives the level of the right-moving SU(2)R current algebra. In the

classical limit cbulk
L −cbulk

R is given by the coefficient cbulk
grav of the Lorentz Chern-Simons term

in the bulk theory, and kbulk
L and kbulk

R are given by the coefficients of the Chern-Simons

terms involving SU(2)L and SU(2)R gauge fields in the bulk theory. Furthermore using

the supersymmetry of the bulk theory one finds that the boundary CFT2 possesses (0,4)

superconformal symmetry.10 Thus the SU(2)R current algebra can be identified as the

R-symmetry algebra of the (0,4) superconformal algebra, leading to the relation cbulk
R =

6kbulk
R [60]. This gives:

cbulk
L − cbulk

R = cbulk
grav, cbulk

R = 6kbulk
R . (3.10)

This allows us to express cbulk
L as

cbulk
L = cbulk

grav + 6kbulk
R . (3.11)

In the specific example under consideration, there is no Lorentz Chern-Simons term in

the supergravity approximation. Thus we have cbulk
grav = 0 and so cbulk

R = 6kbulk
R . Eq. (3.9)

would then follow if we have kbulk
L = kbulk

R = Q1Q5. The proof of this, given in [88] has

been reviewed in appendix A where we also give a generalization of this result.

So far we have just reinterpreted the classical Bekenstein-Hawking formula. But now

we can turn the argument around to give a definition of the black hole entropy in the full

quantum theory in the type IIB Cardy limit defined earlier. The main ingredient is the

observation that for states carrying large L0 the Cardy formula is valid in the CFT2 even in

the quantum theory. Thus we can use (3.8) to compute the full quantum entropy associated

with the bulk of AdS3 in the large n limit, provided cbulk
L represents the left-moving central

charge in the full quantum theory, and kbulk
L is the level of the SU(2)L current algebra in the

full quantum theory.11 Furthermore (3.11) will also continue to hold in the full quantum

theory. Thus the problem reduces to the computation of kbulk
L , kbulk

R and cbulk
grav . As argued

in section 2 these quantities also determine the contribution to the index from the modes

living in the bulk of AdS3. We still need to compute separately the contribution from the

exterior modes to which we shall come back later.

Let us now discuss the computation of these quantites after taking into account higher

derivative and quantum corrections. Since the coefficients of the Chern-Simons terms are

quantized, cbulk
grav , k

bulk
R and kbulk

L are quantized. It then follows from (3.11) that cbulk
L is also

quantized. Thus these coefficients must be polynomial in the charges Q1, Q5 and cannot,

for example, carry any inverse powers in the charges. This severely restricts the form of

the corrections. Furthermore, we can use a generalization of the scaling argument of [74]

to determine in which order in perturbation theory a given correction could arise. If we

10In fact in this particular example the CFT2 has (4,4) superconformal supersymmetry and this allows

us to relate cbulk
L directly to the coefficient kbulk

L of the SU(2)L Chern-Simons terms in the bulk action via

cbulk
L = 6kbulk

L . However in order to maintain a uniform discussion of all the cases we shall only make use

of the (0,4) supersymmetry of the CFT2.
11If we assume that the effect of quantum corrections can be encoded in a local 1PI action in AdS3,

then (3.8) can be derived directly in the bulk theory, either via euclidean action formalism [60] or via

Wald’s formula [63].
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take an extremal black hole carrying NS-NS sector electric charges ~q
(el)
NSNS, NS-NS sector

magnetic charges ~q
(mag)
NSNS , and RR sector charges ~qRR, then the argument of [74] implies

that the l-loop contribution to any of the coefficients cbulk
grav, k

bulk
R and kbulk

L — collectively

denoted by by c(l) — satisfies the scaling law:

c(l)
(
~q
(mag)
NSNS, λ

2~q
(el)
NSNS, λ~qRR

)
= λ2−2lc(l)

(
~q
(mag)
NSNS, ~q

(el)
NSNS , ~qRR

)
. (3.12)

In our example, Q1, Q5 are RR sector charges. Thus the scaling relation takes the form

c(l)(λQ1, λQ5) = λ2−2lc(l)(Q1, Q5) . (3.13)

Clearly the leading contribution to kbulk
L and kbulk

R , given by Q1Q5, satisfies (3.13) with

l = 0, showing that this arises at the tree level. A correction to any of the coefficients cbulk
grav ,

kbulk
R and kbulk

L linear in Q1 or Q5 will be suppressed with respect to the leading term by

a power of 1/λ under the scaling given in (3.13). According to (3.13) this must arise at

l = 1/2, i.e. at the ‘half loop’ order. Since close string perturbation theory includes only

contributions from integral number of loops we see that we cannot get corrections to the

central charge which are linear inQ1 orQ5. Put another way, a correction that is suppressed

by a single power of RR charges must come from terms in the action involving odd number

of RR fields. Such terms are not present in type IIB string theory. By following the same

line of argument we see that a constant term in the central charge will produce an effect

at the one loop order. Thus we might ask whether one loop correction in type IIB string

theory could produce corrections to the Lorentz, SU(2)L or SU(2)R Chern-Simons term in

the theory living on AdS3. We can consider two possibilities. The first possibility is that

such a term could arise from a one loop correction to the ten (or six) dimensional effective

action integrated over K3×S3 (or S3). Since the term we are looking for is independent of

Q1 and Q5, it cannot involve the 3-form fluxes and must be purely gravitational in nature.

Now in an even dimensional theory it is impossible to write down a purely gravitational

Chern-Simons term. Thus we do not get a constant contribution to cbulk
L by integrating

a higher dimensional Chern-Simons term on S3. The second possibility is that there can

be one loop contributions to the Lorentz and/or SU(2)R Chern-Simons terms which arise

in the theory after compactification on K3 × S3 and cannot be seen in the ten or six

dimensional type IIB string theory. A priori we cannot rule out such a possibility; so let

us denote such one loop contributions to cbulk
grav, k

bulk
L and kbulk

R by A, B and C respectively.

This gives

cbulk
L = 6Q1Q5 +A+ 6C, kbulk

L = Q1Q5 +B . (3.14)

cbulk
L and kbulk

L given in (3.14) control the contribution to the black hole degener-

acy/index from the bulk of AdS3. To determine the full contribution to the macroscopic

index using (2.24), (2.25) we must combine this with the contribution from the exterior

degrees of freedom mentioned in the previous section. We shall show in section 4 that the

exterior contributions cexterior
L,eff and kexterior

L,eff to the index precisely cancel the constant shifts

(A+ 6C) and B in eq.(3.14), leading to:

cmacro
L,eff = 6Q1Q5, kmacro

L,eff = Q1Q5 . (3.15)

– 22 –



J
H
E
P
0
4
(
2
0
1
1
)
0
3
4

Using (2.25) we now see that the leading supergravity formula for the entropy is the com-

plete contribution to the index in the Cardy limit:

ln dmacro(n,Q1, Q5, J) ≃ 2π

√
Q1Q5n− J2

4
. (3.16)

Here ≃ denotes equality up to corrections suppressed by inverse powers of n. The macro-

scopic result (3.16) agrees with the microscopic result (5.20) which will be derived in

section 5.

3.1.2 Type IIA Cardy limit

Let us turn to the type IIA Cardy limit: Q1 → ∞ at fixed n,Q5 and J <
∼

√
Q1 [68]. The

strategy will be to examine the black hole in a different duality frame in which Q1 appears

as a momentum along a circle, and then apply the same line of reasoning to find an exact

formula for the black hole entropy in the limit Q1 → ∞ at fixed n,Q5. For this we first

make an S-duality transformation in the ten dimensional type IIB string theory to map

this system to an NS 5-brane, fundamental string, momentum system, and then make a

T-duality along the circle S1 to map this into a system in type IIA string theory on K3×S̃1

with Q5 NS 5-branes wrapped along K3 × S̃1, n fundamental strings wrapped along S̃1

and Q1 units of momentum along S̃1. By following the duality transformation rules and

making a change of coordinates one finds that the near horizon geometry of the black hole

in the type IIA variables, denoted by ∼, takes the form

dS2 = r̃0
dρ2

ρ2
+ dy2 + r̃0(dx

4 + cos θdφ)2 +
Jλ̃2

8r̃0R̃Ṽ
dy(dx4 + cos θdφ) − 2

√
r̃0ρdydτ

+r̃0
(
dθ2 + sin2 θdφ2

)
+ ĝmndu

mdun , y ≡ y + 2πR̃

eΦ = λ̃ ,

H̃(3) = r̃0

[
ǫ3 + ∗ǫ3 +

Jλ̃2

16 r̃20R̃Ṽ
dy ∧

(
1

ρ
dρ ∧ (dx4 + cos θ dφ) + sin θ dθ ∧ dφ

)]
,

(3.17)

where H̃(3) is the NS-NS 3-form field strength. The near horizon parameters are now given

in terms of the charges and the parameter λ̃ via the relations

r̃0 =
Q5

4
, Ṽ = λ̃2 n

Q5
, R̃ =

√
Q1

n
. (3.18)

With the help of the same coordinate transformation (3.6) we can remove the explicit J

dependence of the solution except for in the periodic identification of the new coordinates.

The space-time spanned by the coordinates (ρ, τ, y, θ, φ, x4) is now locally AdS3 × S3. If

we take the limit in which the asymptotic radius R̃as of S̃1 goes to infinity keeping fixed

the quantized charges and the six dimensional background, then the solution develops an

AdS3 × S3 factor in the intermediate region, and the near horizon geometry described

in (3.17) can be regarded as that of an extremal charged BTZ black hole embedded in this

asymptotically AdS3×S3 geometry. In the holographically dual CFT2 the BTZ black hole
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can now be regarded as an RR sector state with L0 = Q1, L̄0 = 0 and U(1)L ⊂ SU(2)L
charge J/2. Thus the entropy of the black hole in the limit of large Q1 should be given by

the Cardy formula

SBH ≃ 2π

√
c̃bulk
L

(
Q1 −

1

4
(k̃bulk

L )−1J2

)
/6 , (3.19)

where now c̃bulk
L , c̃bulk

R , k̃bulk
L , and k̃bulk

R denote respectively the central charges of the left

and right-moving Virasoro algebras and the levels of SU(2)L and SU(2)R current algebras

in the CFT2. As before, c̃bulk
grav ≡ c̃bulk

L − c̃bulk
R is related to the coefficient of the Lorentz

Chern-Simons term in the bulk and k̃bulk
L and k̃bulk

R are related to the coefficients of the

SU(2)L and SU(2)R Chern-Simons terms. Furhermore using the supersymmetries of the

bulk theory one can show that the CFT2 has (0, 4) supersymmetry. This leads to the

relation c̃bulk
R = 6 k̃bulk

R and gives

c̃bulk
L = c̃bulk

grav + 6 k̃bulk
R . (3.20)

Comparison with (3.3) shows that in the supergravity approximation we have c̃bulk
L = 6nQ5

and k̃bulk
L = nQ5. Since in this approximation there is no Lorentz Chern-Simons term in

the action, c̃bulk
grav vanishes and (3.20) gives k̃bulk

R = nQ5. Direct computation of k̃bulk
L and

k̃bulk
R can be performed using the procedure reviewed in appendix A and agrees with the

values given above. Our goal now is to compute the corrections to c̃bulk
grav , k̃

bulk
L and k̃bulk

R

due to higher derivative and string loop corrections.

Since c̃bulk
grav, k̃

bulk
L and k̃bulk

R are all quantized, corrections to them could involve terms

linear in Q5 and/or n and constant term. Now since n represents an NSNS sector electric

charge and Q5 an NSNS sector magnetic charge, the scaling relation (3.12) takes the form

c̃(l)(λ2n,Q5) = λ2−2lc̃(l)(n,Q5) , (3.21)

where c̃(l) stands for l loop contribution to any of the quantities c̃bulk
grav, k̃

bulk
L and k̃bulk

R . This

shows that a term linear in n, if present, must arise at string tree level. Since this term

would be linear in n, representing the NS-NS 3-form flux H̃(3) through AdS3, it will have

to arise from a six dimensional Chern-Simons term of the form
∫

DH̃(3) ∧ΩCS where ΩCS

is a Lorentz Chern-Simons 3-form in six dimensions, and D denotes the dual field strength

obtained by taking the Hodge dual of the flux δS/δH̃(3) [89]. But tree level type IIA

string theory does not have such a term in the action since the gauge invariant three form

field strength in type II string theories do not involve a Lorentz Chern-Simons term. This

shows that there are no corrections linear in n. According to the scaling relation (3.21) the

constant term, if present, must arise at one loop. Since it does not involve any charges, it

will have to either come from a purely gravitational term in ten dimensions which upon

dimensional reduction on K3 × S3 will produce a Lorentz Chern-Simons term in AdS3,

or arise as a one loop effect in the theory after compactification on S3. Since there are

no purely gravitational Chern-Simons terms in ten or six dimensions, we can rule out the

first possibility. But as in the case of type IIB Cardy limit, we cannot rule out the second

possibility. Let us denote such contributions to c̃bulk
grav, k̃

bulk
L and k̃bulk

R , if present, by Ã, B̃

and C̃ respectively.
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Finally a term linear in Q5, if present, must arise at one loop order, and come from a

term proportional to
∫
H̃(3) ∧ ΩCS in six dimensions. Are there such one loop corrections

to the Chern-Simons term? The ten dimensional type IIA string theory indeed contains a

one loop Chern-Simons term of the form

− 1

2π

∫
B̃ ∧ I8(X), (3.22)

where B̃ is the NS-NS 2-form field and I8(X) = 1
48

(
p2(X) − p2

1(X)
4

)
, X being the ten

dimensional space and pn denoting the nth Pontryagin class [90]. Upon dimensional re-

duction on K3 this generates a term proportional to
∫
H̃(3) ∧ ΩCS . Thus c̃bulk

grav , k̃
bulk
L and

k̃bulk
L can all receive corrections linear in Q5. To compute the coefficients of these terms we

introduce the quantities I0
7 and p0

1 via the relations I8 = dI0
7 and p1 = dp0

1. Since H̃(3) has

nontrivial flux over S3, the 2-form field B̃ is not well defined. Thus instead of taking the

coupling (3.22) we shall take
1

2π

∫
H̃(3) ∧ I0

7 (3.23)

by integration by parts. Now the spin connection in the Kaluza-Klein reduction is simply a

direct sum of the connections on AdS3 ×S3×K3. Using the fact that the total pontryagin

class of a direct sum satisfies p(E ⊕ F ) = p(E)p(F ), that
∫
K3 p1 = 48, and that p1 =

−dωv(Γ)/8π2 where

ωv(Γ) = Trv

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
, (3.24)

the trace being taken over the vector representation, we can express the contribution

from (3.23) as

− 1

32π3

∫

AdS3×S3

H(3) ∧ ωv(Γ) , (3.25)

where Γ now stands for the spin connection on AdS3 ×S3. Using eqs.(A.14), (A.19) we see

that the effect of (3.25) is to generate the following corrections to c̃bulk
grav, k̃

bulk
R and k̃bulk

L :

∆c̃bulk
grav = 12Q5, ∆k̃bulk

R = Q5, ∆k̃bulk
L = −Q5 . (3.26)

We can check the consistency of the overall sign and normalization by setting Q5 = 1; in

this case the system is equivalent to a fundamental heterotic string which has cgrav = 12.

Combining (3.26) with the leading supergravity results and the constant shifts we arrive

at the relations:

k̃bulk
R = Q5(n+ 1) + C̃, k̃bulk

L = Q5(n− 1) + B̃, c̃bulk
grav = 12Q5 + Ã,

c̃bulk
L = c̃bulk

grav + 6k̃bulk
R = 6Q5(n+ 3) + Ã+ 6C̃ . (3.27)

We now need to use (2.24), (2.25) to find the asymptotic formula for the index. Again

we shall see in section 4 that the net effect of the exterior contribution c̃exterior
L,eff and k̃exterior

L,eff

is to cancel the terms proportional to Ã+ 6C̃ and B̃ in c̃bulk
L and k̃bulk

L . Thus the growth
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of the macroscopic index dmacro in the type IIA Cardy limit Q1 → ∞ for fixed Q5, n will

be controlled by the constants

k̃macro
L,eff = Q5(n− 1), c̃macro

L,eff = 6Q5(n+ 3) , (3.28)

and ln dmacro given by

ln dmacro(n,Q1, Q5) ≃ 2π

√
Q5(n+ 3)

(
Q1 −

J2

4Q5(n− 1)

)
, (3.29)

where ≃ implies equality up to corrections suppressed by powers of Q1. This agrees with the

result found in [68, 83] for small J and large n computed using a particular four derivative

correction to the five dimensional effective action. Also the result for c̃macro
L,eff agrees with

the one computed in [91, 92] (see also [93, 94]) assuming a specific structure of all the

higher derivative correction to the effective action.12 Most importantly (3.29) agrees with

the microscopic answer (5.27) which will be derived in section 5.

3.2 Entropy of some four dimensional black holes

We now consider a four dimensional theory obtained by compactifying type IIB string

theory on K3×S1× S̃1. In this theory we take the non-spinning D1-D5-p system analyzed

in section 3.1 and place it in the background of K Kaluza-Klein (KK) monopoles associated

with the circle S̃1. Since for K = 1 this system has the same near horizon geometry as the

five dimensional D1-D5-p system analyzed in section 3.1, the macroscopic computation of

the index is identical to that in section 3.1 except for the difference in the contribution

due to the exterior modes. We shall however keep K arbitrary and compute the entropy

in a different duality frame in which we regard them as black holes in M-theory on K3 ×
T 3 carrying M5-brane charges and internal momentum. For this we first make a mirror

symmetry transformation in K3 to take the D1-D5 system to a D3-D3 system with Q1

D3-branes wrapped on C2 × S1 and Q5 D3-branes wrapped on a C̃2 × S1 where C2 and

C̃2 are a pair of dual 2-cycles of K3. We then make a T-duality along the circle S̃1 to take

the D3-branes to D4-branes and the KK monopoles to NS 5-branes wrapped on K3 × S1.

If we denote by Ŝ1 the T-dual circle then we have Q1 D4-branes along C2 × S1 × Ŝ1, Q5

D4-branes wrapped along C̃2 × S1 × Ŝ1, and K NS 5-branes along K3 × S1, carrying n

units of momentum along S1. We can now regard the type IIA string theory as M-theory

compactified on a new circle S1
M , so that we have M-theory on K3×S1×Ŝ1×S1

M . The dyon

configuration now corresponds to Q1 M5-branes along C2 × S1 × Ŝ1 × S1
M , Q5 M5-branes

wrapped along C̃2 × S1 × Ŝ1 × S1
M , and K M5-branes wrapped along K3× S1, carrying n

units of momentum along S1.

Our goal in this section will be to analyze the black hole solution corresponding to

these charges and find the macroscopic entropy of this system in the limit n→ ∞, keeping

the other charges fixed. Since the analysis proceeds more or less in the same way as for five

dimensional black holes, our discussion will be brief. As in the case of the D1-D5-p system

one finds that near the horizon the AdS2 × S2 appearing in the near horizon geometry

12Earlier results on this can be found in [95].
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of the black hole combines with the circle S1 to produce a locally AdS3 × S2 factor [60].

Furthermore if we take the limit in which the asymptotic radius of S1 approaches infinity,

keeping fixed all other quantized charges and the five dimensional geometry in the M-theory

frame then the M-theory background develops an intermediate AdS3 × S2 geometry, and

the near horizon geometry of the black hole appears as the near horizon geometry of an

extremal BTZ black hole embedded in this asymptotically AdS3×S2 space. Thus applying

the Cardy formula we see that the entropy is given by the formula

SBH ≃ 2π
√
cbulk
L n/6 , (3.30)

where cbulk
L is the central charge of the left-moving Virasoro algebra of the holographi-

cally dual CFT2. In the supergravity approximation cbulk
L = 6Q1Q5K, reproducing the

Bekenstein-Hawking result 2π
√
Q1Q5Kn for the entropy [96, 97].

In the limit n → ∞ with Q1, Q5, K fixed, the complete contribution to the entropy

(and the index) from the bulk modes on AdS3 continues to be given by (3.30) provided cbulk
L

represents the exact central charge of the left-moving Virasoro algebra after taking into

account higher derivative and quantum corrections. As usual (cbulk
L − cbulk

R ) is given by the

coefficient cbulk
grav of the Lorentz Chern-Simons term in AdS3. On the other hand using the

supersymmetries of the bulk geometry one can show that the dual CFT2 on the boundary

has (0,4) superconformal symmetry acting on the right-movers. As a result cbulk
R can be

related to the level kbulk
R of the SU(2) R-symmetry current in the CFT2 via the relation

cbulk
R = 6kbulk

R .13 Since this SU(2) current in the boundary theory is holographically dual to

the SU(2) gauge fields in the bulk arising from dimensional reduction on S2, kbulk
R is given

by the coefficient of the SU(2) Chern-Simons term in the bulk. This allows us to determine

cbulk
L in terms of the coefficients of the Chern-Simons terms in AdS3 via the relations

cbulk
L = cbulk

grav + 6 kbulk
R . (3.31)

The relevant Chern-Simons terms were evaluated in [60] for M-theory compactified on

M × S1 where M is a general Calabi-Yau 3-fold. In this theory, consider a black hole

corresponding to M5-brane wrapped on P × S1 where P is some general 4-cycle in M .

Using the isomorphism between 4-cycles and 2-forms we can associate with P a 2-form on

M which we shall also denote by P . Then the result of [60] for cbulk
L and cbulk

R are:

cbulk
R =

∫

M

(
P ∧ P ∧ P +

1

2
P ∧ c2(M)

)
+ĀR, cbulk

L =

∫

M
(P∧P∧P+P∧c2(M))+ĀL ,

(3.32)

where c2(M) is the second Chern class of M . Note that we have allowed for constant shift

(ĀL, ĀR) in the central charges due to one loop effects arising after compactification of

M -theory on K3×T 2×S2×AdS3. Computation in [60] was carried out by integrating the

quantum corrected ten dimensional Lagrangian density on K3 × S3, and ignored possible

quantum corrections which could arise after compactification on K3×S3. Evaluating this

for the configuration we have, we get

cbulk
R = 6K(Q1Q5 + 2) + ĀR, cbulk

L = 6K(Q1Q5 + 4) + ĀL . (3.33)

13Although there is now a single SU(2) we shall label its anomaly coefficient by kR.
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Again we shall see in section 4 that when we compute the full index in the macroscopic

theory using (2.17), (2.18), the net effect of the exterior contribution cexterior
L,eff is to cancel

the ĀL term in cbulk
L , giving rise to

cmacro
L,eff = 6K(Q1Q5 + 4) . (3.34)

eq.(2.18) now shows that the index computed in the macroscopic theory grows as

ln dmacro(n,Q1, Q5,K) ≃ 2π
√
K(Q1Q5 + 4)n for large n . (3.35)

This is in perfect agreement with the microscopic result (5.36) to be derived in section 5.

3.3 Black holes in toroidally compactified type IIB string theory

In this subsection we shall repeat the analysis of the previous subsections for black holes

in toroidally compactified type IIB string theory. Since the analysis proceeds in a more or

less identical manner we shall mainly state the results without going through the details

of the analysis.

First we consider the D1-D5-p system wrapped on T 4 × S1. We shall use the same

notation for the charges as in the case of K3 × S1 compactification, except that now Q1

represents the actual number of D1-branes since D5-branes wrapped on T 4 do not carry

any D1-brane charge. In the limit when Q1, Q5 are fixed and n becomes large, we get the

result:

ln dmacro(n,Q1, Q5, J) ≃ π
√

4Q1Q5n− J2 . (3.36)

In the limit of fixed n, Q5 and Q1 large, we have

ln dmacro(n,Q1, Q5, J) ≃ π
√

4Q1Q5n− J2 . (3.37)

Derivation of (3.36) is a straightforward generalization of the similar analysis for type IIB

on K3 × S1 leading to (3.16). The main difference between the analysis leading to (3.37)

and that leading to (3.29) is that the dimensional reduction of the
∫
B̃ ∧ I8 term on T 4

does not produce any Chern-Simons term. Thus all corrections to c̃bulk
L and k̃bulk

L from the

supergravity results, except for possible constant shifts from one loop corrections, vanish.

The constant shift is cancelled by the contribution from the exterior modes due to the

results of section 4. Using these results we arrive at (3.37). This is in perfect agreement

with the microscopic result (5.43) to be derived in section 5.

If we now consider a four dimensional black hole obtained by placing this system in

the background of K KK monopoles, and go to the duality frame in which the system

is described by momentum carrying M5-brane wrapped on T 7, then we can analyze the

macroscopic entropy of the system following the same procedure as in section 3.2. In this

case the near horizon geometry is locally T 6 × AdS3 × S2. The central charges cbulk
L and

cbulk
R associated with this AdS3 are given by formulæ similar to those given in (3.33) except

that now
∫
P ∧ c2(M) vanishes. Possible constant shift in cbulk

L due to one loop correction

is exactly cancelled by the hair contribution. This gives

ln dmacro(n,Q1, Q5,K) ≃ 2π
√
Q1Q5Kn for large n . (3.38)

This is in complete agreement with the macroscopic result (5.46).
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4 Analysis of the exterior contribution

In this section we shall compute the coefficients cexterior
L,eff and kexterior

L,eff appearing in (2.16)

and (2.23) and show that their effect is to cancel the charge independent constant terms in

the expressions for cmacro
L,eff and kmacro

L,eff which arise from one loop quantum corrections and

which cannot be obtained as the dimensional reduction of the 1PI action in ten dimensions

on the intermediate AdS3 geometry. Examples of such terms are A+ 6C and B in (3.14).

We shall describe our analysis in the context of the five dimensional black hole, but it

will be clear that the result we derive is also valid in four dimensions, the only difference

being the absence of any reference to the SU(2)L symmetry and the associated anomaly

coefficient kL in four dimensions.

We begin by recollecting some relevant results from section 3. Recall that cbulk
L is

computed in section 3 via the relation

cbulk
L = cbulk

grav + 6kbulk
R , (4.1)

where kbulk
R and cbulk

grav are the coefficeints of the SU(2)R and Lorentz Chern-Simons terms in

the intermediate AdS3 geomery. On the other hand kbulk
L was given by the coefficient of the

SU(2)L Chern-Simons term in the AdS3 geometry. Part of the contribution to these Chern-

Simons terms came from integrating ten dimensional Chern-Simons terms on K3×S3, but

this left open the possibility of constant one loop corrections to these coefficients which

arise after compactification on S3. Now imagine that instead of doing this reduction on

the K3 × S3 that arises in the intermediate AdS3 region, we do this in the asymptotic

region where the geometry is locally K3×R6.14 Let us take a thick spherical shell of large

radius around the origin, bounded by the hypersurfaces r = r1 and r = r2 for large r1, r2,

and regard this space as locally R3 ×K3 × S3, with S3 labelling the angular coordinates

and R3 containing the time coordinate, the radial coordinate r and the coordinate along

S1. We can now formally dimensionally reduce the ten dimensional action on K3 × S3 to

calculate the coefficients of the Lorentz and SU(2)R × SU(2)L Chern-Simons terms on R3.

The calculation is identical to the one described in appendix A for the intermediate AdS3

geometry, except that this time we do not expect any additional one loop correction due

to compactification on S3 since we are really doing the computation in K3 × R6 rather

than on K3 × S3 × AdS3. Thus the result for these coefficients will be identical to cbulk
grav ,

kbulk
R = cbulk

R /6 and kbulk
L computed in section 3 and appendix A except for the constant one

loop shifts. We shall denote these coefficients by casymp
grav , kasymp

R and kasymp
L respectively.

For completeness we shall list below the values of casymp
grav , kasymp

R and kasymp
L for each of the

systems analyzed in section 3:

1. D1-D5-p system in type IIB on K3 × S1 in the type IIB Cardy limit:

casymp
grav = 0, kasymp

R = Q1Q5, kasymp
L = Q1Q5 . (4.2)

14Recall that we have taken the asymptotic radius of S1 to infinity so that we have a (5+1) dimensional

asymptotic space-time.
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2. D1-D5-p system in type IIB on K3 × S1 in the type IIA Cardy limit:

casymp
grav = 12Q5, kasymp

R = Q5(n+ 1), kasymp
L = Q5(n− 1) . (4.3)

3. Four dimensional black hole in M-theory on K3 × T 2 × S1:

casymp
grav = 12K, kasymp

R = K(Q1Q5 + 2) . (4.4)

4. D1-D5-p system in type IIB on T 4 × S1 in the type IIB Cardy limit:

casymp
grav = 0, kasymp

R = Q1Q5, kasymp
L = Q1Q5 . (4.5)

5. D1-D5-p system in type IIB on T 4 × S1 in the type IIA Cardy limit:

casymp
grav = 0, kasymp

R = Q1Q5, kasymp
R = Q1Q5 . (4.6)

6. Four dimensional black hole in M-theory on T 6 × S1:

casymp
grav = 0, kasymp

R = KQ1Q5 . (4.7)

We shall now try to express the difference between the Chern-Simons coefficients cal-

culated in the asymptotic geometry and the intermediate AdS3 geometry in terms of some

known quantities and in the process gain knowledge about the constant terms in the expres-

sion for the Chern-Simons coefficients in the intermediate AdS3 region. For this we note

that the coefficients of the Chern-Simons terms can also be interpreted as certain anomaly

coefficients. For example kbulk
R and kbulk

L reflect the change in the effective action in the

bulk theory by certain boundary terms in the intermediate AdS3 geometry under SU(2)R
and SU(2)L gauge transformations, and cbulk

grav reflects a similar change under local Lorentz

transformations. kasymp
R , kasymp

L and casymp
grav reflect similar anomalies under local SU(2)R,

SU(2)L and Lorentz transformations in the asymptotic region. Thus the difference between

kasymp
R and kbulk

R must be accounted for by the contribution to the SU(2)R anomaly due to

the exterior degrees of freedom sitting between the asymptotic observer and the AdS3. We

shall denote this by kexterior
R . An identical argument holds for kL and cgrav . Thus we have

kasymp
R = kbulk

R + kexterior
R , kasymp

L = kbulk
L + kexterior

L , casymp
grav = cbulk

grav + cexterior
grav . (4.8)

Using (2.24), (4.1) and (4.8) we get

cmacro
L,eff = casymp

grav − cexterior
grav + 6(kasymp

R − kexterior
R ) + cexterior

L,eff = casymp
grav + 6kasymp

R + ∆ ,

kmacro
L,eff = kasymp

L + δ , (4.9)

where

∆ ≡ −6kexterior
R −cexterior

grav +cexterior
L,eff = −6kexterior

R −(cexterior
L − cexterior

R )+cexterior
L,eff , (4.10)

δ = kexterior
L,eff − kexterior

L . (4.11)
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Now we have already argued that the results for casymp
grav , kasymp

R and kasymp
L are identical

to those of cbulk
grav , k

bulk
R and kbulk

L in section 3 except for the constant one loop shifts. This

if we can show that ∆ and δ vanish, then we would prove that the effect of the exterior

contributions is to precisely cancel these constant shifts in the AdS3 central charges.

We shall now show that ∆ and δ vanish. For this we shall need to make some assump-

tions on the structure of the exterior modes. We make the following assumptions:

1. The exterior modes consist of free massless scalars and fermions belonging to singlet

and/or spinors representations of SU(2)L and SU(2)R.

2. The scalar modes which transform in the vector (2,2) representation of the transverse

rotation group SO(4) = SU(2)L × SU(2)R are non-chiral. Physically this assumption

stems from the fact that such modes arise from the oscillations of the center of mass

mode of the black string which is non-chiral. Due to this assumption the contribution

to the SU(2)R and SU(2)L anomalies from any scalar in the (2L, 2R) representation

of SU(2)L ×SU(2)R always vanishes. Taking advantage of this fact we can assign the

contribution to (kL, kR) from a left-moving (2L, 2R) scalar to be (a, b) and a right-

moving (2L, 2R) scalar to be (−a,−b) for any arbitrary pair of numbers (a, b). We

shall choose (a, b) = (−1,−1) for convenience.

To this we shall add the information that the (1+1) dimensional conformal field theory of

exterior modes is invariant under (0,4) supersymmetry. This follows from the supersym-

metry of the solution outside the AdS3 region. We shall not make the assumption that the

SU(2) R-symmetry current of this superconformal algebra has any relation to the spatial

rotation group SU(2)R. Thus we shall not have any relation between cexterior
R and kexterior

R .

We shall now separately evaluate the contribution to ∆ and δ from each type of field

that could appear as part of the exterior degrees of freedom. For this we need to calculate

kL, kR, cL−cR, cL,eff and kL,eff from each field. This is done with the help of the following

observations:

1. The calculation of (kR, kL, cL − cR) is straighforward since these are given by the

contribution to SU(2)L, SU(2)R and gravitational anomalies.

2. The calculation of cL,eff and kL,eff involves computing the contribution from these

fields to the index C̃exterior
2k ≡ Tr(−1)2JR(2JR)2e2πipτ+4πiJLz. To this end we note

that the factor of (2JR)2 is needed to soak up the SU(2)R doublet fermion zero

modes. Thus after taking the trace over the fermion zero modes we are left with

Tr(−1)2JRe2πipτ+4πiJLz from the oscillator modes. Due to supersymmetry this re-

ceives contribution only from the left-moving modes.

3. Since (−1)2JR = 1 for the SU(2)R singlet fields, the SU(2)R singlet left-moving fields

contribute in the same way to the index and the degeneracy. Thus for them cL,eff =

cL, and kL,eff = kL.

4. SU(2)R doublet left-moving fields have the property that the contribution to C̃exterior
2k

from a left-moving scalar oscillator, given by
(
1 − e2πiposcτ+4πiJL,oscz

)−1
, can be re-

garded as the inverse of the contribution to the partition function from a left-moving
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fermionic oscillator, and the contribution to C̃exterior
2k from a left-moving fermionic

oscillator, given by
(
1 − e2πiposcτ+4πiJL,oscz

)
, can be regarded as the inverse of the

contribution to the partition function from a left-moving bosonic oscillator. Thus

their contribution to cL,eff and kL,eff can be computed by replacing the fermions by

bosons and vice versa, and including an extra − sign in front of the corresponding

values of cL and kL.

This gives the following contribution to ∆ and δ from various fields:

left-moving (1L, 1R) scalar:

kR =0, kL =0, cR =0, cL =1, cL,eff =1, kL,eff =0, ∆=0, δ=0 ,

left-moving (2L, 2R) scalar:

kR =−1, kL =−1, cR =0, cL =4, cL,eff =−2, kL,eff =−1, ∆=0, δ=0 ,

left-moving (2L, 1R) fermion:

kR =0, kL =
1

2
, cR =0, cL =1, cL,eff =1, kL,eff =

1

2
, ∆=0, δ=0 ,

left-moving (1L, 2R) fermion:

kR =−1

2
, kL =0, cR =0, cL =1, cL,eff =−2, kL,eff =0, ∆=0, δ=0 ,

right-moving (1L, 1R) scalar:

kR =0, kL =0, cR =1, cL =0, cL,eff =0, kL,eff =0, ∆=1, δ=0 ,

right-moving (2L, 2R) scalar:

kR =1, kL =1, cR =4, cL =0, cL,eff =0, kL,eff =0, ∆=−2, δ=−1 ,

right-moving (2L, 1R) fermion:

kR =0, kL =−1

2
, cR =1, cL =0, cL,eff =0, kL,eff =0, ∆=1, δ=

1

2
,

right-moving (1L, 2R) fermion:

kR =
1

2
, kL =0, cR =1, cL =0, cL,eff =0, kL,eff =0, ∆=−2, δ=0 .

(4.12)

Note that in evaluating the contribution to kL and kR from the (2L, 2R) scalars we have

exploited the freedom of choice mentioned earlier. From this table we see that the left-

moving exterior modes do not contribute to ∆ or δ. On the other hand since we have
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supersymmetry acting on the right-movers, and since the supersymmetry generators are

doublets of SU(2)R, a right-moving SU(2)R doublet scalar must be accompanied by a pair of

SU(2)R singlet fermions and a right-moving SU(2)R doublet fermion must be accompanied

by a pair of SU(2)R single scalars.15 From (4.12) we see that the net contribution to ∆

and δ still vanishes for such fields.

Using ∆ = 0 and δ = 0 we get from (4.9) that

cmacro
L,eff = casymp

grav + 6kasymp
R , kmacro

L,eff = kasymp
L . (4.13)

As already argued before, casymp
grav + 6kasymp

R and kasymp
L are given respectively by the same

computation as cbulk
L and kbulk

L of section 3 except that the constant shifts are absent.

This proves that the effect of the inclusion of the exterior contribution is to remove the

constant term in the central charges due to one loop corrections. Note also that in (4.12)

the values of cL and cL,eff differ for several of the modes. Thus if we had focussed on the

absolute degeneracy rather than the index then its growth will not be controlled solely by

the anomaly coefficients since for the contribution due to the exterior modes cL,eff will

now be replaced by cL.

5 Microscopic results

In this section we shall examine the computation of the microscopic indices of certain black

holes in four and five dimensions, and show that these agree with the results of explicit

macroscopic calculations given in section 3 and section 4.

5.1 D1-D5-p system in type IIB on K3 × S1

In this section we shall examine in detail the microscopic formulæ for the index of the

D1-D5-p system in type IIB string theory compactified on K3 × S1 in various limits. We

consider a system of 1 D5-brane wrapped on K3 × S1 and Q1 + 1 D1-branes wrapped on

S1, carrying n units of left-moving momentum along S1 and SU(2)L angular momentum

JL = J/2. Since a D5-brane wrapped on K3 carries −1 unit of D1-brane charge, Q1

represents the physical D1-brane charge carried by this system. We consider the index:

dmicro(n,Q1, J) ≡ C2(n,Q1, J) = − 1

2!
Tr
[
(−1)2JR (2JR)2

]
, (5.1)

where the trace is taken over all states carrying fixed Q1, n and JL = J/2 but different

values of JR. The partition function Z5D(ρ, σ, v), defined through the relation

Z5D(ρ, σ, v) ≡
∑

Q1,n,J

e2πi(ρn+σQ1+vJ) (−1)J dmicro(n,Q1, J) , (5.2)

15We emphasize that that this does not imply that SU(2)R is the zero mode part of the right-moving

R-symmetry current. As already remarked, the latter acts trivially on all the left-moving fields while the

former has non-trivial action on some left-movers.
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is given by [30, 31]

Z5D(ρ, σ, v) = e−2πiσ
∏

k,l,j∈Z

k≥1,l≥0

(
1 − e2πi(σk+ρl+vj)

)−c(4lk−j2)
(5.3)

×




∏

l≥1

(1−e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1−e2πilρ)4



 (−1) (eπiv − e−πiv)2

where c(u) are defined via the relations:

F (τ, z) =
∑

j,n∈Z

c(4n − j2)e2πinτ+2πijz . (5.4)

F (τ, z) = 8

[
ϑ2(τ, z)

2

ϑ2(τ, 0)2
+
ϑ3(τ, z)

2

ϑ3(τ, 0)2
+
ϑ4(τ, z)

2

ϑ4(τ, 0)2

]
. (5.5)

The first line of (5.3) is the contribution from the relative motion between the D1 and

D5 branes [30] and the second line represents the contribution from the center of mass

modes [51]. Strictly speaking we should subtract from this the contribution from the

half-BPS states carrying zero momentum, but as long as we use this formula to extract

the index of states carrying non-zero momentum along S1, we shall not make any error.

The −(2JR)2/2! factor in the trace has been absorbed by the four fermion zero modes

associated with the center of mass motion carrying (JL, JR) = (0,±1
2 ), and the factor of

−(eπiv − e−πiv)2 comes from the contribution from the four fermion zero modes on the

D1-D5 world-volume carrying (JL, JR) = (±1
2 , 0).

Eq. (5.3) may be rewritten as

Z5D(ρ, σ, v) = −
(
eπiv − e−πiv

)4 η(ρ)24

Φ10(ρ, σ, v)
, (5.6)

where

Φ10(ρ, σ, v) = e2πiσ+2πiρ+2πiv
∏

k,l,j∈Z

k,l≥0,j<0 for k=l=0

(
1 − e2πi(σk+ρl+vj)

)c(4lk−j2)
, (5.7)

is the Igusa cusp form. In going from (5.3) to (5.6) we have used c(0) = 20, c(−1) = 2.

From (5.2), (5.6) we get

dmicro(n,Q1, J)=(−1)J+1

∫ 1

0
dρ

∫ 1

0
dσ

∫ 1

0
dv
(
eπiv−e−πiv

)4
e−2πi(ρn+σQ1+Jv) η(ρ)24

Φ10(ρ, σ, v)
.

(5.8)

We shall be interested in studying the behavior of dmicro(n,Q1, J) in two different

limits:

1. Type IIB Cardy limit: n large at fixed Q1 and Q1 − J2

4n > K1 for some fixed positive

number K1.

2. Type IIA Cardy limit [68]: Q1 large at fixed n and n − J2

4Q1
> K2 for some fixed

positive number K2.
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Estimates for K1, K2 can be found in appendix B. In both these limits the combination

∆ ≡ (4Q1n− J2) becomes large. In this case the asymptotic expansion of dmicro(n,Q1, J)

is governed by the residue of the integrand in (5.8) on the subspace [1, 2, 9, 18]

ρσ − v2 + v = 0 , (5.9)

where the integrand has a pole. Since the analysis in [1, 2, 9, 18] were carried out in a

different limit where n, Q1 and J were all large and of same order, we have given a careful

analysis in appendix B showing that even in the two limits we are considering the dominant

contribution comes from this pole. Near this pole

1

Φ10(ρ, σ, v)
= −(4π2)−1 ρ10 v̌−2η(ρ̌)−24 η(σ̌)−24 + non-singular , (5.10)

where

ρ̌ =
ρσ − v2

ρ
, σ̌ =

ρσ − (v − 1)2

ρ
, v̌ =

ρσ − v2 + v

ρ
. (5.11)

Picking up the residue at the pole at (5.9) restricts the three dimensional integral to a

two dimensional subspace. This is best done by changing the variables of integration to

(ρ̌, σ̌, v̌), and using

dρ ∧ dσ ∧ dv = −(2v̌ − ρ̌− σ̌)−3 dρ̌ ∧ dσ̌ ∧ dv̌ . (5.12)

In these variables the residue at the pole at v̌ = 0 can be calculated easily using standard

procedure. Introducing the variables (τ1, τ2) via

ρ̌ = τ1 + iτ2, σ̌ = −τ1 + iτ2 , (5.13)

we have near the v̌ = 0 subspace:

ρ =
i

2τ2
+

1

2τ2
2

v̌+O(v̌2), σ = i
τ2
1 + τ2

2

2τ2
+
τ2
1 + τ2

2

2τ2
2

v̌+O(v̌2), v =
1

2
−i τ1

2τ2
− τ1

2τ2
2

v̌+O(v̌2) .

(5.14)

Then the contribution to the integral from the residue at v̌ = 0 is given by [2, 9, 18]16

dmicro(n,Q1, J) ≃
∫
d2τ

τ2
2

e−F (τ1,τ2) , (5.15)

where

F (τ1, τ2) = − π

τ2

[
n+Q1(τ

2
1 + τ2

2 ) − τ1J
]
+ 24 ln η(τ1 + iτ2) + 24 ln η(−τ1 + iτ2)

+ 12 ln(2τ2) − 24 ln η

(
i

2τ2

)
− 4 ln

{
2 cosh

(
πτ1
2τ2

)}
(5.16)

− ln

[
1

4π

{
26+

2π

τ2

(
n+Q1(τ

2
1 +τ2

2 )−τ1J
)
+i

24

τ2

η′(i/2τ2)

η(i/2τ2)
+4π

τ1
τ2

tanh
πτ1
2τ2

}]
.

16In [2, 9, 18] the analysis was carried out for the four dimensional black hole for which the integrand

in (5.8) involves 1/Φ10 instead of η(ρ)24/Φ10. Eqs. (5.15), (5.16) are obtained by multiplying the integrand

of [2, 9, 18] by a factor of η(ρ)24, and then picking up the residue at v̌ = 0. This procedure is similar to the

ones followed in [68, 69], except that we have included in our analysis the contribution from the center of

mass degrees of freedom of the D1-D5-brane system and removed the contribution due to the fermion zero

modes associated with the hair.
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≃ in (5.15) implies equality up to exponentially suppressed contributions. Although we

have not been careful to keep track of the sign, this can be done by carefully following

each step as in [18]. The result is that the τ1, τ2 integrations run along the imaginary

τ1, τ2 directions through the saddle points of F (τ1, τ2) and the integration measure d2τ

represents d(Imτ1)d(Imτ2). Thus the leading contribution to dmicro(n,Q1, J) is positive.

The integration over τ1, τ2 can be evaluated using the method of steepest descent.

First of all note that if we ignore all terms except the one inside the first square bracket

on the right hand side of (5.16), the extremum of F (τ1, τ2) lies at

τ1 =
J

2Q1
, τ2 =

√
4nQ1 − J2

4Q2
1

. (5.17)

If Q1, n and J become large at the same rate then (τ1, τ2) are of order unity and the first

term in the square bracket in (5.16) dominates over the other term. However since we want

to take different limits we need to keep track of the contribution from the rest of the terms.

1. In the type IIB Cardy limit we have n→ ∞ at fixed values of Q1, and Q1− J2

4n > K1.

In this case we get from (5.17) τ2 ∼ √
n and τ1

<
∼

√
n. Since τ2 is large, we have

24 ln η(τ1 + iτ2) ≃ 2πi(τ1 + iτ2), 24 ln η(−τ1 + iτ2) ≃ 2πi(−τ1 + iτ2),

24 ln η

(
i

2τ2

)
≃ −4πτ2 . (5.18)

Substituting this into (5.16) we see that in the rest of the terms other than those

contained in the first square bracket the terms linear in τ1 and τ2 cancel, and at (5.17)

the net contribution from these terms is small compared to the first term in the square

bracket. Thus the leading contribution to − ln dmicro will be obtained by evaluating

the first term in the square bracket at the saddle point (5.17). This gives

ln dmicro(n,Q1, J) ≃ π
√

4nQ1 − J2 . (5.19)

In this equation ≃ denotes equality up to power suppressed corrections. In the rest

of this section ≃ in the expression for dmicro will denote corrections suppressed by

powers of n (Q1) in the type IIB Cardy (type IIA Cardy) limit. In principle we

can compute these power suppressed corrections by systematically carrying out the

integration over (τ1, τ2) about this saddle point.

If we have Q5 D5-branes instead of one D5-brane with gcd(Q1, Q5) = 1 then by

duality invariance the result for the index depends on the combination Q1Q5. Thus

the result for general Q5 is obtained by replacing Q1 by Q1Q5 in (5.19):

ln dmicro(n,Q1, Q5, J) ≃ π
√

4nQ1Q5 − J2 . (5.20)

The result is valid for large n with Q1Q5 − J2

4n > K1. This result is in perfect

agreement with the result of the direct macroscopic calculation given in (3.16).

It is worth comparing the result for the index with the result for the degeneracy. For

simplicity we shall sum over all the J values keeping the other charges fixed. In this
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case the index grows as exp[π
√

4nQ1Q5]. For computing the degeneracy we shall

apply the Cardy formula. Since the relative motion of the D1-D5 system is described

by a super-conformal field theory whose target space is the symmetric product of

(Q1Q5 + 1) copies of K3, we get a central charge of 6(Q1Q5 + 1) from the dynamics

of these modes. The center of mass motion in the transverse directions will give a

superconformal field theory with target space R4, and gives a central charge 6. Thus

the total central charge of this system is cmicro = 6(Q1Q5 + 2), both for the left

and the right-moving modes. Since the black hole microstates are identified as the

left-moving excitations in this CFT, we get the expected growth of degeneracy to

be exp[2π
√
cmicron/6] ∼ exp[2π

√
(Q1Q5 + 2)n]. This is different from the rate of

growth exp[2π
√
nQ1Q5] of the index.

2. In the type IIA Cardy limit we have Q1 → ∞ at fixed values of n, and n− J2

4Q1
> K2.

Thus (5.17) gives τ2 ∼ 1/
√
Q1 and τ1

<
∼1/

√
Q1. Since (τ1 + iτ2) is small, it is natural

to define

± σ1 + iσ2 = − 1

±τ1 + iτ2
. (5.21)

At (5.17), σ2 =
√

4nQ1 − J2/2n. This is large in the limit we are considering, and

hence we have

24 ln η(τ1 + iτ2) ≃ 2πi(σ1 + iσ2), 24 ln η(−τ1 + iτ2) ≃ 2πi(−σ1 + iσ2),

24 ln η

(
i

2τ2

)
≃ −π(σ2

1 + σ2
2)

σ2
. (5.22)

Each of these terms is of order
√
Q1 at the saddle point and they do not cancel.

Since in the limit of large Q1, the terms inside the first square bracket of (5.16) and

the contribution from the rest of the terms are both of order
√
Q1, it is no longer

appropriate to neglect the rest of the terms. Instead we must evaluate the saddle

point by taking into account the contribution from all the terms. We shall proceed

with the ansatz that at the saddle point σ2 is of order
√
Q1; this will be verified at

the end to check the self-consistency of our approximation. With this assumption we

can approximate the η functions by (5.22) and get the leading terms in F (τ1, τ2) to

be:

− π

σ2

[
Q1 + n(σ2

1 + σ2
2) + σ1J

]
− 4πσ2 +

π(σ2
1 + σ2

2)

σ2
. (5.23)

This has an extremum at

σ1 = − J

2(n − 1)
, σ2 =

√(
Q1 −

J2

4(n − 1)

)
/(n+ 3) , (5.24)

and at this extremum

F = −2π

√
(n+ 3)

(
Q1 −

J2

4(n − 1)

)
. (5.25)
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This gives

ln dmicro(n,Q1, J) ≃ 2π

√
(n+ 3)

(
Q1 −

J2

4(n− 1)

)
, (5.26)

up to power suppressed corrections. Furthermore from (5.24) we see that σ2 ∼ √
Q1

in agreement with our ansatz.

We can write down the result for Q5 number of D5-branes with gcd{Q1, Q5} = 1 by

replacing Q1 by Q1Q5 in (5.26):

ln dmicro(n,Q1, Q5, J) ≃ 2π

√
(n+ 3)

(
Q1Q5 −

J2

4(n − 1)

)
. (5.27)

This result is valid when Q1Q5 is large, and n− J2

4Q1Q5
> K2. This is again in perfect

agreement with the result of the macroscopic calculation given in (3.29).

To first subleading order in an expansion in powers of 1/n and J2 this agreement was

found in [68].

5.2 D1-D5-p-KK monopole system in type IIB on K3 × T 2

We consider now the same D1-D5-p system analyzed in section 5.1 and place it at the center

of a Taub-NUT space. This gives a four dimensional black hole, with the asymptotic circle

S̃1 of the Taub-NUT space identified as a new compact direction. Since the black hole

breaks 12 of the 16 supersymmetries of the theory, the relevant index is B6. The Taub-

NUT background has three effects on the index computation: it first of all converts the

angular momentum 2JL = J to momentum along S̃1 [98], it shifts the momentum along S1

by −1 units, and it gives additional contribution to the ‘partition function’ for the index [9].

We shall denote by dmicro(n,Q1, J) the negative of the sixth helicity trace index for these

dyons. Then [1–3, 9]

dmicro(n,Q1, J) = (−1)J+1

∫ 1

0
dρ

∫ 1

0
dσ

∫ 1

0
dv e−2πi(ρn+σQ1+Jv) 1

Φ10(ρ, σ, v)
. (5.28)

We shall be interested in the behavior of this quantity in the limit of large n at fixed

values of Q1, and J = 0. The analysis proceeds as in section 5.1 and we arrive at the

result [2, 9, 18]:

dmicro(n,Q1, J = 0) ≃
∫
d2τ

τ2
2

e−F (τ1,τ2) , (5.29)

where

F (τ1, τ2) = − π

τ2

[
n+Q1(τ

2
1 + τ2

2 )
]
+ 24 ln η(τ1 + iτ2) + 24 ln η(−τ1 + iτ2)

+12 ln(2τ2) − ln

[
1

4π

{
26 +

2π

τ2

(
n+Q1(τ

2
1 + τ2

2 )
)}]

.

(5.30)
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Using τ1 → −τ1 symmetry we can set τ1 = 0 at the saddle point. To extract the behavior

of this integral for large n we shall proceed with the ansatz that τ2 is large, of order
√
n at

the saddle point. In this case we can approximate F (τ1 = 0, τ2) by

F (τ1 = 0, τ2) = − π

τ2

[
n+Q1τ

2
2

]
− 4πτ2 . (5.31)

This has an extremum at

τ2 =
√
n/(Q1 + 4) . (5.32)

Thus at the extremum τ2 ∼ √
n, satisfying our ansatz. Evaluating F (0, τ2) at the extremum

we get

ln (dmicro(n,Q1, J = 0)) ≃ −F (0, τ2)|extremum = 2π
√

(Q1 + 4)n . (5.33)

We can in fact find the full asymptotic expansion by replacing the −12 ln(2τ2)

+ ln
[

1
4π

{
26 + 2π

τ2

(
n+Q1(τ

2
1 + τ2

2 )
)}]

factor in the exponent by a multiplicative factor of

(2τ2)
−12

[
1
4π

{
26 + 2π

τ2

(
n+Q1(τ

2
1 + τ2

2 )
)}]

in the integrand and approximating η(τ) by

e2πiτ/24 as in (5.31). The τ1 integral then becomes a gaussian integral which can be evalu-

ated, and the τ2 integral gives sum of Bessel functions. Using appropriate identities among

Bessel functions we can bring the integral to the form

dmicro = C0

(
n

Q1 + 4

)−23/4

I23/2(2π
√
n(Q1 + 4)) , (5.34)

where C0 is a constant independent of n and Iν denotes the standard Bessel function with

imaginary argument. This is precisely the leading term in the Rademacher expansion [99].

The final answer (5.34) can be readily determined directly using standard facts about

the Rademacher expansion of modular forms and Jacobi forms as follows. Doing the σ

integral first, we pick up the Q1-th Fourier coffecient of the partition function. Since 1/Φ10

is a Siegel modular form of weight −10, this Fourier coefficient ψ(τ, z) is a weak Jacobi form

in two variables of weight −10 and index Q1. Furthermore, ψ is known to be the partition

function of a (0, 4) SCFT of central charge C = 6Q1 + 24. For a Jacobi form of weight

−k, the index of the Bessel function and the power of the prefactor in the Rademacher

expansion17 is controlled by (k + 3/2) which in our case is 23/2. The argument of the

Bessel function and the prefactor are, on the other hand, given by 2π
√
Cn/6 which in our

case gives 2π
√
n(Q1 + 4).

If we take a system with Q5 D5-branes instead of a single D5-brane with gcd(Q1, Q5) =

1 then the B6 index must depend on Q1 and Q5 through the duality invariant combination

Q1Q5. This gives

ln (dmicro(n,Q1, Q5, J = 0)) ≃ 2π
√

(Q1Q5 + 4)n . (5.35)

What if we have K KK-monopoles instead of a single KK monopole associated with S̃1?

As long as gcd(Q1, Q5) = 1 and gcd(n,K) = 1, we can find a duality transformation that

17The usual Rademacher expansion of weak Jacobi forms assumes that the Jacobi form is holomorphic.

In our case, turns out to be meromorphic because of the poles in partition function and the Rademacher

expansion is modified but by terms that exponentially subleading [99].
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maps this charge vector to the one considered above with n replaced by nK [100, 101].

Thus we have

ln dmicro(n,Q1, Q5,K, J = 0) ≃ 2π
√

(Q1Q5 + 4)nK . (5.36)

This is in perfect agreement with the macroscopic result (3.35), computed by describing the

system as a black hole in M-theory on K3×T 3, carrying M5-brane charges and momentum

along a circle.

When the above arithmetic condition on (n,K,Q1, Q5) fails to hold there is no duality

transformation that maps this charge vector to the one for which we carried out the analysis.

Nevertheless the answer for B6 for these more general charge vectors is known [19–21] and,

in the limit of large n, differs from (5.36) by exponentially suppressed terms. Thus we can

continue to use (5.36) for the general dyon.

5.3 Black holes in toroidally compactified type II string theory

In this section we shall generalize the analysis of the previous sections to toroidally com-

pactified type IIB string theory. Since the D1-D5-p system on T 4×S1 describes a 1/8 BPS

state in a theory with 32 unbroken supercharges, the relevant index is C6 defined in (2.3).

This index was computed in [31]. For simplicity we shall set Q5 = 1 and denote the cor-

responding index C6(n,Q1, J) by dmicro(n,Q1, J); at the end we can recover the result for

general Q5 satisfying gcd(Q1, Q5) = 1 by replacing Q1 by Q1Q5. The result of [31] for the

index may be expressed as

∑

J

(−1)J dmicro(n,Q1, J) e2πiJv =
(
eiπv − e−iπv

)4∑

j∈Z

∑

s|n,Q1,j

s ĉ

(
4Q1n− j2

s2

)
e2πivj ,

(5.37)

where ĉ(∆) is defined through the relation:

− ϑ1(z|τ)2 η(τ)−6 ≡
∑

k,l

ĉ(4k − l2) e2πi(kτ+lz) . (5.38)

ϑ1(z|τ) and η(τ) are respectively the odd Jacobi theta function and the Dedekind eta

function. The (−1)J factor in (5.37) appears from the inclusion of an extra (−1)J factor

in the definition of the index in [31]. In the limit when Q1n is large only the s = 1 term is

important and we get

dmicro(n,Q1, J) ≃ (−1)J+1

∫ 1

0
dτ

∫ 1

0
dv e−2πiQ1nτ−2πiJv (eπiv − e−πiv)4

ϑ1(v|τ)2
η(τ)6

, (5.39)

up to exponentially suppressed corrections. We shall evaluate the integral over τ and v

using the saddle point method. We proceed with the ansatz that at the saddle point τ

is small and v ∼ 1, and verify this at the end. In this case we can express the integrand

in (5.39) as

(−1)J e−2πiQ1nτ−2πiJv (eπiv − e−πiv)4 e−2πiv2/τ e2πiv/τ (1 − e−2iπv/τ )2 (−iτ)2 . (5.40)
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Extremizing the integrand with respect to v and τ we find the approximate saddle point

in the rangle 0 ≤ Re(v) < 1 at

v =
1

2
− J

2
τ + · · · , τ = i/

√
4nQ1 − J2 + · · · , (5.41)

where · · · denote subleading terms. The value of the integrand at this saddle point is

exp[π
√

4nQ1 − J2 + · · · ] . (5.42)

This gives the leading contribution to dmicro(n,Q1, J). We can recover the results for

Q5 6= 1 with gcd(Q1, Q5) = 1 by replacing Q1 by Q1Q5 in (5.42). This gives

ln dmicro(n,Q1, Q5, J) ≃ π
√

4nQ1Q5 − J2 . (5.43)

This is in perfect agreement with the macroscopic result given in (3.36) and (3.37). Note

that in the microscopic analysis there is no distinction between type IIB Cardy limit (n→
∞) and type IIA Cardy limit (Q1 → ∞) since the result depends on the combination Q1n.

If instead of using the index we had computed the absolute degeneracy then the results

would change as follows. The motion of Q1 D1-branes inside a single D5-brane gives us

4Q1 bosonic degrees of freedom and their 4Q1 fermionic partners. Besides this we have

four extra bosonic modes associated with the D1-D5 center of mass motion and four more

bosonic modes associated with the Wilson lines on the D5-brane along T 4. Thus we have

eight extra bosonic modes and their fermionic superpartners. This would give a total

contribution of 6(Q1 + 2) to the left-handed central charge, and the logarithm of the

degeneracy computed from this would grow as π
√

4n(Q1 + 2) for J = 0. This is clearly

different from (5.42) for J = 0.

Finally consider the four dimensional system containing Q5 D5-branes along T 4 × S1,

Q1 D1-branes along S1 and K Kaluza-Klein monopoles associated with S̃1, carrying n units

of momentum along S1. This is U-dual to the M5-brane configuration discussed in sec-

tion 3.3. We shall restrict our analysis to the case gcd{Kn,Q1Q5,KQ1,KQ5, nQ1, nQ5} =

1. The exact B14 index of these states is known, and up to exponentially suppressed cor-

rections, the index is given by [32, 34, 35]

−B14 ≃ −ĉ(4Q1Q5Kn) , (5.44)

with ĉ(∆) defined as in (5.37). For large ∆ we have [29]

ĉ(∆) ∼ (−1)∆+1 ∆−2 exp(π
√

∆) . (5.45)

eq.(5.44) now shows that the logarithm of the index −B14 grows as 2π
√
Q1Q5Kn. This

gives the microscopic prediction for the logarithm of the index of the four dimensional

black hole:

ln dmicro(n,Q1, Q5,K) ≃ 2π
√
Q1Q5Kn . (5.46)

This is in perfect agreement with the macroscopic result given in (3.38).
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6 MSW analysis for M5-branes on K3 × T
3 and T

7

In section 3.2 we described a black hole whose microscopic description contains M5-branes

wrapped on a 5-cycle of K3 × T 3 or T 7. However while computing the microscopic index

of this system in section 5.2 we used an indirect method by mapping it to a D1-D5-p-KK

monopole system in type IIB string theory. In this section we shall directly compute the

microscopic index of the M5-brane system following [102], and show that the results agree

with those obtained in section 5.2.

6.1 M5-brane on K3 × T 3

We begin by recalling the system of M5-branes described in section 3.2. We consider M-

theory on K3× S1 × Ŝ1 × S1
M , and take a brane configuration consisting of Q1 M5-branes

along C2×S1×Ŝ1×S1
M , Q5 M5-branes wrapped along C̃2×S1×Ŝ1×S1

M , and K M5-branes

wrapped along K3 × S1, carrying n units of momentum along S1. The B6 index of this

configuration can be calculated following the procedure described in [41, 102]. In order to

follow the notation of [102], we introduce some new notation for the charges, denoting the

electric charges by (q0, qa) and magnetic charges by (p0, pa). The charge q0 corresponds to

momentum along the circle S1 while qa corresponds to exciting the self-dual antisymmetric

tensor field on the 5-brane, carrying charges corresponding to wrapping M2-branes on

various 2-cycles of K3× Ŝ1 × S1
M . The magnetic charge p0 corresponds to a Kaluza-Klein

monopole associated with the circle S1. The other magnetic charges are associated with an

M5-brane wrapping P ×S1 with P a four cycle of K3× Ŝ1×S1
M . For the configuration we

are considering, p0 and qa for a 6= 0 vanish, the charges pa can be identified with the triplet

(Q1, Q5,K) and the charge q0 can be identified with n. Using the isomorphism between

4-cycles and 2-forms we can associate with P a 2-form on M which we shall also denote

by P . In this case we can write the magnetic charge vector in cohomology language, i.e,

P = paΣa with Σa ∈ H2(M,Z), M ≡ K3 × Ŝ1 × S1
M .

If we take the limit in which the circle S1 has a size much larger than the size of

K3× Ŝ1 ×S1
M , then the low energy limit of the effective theory describing the dynamics of

the 5-brane on P×S1 is a two dimensional (0, 4) CFT. The BPS states in this theory involve

left-moving excitations and the growth of degeneracy of these states for large momentum is

determined in terms of the left-moving central charge cmicro
L via the Cardy formula. cmicro

L

in turn is given byNB
L + 1

2N
F
L whereNB

L and NF
L are the numbers of left-handed bosons and

fermions respectively. If instead of the degeneracy we consider the helicity trace index B6,

then the computation proceeds as follows. The requirement of unbroken supersymmetry

forces the right-movers into their ground state. The (2h)6 factor in the trace is soaked

up by the 12 fermion zero modes associated with the broken supersymmetry generators.

Thus we are left with the trace over the left-handed bosonic and fermionic non-zero mode

oscillators, weighted by (−1)F where F denotes fermion number. The growth of this trace

for large momentum along S1 is controlled by a Cardy like formula, but with an effective

central charge

cmicro
L,eff = NB

L −NF
L . (6.1)
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This follows from the fact that the insertion of (−1)F into the trace does not affect the

contribution to the partition function due to a bosonic oscillator, but the contribution to

the partition function due to a fermion is now given by the inverse of the contribution from

a boson. Note that if NF
L = 0 then cmicro

L,eff = cmicro
L , but otherwise they are different.

Now the numbers of left and right-moving bosons are given by [102]

NB
L = dp(P ) + b−2 (P ) + 3,

NB
R = dp(P ) + b+2 (P ) + 3. (6.2)

Here dp is the dimension the moduli space of deformations of P inside M , 3 accounts for the

center of mass translations and b−2 , b
+
2 , denoting the number of anti-self-dual and self-dual

two forms of P , count the scalar fields arising from the reduction of the 2-form field living

on the 5-brane. For fermions we have [40, 102]

NF
L = 4h1,0(P ),

NF
R = 4h2,0(P ) + 4 . (6.3)

Under the assumption that the Calabi-Yau 3-fold M does not have 1-cycle and that the

4-cycle P is ample, the authors of [102] gave a formula for dp(P ) and used it to compute

the number of left- and right-moving fermions and bosons. We however have a Calabi-Yau

manifold with two 1-cycles Ŝ1 and S1
M , and hence the formulæ of [102] are not directly

applicable. Thus we need to proceed a little differently following [40]. On a compact Kähler

manifold we have the relations:

b2 ≡ b+2 + b−2 = 2h2,0 + h1,1, b−2 = h1,1 − 1 . (6.4)

Substituting this into (6.2) and (6.3) we get

NB
R −NF

R = dp(P ) − 2h2,0(P ) . (6.5)

Now since supersymmetry acts on the right-movers, the number of right-moving bosons

and fermions must be equal. This gives

dp(P ) = 2h2,0(P ) . (6.6)

This agrees with the result given in [41]. Substituting this into (6.2) and (6.3) we get [41]

NB
L = 2h2,0(P ) + h1,1(P ) + 2 = beven(P ), NF

L = 4h1,0(P ) = bodd(P ) , (6.7)

where beven(P ) and bodd(P ) are the dimensions of the even and odd cohomologies of P .

Thus cmicro
L,eff given in (6.1) is just the Euler character of P . This in turn has a simple

expression in terms of the 2-form P representing the 4-cycle P [102]:

cmicro
L,eff = χ(P ) =

∫

M
(P ∧ P ∧ P + P ∧ c2(M)) . (6.8)

Evaluating this for the particular brane configuration we have, we get

cmicro
L,eff = 6K (Q1Q5 + 4) . (6.9)
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This is in perfect agreement with the formula for the index of the D1-D5-p-KK system given

in (5.36), which in turn is in agreement with the macroscopic result given in (3.34). If in-

stead we had calculated the central charge that controls the growth of absolute degeneracy,

then we would get the result [40]

cmicro
L = NB

L +
1

2
NF

L = cmicro
L,eff +

3

2
NF

L = 6 (KQ1Q5 + 4K + 1) , (6.10)

since NF
L = 4h1,0(P ) = 4h1,0(M) = 4. As noted in [39, 40], (6.10) fails to agree with

the macroscopic result (3.34). Thus we see that the apparent puzzle in [39, 40] arose

from comparing the microscopic degeneracy with the macroscopic index, and there is no

disagreement as long as we compare the index on both sides.

6.2 M5-brane on T 7

We shall now repeat the analysis of section 6.1 with K3 replaced by T 4, i.e. directly compute

the microscopic index of the system of M5-branes wrapped on T 7 without mapping it to the

D1-D5-p-KK monopole system. Let us label the T 7 by coordinates 1-7. In this theory we

consider a configuration with Q1 M5-branes wrapped along 12345 directions, Q5 M5-branes

wrapped along 12367 directions andK M5-branes wrapped along 14567 directions, carrying

momentum n along the 1-direction. This configuration breaks 28 out of 32 supersymmetries

of the theory and hence the relevant helicity trace index is B14. Following the analysis of

section 6.1 we arrive at the same result (6.8) for the effective central charge cmicro
L,eff . However

since c2 vanishes on T 6, we get

cmicro
L,eff = 6Q1Q5K , (6.11)

and hence

ln dmicro(n,Q1, Q5,K) = 2π
√
Q1Q5Kn . (6.12)

This agrees with the result (5.46) computed from the D1-D5-p-KK monopole system, in

agreement with the duality symmetry. More importantly for us, it agrees with the macro-

scopic prediction (3.38). If instead of using the effective central charge we had used the ac-

tual central charge computed in the limit of free theory, we would get cmicro
L = 6(Q1Q5K+3)

since we now have h1,0(P ) = h1,0(M) = 3. This would not agree with the macroscopic

result.

7 Why do the microscopic and macroscopic results agree?

So far we have computed the index of various systems in the macroscopic and the micro-

scopic sides and shown that they agree. However given that on the macroscopic side the

index is expressed in terms of the coefficients of the Chern-Simons terms in the action,

one might hope that this agreement can be proved in general without having to explicitly

compute the index in each case. We shall now show that this is indeed the case. This

argument is closely related to the one given in [60], but takes into account the additional

subtlety that arises due to the failure of the identification R-symmetry group of the brane
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world-volume theory with the spatial rotation group. For definiteness we shall present

the argument for five dimensional black holes; the only change in four dimensions will be

that we need to drop all references to the SU(2)L part of the spatial rotation group and

interprete SU(2)R as the full rotation group.

The argument goes as follows. For black holes of the type considered here, the low

energy dynamics of the system of branes underlying the microscopic description of the black

hole is described by a (0,4) superconformal field theory. We shall divide the system into

two parts. One part which we shall call the regular part has the property that the right-

moving SU(2) R-symmetry current, associated with the (0,4) superconformal symmetry on

the world-sheet of the branes, can be identified with the SU(2)R subgroup of the spatial

rotation group. Furthermore the action of the SU(2)L subgroup of the spatial rotation

group on the regular part must correspond to the group generated by the zero modes of

a left-moving SU(2) current algebra on the brane world-sheet theory. The second part

does not satisfy this property, and will be called the irregular part. This in particular will

contain the center of mass degrees of freedom for which the non-chiral scalars are charged

under both SU(2)L and SU(2)R. Clearly this decomposition is not unique since we can

include part of the regular modes into the irregular part, and we can utilise this freedom to

choose the irregular part to our convenience. We can now express the total contribution to

the index as a combination of the contribution from the two parts as in section 2, treating

the regular part in the same way as the modes associated with the bulk of AdS3 and the

irregular part in the same way as the exterior modes. In particular if we denote by cmicro
L,eff

and kmicro
L,eff the quantities which control the growth of the microscopic index, we have the

relation analogous to (2.24):

cmicro
L,eff ≡ creg

L + cirreg
L,eff , kmicro

L,eff ≡ kreg
L + kirreg

L,eff . (7.1)

As in section 2, we shall denote by kL, kR and cgrav the contribution to SU(2)R, SU(2)L
and gravitational anomaly from various fields on the brane world-volume. In (7.1) we have

used the fact that for the regular part the identification of the R-symmetry group with the

spatial rotation group allows us to conclude, as in the case of the bulk modes, that the

quantities which control the growth of the index are the same as the ones which control the

growth of degeneracy, that is the central charge creg
L of the left-moving Virasoro algebra

and the anomaly kreg
L of SU(2)L.18 Furthermore we also have the relations:

creg
grav = creg

L − creg
R , creg

R = 6kreg
R . (7.2)

Let us denote by kmicro
L , kmicro

R and cmicro
grav the total contribution to the SU(2)L, SU(2)R

and the gravitational anomaly from all the microscopic degrees of freedom. Then we have

the relations:

kmicro
L = kreg

L + kirreg
L , kmicro

R = kreg
R + kirreg

R , cmicro
grav = creg

grav + cirreg
grav . (7.3)

18An indirect evidence for the presence of the irregular part follows from the observations of section 5,

section 6 that in the microscopic theory the index and degeneracies do not always agree. Since for the regular

part the index and the degeneracy grow in the same manner, the difference can be attributed to the presence

of the irregular part. Later we shall explicitly see examples of irregular parts of the microscopic system.
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Using (7.1)–(7.3) we get

cmicro
L,eff = cmicro

grav + 6kmicro
R + ∆micro, kmicro

L,eff = kmicro
L + δmicro , (7.4)

where

∆micro ≡ −6kirreg
R − cirreg

grav + cirreg
L,eff = −6kirreg

R − (cirreg
L − cirreg

R ) + cirreg
L,eff , (7.5)

δmicro = kirreg
L,eff − kirreg

L . (7.6)

These are the analogs of eqs.(4.10) and (4.11) in the macroscopic theory. We can now

proceed in the same way as in section 4 to show that ∆micro and δmicro vanish. For this

we need to make the same assumptions on the structure of the irregular modes as we had

to do on the structure of the exterior modes in section 4. Thus we get

cmicro
L,eff = cmicro

grav + 6kmicro
R , kmicro

L,eff = kmicro
L . (7.7)

Finally we make use of the observation that the coefficients of the gauge and Lorentz Chern-

Simons terms in the bulk theory are related to the gauge and gravitational anomalies on

this brane configuration [60, 103]. This allows us to conclude that cmicro
grav , kmicro

R and kmicro
L

must be equal to casymp
grav , kasymp

R and kasymp
L — the coefficients of the Lorentz, SU(2)R and

SU(2)L Chern-Simons term in the effective action. Thus from (4.13) we get

cmicro
L,eff = cmacro

L,eff , kmicro
L,eff = kmacro

L,eff . (7.8)

This establishes the equivalence of the macroscopic and the microscopic index.

We shall now explicitly compute the coefficients cmicro
grav , kmicro

R and kmicro
L in some

examples by computing the anomalies due to the world-volume fields and show that the

results agree with the explicit microscopic results for the index given in section 5 and

section 6. During this analysis we shall also identify the irregular modes in various systems.

We begin with the D1-D5-p system onK3×S1 in the type IIB Cardy limit, For simplicity we

shall take Q5 = 1. Since a D5-brane wrapped on K3 carries −1 unit of D1-brane charge,

we need (Q1 + 1) D1-branes to produce Q1 units of D1-brane charge. In this case the

world-volume bosonic degrees of freedom consist of 4(Q1 + 1) scalars describing D1-brane

motion along K3 and 4 scalars describing the overall motion of the D1-D5-brane system in

the transverse direction. The former are all neutral under the SU(2)L × SU(2)R rotation

group in the space transverse to the D1-D5-brane world-volume, while the latter are in

the (2L, 2R) representation of SU(2)L × SU(2)R. Since these scalars are non-chiral they do

not contribute to SU(2)L × SU(2)R anomaly. In order to determine the SU(2)L × SU(2)R
quantum numbers of the fermions we can use the (4,4) supersymmetry of the world-volume

theory. Since the left/right moving modes are paired by supercharges which are doublets

of SU(2)L/SU(2)R, the fermionic partners of the 4(Q1 +1) neutral scalars consist of a total

of 4(Q1 +1) left-moving fermions in the representation (2L, 1R) and 4(Q1 +1) right-moving

fermions in the representation (1L, 2R). On the other hand the fermionic partners of the

(2L, 2R) scalars representing the transverse motion will consist of 4 left-moving fermions

in the representation (1L, 2R) and 4 right-moving fermions in the representation (2L, 1R).

– 46 –



J
H
E
P
0
4
(
2
0
1
1
)
0
3
4

Thus as far as the SU(2)L group is concerned, we have altogether 4(Q1 + 1) left-moving

fermions and 4 right-moving fermions belonging to the doublet representation of SU(2)L.

This gives a total contribution of Q1 +1−1 = Q1 to the SU(2)L anomaly coefficient kmicro
L .

A similar counting gives kmicro
R = Q1. On the other hand since the spectrum on the brane

is left-right symmetric, the gravitational anomaly cmicro
grav vanishes. Eq. (7.7) now gives

cmicro
L,eff = 6Q1 and kmicro

L,eff = Q1. This is in agreement with the microscopic result (5.19).

This analysis also throws some light on the origin of the discrepancy between cmicro
L,eff =

6Q1 — the quantity that controls the growth of the index on the microscopic side, and

cmicro
L = (Q1 + 2) — the quantity that controls the growth of the microscopic degeneracy

at weak coupling. As argued before, for regular part cL = cL,eff ; so the difference must be

due to the irregular part. In this case the irregular part comes from the (2L, 2R) scalars

representing the transverse motion of the brane and their fermionic partners. As argued

above these include 4 left-moving fermions in the representation (1L, 2R) and 4 right-moving

fermions in the representation (2L, 1R). Now the SU(2) R-symmetry current on the brane

world-volume, associated with the (0,4) superconformal algebra, is right-moving. Hence all

the left-moving fermions and bosons must be neutral under it. In contrast we see that the

left-moving components of the (2L, 2R) scalars and the left-moving (1L, 2R) fermions are in

the doublet representation of the SU(2)R spatial rotation. Thus on these fields the SU(2)

R-symmetry action cannot be identified as the action of the SU(2)R spatial rotation, and

they must be considered as part of the irregular modes. Indeed by carefully examining the

computation of cmicro
L,eff given above one can easily see that it is due to the presence of these

irregular modes that cmicro
L,eff and cmicro

L differ. Similarly for regular modes we also require

that the spatial SU(2)L rotation acts as the zero mode of a left-moving SU(2) current

algebra. Thus all the right-moving regular modes must be neutral under SU(2)L. This

fails for the right-moving (2L, 2R) scalars and (2L, 1R) fermions, showing that they must

also be part of the irregular modes.

The explicit computation of cmicro
L and kmicro

L for the D1-D5-p system on T 4 × S1 in

the type IIB Cardy limit is almost identical. In this case the D5-brane on T 4 does not carry

any D1-brane charge and we have 4Q1 bosons associated with the motion of the D1-brane

inside the D5-brane and 4 extra bosons associated with Wilson line on the D5-brane along

T 4. All of these are neutral under SU(2)L × SU(2)R. We also have four transverse bosons

in the (2L, 2R) representation of the SU(2)L × SU(2)R. Thus the total spectrum of bosons

is identical to that in the case of D1-D5-p system on K3× S1, and due to supersymmetry

the fermionic spectrum is also identical. Thus we still have kmicro
R = Q1, k

micro
L = Q1,

cmicro
grav = 0, and eq.(7.7) leads to cmacro

L,eff = 6Q1, in agreement with the microscopic result

for the index given in (5.42).

For the D1-D5-p system in the type IIA Cardy limit the underlying microscopic system

is the system of Q5 NS5-branes andQ1 fundamental strings. The dynamics of this system is

not well understood and hence we do not have an independent calculation of cmicro
grav , kmicro

R

and kmicro
L from the computation of anomalies in the microscopic theory. Nevertheless

the macroscopic results for these quantities, as well as the exact results for the microscopic

index derived in the dual type IIB frame, tells us what these anomaly coefficients should be.

A similar analysis can be carried out for the MSW string [40] analyzed in section 6. We

consider M-theory on M ×S1 where M can be either K3×T 2 or T 6 and take an M5-brane
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wrapped on a four cycle P in M times S1. According to eqs.(6.2)–(6.7) the number of left-

and right-moving bosons and fermions are given by:

NB
L = 2h2,0(P ) + h1,1(P ) + 2, NF

L = 4h1,0(P ),

NB
R = 4h2,0(P ) + 4, NF

R = 4h2,0(P ) + 4 . (7.9)

This gives the gravitational anomaly coefficient in the microscopic theory to be

cmicro
grav = NB

L +
1

2
NF

L −NB
R − 1

2
NF

R = h1,1(P ) − 4h2,0(P ) + 2h1,0(P ) − 4 . (7.10)

Next we turn to the computation of kmicro
R , — the anomaly in the spatial rotation sym-

metry.19 The chiral bosons associated with the component of the 2-form field along the

M5-brane world-volume are neutral under SU(2) and hence cannot contribute to the SU(2)

anomaly. The non-chiral bosons of course also do not contribute to the SU(2) anomaly. The

NF
R right-moving fermions are doublets of SU(2) and give a contribution of NF

R /4 to kmicro
R

whereas the NF
L left-moving fermions are also doublets of SU(2) and give a contribution of

−NF
L /4. Thus the net contribution to kmicro

R is given by

kmicro
R =

1

4
(NF

R −NF
L ) = h2,0(P ) − h1,0(P ) + 1 . (7.11)

Using (7.7), (7.10) and (7.11) we get

cmicro
L,eff = cmicro

grav + 6kmicro
R = h1,1(P ) + 2h2,0(P ) − 4h1,0(P ) + 2 = χ(P ) . (7.12)

This agrees with the microscopic result for cmicro
L,eff given in (6.8).

Note that (7.12) does not agree with the microscopic central charge

cmicro
L = NB

L +
1

2
NF

L = h1,1(P ) + 2h2,0(P ) + 2h1,0(P ) + 2 . (7.13)

Again the difference can be traced to the contribution from the irregular modes. For

example there are 4h1,0(P ) left-moving fermions which transform as doublets of the spatial

SU(2) rotation group. Since the left-moving fermions must be neutral under the right-

moving R-symmetry current, on these fermions the R-symmetry and spatial rotation act

differently. Thus they must be considered as part of the irregular modes.
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A Chern-Simons contribution from higher derivative terms

In this section we describe, following [88], how to compute the gauge and Lorentz Chern-

Simons terms in AdS3 by starting with a six dimensional action and dimensionally reducing

it on AdS3 × S3. The six dimensional theory will be assumed to have metric and a 2-

form field B as the fundamental fields, but inclusion of other fields in the discussion is

straightforward. We shall denote by H = dB the 3-form field strength. First consider a

theory with manifestly gauge and general coordinate invariant Lagrangian density given

as a function of H, gµν , the Riemann tensor and covariant derivatives of these fields.

Dimensional reduction of the metric on S3 produces SO(4) gauge fields. When all the

fluctuating fields around the AdS3 × S3 background, including these SO(4) gauge fields,

are set to zero then the background 3-form field on AdS3 × S3 takes the form:

H3 =
a

4
ǫ3 + b ∗ ǫ3 , (A.1)

where ǫ3 is the unit 3-sphere volume form, normalized so that
∫
S3 ǫ3 = 16π2, ∗ denotes

Hodge dual in six dimensions and a and b are two constants. We shall normalize the 2-

form field so that
∫
H3 is quantized in integer units. The quantized electric and magnetic

charges Q and P associated with this background are now defined through the equations:
∫

S3

H3 = 4π2P, (A.2)

and20 ∫

S3

(
δS0

δH3

)
=

Q

2π
, (A.3)

where S0 is the action obtained by integrating the gauge and diffeomorphism invariant

lagrangian density over AdS3 × S3. Eq. (A.1) gives

a = P . (A.4)

b is related to Q but this relation depends on the form of the action S.

Let us now consider the effect of switching on the fields describing fluctuations around

the AdS3 × S3 background. Dimensional reduction of the metric on S3 produces a set

of SO(4) = SU(2)L × SU(2)R gauge fields AL, AR on AdS3. When these gauge fields are

non-zero we need to replace (A.1) by [88]

H3 = 4π2a (e3(A) − χ3(A)) + b ∗ ǫ3 . (A.5)

Here e3(A) is 3-form on AdS3 × S3 defined in [88] and has the property that
∫
S3 e3 = 1

and that when the SO(4) gauge fields are set to zero e3 reduces to ǫ3/16π
2. χ3 is the

Chern-Simons term for the SO(4) gauge fields:

χ3 =
1

8π2
(ω(AR) − ω(AL)) , (A.6)

ω(A) ≡ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (A.7)

20While regarding δS0/δH3 as a 3-form, we need to lower the indices using the ε tensor as (δS0/δH3)µνρ =

(δS0/δ(H3)αβγ)εαβγµνρ.
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The trace is taken over the fundamental representation of SU(2). Note that since
∫
S3 e3 = 1

and χ3 is directed along the AdS3 component, the background (A.5) continues to carry

magnetic charge P = a defined via (A.2). Now one can show that e3(A) is invariant under

SO(4) gauge transformation [88], but due to the presence of χ3 in (A.5), H3 is no longer

gauge invariant. Under an SO(4) gauge transformation denoted by δ, we have

δH3 = −4π2a dχ2 = −4π2P dχ2, (A.8)

where χ2 is defined via the equation:

δχ3 = dχ2 . (A.9)

The variation of the action under this gauge transformaion is then given by

δS0 = 4π2P

∫
dχ2 ∧

(
δS0

δH3

)
. (A.10)

Now since dχ2 has components only along AdS3, we must pick the component of
(

δS0

δH3

)

along S3. Using (A.3) we now get21

δS0 = 2πPQ

∫

AdS3

dχ2, (A.11)

which is the gauge variation of a three dimensional Chern-Simons terms

2π PQ

∫

AdS3

χ3 =
PQ

4π

∫

AdS3

[−ω(AL) + ω(AR)] . (A.12)

Using the standard relation between the coefficients of the Chern-Simons terms and the

level (kbulk
R , kbulk

L ) of the current algebra in the boundary theory [60, 104, 105] we get

from (A.12)

kbulk
R = kbulk

L = PQ . (A.13)

For the case of D1-D5 system in type IIB Cardy limit it follows from (3.2), (3.4), (A.2)

and (A.3) that we have P = Q5, Q = Q1 and hence PQ = Q1Q5. In the type IIA Cardy

limit the system is an NS5-brane fundamental string system and we have P = Q5, Q = n

and hence PQ = Q5n.

So far we have assumed that the six dimensional Lagrangian density is gauge and

diffeomorphism invariant. Let us now discuss the effect of the Chern-Simons term in the

six dimensional action of the form

SCS = − β

32π3

∫

AdS3×S3

H3 ∧ ωv(Γ) =
β

32π3

∫

AdS3×S3

ωv(Γ) ∧H3 , (A.14)

where Γ is the six-dimensional spin connection, and ωv(Γ) is the Lorentz Chern-Simons

term

ωv(Γ) = Trv

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
, (A.15)

21We are using the sign convention that
R

AdS3×S3 BAdS3
∧ AS3 = (

R

S3 AS3)(
R

AdS3

BAdS3
) for 3-forms A

and B on S3 and AdS3 respectively.
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the trace being taken over the vector representation of SO(6). For field configurations of

the type we are considering we have

ωv(Γ) = ωv(ΓAdS3
) + ωv(A), (A.16)

where ΓAdS3
denotes the spin connection in AdS3 and A denotes the SO(4) gauge fields

associated with the compactification on S3. After integrating over S3 the Chern-Simons

term (A.14) reduces to
β

8π
P

∫

AdS3

[ωv(ΓAdS3
) + ωv(A)] . (A.17)

Now the gauge field A can be decomposed into SU(2)L and SU(2)R parts AL and AR,

and the trace over the vector representation of SO(4) will give twice the trace over the

fundamental representation of SU(2)L and SU(2)R. This enables us to write (A.17) as

∫

AdS3

[
βP

8π
ωv(ΓAdS3

) +
βP

4π
ω(AR) +

βP

4π
ω(AL)

]
, (A.18)

where in computing ω(AR,L) = Trf

(
AL,R ∧ dAL,R + 2

3AL,R ∧AL,R ∧AL,R

)
we compute

the trace in the fundamental representation. Using the standard relation between the

Chern-Simons coefficients and the central charges [60, 104, 105] we now get the following

one loop corrections to the various central charges:

∆cbulk
grav = 12βP, ∆kbulk

R = βP, ∆kbulk
L = −βP . (A.19)

Finally we shall briefly discuss possible effect of Chern-Simons terms on the definition of

the charges. For this we note first that the correct definition of the electric and magnetic

charges is via eq.(A.2) and (A.3), but with the S3 located at infinity instead of in the

intermediate AdS3 region. Thus the question is whether the value of the integrals change

as we move the integration surface from the intermediate AdS3 region to asymptotic infinity.

Since H3 = dB, the integral (A.2) does not change. On the other hand due to the presence

of the Chern-Simons term in the action we have from the equation of motion of B,

d

(
δS0

δH3

)
∝ Tr(R ∧R) , (A.20)

where R is the six dimensional Riemann tensor. Since the topology of the region bounded

by asymptotic infinity and the intermediate AdS3 geometry has the form of R×S3, integral

of Tr(R∧R) over this region vanishes. Thus we see that the presence of the Chern-Simons

term does not change the definition of the electric charge either.22

22Note that if instead we place the system at the center of Taub-NUT space to get a four dimensional

black hole [98], then the near horizon geometry and hence the entropy remains the same, but the charge

of the system receives an additional contribution from the Chern-Simons term [68]. This can be seen in

two ways; by integrating Tr(R ∧ R) between the horizon and the asymptotic space, or by dimensionally

reducing the action on a circle so that the Chern-Simons term takes a covariant form and the contribution

of this term to the charge can be calculated using the entropy function formalism.
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B Asymptotic expansion

In this appendix we shall analyze carefully the behavior of the index associated with the

D1-D5-p system in various limits and check that possible corrections to the results derived

in section 5 are indeed subleading. Our starting point is the integral representation for the

index

dmicro(n,Q1, J) = (−1)J+1

∫ 1

0
dρ1

∫ 1

0
dσ1

∫ 1

0
dv1 e

−2πi(ρn+σQ1+Jv) f(ρ, σ, v) , (B.1)

where (ρ, σ, v) ≡ (ρ1 + iρ2, σ1 + iσ2, v1 + iv2) are three complex parameters and f(ρ, σ, v) =

(eπiv −e−πiv)4η(ρ)24/Φ10(ρ, σ, v) for five dimensional black holes and 1/Φ10(ρ, σ, v) for four

dimensional black holes. While carrying out this integral we fix (ρ2, σ2, v2) at

ρ2 = Λ
Q1√

4nQ1 − J2
, σ2 = Λ

n√
4nQ1 − J2

, v2 = −Λ
J

2
√

4nQ1 − J2
, (B.2)

where Λ is a large positive number. For four dimensional black holes this choice gives the

degeneracy of single centered black holes [17].

We now consider a family of contours

ρ2 = λ
Q1√

4nQ1 − J2
, σ2 = λ

n√
4nQ1 − J2

, v2 = −λ J

2
√

4nQ1 − J2
, (B.3)

where λ is a real number. At λ = Λ we recover the original contour. But we now deform

the contour by reducing λ. As long as the contour does not cross any pole of the integrand

the value of the integral remains unchanged. Now the poles of the integrand are given by

the divisors of the function Φ10(ρ, σ, v) which are the surfaces

n2(ρσ − v2) + jv + n1σ −m1ρ+m2 = 0 , (B.4)

where j is any odd integer and the 5 integers (m1,m2, n1, n2, j) are constrained to satisfy

j2 + 4(m1n1 +m2n2) − 1 = 0 . (B.5)

n2 can be chosen to be non-negative. The intersection of the codimension 3 subspace given

in (B.3) and the codimension 2 subspace given in (B.4) describes a one dimensional curve

in the six dimensional space spanned by (ρ, σ, v). For fixed (ρ2, σ2, v2) it is an easy exercise

to find this curve in the (ρ1, σ1, v1) space and we arrive at the result:

ρ1 = −n1

n2
− 1

σ2

{
ρ2

(
σ1 −

m1

n2

)
− 2v2

(
v1 −

j

2n2

)}

ρ2

σ2

(
σ1 −

m1

n2

)2

+

(
v1 −

j

2n2

)2

− 2
v2
σ2

(
σ1 −

m1

n2

)(
v1 −

j

2n2

)
=

1

4n2
2

− (ρ2σ2 − v2
2) .

(B.6)

The last equation describes an ellipse in the (σ1, v1) plane for (ρ2σ2 − v2
2) < (4n2

2)
−2 and

has no solution otherwise. Using (B.3) the condition for the absence of a solution to (B.6)

reduces to

λ >
1

n2
. (B.7)
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This shows that as long as λ is larger then 1, none of the poles of the integrand intersect

the contour and hence the integral will have the same value for all λ > 1. We shall however

deform the contour to λ = 1
2 +ǫ where ǫ is a small positive number. During the deformation

of λ from Λ to 1
2 +ǫ the contour crosses the n2 = 1 poles. The contribution from the residue

at this pole was analyzed in section 5.23 Our goal will be to analyze the contribution from

the contour at λ = 1
2 + ǫ and argue that this integral is subdominant compared to the

residue at the n2 = 1 pole.

Our strategy will be to estimate each term appearing in the integrand separately and

then multiply the results to estimate the integrand. First consider the exponential factor

in (B.1). For the choice of (ρ2, σ2, v2) given in (B.3) with λ = 1
2 + ǫ, this factor is given by

exp

[(
1

2
+ ǫ

)
π
√

4nQ1 − J2

]
, (B.8)

up to a phase.

Next consider the (eπiv − e−πiv)4η(ρ)24 factor that is present in the five dimensional

index. Since for (B.3) |eπiv − e−πiv|4 ∼ 1 and |η(ρ)| < 1, we can drop this while estimating

an upper bound for the integrand. This will allow us to study the corrections to the four

and the five dimensional degeneracies together since they differ only due to the presence

of the η(ρ)24 factor. This will also have the advantage that for the five dimensional black

holes once we estimate the correction term in the type IIB Cardy limit, we can get the

result for the type IIA Cardy limit by exchanging n and Q1 since the only term in the

integral that breaks this symmetry is the η(ρ)24 factor.

Finally we turn to an estimate of 1/Φ10. On the subspace (B.3) ρ2σ2 − v2
2 is finite, but

in the two limits we are interested in, either ρ2 or σ2 becomes small. We do not have a

way to find a direct estimate of Φ10 in this region; so we shall use an intuitive reasoning.

First of all note that if λ = 1/n2 then the equations (B.3), (B.6) have a unique solution:

ρ =
i

2n2τ2
− n1

n2
, σ = i

τ2
1 + τ2

2

2n2τ2
+
m1

n2
, v =

j

2n2
− i

τ1
2n2τ2

. (B.9)

where

τ1 =
J

2Q1
, τ2 =

√
4nQ1 − J2

4Q2
1

. (B.10)

This represents the unique point on the surface (B.3) with λ = 1/n2 which also lies on

the divisor (B.4). Thus 1/Φ10 diverges there. For λ = 1
n2

+ ǫ the surface (B.3) does not

intersect the divisor (B.4), but for sufficiently small ǫ the two subspaces come close near a

point near (B.9). Since 1/Φ10 has a double pole near the divisor (B.4) we expect that as we

move along (B.3), 1/|Φ10| reaches a local maximum near the point of closest approach to

the divisor (B.4), which in turn is close to (B.9). Assuming that the dominant contribution

to the integral comes from near this local maximum, we can estimate 1/Φ10 by its behavior

near this divisor. This was analyzed in [53, 54]. We shall here follow the notation of [54]

23For n2 = 1 we can use the three shift symmetries ρ → ρ + 1, σ → σ + 1 and v → v + 1 to set

n1 = m1 = m2 = 0 and j = 1 [1].
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where the analysis was carried out for general value of n2. The analysis uses the fact that

all the divisors lie in an orbit of Sp(2,Z) under which the Φ10 is a Siegel modular form of

weight 10. At the diagonal divisor v = 0,

1

Φ10(ρ, σ, v)
= − 1

4π2

1

v2 η24(ρ) η24(σ)
+ O(v0) . (B.11)

One then finds the explicit Sp(2,Z) transformation which maps the divisor v = 0 to the

generic divisor (B.4), and then uses the modular property of the function Φ10 to find the

residue at the generic pole. Thus near such a generic pole we shall have

1

|Φ10(ρ, σ, v)|
∼ 1∣∣v2

0 η
24(ρ0) η24(σ0)

∣∣ ∼ exp [−2 ln |v0| − 24 ln |η(ρ0)η(σ0)|] , (B.12)

where (ρ0, σ0, v0) are related to (ρ, σ, v) by this specific Sp(2,Z) transformation. In writ-

ing (B.12) we have ignored some additional factors related to the modular weight of Φ10, but

they do not affect the estimate to leading order. The dominant contribution to the expo-

nent comes from the −24 ln |η(ρ0)η(σ0)| terms. Thus our goal will be to estimate this term.

For sufficiently small ǫ we can estimate this by evaluating ρ0 and σ0 at the point (B.9). This

in turn requires knowing the Sp(2,Z) transformation that relates (ρ, σ, v) to (ρ0, σ0, v0).

Before we proceed we need to define some number theoretic quantities. First, define

r ≡ gcd(n1, n2), so we can write r = k2n1 − k1n2 for some k1, k2 ∈ Z. Since (B.5) is

satisfied, r must divide (j2 − 1)/4. We can then uniquely decompose r = r1r2 into a

product of relatively prime factors, where r1 divides (j + 1)/2 and r2 divides (j − 1)/2. In

this convention the result of [54] for (ρ0, σ0) are

ρ0 = δ1 +
r22
n2

(−τ1 + iτ2), σ0 = δ2 +
r21
n2

(τ1 + iτ2) , (B.13)

where δ1 and δ2 are constants determined in terms of mi, ni, j. In the type IIB Cardy limit

we get from (B.10) that τ2 is large. In this limit we get

|η−24(ρ0)η
−24(σ0)| ∼ exp

[
2π

n2
(r21 + r22)τ2

]
∼ exp

[
2π

n2
(r21 + r22)

√
4nQ1 − J2

4Q2
1

]
. (B.14)

Let us now focus on the case n2 = 2 since our goal is to estimate the integrand on the

contour λ = 1
2 +ǫ. Since r1r2 is a divisor of n2, for n2 = 2 we have r21 +r22 ≤ 5. Thus (B.14)

gives

|η−24(ρ0)η
−24(σ0)|

<

∼ exp

[
5π

√
4nQ1 − J2

4Q2
1

]
. (B.15)

The result for the type IIA Cardy limit may be obtained by exchanging Q1 and n in (B.15):

|η−24(ρ0)η
−24(σ0)|

<

∼ exp

[
5π

√
4nQ1 − J2

4n2

]
. (B.16)

Combining (B.8) with (B.15), (B.16) we arrive at the following estimates for the correction

δdmicro to the index dmicro at λ = 1
2 + ǫ. In the type IIB Cardy limit we have

δdmicro
<

∼ exp

[(
1

2
+ ǫ

)
π
√

4nQ1 − J2 + 5π

√
4nQ1 − J2

4Q2
1

]
(B.17)
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and in the type IIA Cardy limit

δdmicro
<

∼ exp

[(
1

2
+ ǫ

)
π
√

4nQ1 − J2 + 5π

√
4nQ1 − J2

4n2

]
. (B.18)

Comparing (B.17) with the result given in (5.19) we see that the correction terms are

smaller than (5.19) if

√
Q1 −

J2

4n
>

1

2

√
Q1 −

J2

4n
+

5

2Q1

√
Q1 −

J2

4n
. (B.19)

This holds for Q1 > 5. Similarly comparing (B.18) with the result given in (5.26) we see

that the correction terms are subdominant in the region:

√
(n+ 3)

(
1 − J2

4(n − 1)Q1

)
>

1

2

√

n− J2

4Q1
+

5

2n

√

n− J2

4Q1
. (B.20)

This can be easily satisfied for example by requiring

n− J2

4Q1
≥ 7 . (B.21)

Neither of these are the best bounds possible, particularly since we have dropped the

(η(ρ))24 factor from the integrand in estimating the correction term. However this analysis

shows the existence of the constants K1, K2 appearing in the definition of the type IIB

and type IIA Cardy limits beyond which our result for the asymptotic behavior of the

microscopic index holds. Finally the leading contribution to the four dimensional index in

the n → ∞ limit, given in (5.33), is always larger than the five dimensional index (5.19)

in the type IIB Cardy limit, and hence will dominate over the correction given in (B.17)

when Q1 > 5.
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