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A simple and general procedure is given for constructing supersymmetric nonlinear ¢ model Lagran-

gian explicitly for any Kihlerian coset space G/H. In particular, we derive explicit and full expressions

" of supersymmetric Lagrangians for the phenomenologically important manifolds G/H =E;/SU(5)

X SU(3) X U(1) and Es/SO(10) X SU(3) x U(1), which are known to contain three generations of quarks

and leptons as Nambu-Goldstone (NG) superfields. We discuss also (1) the arbitrariness of the choice of

NG superfields when H contains more than one dimensional center, (2) how to gauge any subgroup of G

and how to couple the system to supergravity, (3) a new anomaly of the supersymmetric nonlinear ¢ models
induced by supergravity, etc. '

§1. Introduction

One of the central problems in the present particle physics is certainly the probleni of
generations of quarks and leptons: Why are there the (at least) triplication of the quark
/lepton generations in Nature? And further, how can we understand the mixings between
them? Probably the composite model approach would be the most promising one to
answer these questions. There is, however, a problem peculiar to composite models for
quarks and leptons; namely, if they are composite, why their masses can be so small
compared with the inverse of their (possible) typical size, say, >1 TeV? An interesting
and natural idea answering this point is to regard quarks and leptons as quasi Nambu-
Goldstone (NG) fermions appearing in supersymmetric theories, as was first proposed by
Buchmiiller et al.” Quasi NG fermions are the supersymmetric partners of the usual NG
bosons which must exist if an internal symmetry G is spontaneously broken to a subgroup
H. The number and quantum numbers of such quasi NG fermions, as well as their low
energy effective Lagrangians, are unambiguously determined by the group structure of G
and H.? A

It was pointed out by Ong® that E; and Es were the only candidates for the group G
that can accommodate three left-handed generations of quarks and leptons.” It is indeed
remarkable that the quasi NG fermions in the case G/H = E;/SU(5) X SU(3) X U(1) have
precisely the required SU (5) quantum number 3 X (5*+10) for three generations of quarks
and leptons and 5 for Higgsino. This case was studied explicitly by Kugo and Yanagida®
and the supersymmetric nonlinear Lagrangian was determined up to quartic order in the
NG superfields. Recently the case G/H =E:/SO(10) X SU(3) X U(1) was also studied by
Ong,” and also by Irié and Yasui,” independently, and was shown to predict a right-handed
16 multiplet of SO(10) as the fourth generation in addition to the usual three left-handed
generations 3X16.

The last prediction of the right-handed forth generation in Es case is rather exciting.

*) Buchmiiller, Peccei and Yanagida® also noticed (even earlier than Ong) that E- is sufficient to accommodate
three generations. They, however, considered the model possessing mirror generations also.
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Actually the group Es is a particular one since it is maximal simple group in the E series
of exceptional groups. Hence it would not be quite unnatural if Nature selects Es and
realizes the right-handed fourth generation. If so, a new heavy lepton with V + A interac-
tion may be found experimentally in the near future. '

Of course, it is not clear in this stage whether the predicted 16* of SO(10) in Es is
actually realized as a right-handed new generation or unfortunately becomes an un-
detectably massive multiplet combined with a 16, hence leaving only two generations 2
X16. In order to answer this question as well as to make the other models realistic, it is
necessary to study the mechanisms by which the quasi NG fermions and NG bosons
acquire their masses. We have to introduce an explicit breaking of the global Es (or E;)
symmetry as well as a (spontaneous or explicit) supersymmetry breaking. Also necess-
ary is to understand the origin of the gauge fields of GUT SU(5) or SO(10). If the GUT
gauge interaction is introduced by gauging the subgroup SU(5) (or SO(10)) by hand, it
also works as a (natural) source of the explicit breaking of E; (or Es) mentioned above.
Another and more exciting possibility to obtain the GUT gauge interaction would be a
dynamical realization; namely, since the SU(5) or SO(10) is the so-called “hidden local
symmetry” of the nonlinear realization,” its gauge bosons may be generated dynamically
as is realized in some 2- and 3-dimensional CP""! models.”

In order to discuss these problems, we need first of all the explicit forms of the
supersymmetric Lagrangians for the nonlinear realizations E;/SU(5) X SU(3) X U(1), Es
/SO(10) X SU(3) X U(1), etc. In the existing literature these are known only up to the
~ quartic order in the NG superfields,™® or in a very abstract form.” So the purpose of the
present paper is to give them in a complete and explicit form.

The construction of this paper is as follows: In § 2, we present a general procedure
to construct supersymmetric Lagrangians, or equivalently, K#hler potentials explicitly for
arbitrary Ké&hlerian coset spaces G/H. Our method is based on the supersymmetric
nonlinear realization theory by Bando, Kuramoto, Maskawa and Uehara (BKMU).!®
Since we have already discussed in our previous paper'" various mathematical aspects
concerning the BKMU construction of Kéhler potentials, we explain here the general
procedure for omitting the mathematical details but in such a manner to make the logical
structure more transparent. Also we illustrate the procedure concretely by taking a
simple example G/H=SU(I+m+#)/S[U () X U(m) X U(n)].

The algebras of the exceptional groups Es, E; and Es are given in § 3. We briefly
explain a simple method to obtain the commutation relations of the generators based on
a classical maximal subgroup. The decomposition of E; and Fs generators with respect
to the subgroups SU(5) X SU(3) X U(1) and SO(10) X SU(3) X U(1), respectively, is also
performed there. We find three generations 3X (5*+10) of NG superfields for G/H =E;
/SU(B)XSU(3) X U(1) case and three left-handed and one right-handed ‘generations 3
X16+1x16* for Es/SO(10)x SU(3)X U(1) case, as the previous authors did.®~"?
These contents of NG superfields are, however, no longer unique if the centers of H are
relaxed to be more than one dimensional. By the help of the general method in § 2, we
count all the possible choices of NG superfield sets for the cases E-[resp. Esl/H with H
=SU(5) [resp. SO(10)]X SU(2) X U(1)? and SU(5) [resp. SO(10)]X U(1)®. In particu-
lar we find it impossible to have a set of four left-handed NG superfields 4 X 16 for G=Es
-case, unfortunately, although much freedom appears in general to replace the generations
with their mirror ones.
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The explicit construction of Kihler potentials is performed in § 4 for G/H=Es
/SO0 X UQ), E./SUGB)XSUB)XU() and Es/SO(10)xXSU@)xU(1). The G-
transformation laws of the Kihler potentials as well as of the NG superfields are also
given.

Lastly in § 5, we discuss some problems in trying to make those nonlinear ¢ models
realistic. We first remark a very simple formula which enables one to gauge an arbitrary
subgroup of G. Contrary to the currently known formula,**® it is an off-shell formula
which remains valid even if one adds matter superfields into the system freely. It has a
straightforward extension to the local supersymmetry, i.e., coupling to supergravity, on
which we comment also. Second we point out a new anomaly which necessarily appears

when the supersymmetric nonlinear ¢ models are coupled to supergravity. This type of -

anomaly was first noticed by Ong® and proposed to be a possible mechanism for the
- desired explicit breaking of G symmetry.  But his observation is rather incomplete as for
the origin of this anomaly and so we present a more complete discussion there.

The fundamental properties of SO(2#) spinor representations, including our conven-
tions for the gamma matrices, are summarized in the Appendix.

§ 2. Supersymmetric nonlinear realization
for Kihlerian G/H

The supersymmetric Lagrangian for the Nambu-Goldstone (NG) superfields ¢*(x, )
corresponding to G/H takes the form

I:fa"‘HK(ng, @) = gi*0u0’0"@’* + (fermion terms) , (2-1)

girlo, 91 =0°K (9, ¢*)/dp'3p™ , (2-2)

as is usual for the kinetic D-term for any supersymmetric theory, where ¢*(x)’s are the
complex NG bosons standing for the first components of ¢*(x, 8). The NG fields ¢* are
the complex coordinates parametrizing the manifold G/H for which g.;+(¢, ¢*) is the
hermitian metric.'®'**'#  From the particular form (2-2) of the metric, this manifold G/H
is seen to be a special complex manifold called Kéahlerian and the function K(g¢, ¢*) is
called Kiahler potential.'® Hereafter we use the notation ¢° to denote the complex
variables ¢! as well as the NG superfields ¢°, for simplicity. The G-invariance of the
action fd*x-L implies that the Kihler potential K (¢, #) transforms under the G-transfor-
mation as ' ‘

K(¢,8)~>K(¢', ) =K($, $)+F($)+F*($) (2-3)

with an arbitrary holomorphic function F(#).

So the problem is how to find the Kihler potentials K for a given G/H. We now
explain the general procedure in the following, and illustrate it concretely step by step by
taking a simple example, a Grassmannian-like coset space G/H =SU({+m+n)/S[U(I)
X U(m) X U(#x)], when necessary. In order to avoid unnecessary complications we omit
some mathematical proofs which are presented in our previous paper.'”

2.1. A central charge Y of H and a general Kihler potential

Before giving the details of the practical procedure, it will be helpful to know a
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general statement: Each possible Kihler potential for G/H corresponds, one to one, to a
central charge Y of H. We explain this in this subsection first.

We assume that G is compact and semi-simple. The set of generators Ta of the Lie
algebra ¢ of G is first divided into two parts, generators S¢ of the unbroken subgroup H
and the rest X7 orthogonal to S¢’s:

{Ta}={SeceH, Xre G -4} .. (2-4)

We understand that these generators are anti-hermitian matrices in a certain unitary
representation of G.

Now we pick up from H all the independent central charges (Yo) =(Y1, Yz, -, Y2)
=Y, i.e, the generators which are commutative with any elements of 4, so that the rest
generators S, of X span the semi-simple part Hss. of H. We assume that Y.'s are
mutually orthogonal, for convenience, as tr (Y.Ys) =NuSes. Here the number % (1=
Zrank G) is the dimension of the center of H , which is known to be nonzero for the
Kihlerian G/H by a mathematical theorem.'® This theorem further says that the
generators X7 of & —4% are not commutable with one Y, at least; i.e., the Y-charge
eigenvalues y7 carried by X 7’s are nonzero. _

Let us recall the two basic objects in the nonlinear realization of Coleman, Wess and
Zumino (CWZ);'” namely, one is the element of the right coset space G/H

U(¢, 5)2611’5(%6)}(;6 G/H . - (2.5)
and the other is the Maurer-Cartan (Lie algebra valued) 1-form
(g, $)=U"g, $)dU(¢, ¢) . - (2+6)

Here 77’s are real and U is a unitary matrix,AqS"’s being the complex NG fields parametriz-
ing the coset space G/H, half as many .as 7'’s. To give the Kihler metric gis* (¢ $) in
(2+2), it is convenient to introduce the fundamental 2-form defined by

which is closed, d2 =0, when the manifold G/H is Kihlerian.

We can now.present a general statement proven in our previous paper: For any
possible Kiihler metric g:;+ for G/H, there exists a central chavge 2 Y in H with which the
Jundamental 2-form L is given by

Q=—+tr(— Ydo) . | (2-8)
Conversely, if we make a central charge

k
Y:aglv“YaZ‘v-Y (2:9)

with arbitrary coefficients v%, then the Q of (2-8) givesAa Kihler metric g:;+ since (2-8)

satisfies d2 =0 clearly. (Actually a trivial constraint must be imposed on v in order for
the metric to be nondegenerate as will be seen below.) So the correspondence of the
choices of central charge Y and Kihler potential is one to one, and hence the most general
supersymmetric Lagrangian contains % arbitrary constants v* (as many as independent
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Y.’s) which represent the freedoms of coupling constants of nonlinear Lagrangian, like
pion decay constant f;. :

We are now equipped with a general perspective, but how can we find the NG
superfield contents ¢° and the Kihler potential function K (4, ¢) explicitly? So we now
turn to the more concrete procedure.

2.2. The choice of a set NG superfields

Once we fix the choice of a central charge Y =‘v- Y as in (2-9), then the correspond-
ing set of NG superfields {¢*} is determined as follows.

All the broken generators X7 of ¢ —4 have nonvanishing ¥-charge eigenvalues ¥7,
as was mentioned above. So, if the coefficient vector v in the definition (2-9) of Y is
chosen not orthogonal to any »7, ie.,

tpeyi+0 for Vyr, ' (2-10)

then we can split the set of broken generators X into two parts, the generators X; with
positive Y-charge eigenvalues y,=‘v-y;>0 and their anti-hermitian conjugates X;
=(—X,)" with negative Y-charge —y;. -This splitting defines a complex subgroup H>
H¢ (H®: complex extention of H) spanned by the generators with positive or zero Y-
charges:

ﬁ:{XI, Sa,iYa}, (2'11)

and a complex coset space G°/H corresponding to the generators with negative Y-
charges:

G-I ={X} . (2-12)

We call these generators X:€ G ¢— % complex broken generators.
The NG superfields @' are introduced as the complex coordinate parametrizing the
. right coset space G¢/H as'¥'®4

&(¢)=e* = G/H , (2:13)

where ¢+ X =31,¢'X,. This is the basic variable in the supersymmetric nonlinear reali-
zation theory by Bando, Kuramoto, Maskawa and Uehara (BKMU). So the quantum
number contents of the NG superfields ¢’ are the same as those of the complex broken
generators X;.

By varying continuously the coefficient v in the definition (2-9). of Y, it happens that
a Y-charge eigenvalue Y;,=‘v-yi, crosses the zero and changes its sign. Then a pair of
the generators Xy, and X, exchange their roles with each other and the corresponding
complex NG fields ¢’ should be replaced by the conjugate representation field ¢ (still
chiral as a superfield!), accordingly. In this way, for a given G/H, the choice of a set of
NG superfields {¢'}, or equivalently the choice of H or G°/H, is not unique. Different
choice corresponds to what is called different “invariant: complex structure” in mathe-
matics. We can find all the possible invariant complex structures G/H for G/H by
varying the charge Y. We will present a simple method to do this task later.

It should be noted, as was shown in the previous paper, that the Kihler metric
becomes degenerate at the crossing point ‘v ¥;,=0from one complex structure to another.
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Therefore if one keeps to use the old complex coordinates { @’} even beyond that point, the
Kéhler metric becomes non-positive definite. So, for a fixed choice of the complex
structure G¢/H, the coefficient parameters v* should be constrained in the region in which
‘p- 3, >0 holds for any eigenvalues ¥; of the generators X; in X — %, for the positivity
of the metric.

Let us illustrate the procedure up to here for the example of G/H=SU(/+m+n)
[STUD) X U(m)x U(n)]. The center of H is two dimensional (£=2), whose two ortho-
normalized generators Y: and Y: can be chosen as, for instance,

ol 0 |/ omLii 0
Yi= o i m, Y= Ul (2-14)
0 — .| » 0o mln

in the fundamental representation of G=SU(/+m+mn). The other generators S, of H
are of course those of the semi-simple part SU () X SU(m) X SU (%):

SU(D)
Hss={Se}= SU (m) . (2-15)
SU(n)
The broken generators X7 of & —4 are given by the matrices, each of which takes

non-vanishing value 7 (imaginary unit) at only one matrix element placed at the following
off-diagonal parts

I m =n

0 A Bl !

A 0 Cl|lm (2-16)
B C 0] n

We use these names of the places A, B, --- also to denote the generators X; taking the
value ¢ there; {Xr}={A4, B, C, A, B, C}.

The Y-charges of the basis vectors ¢ in this fundamental representation are, of
course,

‘/’z (n, m) )
(Y1, Ya2) charge of | ¢m |=[ (0, —I—#n) (2-17)
’ ‘/’n (_ l, WZ)

from (2-14), and hence the Y-charges of broken generators are
' A=(n, l+m+n), A=(—n,—I—m—n),
(Y1, Y2) charge: B=(I+#,0), B=(—1—#n,0), (2-18)
C=(,—1-m—mn), C=(—II1+m+tn).

So if we choose Y: as the charge Y of (2-9), then .the generators X, of °— 4%, with
negative Y -charges, are selected as
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G°~H=(A, B,C} when Y=Y, ' (2-19)
while if we choose Y =Y, for instance, then we have
GC—H={C,A, B} when Y=Y,. (2-20)

For the choice Y =Y, the NG superfields are ¢*, ¢%, $¢ carrying the same quantum

numbers of H=S[U(I)x U(m)x U(n)] as A, B, C, respectively, and the BKMU’s basic -

variable (2:13) now becomes

1 0 0
E(¢) — e¢AA’+¢B§+¢CC‘: ¢A 1 0 with ¢/B: ¢B+¢C¢A ) (2_21)
$'7 $° 1 ' '

Notice that the explicit calculation of £(¢) = e*¥ is always simple thanks to the nilpotency
of the matrices X;.
2.3. Relation between nonlinear realization theories of CWZ’s and BKMU’s

Since the supersymmetric nonlinear realization is just a special case of the usual
nonlinear realization, the BKMU’s variable £(#) € G/H in (2:13) must correspond to a
special complex parametrization of the coset element U< G/H in the CWZ’s nonlinear

realization. Indeed, as was shown in our previous paper, this relation is explicitly given
by

G/HB U(qS, 5) :$(¢) ea<¢,ﬁ)-xeb(¢,¢")-seic(¢,5)-y (2-22)

with abbreviations like ¢* Y =2l4-1c.Y.. The functions & and c¢ are chosen purely
imaginary since their real parts can be absorbed into an element of H (from the right).
With a £(¢) =e** given, the functions «, b and ¢ are uniquely determined by the require-
ment that the real group element U &€ G/H must be unitary:U'U =1, or equivalently,

£ (D))= en To s g e Tk (2:23)

Cdrresponding to the usual CWZ'’s nonlinear transformation law
U, H=U, Vb, F,9), hEH (2-20)
under g€ G transformation, BKMU required that the NG superﬁelds ¢’ transform as
9é()=E(¢Dh(d,9), hEH. (2-25)

The comparison of these two transformation laws (2-24) and (2-25) leads to a remarkable
transformation law of the functions c.(#, ¢) appearing in the mapping equation (2:22)

E(P)~>U(, ¢):
cald', B)=cold, B)+5(reld, 9) 728, 9)), (2-26)
the same transformation law as the Kihler potential! Here the holomorphic functions

vo(#, g) of ¢ are the ones contained in %(#, g) of (2-25) as l{?z e¥XefSgirY,
Furthermore, we have proved in Ref. 11) the equation
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2Ca(¢, 5)

tr( - Yada)) _Na a¢]a¢_] d¢1/\d§5! y (2'27)

where N, is the normalization factor of Y. charge, tr YoYs=NaSs. This implies that the
Kahler metric gy+ corresponding to the fundamental 2-form (2-8), 2=0/2Dtr(— Ydw),
with a central charge Y =210v"Y%, is indeed given by the Kihler potential

K($, H) =231 0Necul($, ). . (229)

Since the fundamental 2-form (2-8) gave the most general Kihler metric, the functions
co(d, §) give a complete set of independent Kihler potential functions. This equation
(2-28) gives the direct one-to-one connection between the Kéhler potentlal and the central
charge Y =210"Y..

To calculate the functions c.(¢, ¢) in (2:22), the BKMU formula would be the
simplest which we explain now. .

2.4. The BKMU formula and projection operators 7

BKMU assumed the existence of projection matrices 7. in the representation vector
space V under consideration, each of which satisfies

(i) 7=n", ()*=mn
(ii) hni=nhn.  for YhEH. (2-29)
,Theﬁ, the candidates for the Kidhler potentials are given by the following BKMU formula:
Ki(#, §)=Indet (" (F)E(4)) , (2-30)

where det,; denotes a determinant defined in the 7:-projected subspace 7; V. This formula
in fact gives the quickest way to extract the above functions c.(¢, ¢); indeed, as was
- noticed by BKMU themselves in their third paper,'” the expression (2:23) gives

Indet,,(£' &) =Indet,,(e®"¥) +Indet,, (e *%)
+1Indet,,(e72%5) —ZiZa! cdé, d)tr(9:Ya) . ' (2-31)

Since the projection matrix 7, satisfies e %*Se™2"Ye %y, =9,e725p,.9:e 72 ¥y, 9:2"* %y,

by (2+29) and {S, Y, X }?Jf . The two terms on the r.h.s. of (2 31) are zero because of
the nilpotency of X; and X, and the third term also vanishes since S.’s are the generators
of the semi-simple part H$s. of ¢ and semi-simple Lie algebra is traceless in any

representation. (Note that the n:-projected subspace 7;V still spans a representation -

space of H$s.) Thus (2-31) leaves us with the expression
K¢, ¢)= Exa Ca(¢, ), xa=2tr(n:Ya) . (2-32)

The Kihler potential property of BKMU’s function (2-30) is also seen more directly
_from the transformation law (2-25) of £(¢) under g€ G:'” From (2-25), (2:29) and the
unitarity of g, we find (omitting i of 7:)

Indet,(£'($")E(¢") =Indet,(nk' &1 ($) E(P) h™'n)
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=Indet, (772" "1 &' ($) E($)n-7h'7)
=Indet,(£'($)£(¢)) +Indet, /o ' +Indet, /2t ~* . (2-33)

Since Indet,(%Z (4, g)) is a holomorphic functions of ¢, this equation (2-33) indeed takes
. the desired form (2-3) of Kihler potential transformation law. (Incidentally, since
Indets, 2 =i Suye( @, )tr(7:Y) for h=e®XehSeir? by the same reasoning as in (2-31),

Eq. (2-33) again confirms the transformation law (2+26) of c.(#, $).)

In practice we need to find the projection operators 7; satisfying the property (2-29).
The construction of 7: is extremely simple in our case owing to the existence of the central
charge Y, and is well exemplified for the Grassmannian-like case G/H =SU(I+m~+»)
[SIUDXU(m)x U(n)]. i) First task is to arrange the H-irreducible blocks of the
representation basis vector in the order of the Y-charge eigenvalues from top to bottom;
for the Grassmannian example, the H-irreducible blocks of the basis vector in the funda-
mental representation are (¢, ¢m, ¢») which carry the (Yi, Y:)-charges as shown in
(2:17). We should take the following representation basis, for instance,

$u[n] : ull(1+n)]
¢ml0] when Y=Y1, | ¢.[0] when Y=mY1—1Y..  (2-34)
$n[—1] [—m(I+n)]

(Here we have shown the Y-charge eigenvalues in [ ] for the ease of understanding.)
i) Then, in this representation, prOJectlon operators 7. onto any upper blocks of the form
(0 0) satisfy the property (2:29), Hy;=17:Hy;, since.the generators {X;, Sa, i Y.} of & were
chosen to be those carrying positive or zero Y-charges and hence never lower the Y-
charge of the basis vector. So, for the Grassmannian example, we have two projection
operators '

1 1
m=| 0 ) 7= 1 , (2-35)
0 0 ’

where I's and 0’s are block unit and null matrices of course.

The projection operators constructed this way are in fact shown to be sufficient for
finding all the c.(¢, #) functions via the BKMU formula (2-30) and (2-32). This is
always true if we work in any representation of G.'” We can also see this fact here by
showing an interesting formula which expresses the general Kihler potential K(¢, ) of
(2-28) corresponding to the charge Y =‘v- Y directly in terms of the BKMU’s functions
(2:30). Consider any irreducible representation of G and decompose the representation
basis vector into H-irreducible pieces ¢:, whose dimension and Y -charges we denote by
dim V; and ), respectively. We arrange them in the order of the Y-charge values
‘v-y(i):

o=t 1, ‘v yl >t ¥Gh > > vy . (2-36)
n
Let us define projection operators #7; such that 7.'¢=(¢1, ‘¢, -+, '¢;, 0,0, -+, 0) and con-
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struct Kihler potentials K.(¢, ¢) by the BKMU formula (2-30) with those projection
operators 7;. Since we have K;—K;1=(2/i)¢ -y XdimV; from (2-32) and Naas
=tr( Yo Ya) = S 1VayVedim V;, we find that the Kihler potential K (4, ¢) of (2-28)
corresponding to the charge Y =v- Y becomes

K($, §)= 2 (Ki— K )'v 30

' :tv'(y(l)_y(Z))K1+tv'(y(Z)'—y(E))KZ"}'""}_tU'(y(N—l)_‘y(N))KN—l- (2-37)

Here Ko=Ky=0* has been used. Although all of the K;’s are not necessarily mutually
independent, this formula anyhow show the completeness of the BKMU functions K.

Equation (2-37) has another implication that the Ki#hler potential given by a linear
combination of BKMU'’s functions K,

K($, )= 2 wik($, §)= & windetal&"(5)&($)] (2:38)

is valid only when all the coefficients w; are positive. The reason is as follows: As
explained before, the positivity of metric requires ‘v ¥:>0 for all the Y -charges ¥: of the
generators X, €H —(G°—Y€). The generators X are represented by upper triangular
matrices on the basis vector (2+36) and so carry Y-charge eigenvalues of the form ¥:= ¥
—¥ with i>j. Clearly the conditions ‘v-y:>0 are satisfied if (and only if) ‘v- (e

—¥:-1) >0 hold for /=1, 2, -+, N, but they are just the coefficients of K; in (2:37). g.ed.

It is interesting that somewhat complicated conditions on the parameters v are converted
into simple ones w: >0 for the coefficients of K;’s (Of course, for the cases in which K;~
Ky-1 are not mutually independent, ‘K can be expressed in terms of suitably chosen
independent K.’s and then the constraints on the coefficients of those K.’s remain no longer
so simple.) '

2.5. - Example G/H=SU([+m+n)/S[UD) X U(m) X U(n)]

Let us give an explicit form of the K#hler potential for the above Grassmannian-like
case. If we choose Y =Y, of (2:17), the H-irreducible blocks of the representation basis
vector taken in § 2.2. are already in the correct order, and the BKMU variable &£(¢) takes
the form (2-1). (Notice that £($) =e** always become the lower block triangular form
like (2-21) in our representation convention, since X,’s carry negative Y-charges.) Then
the BKMU formula (2-30) with the projection operators 712 of (2:35) yields

Ki($, 6)=In det(£1,(8) &.(4)) =In det(1+ ad’+ 65'8'%) ,

K9, $)Zln( det m)(éJz(5)5n2(¢)), ; (2-39)

L+m)x(L+

where

*) Kv=0 since 7x=1 and tr Y =0 owing to the semi-simpleness of G.
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{ [ m
1\ / 1 0\/
En(d)=| ¢ |m, &u(d)=|¢* 1 |m. (2-40)
¢/B 7 . ¢/B ¢C 7

Since £=2 in this example, the BKMU functions K, and K, are mutually independent
and complete, and the general Kihler potential is given by

K(¢, 5):?/01[{1((25, $)+WZK2(¢, 5)
=[v'n+*(I+m+n) K+ [ — v (I+m+n)]K:, (2-41)

where use has been made of (2-37) and the Y-charge eigenvalues ¥, of the basis vector
in (2-17). As we have seen generally in the above, this expression is valid only when both
the coefficients w: and w; are positive. This can also be confirmed in this simple example
directly by expanding the K(¢#, ¢) around ¢=0:

K(¢, &) =(wr+wo)tr($a8*+ 5¢") +witr(cd )+ 0O(4?) . - (2-42)

Since this implies the metric g:;*=diag[(w.+w2) S aa, (w1 w2) S s, w2 cc] at the origin ¢
=0, w: and w: clearly must be positive. The positive region of (w:, w2) corresponds to the
region of the parameters »' and * satisfying —#v'<(/+m-+#)v*< [v* and the Kihler
potential (2-41) is valid for the Y-charge Y =*v+Y in such a region.

2.6. Imvariant complex structures

As promised we now explain a practical method how to find all the possible invariant
- complex structures G¢/H for a given G/H.

The problem is how to split the generators of & —4 into two sets, X7's of H — %€ and
Xrs of $°—Y. So, first plot the ¥-charge vectors ; of all the generators of ¢ —4 in
k-dimensional Euclidian space, and draw arbitrarily a (£—1)-dimensional plane contain-
ing the origin but none of the y; vectors. Then we can choose as X/’s the generators with
; vectors sitting in the one side of the plane and as X,’s those in the other side. A normal
vector v=(v", -, v*) to the plane can be identified with the charge Y ="%v-Y and the Y
charge eigenvales ‘v-y; of X generators are (||o| times of) the distances of the points ¥;
to the plane. As rotating the plane, for each time the plane crosses a vector ¥, we find
a new set of complex broken generators X; corresponding to NG superfields ¢?. In this
way we can count the number of possible invariant complex structure as well as the NG
superfield content for each case. This task in easily carried out by hand for £=1, 2, 3 and
would not be difficult also for higher % by the help of computer.
~ For the cases E;/SU(5)xXSU(3) X U(1) and Es/SO(10) X SU(3) X U(1), for which
we will calculate the K#hler potential explicitly in this paper, the central charge in H is
unique, i.e., k=1. There are two invariant complex structurés for such cases of 2=1,
which come from the sign change Y- — Y of the unique central charge, corresponding
physically to replace all the chiral NG superfields by anti-chiral ones. So if there are no
matter-superfields to which the chirality of the NG superfields can be referred, the super-
symmetric nonlinear Lagrangian is actually unique. ‘

For illustration of the above procedure, let us consider the case G/H=SU(l+m~+ n)
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(L,m,n)=(1,1,2)
[SIUD) X U(m) X U(n)] again. Broken
generators in this case are 4, B, C, 4, B,
C A C shown in (2:16) and carry Y-charge
\ ’ eigenvalues ¥; of (2-18). According to
{-)6 (0 the above procedure, Wellaye 1_)lotted these
AN vectors ¥, (I=A, B, C, A, B, C) by arrows
in Fig. 1, and have drawn a typical “plane”
(a line in this 2=2 case) as well as its
Y, normal ny, whose direction corresponds to
the axis of the chosen Y-charge Y <'n-Y.
) For such a choice of “plane”, the positive-
Y-charge generators X;EH —H¢ are C,
A and B evidently from the figure, and
hence the corresponding NG superfields
are ¢¢, ¢a, ¢z which transform under the
SU(D)XSU(m)XSU(n) as (1, m*, n), (1,
Fig. 1. Arrows show Y-charge eigenvalue vectors y: m*, 1), (1,1, n*), respectively. We see
in (2-18) of the broken generators .of SU(l+;.n clearly from Fig. 1 that there are six possi-
TSI UmxUln)]. This figure is bilities to draw an oriented “plane” leading
drawn by taking the scale (I, m, n)=(1,1,2).
to different complex structures; the select-
ed set of X; generators are (I) (4, B, C), (1) (C, A, B), (III) (B, C, 4), (IV) (4, B, C),
(V) (C, A, B) and (VI) (B, C, A), respectively for each of the six cases. Notice that
there exist impossible combinations like, for instance, (4, B, A). It is this point that is
interesting in building models. The possible combinations of H-quantum numbers of NG
superfields are restricted and the restriction is more stringent as 2 becomes lower.
For £=3 cases, one needs to draw a 3-dimensional picture if he works similarly. We,
however, notice that we needed in fact only the information of the direction of y-charge
eigenvalue vectors ¥;. So, by considering a cuboid with its center at the origin, for
instance, we can replace the each vector y: by a point on the surface of the cuboid at which
a line in the direction of »; from the origin crosses the surface. Similarly the plane
containing the origin is replaced by a suitable line on the surface. Further if one changes
suitably the length of the edges of the cuboid (and its direction also if necessary), all the
points corresponding to ¥:’s can be gathered to appear only on a pair of (opposite)
surfaces among six rectangular surfaces. Then the problem to find all the possible
complex structures is reduced to drawing a line on the one surface of that pair.

Y2

(m
R, (VI

(ID)

(V)

A C

§ 3. Exceptional Groups E¢, E; and E;

31 Lie algebras of Es, Ex and Es

The exceptional groups seem still not familiar to the usual physicists. So we present
here the Lie algebras of Es.s groups explicitly, briefly explaining how to obtain them.
The easiest way to write down the Lie algebra for an exceptional group is to choose the
generators referring to its convenient:maximal subgroup.

3.1.1. Es algebra

Let us start with Es. As a maximal subgroup of it we choose SO(16) for our -
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convenience to discuss Es/SO(10) X SU(3) X U(1) later.. The dimensions of Es and
SO(16) are 248 and 120, respectively. The generators corresponding to the rest dimen-
sion 248—120=128 must span a representation of the maximal subgroup SO(16), and
hence are easily guessed to be a SO(16) Majorana-Weyl spinor possessing 2'%271=128 real
components. So the generators of Es are given by SO(16) generators, denoted by Tas(A4,
B=1~16), and generators Ez(d =1~ 128) of a SO(16) Weyl-spinor. Throughout this
paper we adopt the convention to take the generators essentially anti- -hermitian; so 74z is
taken to satisfy Tus'=— Tes= Tus, and E; is subject to an anti-Majorana condition:

(E&)T:_(Cls)éﬁEE, ‘ - (3D

where Cis is the SO(16) charge conjugation matrix. [See Appendix A for our conven-
tions for the SO(2#%) Clifford algebra and spinor representations.]

The Es algebra is obtained as follows: First, T4s’s of course satisfy the usual SO(16)
algebra,

[Tis, Tes)=8scTas+045Tsc— SicTos—0 s Tac . (3:2a)
Second, since E¢ is an SO(16) Weyl spinor, it obeys
(Es, Tis)=(04s) £Es (3-2b)

with a representation matrix 645 of T4s. [See Appendix A.] Finally, the commutator
[E4, E¢] is in general given by a linear combination of Tis’s and E 7's, but the E5 terms are
absent since a spinor-representation cannot be constructed from the product of two
spinor-representations. Thus, from SO(16) covariance, we obtain

[Es, Eﬁ]‘Z%(mféCls“‘)aﬁng. V ’ (32¢)

The factor 1/2 in (3-2c) depends in fact on the normalization convention of Eg
generators. We have fixed it so that all the generators 7:=(74s, Es) have a common
normalization in the sence of Killing form; namely, the adjoint representation matrices
(ad T1)%=fi, given by the structure constant /,/* through [T}, T)]= /¥ Tx, satisfy

tr(ad(7;")-ad 7)) = NSy (3-3)

with a common factor N. In the above case of Es algebra (3-2), N =60.

In our hermiticity convention for the generators T:=(T4s, Ez), the real-group Es
elements are given by expd'Ti=exp(Zi>50" Tis+€°Es) with parameters 6,= (4%, ¢
satisfying hermiticy (64%)*= 6?4 and Majorana €%=(Cis)¥(e”)* conditions. It should be
noted that the corresponding matrix representations exp(6’ad T;) are unitary only when
the generators are commonly normalized like (3-3) since otherwise the structure constant
does not satisfy ad(7;")=[ad T7]'.

3.1.2. E; algebra

Next is the 133 dimensional E7 group. We take SU(8) as a maximal subgroup
- and denote the 63 (traceless anti-hermitian) generators by 7/ (I, J=1~8); T#=0, (TY)*
=—T/. Asis easily guessed also here, the remaining 133—63 =70 generators span a real
representation E or SU(8), namely a totally antisymmetric tensor Eyxs (I, J, K, L=1~
8) subject to a reality constraint (Eyg)'=—(1/41)eVsLMnorg, = -
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The E; algebra is obtained quite similarly to the above Es case, by taking into account
the SU(8) covariance:

[T/, AKL] = Z-(SK]TIL—' iBIL TKJ , . (3'43) ‘

[T/, EKLMN] = i(aK]ElLMN + 8 Exkimn + 8 Exrins + SV Exim _%SIIEKLMV) s (3 -4b)
[E KL, E MNOP] = %( TIQ6 QJKLMNOP + T]QG 1erLMNoP T TKQ€ I]QLIIWNOP

—~ i A ~
+ TLQGIJKQMNOP) _?( TMQGIJKLQN0P+ TNQG IJELMQOP

+ To%yxramer+ TPQGI]KLMTJOQ) . (3-4c)

Here also the coefficient 1/ 2 is fixed by the Killing form normalization condition (3-3)
[with N =494 in this case]. The real group elements of E; are given by exp(8/T/
+(1/4) 07 'E ;) with parameters 0 satisfying reality conditions (4/)*=86, and
(0UKL) *= (1/ 4! ) 61]KLMN0P(9MNOP.
3.1.3. Es algebra
A maximal subgroup of 78 dimensional Es is SO(10) X U(1) with 4541 generators,
Taz (A, B=1~10) and T. The rest 78—46=232 generators just fall into a SO(10) (anti-)
Majorana spinor (Ee., E%), where E. (¢=1~16) stand for its “upper” 16 components,
a “right-handed” Weyl spinor, and E for their anti-hermitian conjugates E*=—(E,)".
Considering SO(10) covariance we obtain the Es algebra:

[T.;w, Teo)=08cTap+8apTec—S8acTep— 880 Tac,
[Tus, T1=[T, T1=0, (3-5a)

[Ee, Tas]=(045)Es, l T, (E_)] zéz‘(_b:"), (3-5b)

[Ea, TAB]:(aAB)aﬁEB )
[Ea'y Eﬂ]: [-E_ay E‘B]ZO y

[Ea': E_ﬁ]: _%(GAB)aﬂTAB+—{2§*Z'3aBT . (3-5¢)
Here the relative weight of T4s and T terms appearing in the r.h.s. of the last equation
can be determined by the Jacobi identity [E., [Es, E7]]+ (cyclic permutations) =0. Other
factors are fixed so that the normalization conditions (3+3) are satisfied with N =24. The
Es real group elements exp(0T ++60asTus+ E°Eoa+€.£°) are given in terms ~of “real”
parameters satisfying 8*=48, (04z)* =054 and (E9)*=¢..

- Thus we have completed the presentation of the algebra Es, E; and Es by Egs. (3-2),

(3-4) and (3-5), respectively. A comment may be useful on the same identities which are
necessary in checking the Jacobi identities as a consistency of the above algebra. For the
Es case, we used the Jacobi identity [Ee, [Es, E7]]+2-terms=0 in the above, but there we
had in fact needed a nontrivial identity
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33478,98—2(0‘,43) ay(GAB) 38:33018557_2(0}13) aa(GAB) ,97 . (3'6)

Similar identities necessary for the E; and Es cases are:
G2aBEF 9_1”“’ - (1‘*2) = _%( 3[A[C(923]EFG 0_1D]EFG - (1‘_’2))

with’

§4BCD = 4—11 EABCDEFGHeEFGH , : (3 . 7)

(048) &’ (045) #(Cid") e5+(cyclic in @, B and 7)=0. (3-8)
3.2. Decomposition of the generators into I and G°—I

For the purpose of constructing Kahler potentials for G/H=E./SU(5) X SU(3)
X U(1) and Es/SO(10) x SU(3) X U(1), it is necessary to further decompose the above
generators into irreducible components with respect to the subgroups SU(5) X SU(3)
X U(1) and SO(10) X SU(3) X U(1), respectively. For the Es/SO(10) X U(1) case, the
above construction of the algebra already gives the desired decomposition since SO(10)
X U(1) was a maximal subgroup. However, including this Es case also, we need to
specify the complex broken generators X; corresponding to the coset space G¢/H.
3.2.1. G°—4 for Es/SO(10) X U(1)

The center of SO(10) X U(1) is the U(1) itself. So the central charge Y discussed in
§2 is unique in this case and given by 7 in (3+5). For convenience, however, we define Y

by Y=—i(2T/+/3) , so that Y becomes hermitian and has the simplest eigenvalues as
follows:

Y-charges of (Eq, Tus, T, E=(1,0,0, —1) . (3-9)

Hence, as the general procedure in §2 shows the generators X carrymg negative Y-
charges are given by 16 generators E:

G —IH={X,}={E"}. _ (3-10)

We thus have an SO(10) spinor NG superfield ¢., namely one generation 16, in this case.

3.22. G°—H for E,/SUGB)XSUB) X U(1)

The generators 77/ and Eyx in the algebra (3-4) should first be decomposed into
irreducible components with respect to SU(5) X SU(3) X U(1). This is easily done by
decomposing the SU(8) indices I, ], *=1~8 into SU(5) indices q, b, --* and SU(3)
indices £, 7, *~* running over 1~5 and 6~8, respectively. We thus find the following
irreducible generators:

.7— J_i 5
ﬁT7 Ti=T; 9 6T’

o [23 A ;
r=2/3s2Ti=-2 5§T”

Ti=T4, : T4=T8,
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EGE%GGdeeEbcde , Ea53i'€“kEauk ,
i 1 ik abzl abede .
Eab:T6 Eabise ’ E°= 31 € Ecae: . (3 11)

Here we still retain the common normalization condition (3+3) with N=24. The gener-
ators 7.°, 77 and T stand for the SU(5), SU(3) and U(1) generators of the unbroken
subgroup H, respectively, and the others for the broken generators.

The E; algebra (3-4) is immediately rewritten in terms of these generators of (3-12).
We cite here only the commutation relations of broken generators since other ones trivial
by SU(5) SU(3) covariance:

7 = i8-8 T -0 [ 50T, (T4, Bil=— ik,
[Tai, gc] - _2—Z'€ijk6abc'deEkde s [Tai, Ejbc] = Z.(Sji(aabEC_ 8l;ch) ’
(B2 E,]= z'( [Ssur- T,,a) , (B9 Eid)=i(T50°— Teiss)

[Béo, B )= 8,/ (Tatds+ D386~ Tut0s° = Tu88a) = 20848, T+, Lo/ T),

[Eéb, Ega]: - igijkeabcdeTke , [Ea, Tbi]:[ a, Eb]: [Ea, Eibc]:() . (3'12)

The unique central charge in H is T in this case, and we define the Y-charge by Y
=—iy/15/2T. Then the Y-charge eigenvalues of the E; generators become:

Y -charges of (E?, To', E, Tob, T, T/, Ew, Ti%, Ea)
=(3,2,1,0,0,0, —1, —2, —3) . (3-13)

Therefore the complex broken generators X ; of G°/H, which carry negative Y -charges,
are now given by '

G f=(EL, T4 El), (3-14)

and hence the corresponding NG superfields are (¢:%, o’, ¢¢), which possess the SU(5)
X SU(3) quantum numbers {(10, 3*), (5*,3), (5, 1)}, namely three generations (of quarks
/leptons plus one Higgs supermultiplet 5 ).

3.2.3. G°—4 for Es/SO(10) X SU(3) X U

The Es generators T4s and Es in (3-1) are SO(16) multiplets. The decomposition
into SO(10) X SU(3) X U(1) is accomplished in two steps; ﬁrst SO(16)—>SO(10) X S0(6)
and then SO(6)=SU(4)->SUQ3) X U(1).

Let us start with T4s. The SO(16) indices A, B=1~16 are divided into the SO(10)
indices A, B=1~10 and the SO(6) indices @, b=11~16. So Tjs splits into three pieces
Tas, Tac and Tas. The isomorphism SO(6)= SU (4) implies that the S0O(6) generators

Tes» and the SO(6) vector Tu. are equivalent to SU(4) generators T#(7, 7=1~4) and -

SU(4) 6 representation T represented byEI , respectively. The conversion is
performed by the matrices gas and 0. of SO(6) Clifford algebra in Appendix A:
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TA[{,J’IZ%(O‘a) i5T4a , Ti“;:%(dab) FTas . (3-15)

These SU(4) indices 7 are further decomposed into SU (3)’s one i =1~3 and a singlet one
4. Thus T 5 vields the following two irreducible generators:

Ta:=v2Tagem, TAiE‘%—e Y52 Tatim (3-16)
which are anti-hermitian conjugates: of each other as can be shown by the help of Eq.
(A-20). The SU(4) generators T+ yields 3+3 anti-hermitian conjugate pair

Ti=T,/~ , Ti=Ti-i* , (3-17)
in addition to the SU(3) and U(1) generators defined by

- 3 b
T/= Tzi?j_%af"Z Ti,
k=1

— 4 4__ ] 4 3 E
T=/4Ti=— /25 14 (3-18)
3 30

Next is the decomposition of the SO(16) anti-Majorana Weyl spinor generator Es.
Since the SO(16) I'-matrices can be constructed as a tensor product of the SO(10) and
SO(6) I'-matrices, the right-handed Weyl spinor Egs consists of a right Xright spinor Eqs
and a leftxleft one E*, with @ and 7 denoting the SO(10) and SO(6)=SU(4) spinor
indices, respectively. The anti-Majorana property (3+1) of Es implies E%=—(E.:)".
[See Appendix A for these.] So the SO(10) X SU(3) X U(1) decomposition yields

E.=FEq, E¢=E*,

E“=E“~,  FEu=E-:. (3-19)

By summarizing the above procedure, the Es generators have decomposed into the
unbroken SO(10) X SU(3) X U(1) generators ( Tuz, T, T) and the broken ones ( Ta:, T%,
T Ti, Ea E®, E® Eu). The various numerical factors in the above definitions of these
generators were chosen so as to kéep the common normalization condition (3-3). Now
it is straightforward to rewrite the Es algebra in terms of these generators. We cite again
only the broken generators’ commutation relations here:

[Tai, Tasl= i€ T*0un, [Tai, To'l= =87 Tas+ibas( g0 T+T7),
[Ta, T=—iewnTs, [T, Busl= o) i, |

[T, E¥)=p(0a ) Ed? , [ Tat, El=——5(oa ) En,

(7., /)= Tij—\/%(?ijT> . [T Edd=iEu,

[Ty, E¥=—i0/E®, [Ea, Es]= _%éuk(m)aﬁTAk )
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[Eai, Eﬂ]: _“/%( 0a)as Tas s
[Eai, Eﬁj]: _%(,O'AB) F05 Tup+ Z< Tﬁ—ﬁé‘ﬂ'j‘) ,

(Eai, E'1=i88T:, [Ee, E*)=—5(040) Tan+ i/ 50T,

[T, T41=[Ty, T =[T:, Es1=[T:, E1=[Tu:, Ez)=[E., Es]=0. < (3-20)

Again the unique central charge in H | is T and the Y-charge is defined by Y
=—1 2/§ T. The Es generators carry the following Y -charges:

Y-charges of (T", Ea, Tas, E, Tus, T, T¢, Ews, Td', E*, T?)
=(4,3,2,1,0,0,0, =1, —2, =3, —4) . (3-21)

Hence the complex broken generators X; of G°/H are given by
G~ ={Eu, T4, E*, T:) ‘ (3-22)

in this Es/SO(10) X SU(3) X U(1) case. The appearing NG superfields {¢%, ¢, da, ¢:}
thus have SO(10) X SU(3) quantum number {(16, 8), (10,3*), (16,*, 1), (1, 3"}, containing
three left-handed generations 3 X16 plus one right-handed generation 16* as announced in
the Introduction.®”

3.3. The cases of H with more than one central charges

We have considered in the previous subsection only the cases of H “having one
dimensional center, for each of which the NG superfield content was unique. For the
cases G/H=E./SU(5) X SU(3) X U(1) and Es/S0O(10) X SU(3) X U(1), however, we are
free to reduce the unbroken subgroup H to smaller ones as far as keeping the grand
unified group SU(5) or SO(10). ~ All the possibilities not violating the Kzhler property of
G/H are to replace the SU(3) X U(1) in H® by SU(2) X[U()? or [U(1)]. The invari-
ant complex structure are no longer unique for these G/H cases as was explained in § 2.
- So it is an intriguing question whether the NG superfield contents can or cannot be
changed in a phenomenologically interesting manner. :

Let us first consider the case G/H=E;/SU(B)XSU(2)x[U(1)]2. The addittional
central charge, say Y, is the so-called hypercharge (“1_,) of the SU(3). The broken
generators in the previous E;/SU(5) X SU(3) X U(1) case, E?, Td', E:* and thelr anti-
hermitian conjugates, are now further decomposed into .

E*->E*(5,1;3,0),

T i, Tai(5*7'2; 2) 1) ’ (i:]-y 2)
C o Te6r 12,2,

E,abﬁ{Ei“”(lo, 21,-1),

Es**(10,1;1,2) (3-23)

and their anti-hermitian conjugates, where the numbers in the brackets denote the
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404 K. Itoh, T. Kugo and H. Kunitomo

multiplets under the SU(5) X SU(2) as well as Y: and Y: charges. Additional broken
generators coming from previously unbroken SU(3) part are

T:%(1,2;0,3), T;(1,2,0,—3). (3-24)

According to the procedure in § 2.6., we pldt the Y=(Y1, Y2) charge eigenvalue
vectors of those broken generators in Fig. 2. Clearly there are ten possibilities in drawing
an oriented “plane” to choose a set of complex broken generators X:€ G °¢—4; by
denoting X;’s by the SU(5) X SU(2) quantum numbers, we find

D [(5%,1),(10,2), (5 1), (5%2),10,1),(1,2)],
I 65,0, (5%2),(0,1),Q1,2), (5,1, (10%,2)],
mn  [(5%,2), 10,1, (1,2), (5,1, (10%,2), (5*, 1],
Iv)  [(10,1),(1,2), (51, 10%2), (5%, 1), (5,21,
V)  [(1,2), 5,1, 10%2), (5% 1), (5,2), (10%, 1)] (3-25)

and their hermitian conjugate combinations. The first set (D is the nearest one to the

previous NG field set [(5*, 3), (10, 3*), (5,1)] in the case of E./SU(5)XSU(3) X U(1).

The other sets (IT) ~(V) do not contain the NG field content which can be identified with

the three generations of quarks and leptons (5*+10) X3. Similar result is obtained also
for E./SUG)X[U Q). '

Although not interesting phenomenologically, these simple examples tell us that

increasing the central charges much loosen the constraints on the possible choices of NG

superfield set. So it is interesting to see whether one can have four right-handed genera-

tions for E: case instead of the previous “three right-handed plus one left-handed genera-

tions.”

The answer is “NO”, unfortunately. We present, however, a discussion for the case

' Es/SO(10) X [U(1) ] to illustrate our pro-

cedure in particular for 2=3, explicitly.

v The additional central charges Y> and Ys

) are the hypercharge (‘i-;) and the third

T(1x2) component of isospin (*-1o) of the SU(3) of

E%(10)
Ti(5%2)

The broken generators there, T¢, Eo, Ta;,
E?* and their anti-hermitian conjugates in
EY5) (3:20), . now decompose into following
! multiplets:

5%2 “ SO(].O), Y1, Yz, Ys,

10* 39 : Ti T (1, 4, 1, D,

12 ‘ T 1 4, 1, -1,

1 4 -2, 0,
3

E.~E, (16*;, 3, 0, 0),

Fig. 2. Y=(Y), Y2) charge eigenvalue vectors of the
broken generators (3-23), (3:24) of E./SU(5)
XSU@x[UMP.

the previous Es/SO(10)xXSU(B)XU(1).
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( TAI (10; 2, —1, _1),
Tai=>y Taz (10; 2, _1, 1),
Tas (10; 2, 2, 0),.

E® (16,1, 1, D),
E®~{ E® (16,1, 1, —1), (3-26)
E® (16; 1, =2, 0)

and their anti-hermitian conjugates. Other than these there appear six broken generators
T/7(i*7) coming from the SU(3), but we omit them for simplicity since they are
phenomenologically uninteresting SO(10) singlets.

According to the procedure explained in § 2.6., we consider the 3-dimensional ¥ =(Y;,
Y2, Y3)-charge vector space and a cuboid with its center at the origin whose surfaces are
taken to cross at (£1,0,0) (0, =4, 0) and (0, 0, +5) perpendicularly to each axis Y3, Yz
and Y3, respectively. Then with ¢ and & chosen suitably large, all the Y-charge
eigenvalue vectors ¥;=(y1, ¥z, ¥s) of the broken generators (3+26) with y; >0, intersect the
cuboid only on the “top surface” perpendicular to Y: axis with coordinate Y:=+1, while
their conjugate generators with y1 <0 on the “bottom surface” with Yi=—1. We plot the
cross points (y2/y1, ¥3/¥1) of y; vectors of (3-26) with the top surface in Fig. 3. To draw
a plane including the origin in the 3-dimensional ¥ space is equivalent to drawing an
arbitrary line on the top surface, and the generators on the one side of the line plus the
anti-hermitian conjugates of the generators on the other side are identified with the
complex broken generators X;. We have drawn an example of such a line on the Fig. 3.,
for which the generators X; are thus given by '

{X:}=[E*(16), E®*(16), Tus, T2, E*(16), Eas(16*), Ty, Ts, T*, T4?].

In this case also we have three 16 plus on 16*. - We see from Fig. 3 that the point of the
generator E.(16%) is placed inside a triangle made by the three points E%(16) (i=1, 2, 3),
and thus it is impossible to draw a line to have four 16 as the complex broken generators
Xi.

YJ
b
E'16)
1 .
e,
TAZ *
LT
-2 -1 T’ 1 Tas 2 v
2
) E.68%| / ¢
16 -
T *
_1 - 2
-b 0

Fig. 3. Plot of the crossing points (y2/y1, ¥s/y1) on the top surface Y:=1 corresponding to Y-charge
eigenvalue vectors ¥ ={y1, ¥2, ¥s) of broken generators (3-26) of Es/SO(10) X [U(1)]?.

Zz0z ¥snbny 9} uo isenb Aq 940668 1/98¢/2/G /21014e/d)d/wod dno olwsepede//:sdpy Woly papeojumod



406 K. Itoh, T. Kugo and H. Kunitomo

§4. Kihler potentials

In this section we construct the K#hler potential K(¢, ¢) in a closed form for each of
the physically interesting coset spaces Es/SO(10) X U(1), E-/SU(5) X SU(3) X U(1) and
Es/SO(10) X SU(3) x U(1). The Kihler potential is unique in these cases up to the
possibility of chirality inversion of all the NG superfields. Hence, for simplicity, we
calculate K(¢, #) based on the lowest dimensional representation of G for each case G
=Fs~s.. Expanding the obtained K(¢, ¢) in a power series in ¢ and ¢, we compare our
results with the other authors’ ones which were given up to quartic order for E; and Es
cases.”®

We alsq give the exphc1t expression of the function F (¢) in the Kihler potent1al
transformatlon law,

K(¢', ¢")=K(9, ¢)+F(¢)+F*(¢)
since F(¢) becomes important when the system is coupled to supergravity.

4.1. E¢/SO(10)x U(1)

The lowest dimensional representation of Es is 27, which is known to be decomposed,
with respect to the subgroup SO(10) X U(1), as'®

21=(1;3)+(16, )+ (10 =2) . (4-1)

Here the first numbers in the brackets denote SO(10) multiplets and the second the
eigenvalues with respect to the central charge Y =—7(2/+3) T defined previously in
§3.2.1. Corresponding to the SO(10) X U(1) decomposition (4-1),-we can write the repre-
sentation basis vector ¢ as

x
¢=| va (4-2)
zA

with SO(10) spinor index @=1~6 and vector index A=1~10 as before. [Notice that
these H-irreducible pieces x, ¥, z are ordered according to our rule referring to the Y-
charge values.] _

The Es generators Tus, T, Ea, E® in (3:5) are represented in this space as

6¢E(0T+%0ABTAB+ EEut eaE) ¢

%z’& E* 0 .

_ 1 pL_ L _pep D e
— €a ZHAB(O'AB)a +2/§l98a ﬁ(de)a el , (4_3)
0 —“‘}‘?*(O‘Afe)ﬁ (9,43—'72—3793/13 ZB
where 04 and o.s are the y-matrices and rotation matrices of SO(10) in spinor representa-
tion, respectively, defined in Appendix A. This expression (4-3) is easily obtainable by
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the help of the SO(10) covariance and the Es algebra (3-5).

The complex broken generators X; with negative Y-charge are E® alone as was seen
in (3-10). Reading the representation of E* from (4:2), we can immediately obtain the
following expression for the BKMU variable &:

1 0 0
g == Tt 2 0], (4-4)
2—‘1/?@75034f ¢) “%( ¢GAT)ﬁ Sas

Notice here that e*Z=1+¢E +(¢E)?/ 2 because of the nilpotency (£)*=0. As a projec-
tion operator 7 satisfying (2-29) necessary for the BKMU formula, we adopt the projec-
tion operator into the highest Y-charge subspace spanned by x:

1
Nx= 0 . (4-5)

Then the BKMU formula (2-30) with (4-4) yields the desired Kshler potential:
K(¢, ¢)=Indet,.(£'($) E(4))

=In[l+ §d+5(foad) (a1 . (4-6)

Here the determinant is trivial since the 7z-projected space is one dimensional.
We next determine the transformation law of the NG superfields ¢. under the
infinitesimal Fe-transformation. By substituting £(¢) of (4-4) and g=1+089=1+(8T

+ 04T/ 2+ €°Eo+ €.E®) with matrix representation (4:3) into the BKMU transforma-
tion law (2-25)

HOEHCACRIE (4-7)

we easily find the infinitesimal field change 8¢ =¢"— ¢ as well as %($, 1+8g): 8¢ is given
by

Table I. Explicit matrix representation of Eq. (4-14) [E generators).

Ur>1 Vesa Weer
Uij —41'9”6H+Z.1/ %6(5:“26;‘[“6{[81‘11)7 Eiim};g'd _21.2_[01'6;:]
8¢=
v —€" " ha 4iAlg s+ z,/ 15008704 —8"84%) —%e“”“fﬁéf
Wai —22’&“‘6,-” 2 éacdefl’l 4 - i(/lacaik_gikaac) +”§—06\a66ik
xai _€ilz1€a . _ZZZI!Cad] eikmhmac
Yao ' 0 €abede€® 2i2[a3b1

z¥ 0 ‘ 0 —eVke’
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Sta= ea—z—jgeqsa—%ew(mggzsu—%( doad)(Eon)a, (4-8)

and, as for the (4, 1+38g), we only cite its (1,1) matrix element 067711'27735,
771]’2(925, 1+ 59) Nz= 77:95(‘]5) Nx

=<1+%z‘6— €_¢>7]x, | (4-9)

where the first equality follows from (4-7) and the properties %7:=7:A7: and 7z&(¢") 9z

=7z. Thus, since the change of the Kidhler potential Indet,(£'£) is generally given by
Indet,2"*(g, #) +h.c. as seen in (2- 33), the infinitesimal change of the present Kihler
potential (4-6) is now found to be

OK(¢, ¢)=¢Ep+ed . (4-10)

The purely imaginary term 270/ +v3 has dropped here as it should be since the Kzhler
potential is truly invariant under the H =S0(10) X U (1) transformation which is linearly
realized on ¢ as is indeed seen in (4-8).

The Kiahler potential for this irreducible manifold Es/SO(10) X U(1) was also
obtained by Achiman, Aoyama and van Holten'® as well as by Delduc and Valent,2? in a
heuristic way. Their results of K($, ) and the transformation law coincide exactly
with ours (4-6), (4-8) and (4-10). It is however noted that the expression K (¢, ¢) by the
former authors is apparently different:

K($, H=7561Q "1+ Q)]
®

aﬂE{%Saﬁar‘?_(dAB)aﬂ(O‘AB) 78} ¢_7¢s . (4‘11) ‘

The equivalence of this to ours (4+6) is rather difficult to show directly but can be seen
from the fact that both (4-6) and (4-11) transform in the same way as (4-10) under the s
transformation and coincide with each other around ¢= ¢ =0; that is, they satisfy the
same set of first order differential equations and the same boundary condition at ¢ = ¢ =0,
and hence must coincide with each other for all ¢ and ¢ owing to the uniqueness of the
solution of that set of differential equations.

ICk . Ye>a Z‘f?l
€i8€c 0 0
—2i3128 Y —g%g, 0
—€irmh 3 25196, €t€a
{(Ae"840 g8 )~ 08284 ey 2i5654
L .5 SAlcsdl__ - 3 €8st — 8428 +°) Erimh
o €aboeshi —4iA58 8 — ¢ 1—00(6a 352 — 8480 rimhas
Zl'chiﬁkjl —Gijmhmw 4zg 1/ 19 rS 61‘7 61:161
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42. E,/SUGB)XSUEB)XUQ)

The lowest dimensional representation of E7 is 56 and its H =SU (BYXSUB) X U(1)
decomposition is'®

— i i * *-J-.
56=(1,33)+(10,1,3)+ (5, 3% %)

1 3 % _9 X
+(5.3 —5)+(10,1, = 3)+(1,37 >). (4-12)
As before, here the H-irreducible components are ordered according to the Y

=—44/15/2 T charge eigenvalues denoted by the last numbers in the brackets. The
representation basis vector ¢ is written accordingly as

¢="urs0, 1'%, Wai, £, Yiamy, 27, (4:13)

where a, b, - and i, 7, --- denote the SU(5) and SU(3) indices, respectively, and the
square bracket [ ] implies that the indices are anti-symmetric. For those quantities with
anti-symmetric indices we treat hereafter only the independent quantities like u.-; (half
as many as u); therefore, for instance, M u:s; = is ;M =1/ 220 ;M P 5.
The matrix representation of the Es generators of (3-11) in this space are also easily
obtained by the help of the SU(5) X SU(3) covariance and the E; algebra (3:12). We
show in Table I the explicit matrix expression of the infinitesimal E-transformation

0¢= (A T+ g/ T+ 0T +Z T + 2 T
+ EaB+ e Eaty R EF+5 hiEis) (4-14)

whére parameters are “hermitian”; (A,9)*=A.", (g;)*=g7, 6*=0, (2 *=3,", (E.)*
=¢? (his)*=hs. The symbol [ ] in Table I denotes the anti-symmetrization with
“weight 17; e.g., 2%06=1/2(2.'8:,°— 2:'8.°).

The complex broken generators X; in this case are E&,, T:® and E, as was shown in
(3-14), and the corresponding NG superfields ¢,%°, ¢.’, $* are now denoted by using
different letters for the ease of distinction as ¢:%°, ¢.°, x*. The exponent of the BKMU
variable £(¢) is seen from Table I to have the following matrix representation:

%QéiabE-éb + ‘/’ai Tai + XaEa

» uk>l. Ve>d Wer ICk : Ye>a Zk>l
Uij 0
P | —rimg, ab 0 0
. 1 ’
=Wai| — 23¢a[k8il] _€tzcdef¢ief 0
. I 4 . (4-15)
xaz _81 xa _zl¢[lcag] 61km¢mac O
. 1
Vas 0 €avcaeX’ 20486 ’2-€abcef¢kef 0
z91 0 0 —e*yt 208 —e¥mgt 0 |

Instead of the original BKMU parametrization £ =exp(¢%; Eis/ 24 ¢ T2+ x%El), we
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adopt the parametrization

E(d) Zexp<%¢i“”E—,’;b>-exp(gbaiTi“) -exp(x%E.) ,

(4-16)

which is slightly easier to calculate and equivalent to the original one through the change

of third variable x*- x%+ c¢,%*¢,’ with a certain constant c.

Now we take the projection

operator 7, into the u..; sector (3-dimensional) with the highest Y-charge 5/2 and
calculate the first column (#:>,-column) £.(¢) of the matrix £(¢) (4-16). This is because

we need only the column “vector” £.(¢) (56 X3 matrix, more precisely) in applying the
BKMU formula (2-30) with 7.:

K($, )=Indet, (&' (§)E(8)) =Indet(£a () £u(4))

(4-17)

The first column “vector” &,(#) is calculated straightforwardly and is given explicitly by

Ur>1

Z)Cd

Eu(¢):

Wer

2857

. eijm¢mcd

R '
'—22¢c[ 61{7]_ 4X21 €Um€abcde¢mab¢kde

_ezykxc+zezym¢mec¢ek_4X3| 6ulekmneabefg¢Lab¢mec¢nfg

S 1 . I 4
_2¢Eé¢é]]_7€ JmECdengeﬂbmfg'i'Ze JmGabef[c¢g]¢mab¢nef

1
T Rxdl €7 eP"Cpysc€cacraPm™ Pn’  bp e Po™

. Rilig 1w
_Zzekl[l¢ejlxe+§€um€kln€abefg¢mab nfgxe

+ 61Jm¢mab¢¢k¢bl +ﬁ6ljmeabefgeon[k¢6”¢mab¢oee¢nfg

1 it e ,
+T><5'!—€Um €l i n€klm6abea’ﬂ’6aﬂ7fy¢m'ab¢ng’ﬁ ¢Lg7¢maﬁ¢nfg . (4, 18)

Equation (4-17) with (4-18) gives the desired full order explicit expression of the

Kahler potential for E,/SU(5) X SU(3) X U(1).

Here for comparison with the previous-

ly obtained quartic order result,” we expand it up to quartic order in ¢ and ¢ :

Indet(£u’(#) €ul$)) = ¢ pho 40" .46 Zax®

—2¢a' ) (956, —3(xax®)*— ($508:°)(4.°4) +($:% 6

ab

F @ F) — (85 (5 — 4.5 §1c) (9 F10))

2810 (95 5) — 2 Fied ) (§.£4) — 265 Fle* o

)($e' )
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Table II. Explicit matrix representation of Eq. (4-25) [Es generators).

be q® rc* Spr tep
B 1o %5 0
- pi .2 5 —iWp: i€ 1€°0:
+i—7505:
‘/§ i
1y a
8¢ = —52"(oy) s . .
q° — W™ 2 *ia‘)n(dc')”‘ ALAck(dct)aﬁ E7(ocn)y”
+73 8,0 2 V2
2 8
. 2AC0 +i8acgs’ i .
7' — €Y% Aa; _ﬁw"(O‘A)w "1‘%95“3; - ﬁfl]ka_)n‘(m')ﬂ —28{cAh
3
i i %21](0'11)195:“2 :
Sai i€als" —/11;(61):1,9 _ez‘jlaa)yj(o‘b)ra . . —a_)n'((fcn)a7
’ V2 . e —ig 8 +5 003+
tan 0 67(0‘A3)p7 26[€4AD112 —w”‘(dw) 7'9 _436123]0
u iLoht ~il3e, — iz A — iz 0
ﬂji __1.6 jhk 0 —iA Cjaki +?6ji/l Ck i&/‘w"' —?Sj"w“ 0
3 J
w® 0 ihi3ﬁa T}—gE;SO‘cW”é‘lzi - ‘/%e"j“Au(m’)“’ w’i(dco)ya
Xai 0 0 Z.Gijkhjaac _%67(0‘,‘“)71961“E _ZalACADIi
Ya 0 0 0 —ih"b‘.f _ey(dcn)ar
2t 0 0 0 0 0
+4{— (9’ ¢ (2% xa) + (P2 ) (2°%a) }
1 o 1 ., - ~
_7€ijk6ab0de( Pés ¢cj) ( Xd¢ek) _76”kfabcde( ¢’jc¢iab) ( ¢kex") , (4-19)

where x® denotes the redefined field y %= x* +'§_¢iab¢bi with omission of ~.. This express-

ion (4-19) indeed agrees with the known one in Ref. 5) aside from trivial scale transfor-

mations.

We can also obtain the E- transformation laws of the NG superfields ¢.%°, ¢.°, x* and
of the K&hler potential following the same steps as for the previous Es case. The change
of the Kihler potential (4-17) under the infinitesimal E; transformation with parameters
defined in (4-14) is simply given by
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% _lj(0'11)hﬁ
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B
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lﬁhk
—ihi0st
+'3Z"5jiﬁk
— €04’

ie ijk/L.j

ia_)ak

igx — 04"

SK (6, §) = ind &+ 25E44) +3(Zax®) +he.

(4-20)

It requires more tedious calculation although straightforward to obtain the field transfor-
mation laws in a closed form. We omit them since they are lengthy and not illuminating.

4.3. Es/SO(10)xSUR) X U(1)

The lowest dimensional representation of Es is the adjoint representation 248 itself.
We have decomposed the Es generators into SO(10) X SU(3) X U(1) irreducible pieces in
§ 3.2 already. They are arranged in the order of Y -charge eigenvalue in (3-20) as

) T=(T)=( T°, Eq, Tai, E¥, Tus, T, T/, E_ai, TAi, Ea, Tz) .

On this basis the basis vector in the adjoint representation is given by

(4-21)
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$='T-¢ (4-22)
with the component vector ¢
t‘¢’:(17i, a®, ra', Sai, t*E, u, v';, WY, Tai, Yo, 3°) . (4-23)

Notice that it is the component vector ¢ that we mean by “representation basis vector”,
as is the usual convention among physicists. We are following this rule in this paper.

The matrix representation of the generators in the adjoint representation are given by
the structure constant of course:

[Ty, T))=fi*Tx= Tx(adT»%, ie, (adT))%=Ff/F. (4-24)

Thus, from (4-22), the basis vector ¢ is transformed under the infinitesimal Es transforma-
tion as follows:

3{[’ :ad<’%_ZABTAB+gji Tij+ 0T+/L1i Ta: +AAiTAi

+ﬁsz+l’lzT1+ €°Eq.+ €mE_a+0_)aiEai+a)aiE_ai>" d’ , (4'25)

The structure constant is readable from the Es algebra (3-19) and we cite the explicit form '

of the adjoint matrix in (4-25) in Table II.

The complex broken generators X in this case are Eq, Ta', E* and T: as was shown
in (3-21) and we denote the corresponding NG superfields by ¢%, ¢ai, x« and &7,
spectively. Then the exponent of the BKMU variable is represented by the followmg
matrix as is seen from Table II:

¢ai-E_ai+ ¢AiTAi+XaE_a+ CiTi:

Dr qﬂ Ve Sar
D 0
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(4-26)

Similarly to the previous E- case, we adopt the pa}éfhetrization
£(¢) =exp($™Ea:) - exp(ga: Ta®) -exp(xE?) rexp( ¢ T:) (4-27)

for the BKMU variable £(¢). Taking the projection operator 7, into the p; sector with
highest Y-charge +4, we can calculate the BKMU Kihler potential straightforwardly
(although somewhat tedious):

K(¢, ) =Indets,&"($)£(4) =Indet&," () £,(4) (4

where the first column “vector” £p(¢) (in fact 248X 3 matrix) is given explicitly by

b
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where casc=01408" 0c), i.e., antisymmetrization in A, B and C with weight 1.

Equation (4-28) with (4-29) gives our final answer to the explicit closed form of the
Kéhler potential for Es/SO(10) X SU(3) X U(1). Here again we cite its expansion up to
quartic order in ¢ and &:

K(¢, $)=(84)+2($¢)+3(xx) +4(Y)
=208 =285 (§9) +2($a E)($al) — ($:8) (L3¢ %) —3(EE) (27)

~ G as G ni b hachas ' G+ G o $04082)
~($92) ($048) +—{ :8) B’ dns— 58)(9)

+2( fage) (20152) — () (F9) —5($:67) (8,89

5 (B0ab) (Bioa’ 6+ (.2 (42) — -+ Zoas B ($0152)

—%( QC—X)Z‘F%()COAfX)(X—GAX_) “%ezﬁik(fdéﬂéi) fjJAk

- }§€ijk(XGAT 51) gj‘/’AK*(X_X)( $¢) —712*()(—GA7{_)(§¢A) /—(XGA 2)( §‘/’A)

Zz0z ¥snbny 9} uo isenb Aq 940668 1/98¢/2/G /21014e/d)d/wod dno olwsepede//:sdpy Woly papeojumod



Supersymmetric Non-Linear Lagrangians of Kéihlevian Coset Spaces G/H 417

——6” ¢AJ¢Bk(x0AB¢ )+ 61Jk¢AJ¢Bk(¢ O'ABX) (4'30)
Here in (4-30), and only here, the fields x and ¢ denote the following tilde fields

7;(1 =Xa _Kz/_g( 04) ap$ ﬁi¢Ai ,

E = =t o0 b ™87 (4-3)

which was introduced to eliminate the (#)'(¢)% or ()%(¢)* terms like x*(04)asd®da: from
- the Kihler potential (4:30). One can see after a suitable Fierz transformation that this
expression (4-30), except for the last four terms, agrees with Ong’s results® which was
obtained up to quartic order by a different method. The last four terms are multiplied by
a factor 2 in Ong’s results, but it is probably his error or simply a misprint. We actually
cross-checked the correctness of our result (4-30) by confirming directly the Es invariance
of (4-30) by substituting the field transformation law which we give now below.

As before, g&é(¢)=£(¢") (¢, g) determines the transformation laws of the NG
superfields ¢ =(¢%, ¢u;, %o, §?). We cite here them up to quadratic order in ¢ since they
have appeared in no literature. Omitting the unbroken generators of SO(10) X SU(3)
X U(1) under which the transformatlons are trivial, we take the infinitesimal transforma-
tion parameters as

g—IZSgZ(/TAiTAivL I/ZiT"+ éaEa+C§aiEai)—h.C.

asin (4-25). Then the explicit matrix forms of this given in Table II and of £(¢) of (4-27)
lead to the following transformation laws:

S = %+ ‘/lgeij"(cDjGA*)“gbAk—%(@joﬂ)"(sﬁimsbj)+(65j¢i)¢“i
—%/Lf( xm')“%—%(/fgb) $E + A s i0an) — Aa'ash® + (&)

+%€ijk( E0an) *PaiPsr "‘é-( €0an)*(P'oany) — igagi_% €%e’x)

+ }§€ijkﬁj¢Ak(X0AT)"+ hi$%Lt,

5¢Az AA:+ABk¢ﬁr¢Ak+ ez_7k(¢ O'ABX)AB _%eijk/TAj((zst)_'Z.eijk/IAjé’k
_%/IAj¢Bi¢Bj +7§_2_6ijk( $'oa" w*) +ﬁ( @:04"x) +%( @) Pa; —%(@isbj) Pa;
+%( $7048®;) Pp: _‘;—( 3’ 048@°) Pp; +%( €x) Pai— (Ecany) Ps:
+%ﬁeijk( €0‘A¢j) §k+2%/§}?i(xm*x) - }zz(¢A§) +(RE) s,

020= eut —15(€02)al#a8) — (€00 (x0a" 1)+ (&) 2t A ta— (Lah) (0152).
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+ﬁ(a)i0‘4) a¢Ai'+%6ijk(in‘A¢j) (¢k0A)a+ ia_)az'gi
+ e (Gus@) abasthon+ (RE) e
O =+ (RO L +H(ED L+ e ™ Aasban g s An(#0:8") + 5 (AP L =3 At

+2—1ﬁ/Lf(on*x) +ila'y) —2—}?(aﬂm¢f) ¢Aj—2—}§effk(a—)jm* Db,  (4:32)

The Kéhler potential transformation law can be derived much more simply and in a closed
form as explained in the Es case, and is given in this case by

0K (¢, $) =(Baip™ + 24 Pa;i +3&“xa+4h:") +hec. (4-33)

Direct substitution of the ﬁ_eld transformation laws (4:32) into the above quartic order
expression (4-30) of K(¢, ¢) also confirms Eq. (4-33) as we have mentioned above.

§5. Summary and discussion

In this paper we have first clarified the general procedure how to construct the
supersymmetric Lagrangians for any given K#hlerian coset spaces G/H. Next we
presented the explicit form of the Lie algebras of the exceptional grous Es, £7 and Es as
well as the SU(5) X SU(3) X U(1) and SO(10) x SU(3) X U (1) decompositions of gener-
ators for the latter two groups respectively. -Based on these we have explicitly construct-
ed the Kihler potential (or equivalently, supersymmetric Lagrangians) in a closed form
for the three phenomenologically important cases G/H =Es/SO(10) x U(1), E;/SU(5)
X SU(3)x U(1) and Es/SO(10) X SU(3) X U(1). A comment was also made on the point
how the NG superfield contents can be changed if the center of H is relaxed to be more
than one dimensional as is the case, e.g., Es/SO(10) X SU(2) X[U(1)]* or Es/S0O(10)
x[UMD].

Our general theory for construction of supersymmetric Lagrangians will probably
have wider applications. Our work in the latter part in this paper, however, just provides
a basis for the further study of the models of the origin of generations based on E7 and Es
groups. Much more works have to be done in order to make these models actually
realistic. As stated in the Introduction the problems are: i) how to introduce an explicit
breaking of the global E; (or Es) symmetry, ii) how to obtain the explicit or spontaneous
breaking of supersymmetry, iii) how to understand the GUT gauge interaction, dynamically
or elementary, and so on.

If these questions are solved in a natural and satisfactory manner, then those models
indeed become exciting super-GUT’s which can answer the origin of generations as well
as mixings among generations. To those models, which may be named “nonlinear o-
model super-GUT’s”, we can have two alternative attitudes. One is the ordinary one of
composite approach; the nonlinear o-model is regarded as a “low energy effective Lagran-
gians” of a certain preon theory in which the global symmetry G=FE7 or Es is linearly
realized and supposed to be spontaneously broken into /. The other is an unorthodox
viewpoint to regard the nonlinear s-model as already a fundamental Lagrangian. This
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viewpoint rather differs from that in conventional GUT approach in which the renormal-
izability of theory is one of the central principles. Nevertheless, we think it very interest-
ing viewpoint since nobody knows whether it is actually meaningful to impose the usual
renormalizability constraint to select the theories in such a high energy scale as large as
Planck mass. In addition we know that the nonlinear Lagrangian indeed appears for
instance even in supergravity theories which is currently believed to be most fundamental
theory. :
To conclude this paper we add comments on some points concerning the above quoted
problems. First is about a technical problem in gauging a subgroup of or the full global
group G. Such gauging is necessary when one wants to. introduce the GUT SU(5) or
SU(10) gauge interaction into the above E; or Es nonlinear models simply by hand.
Further it is known that if the gauging is performed on a subgroup larger than H[SU(5)
(SO(10)) X SU(3) X U(1) in this case], then the supersymmetry is necessarily broken
spontaneously,””®® So it can serve as a possible natural mechanism for the required
supersymmetry breaking. The gauging problem of the isometry group G (or its sub-
group) was in fact solved by Bagger and Witten®” and by Ong?? independently, but their

gauging method is based on the “trial and errors” Noether procedure and further is.

restricted to the so-called on-shell formalism. Therefore one cannot use their results and
must repeat the tedious Noether procedure once any matter superfields are introduced into
system. The gauging procedure in an off-shell (i.e., system independent) manner is indeed
simple in our formalism based on the BKMU formula (2-30): For any subgroup S of G
which one wants to gauge, introduce vector superfields V¢ transforming under superspace
gauge transformations as ‘

eV’ =eigVg i (5-1)

Here A=/A°T* (A% chiral superfield parameter) and V=V °T*? are Lie algebra valued
and the matrices 7' are hermitian generators of S. The original global transformation
(2-25), g&(8)=£(4') h($, g), of the BKMU variable &($) under g=S < G, is now replaced
by the following superspace gauge transformation,

e“E()=E($V (g, A), W, N)EH . (542)

It is easy to see in the same way as for the global transformation case that the action
Jd'xd*0K (¢, ¢) is supersymmetric and gauge invariant under S < G if the BKMU Kihler
potential K(¢, ¢)=Indet,(£7($)£(¢)) is replaced by

K(¢, ¢; V)=Indet,(£'($)e"E($)) . (5-3)

This formula is clearly of off-shell since it is written in terms of superfields. Oné more
advantage of this formula is that it is made trivial to couple to supergravity. This is
simply achieved, for instance, in old minimal supergravity by the Lagrangian

L= _%[¢0 gzjoe~(1/3)K(x,¢F; V)]D , (5.4)

*) Actually the présent authors were informed of this formula (5- 3) by S. Uehara. The priority of this
formula should be attributed to BKMU.
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where ¢, is the compensating chiral multiplet and [---]» means the D-term action formula
in local superconformal framework.???® Hence it is only necessary to apply the super-
conformal tensor calculus formula®® to the function e W»¥®#: ") but not to repeat the
Noether procedure (further tedious in supergravity!) as Bagger?” did actually.

Second comments are concerned with some problems occuring in coupling the non-
linear system to supergravity. Coupling to supergravity is an important issue in this
context since the scale of “decay constant” in those nonlinear models should be already of

“the order of Planck mass and further it may also provide a possible source of spontaneous
supersymmetry breaking (and even of explicit global G symmetry breaking as will be
explained shortly). When the system is coupled to supergravity as in (5-4), the change
of the Kahler potential 6K = F(¢)+ F*($) no longer vanishes as in global supersymmetry
case (in which .L=[K]p and § L=[F(#)]p+h.c.=0), but yields a change on the compen-
sating multiplet: :

b0 oe 0P (55)

This change is equivalent to a combination of local superconformal transformations,
dilatation, chiral and S-supersymmetry, on the scalar and fermion component fields of the
compensating multiplet @o, after the auxiliary fields are eliminated as we assume hence-
forth. Since those local supercomformal transformations are the symmetry of the system
(at least at the classical level), the above change (5:5) has no effect on the Lagrangian if
the same superconformal transformations are perfomed simultaneously on the component
fields of ¢, scalar ¢’ and fermions x’, as well as on the vierbein-e.” and Rarita-Schwinger
field ¢,; these transformations are given as follows explicitly.*

x’*exp<—LReF(¢) +%ImF(¢) y5>'x’ ,

6
eﬂ’”*eX_p<%ReF(¢))e/” ,
1 7
¢u—>exp(gReF(¢) —7ImF(¢) 7’5>° du—7ul . : (5-6)

At the quantum level those superconformal transformations suffer from anomalies®®
and are no longer symmetries of the system. Thus the G global symmetry of the
nonlinear model, whose transformation induces a charge of the Kihler potential as 6K
=F($)+F*($), becomes broken explicitly by the supercomformal anomalies in the
presence of supergravity. [The linearly realized subgroup H remains still unbroken since
F(¢) vanishes for H transformation.] This may serve as a possible mechanism by which

*) Scalar fields ¢’ remain intact since they have vanishing Weyl and chiral weights. ¢ is the S-supersymmetry
transformation parameter whose right-handed component is given by

_ Xor|q_ _1 £ __1 _,9oF(e)
§R—2¢0[1 exp( 6ReF(¢)+21mF(¢)>] R

Here @0 and xor are scalar and spinor components of chiral compensator ¢y which are fixed in such a way that (5-4)

yields the canonical Einstein and Rarita-Schwinger terms;*® explicitly,

* *
Po=y3WOEEP XOR:%¢OXRJ&(3¢;’_I¢—)-
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the global symmetry G (or ¢ —4 part, more precisely) is broken explicitly. This
mechanism was in fact proposed by Ong,® although he mentioned incompletely only to the
conformal chiral (=R-symmetry) anomaly. ‘

There may be, however, a problem in this idea, since those anomalies imply that the
nonlinear ¢ model cannot be defined globally on the manifold G/H. On a topologically
nontrivial manifold G/H, the coordinate system ¢’ covers only a portion of G/H. That
is, we must cover G/H by patches {0.} and the Kihler potential is defined patchwise: On
the overlap regions 6. @, the Kihler potential K. of 8. is not equal to K, of 0 in general
but is related by a Kihler transformation K.— Ks= Fus(¢) + Fas($). Owing to the above
stated superconformal anomalies, however, the Lagrangian is not invariant under the
Kihler transformation and therefore the nonlinear ¢ model coupled to supergravity is
not consistently defined globally on G/H .If this global problemis crucial for the consistency
of the model itself, one cannot couple the nonlinear ¢ models to supergravity unless the
superconformal anomalies are cancelled. It may, however, be meaninguful to consider
the nonlinear ¢ model only within a patch 8 which is extended as far as K (4, ¢) remains
nonsingular with given coordinate ¢’. If so, the model can be coupled to supergravity
and the superconformal anomalies can be used peacefully as a source of G symmetry
breaking as stated above.

Witten and Bagger®® discussed a similar global consistency problem of the same
system, putting the superconformal anomaly problem aside.. They found that the global
consistency of the conformal chiral transformation phase (ImF(#) part) of (5-6) associat-
ed with the Kihler transformations on the overlap. regions require that the Kihler
manifold G/H be of restricted type (Hodge manifold). This constraint is met®" fortu-
nately for the present exceptional type manifolds Es/SO(10) X U(1), E-/SU(5) X SU(3)
X U(1) and Es/SO(10) x SU(3) X U(1) as was noticed by Irié¢ and Yasui.”

Similar global obstruction problem occurs already in rigid supersymmetry case in the
nonlinear ¢ models, and is recently discussed by many authors®*»*® under the name
“nonlinear ¢ model anomaly.” (This anomaly is associated with the field dependent
(i.e., local H transformation induced by the global G transformation. The difference
with the usual gauge theory anomaly is only that the H gauge fields here are not
elementary vectors but are given by certain functions of the NG boson fields.) Here also,
if this anomaly is present, not only the global G symmetry is broken explicitly but the
nonlinear ¢ model itself becomes ill-defined globally on G/H. There has been found no
simple method to judge which supersymmetric nonlinear ¢ models have this type of
anomalies. Recently, however, Moriya and Yasui®® reported that Es/SO(10) X U(1) is
free of this anomaly but E;/SU ()X SU(3)X U(1) and Es/SO(10) X SU(3) X U(1) are
not. If their conclusion is true, then one has to introduce some modifications to the E-; and
Es models, such as to enlarge the dimension of the center of H or to introduce matter
superfields other than NG ones. The above-mentioned standpoint to con51der the non-
linear ¢ model only within one patch may also be good.
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Appendix A
—— Properties of Spinor Representation of SO(2n) —

We summarize here some properties of spinor representation of SO(6), SO(10) and
S0(16), which are used in §§ 3 and 4 in the text, omitting the proofs. [See Refs. 34) and
35) for details.]

Al. SO@2#n)

The SO(2#) spinor ¢ has 2” components and the 2% gamma matrices I'*(z=1, 2, *-,
27n) are 2" X 2" matrices satisfying the Clifford algebra:

{r# rry=28*, r#t=r#, (A1)
The complete set of 2’_1><2” matrices is spanned by the {I"*"}, F=0, 1, ---, 2%, with

O =R pesets = U2 Pl e e

[ot=rpy (=1, (A-2)
‘where [f/ 2] is the largest integer < f/2 and [x1, ---#-] indicates antisymmetrization with
“strength one.” '

Since £I'*" form an equivalent representation of the Clifford algebra, the charge
conjugation matrix C exist such that

[*=5CI*C | (A-3)

for either choice of 7==+1. Further it can be shown that®¥

C'C=1, CT=¢€C with ezcosgiﬁrvsin%n, (A-4)

CI'Y=ep’ (—)VA[CIO)T. (£=0,1, -, 2n) - (A-5)
In Table III, we summarize and the symmetry properties of CI""”’ in various dimensions

2# implied by these equations.
Majorana spinor can exist only when € =+1 and is defined by

o*=C¢ . {e=+1) (A-6)

The usual s matrix analogue, I'*"*!, is definable:
F2n+IEZ'nF1F2“_F2n’ (F2n+1))2:1 . (A.7)
C—1F2n+1*C:(_)nF2n+1 ) ) (A-8)

Weyl spinors ¢+ with chirality =1 is defined by

po=Pigp=L(1£ g, (A-9)
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Table III.  Sign factor € and symmetry properties of CI'Y? of SO(2x).

choice of 7 7 (mod 4) € CI'"Y) symmetric CI'Y” antisymmetric
' 0,1 +1 /=0,1 (mod 4) _ f=2,3 (mod 4)
7=l 2,3 -1 f=2,3 (mod 4) f=0,1 (mod 4)
0,3 +1 £=0,3 (mod 4) f=1,2 (mod 4)
7= 1,2 —1 F=1,2(mod ) £=0,3 (mod 4)

Majorana-Weyl spinor is defined by the equation
' (P:¢)*=CP:¢, (A-10)

which has nonzero solution only if both conditions #=even (by (A-8)) and e=+1 (by
(A-6)) are satisfied. That is possible only when z=0 (mod 4), ie., 2#=8, 16, ---.

We cite here a very useful Fierz identity in Ref. 35) which is needed to prove some
Jacobi identities in § 3 in the text:

(27T 0g) (83 TOh) = 3 21, (4s TO8) - (9 TV )

@iy =2""(—)"*{coefficient of z* in (1+x)2"‘f(1—x)-f}, (A-11)

where ['V). V= p Pl“l";/‘fpﬂl"'/‘f“

B> S>> py

A2. S50(6), SO(10) and SO(16)

SO(16) is a maximal subgroup of Es, which we need decompose into SO(10) X SO(6)
in § 3. For these three groups we fix to choose the following sign factors,

50(16)1 me=—1, €is=*11,
SO(IO)Z 70=—1, €10=—1,
50(6) 776:+1, 662_1, i (A'12)

so as to satisfy 716=710° 76 since it is necessary when the gamma matrices of SO(16) are
constructed by a tensor product of those of SO(10) and of SO(6). The sign factors € in
(A-12) are read from Table IiL

Consider SO(6) and SO(10) first. We take (chirality) '2"*! diagonal representation
I*"*1=(; _9), and write spinor ¢ by the chirality +1 components ‘(£z, %) with lower and.
upper spinor indices @(=1~2"""), respectively. The gamma matrices are block off-
diagonal in this representation since they change chirality. Using different letters for
indices of SO(6) and SO(10), we denote them by

B 0  (oais)  6u"=—0a, |
so®: re=( O . : P 7 Al
(6) 6 ((O.af)w 0 ) a=1~6, i,7=1~4, ( Y
OV (04) as 04’ =04 ’
SO(10): I's= J !
10 T4 ((GA*)“’g 0 ) A=1~10, a,f=1~16. (At
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The charge conjugation matrix C also changes chirality when # is odd by (A-8), ie.,
changes & into 7 and vice versa. Changing the definition of the base 7 relative to € in
such cases, we can always bring C into the form (') depending on the sign e==%1. In
our case €s=€10=—1, and so we have

CZ(_(; (1)> for both SO(6) and SO(10) . (A-15)

The S 0(16) gamma matrices I %5(A=1~16) can be constructed by a tensor product
of those of SO(10), (A-14), and of SO(6), (A-13):

F1f(;~m:1—7110~10®1 ,

ri-B=rire-e. (A-16)
From this the chirality multiplication rule follows: I'ts =I1'®I%. So is the charge
conjugation matrix, Cis= C10® Cs. Hence now the charge conjugation matrix Cis com-
mutes with chirality matrix 7§ and therefore is block diagonal; more explicitly, from

(A-15),
6= L ------------------------- , (A-17)

where we have shown explicitly only the positive I''” chirality sector since we are
interested only in the Majorana-Weyl spinor generators Es of Es with I"'” = +1 in the text.
Notice that I"'"=+1 Weyl spinor is given as (&£, 7°77) in terms of SO(10) and SO(6)
spinors.

The generators 242 of SO(16) group are defined by [I'4, I'Z)/ 4 and have the follow-

ing form in terms of SO(10) and SO(6) gamma matrices:

S-SR, IR=1Q03:%,
0 — (0" as(0®) o5 0
%—» (o)™ 0 , (A-18)
0 *

where X{¢ is the SO(10) genefators

A BT

: ——(0‘ —o%0"")
(0%%)d° ? ’
AB (A-19)
a ( (6%)% EAB:Z(O.ATO.B_O.BTO.A) ,

and similar expressions for the SO(6) generatorsXs®
Finally we note a relation

(00) s =" €csar(0a) ¥ : (A-20)
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for the SO(6) matrices d., which implies that the representation 6 of SO(6) is a self-dual
representation Eof SU(4) (=S0(6)), and an identity of the SO(10) matrices:

SH=IR=33

for ZZgE(GAB)/(O‘AB) f—%aa’&s" . (A'Zl)

This identity is necessary to check the Jacobi identity consistency of Es algebra, and can
be proven by using the Fierz identity (A-11) for the cases A=0 and 2.
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