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A simple and general procedure is given for constructing supersymmetric nonlinear (J model Lagran­

gian explicitly for any Kahlerian coset space G/ H. In particular, we derive explicit and full expressions 

of supersymmetric Lagrangians for the phenomenologically important manifolds G/H=£7/5U(5) 

x 5U(3) x U(1) and £8/50(10) x 5U(3) x U(1), which are known to contain three generations of quarks 

and leptons as Nambu-Goldstone (NG) superfields. We discuss also (1) the arbitrariness of the choice of 

NG superfields when H contains more than one dimensional center, (2) how to gauge any subgroup of G 

and how to couple the system to supergravity, (3) a new anomaly of the supersymmetric nonlinear (J models 

induced by supergravity, etc. 

§ 1. Introduction 

One of the central problems in the present particle physics is certainly the problem of 

generations of quarks and leptons: Why are there the (at least) triplication of the quark 

/ lepton generations in Nature? And further, how can we understand the mixings between 

them? Probably the composite model approach would be the most promising one to 

answer these questions_ There is, however, a problem peculiar to composite models for 

quarks and leptons; namely, if they are composite, why their masses can be so small 

compared with the inverse of their (possible) typical size, say, > 1 TeV? An interesting 

and natural idea answering this point is to regard quarks and leptons as quasi N ambu­

Goldstone (NG) fermions appearing in supersymmetric theories, as was first proposed by 

Buchmtiller et aLl) Quasi NG fermions are the supersymmetric partners of the usual NG 

bosons which must exist if an internal symmetry G is spontaneously broken to a subgroup 

H. The number and quantum numbers of such quasi NG fermions, as well as their low 

energy effective Lagrangians, are unambiguously determined by the group structure of G 

and H_2) 

It was pointed out by Ong3
) that E7 and E8 were the only candidates for the group G 

that can accommodate three left-handed generations of quarks and leptons.*) It is indeed 

remarkable that the quasi NG fermions in the case G/H=EdSU(5) x SU(3) x U(l) have 

precisely the required SU(5) quantum number 3X (5*+ 10) for three generations of quarks 

and leptons and 5 for Higgsino. This case was studied explicitly by Kugo and Yanagida
5

) 

and the supersymmetric nonlinear Lagrangian was determined up to quartic order in the 

NG superfields. Recently the case G/H=E8 /SO(lO) x SU(3) x U(l) was also studied by 

Ong,S) and also by Irie and Yasui,7) independently, and was shown to predict a right-handed 

16 multiplet of 50(10) as the fourth generation in addition to the usual three left-handed 

generations 3 x 16. 

The last prediction of the right-handed forth generation in E8 case is rather exciting. 

*) Buchmtiller, Peccei and Yanagida" also noticed (even earlier than Ong) that £7 is sufficient to accommodate 

three generations. They, however, considered the model possessing mirror generations also. 
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Actually the group Es is a particular one since it is maximal simple group in the E series 

of exceptional groups. Hence it would not be quite unnatural if Nature selects Es and 

realizes the right-handed fourth generation. If so, a new heavy lepton with V + A interac­

tion may be found experimentally in the near future. 

Of course, it is not clear in this stage whether the predicted 16* of 50(10) in Es is 

actually realized as a right-handed new generation or unfortunately becomes an un­

detectably massive multiplet combined with a 16, hence leaving only two generations 2 

x 16. In order to answer this question as well as to make the other models realistic, it is 

necessary to study the mechanisms by which the quasi NG fermions and NG bosons 

acquire their masses. We have to introduce an explicit breaking of the global Es (or E 7 ) 

symmetry as well as a (spontaneous or explicit) supersymmetry breaking. Also necess­

ary is to understand the origin of the gauge fields of GUT 5U(5) or 50(10). If the GUT 

gauge interaction is introduced by gauging the subgroup 5U(5) (or 50(10» by hand, it 

also works as a (natural) source of the explicit breaking of E7 (or Es) mentioned above. 

Another and more exciting possibility to obtain the GUT gauge interaction would be a 

dynamical realization; namely, since the 5U(5) or 50(10) is the so-called "hidden local 

symmetry" of the nonlinear realization,S) its gauge bosons may be generated dynamically 

as is realized in some 2- and 3-dimensional CPN-l models. 9
) 

In order to discuss these problems, we need first of all the explicit forms of the 

supersymmetric Lagrangians for the nonlinear realizations E7/5U(5) x 5U(3) x U(l), Es 

/50(10) x 5U(3) x U(l), etc. In the existing literature these are known only up to the 

quartic order in the NG superfields,S),6) or in a very abstract form. 7
) So the purpose of the 

present paper is to give them in a complete and explicit form. 

The construction of this paper is as follows: In § 2, we present a general procedure 

to construct supersymmetric Lagrangians, or equivalently, Kahler potentials explicitly for 

arbitrary Kahlerian coset spaces G/ H. Our method is based on the supersymmetric 

nonlinear realization theory by Bando, Kuramoto, Maskawa and Uehara (BKMU).lO) 

Since we have already discussed in our previous paperll) various mathematical aspects 

concerning the BKMU construction of Kahler potentials, we explain here the general 

procedure for omitting the mathematical details but in such a manner to make the logical 

structure more transparent. Also we· illustrate the procedure concretely by taking a 

simple example G/H=5U(t+m+n)/5[U(t) x U(m) x U(n)). 

The algebras of the exceptional groups E 6 , E7 and Es are given in § 3. We briefly 

explain a simple method to obtain the commutation relations of the generators based on 

a classical maximal subgroup. The decomposition of E7 and Es generators with respect 

to the subgroups 5U(5) x 5U(3) x U(1) and 50(10) x 5U(3) x U(l), respectively, is also 

performed there. We find three generations 3 x (5* + 10) of NG superfields for G/ H = E7 

/5U(5) x 5U(3) x U(l) case and three left-handed and one right-handed 'generations 3 

x16+1x16* for E s/50(10)x5U(3)xU(1) case, as the previous authors did. 3
)-7),12) 

These contents of NG superfields are, however, no longer unique if the centers of Hare 

relaxed to be more than one dimensional. By the help of the general method in § 2, we 

count all the possible choices of NG superfield sets for the cases E 7 [resp. Es]/ H with H 

=5U(5) [resp. 50(10)]x 5U(2) x U(1)2 and 5U(5) [resp. 50(10)]x U(1)3. In particu­

lar we find it impossible to have a set of four left-handed NG superfields 4x16 for G=Es 

case, unfortunately, although much freedom appears in general to replace the generations 

with their mirror ones. 
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388 K. Itoh, T. Kugo and H. Kunitomo 

The explicit construction of Kahler potentials is performed in § 4 for C/ H = E6 

/50(10) X U(l), Ed5U(5) X 5U(3) X U(l) and E s/50(10) X 5U(3) X U(l). The C­

transformation laws of the Kahler potentials as well as of the NG superfields are also 

given. 

Lastly in § 5, we discuss some problems in trying to make those nonlinear (J models 

realistic. We first remark a very simple formula which enables one to gauge an arbitrary 

subgroup of C. Contrary to the currently known formula,21),23) it is an off -shell formula 

which remains valid even if one adds matter superfields into the system freely. It has a 

straightforward extension to the local supersymmetry, i.e., coupling to supergravity, on 

which we comment also. Second we point out a new anomaly which necessarily appears 

when the supersymmetric nonlinear (J models are coupled to supergravity. This type of 

anomaly was first noticed by Ong6
) and proposed to be a possible mechanism for the 

, desired explicit breaking of C symmetry. ,But his observation is rather incomplete as for 

the origin of this anomaly and so we present a more complete discussion there. 

The fundamental properties of 50(2n) spinor representations, including our conven­

tions for the gamma matrices, are summarized in the Appendix. 

§ 2. Supersymmetric nonlinear realization 

for Ktlhlerian G/ H 

The supersymmetric Lagrangian for the Nambu-Goldstone (NG) superfields ¢i(X, 8) 

corresponding to C/ H takes the form 

..f= jd 4 8K(¢, ¢) =gij*apcpiapcpj* + (fermion terms) , 

gij*(CP, rp*) = a2K(cp, cp*)/acpiacpj*, 

(2·1) 

(2· 2) 

as is usual for the kinetic D-term for any supersymmetric theory, where cpi(X)'S are the 

complex NG bosons standing for the first components of ¢i(X, 8). The NG fields cpi are 

the complex coordinates parametrizing the manifold C/H for which gij*(Cp, cp*) is the 

hermitian metric.1o),13),14) From the particular form (2·2) ofthe metric, this manifold C/H 

is seen to be a special complex manifold called Kahlerian and the function K(cp, cp*) is 

called Kahler potentia1.15) Hereafter we use the notation ¢i to denote the complex 

variables cpi as well as the NG superfields ¢i, for simplicity. The C-invariance of the 

action f d 4x.L implies that the Kahler potential K (¢, ¢) transforms under the C-transfor­

mati on as 

K(¢, ¢) ~ K(¢', ¢') =K(¢, ¢) + F(¢) + F*( ¢) (2·3) 

with an arbitrary holomorphic function F( ¢). 

So the problem is how to find the Kahler potentials K for a given C/ H. We now 

explain the general procedure in the following, and illustrate it concretely step by step by 

taking a simple example, a Grassmannian-like coset space C/ H = 5 U (l + m + n) /5 [U (l) 

x U(m) x U(n)], when necessary. In order to avoid unnecessary complications we omit 

some mathematical proofs which are presented in our previous paper. ll ) 

2.1. A central charge Y of H and a general Kahler potential 

Before giving the details of the practical procedure, it will be helpful to know a 
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Supersymmetric Non-Linear Lagrangians of Kahlerian Coset Spaces G/H 389 

general statement: Each possible Kahler potential for G/ H corresponds, one to one,' to a 

central charge Y of H. We explain this in this subsection first. 

We assume that G is compact and semi-simple. The set of generators TA of the Lie 

algebra g of G is first divided into two parts, generators Sa of the unbroken subgroup H 

and the rest Xi orthogonal to Sa's: 

(2·4) 

We understand that these generators are anti-hermitian matrices in a certain unitary 

representation of G. 

N ow we pick up from .% all the independent central charges (Ya) = (YI , Y z,"', Y k ) 

== Y, i.e., the generators which are commutative with any elements of .%, so that the rest 

generators Sa of .% span the semi-simple part Hs.s. of H. We assume that Ya'S are 

mutually orthogonal, for convenience, as tr (YaYp) = Nao ap. Here the number k (I~k 

~rank G) is the dimension of the center of H, which is known to be nonzero for the 

Kahlerian G/ H by a mathematical theorem. li;) This theorem further says that the 

generators Xi of g -.% are not commutable with one Y a at least; i.e., the Y-charge 

eigenvalues Y i carried by Xi'S are nonzero. 

Let us recall the two basic objects in the nonlinear re'alization of Coleman, Wess and 

Zumino (CWZ)/7) namely, one is the element of the right coset space G/H 

U(¢, if»)=e"i«(J,¢)XiEG/H (2· 5) 

and the other is the Maurer-Cartan (Lie algebra valued) I-form 

Here J[i's are real and U is a unitary matrix, ¢i'S being the complex NG fields parametriz­

ing the coset space G/H, half as many as J[i's. To give the Kahler metric gij*(¢, if») in 

(2'2), it is convenient to introduce the fundamental 2-form defined by 

(2·7) 

which is closed, dQ = 0, when the manifold G/ H is Kahlerian. 

We can now· present a general statement proven in our previous paper: For any 

possible Kahler metric gij* for G/H, there exists a central charge :3 Y in H with which the 

fundamental 2-form Q is given by 

Q = ~ tr( - Y dev) . (2·8) 

Conversely, if we make a central charge 

(2·9) 

with arbitrary coefficients va, then the Q of (2'8) gives a Kahler metric gij* since (2'8) 

satisfies dQ =0 clearly. (Actually a trivial constraint must be imposed on v in order for 

the metric to be nondegenerate as will be seen below') So the correspondence of the 

choices of central charge Y and Kahler potential is one to one, and hence the most general 

supersymmetric Lagrangian contains k arbitrary constants va (as many as independent 
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390 K. ftoh, T. Kugo and H. Kunitomo 

Ya'S) which represent the freedoms of coupling constants of nonlinear Lagrangian, like 

pion decay constant ftc. 

We are now equipped with a general perspective, but how can we find the NG 

superfield contents ¢i and the Kahler potential function K(¢, ¢) explicitly? So we now 

turn to the more concrete procedure. 

2.2. The choice of a set NG superfields 

Once we fix the choice of a central charge y=t v ' Y as in (2'9), then the correspond­

ing set of NG superfields {¢i} is determined as follows. 

All the broken generators Xi of g - 3{ have nonvanishing Y-charge eigenvalues Y i, 

as was mentioned above. So, if the coefficient vector v in the definition (2·9) of Y is 

chosen not orthogonal to any Y i, i.e., 

for \fYi, (2'10) 

then we can split the set of broken generators Xi into two parts, the generators XI with 

positive Y-charge eigenvalues YI==tV'YI>O and their anti-hermitian conjugates XI 

== ( - XI) t with negative Y -charge - YI. This splitting defines a complex subgroup ii::::) 

H C (H c
: complex extention of H) spanned by the generators with positive or zero Y­

charges: 

(2'11) 

and a complex coset space GC 
/ ii corresponding to the generators with negative Y­

charges: 

(2 ·12) 

We call these generators XI E g C - j{ complex broken generators. 

The NG superfields (/)1 are introduced as the complex coordinate parametrizing the 
. right coset space GC 

/ ii as10
).13).14) 

(2'13) 

where ¢·X=='£,I¢IXI. This is the basic variable in the supersymmetric nonlinear reali­

zation theory by Bando, Kuramoto, Maskawa and ,Uehara (BKMU). So the quantum 

number contents of the NG superfields ¢I are the same as those of the complex broken 

generators XI. 

By varying continuously the coefficient v in the definition (2·9) of Y, it happens that 

a Y-charge eigenvalue YIo=tV'YIo crosses the zero and changes its sign. Then a pair of 

the generators XIo and XIo exchange their roles with each other and the corresponding 

complex NG fields ¢Io should be replaced by the conjugate representation field ¢Io* (still 

chiral as a superfield!), accordingly. In this way, for a given G/H, the choice of a set of 

NG superfields {¢I}, or equivalently the choice of ii or GC/ii, is not unique. Different 

choice corresponds to what is called different "invariant complex structure" in mathe­

matics. We can find all the possible invariant complex structures GC/ii for G/H by 

varying the charge Y. We will present a simple method to do this task later. 

It should be noted, as was shown in the previous paper, that the Kahler metric 

becomes degenerate at the crossing point tv' Yio=Ofrom one complex structure to another. 
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Therefore if one keeps to use the old complex coordinates {([>I} even beyond that point, the 

Kahler metric becomes non-positive definite. So, for a fixed choice of the complex 

structure GC 
/ ii, the coefficient parameters va should be constrained in the region in which 

tv· YI >0 holds for any eigenvalues YI of the generators XI in j{ -!J(c, for the positivity 

of the metric. 

Let us illustrate the procedure up to here for the example of G/H=SU(l+m+n) 

/S[U(l) x U(m) x U(n)]. The center of H is two dimensional (k=2), whose two ortho­

normalized generators Y1 and Y2 can be chosen as, for instance, 

1 m n 

[

mIt 1 ° ] Y
2 
= ---------T~-U+-;;jl~---l 

-------------------------------° :mln 

(2·14) 

in the fundamental representation of G=SU(l+m+n). The other generators Sa of H 

are of course those of the semi-simple part SU(l) x SU(m) x SU(n): 

SU(m) 1 ) . 
SU(n) 

(2·15) 

The broken generators Xi of g -!J( are given by the matrices, each of which takes 

non-vanishing value i (imaginary unit) at only one matrix element placed at the following 

off -diagonal parts 

(2·16) 

We use these names of the places A, B, ... also to denote the generators Xi taking the 

value i there; {Xl}={A,B, C,A,B, C}. 

The Y-charges of the basis vectors <P in this fundamental representation are, of 

course, 

(

<PI) ((n, m) ) 
(YI, Y2) charge of <Pm = (0, -1- nf 

<Pn (-1, m) 

from (2·14), and hence the Y-charges of broken generators are 

A=(n, l+m+n), 

(Y1 , Y2 ) charge: B = (l + n, 0) , 

C=(l, -l-m-n), 

A=(-n, -l-m-n), 

B=(-l-n,O), 

C=(-l, l+m+n). 

(2·17) 

(2·18) 

So if we choose Y1 as the charge Y of (2·9), then the generators XI of gC_!J(, with 

negative Y -charges, are selected as 
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392 K. Itoh, T. Kugo and H. Kunitomo 

(2·19) 

while if we choose Y = Yz, for instance, then we have 

g C -j{= {C, A, iJ} when Y= Yz • (2·20) 

For the choice Y= Y 1 , the NG superfields are ¢A, ¢B, ¢c carrying the same quantum 

numbers of H=S[U(t) X U(m) X U(n)] as A, B, C, respectively, and the BKMU's basic 

variable (2·13) now becomes 

~(¢) = e<fr"A+(JB8+(JCC = [:A ~ ~l 
¢'B ¢c 1 

(2·21) 

Notice that the explicit calculation of ~(¢) = e",·g is always simple thanks to the nil potency 

of the matrices XI. 

2.3. Relation between nonlinear realization theories of CWZ's and BKMU's 

Since the supersymmetric nonlinear realization is just a special case of- the usual 

nonlinear realization, the BKMU's variable ~(¢)E Cc/ii in (2·13) must correspond to a 

special complex parametrization of the coset element U E C/ H in the CWZ's nonlinear 

realization. Indeed, as was shown in our previous paper, this relation is explicitly given 

by 

C/H3 U(¢, ¢) =~(¢) ea(""i)·Xeb('/J,i)·seiC(¢J,f).Y (2·22) 

with abbreviations like c· Y=~~=ICaYa. The functions band C are chosen purely 

imaginary since their real parts can be absorbed into an element of H (from the right). 

With a ~(¢) = e",·g given, the functions a, band C are uniquely determined by the require­

ment that the real group element UE C/H must be unitary:U t U=l, or equivalently, 

(2· 23) 

Corresponding to the usual CWZ's nonlinear transformation law 

gU(¢, ¢)= U(¢', ¢')h(¢, ¢, g), hEH (2·24) 

under gE C transformation, BKMU required that the NG superfields ¢I transform as 

(2·25) 

The comparison of these two transformation laws (2·24) and (2·25) leads to a remarkable 

transformation law of the functions Ca(¢, ¢) appearing in the mapping equation (2·22) 

~(¢) ~ U(¢, ¢):ll) 

Ca(¢', ¢') = Ca(¢, ¢) + ~ (Ya(¢, g) - Ya*( ¢, g)) , (2·26) 

the same transformation law as the Kahler potential! . Here the holomorphic functions 

Ya(¢, g) of ¢ are the ones contained in h(¢, g) of (2·25) as h=ea.XeP.Seir.Y. 

Furthermore, we have proved in Ref. 11) the equation 
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(2·27) 

where N a is the normalization factor of Ya charge, tr Ya Yp = N aO ap. This implies that the 

Kahler metric g IJ* corresponding to the fundamental 2-form (2·8), Q = (i/ 2) tr( - Y dw), 

with a central charge Y = 2; va Ya, is indeed given by the Kahler potential 

- 2 K -
K(</J, </J) =---;-2; vaNaCa(</J, </J). 

Z a=l 
(2·28) 

Since the fundamental 2-form (2·8) gave the most general Kahler metric, the functions 

Ca(</J, <i) give a complete set of independent Kahler potential functions. This equation 

(2·28) gives the direct one-to-one connection between the Kahler potential and the central 

charge Y =2; va Ya. 

To calculate the functions ca(</J, <i) in (2·22), the BKMU formula would be the 

simplest which we explain now. 

2.4. The BKMU formula and projection operators T/ 

BKMU assumed the existence of projection matrices T/i in the representation vector 

space V under consideration, each of which satisfies 

(T/;)2=T/i 

for 'if hEfi. (2·29) 

Then, the candidates for the Kahler potentials are given by the following BKMU formula: 

(2·30) 

where det~i denotes a determinant defined in the T/i-projected subspace T/i V. This formula 

in fact gives the quickest way to extract the above functions Ca(</J, <i); indeed, as was 

noticed by BKMU themselves in their third paper/D) the expression (2·23) gives 

lndet~i(.;:t .;:) = lndet~,( e a
-.

x) + lndet~i( e- a
.
x

) 

(2·31) 

Since the projection matrix T/i satisfies e-2b.Se-Zic.Ye-a.xT/i = T/ie-2b.ST/i.T/ie-2iC~Y T/i· T/ie-a.xT/i 

by (2·29) and {S, iY, X}EJC. The two terms on the r.h.s. of (2·31) are zero because of 

the nilpotency of XI and XI, and the third term also vanishes since Sa'S are the generators 

of the semi-simple part 3{fs. of 3{c and semi-simple Lie algebra is traceless in any 

representation. (Note that the T/i-projected subspace T/i V still spans a representation 

space of 3{fsJ Thus (2·31) leaves us with the expression 

(2·32) 

The Kahler potential property of BKMU's function (2·30) is also seen more directly 

from the transformation law (2·25) of ';:(</J) under gE G: 10
) From (2·25), (2·29) and the 

unitarity of g, we find (omitting i of T/i) 
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394 K. Itoh, T. Kugo and H. Kunitomo 

= lndetn( 7Jht -l7J' 7J~ t (¢) ~(¢) 7J' 7Jh- l7J) 

= lndetn( ~t (¢) ~(¢)) + lndetnh- l + lndetnht-l . (2·33) 

Since lndetn(h- l(¢, g)) is a holomorphic functions of ¢, this equation (2'33) indeed takes 

the desired form (2'3) of Kahler potential transformation law. (Incidentally, since 

Indetnih-l=i~aYa(¢, g)tr(7JiY) for h=ea.XeNei7'Y by the same reasoning as in (2,31), 

Eq. (2·33) again confirms the transformation law (2,26) of Ca(¢, ¢).) 

In practice we need to find the projection operators 7Ji satisfying the property (2·29). 

The construction of 7Ji is extremely simple in our case owing to the existence of the central 

charge Y, and is well exemplified for the Grassmannian-like case G/H=SU([+m+n) 

/S[U([) x U(m) x U(n)]. i) First task is to arrange the H-irreducible blocks of the 

representation basis vector in the order of the Y -charge eigenvalues from top to bottom; 

for the Grassmannian example, the H-irreducible blocks of the basis vector in the funda­

mental representation are «/J!, ¢m, ¢n) which carry the (Yl, Y2)-charges as shown in 

(2 ·17). We should take the following representation basis, for instance, 

when Y=mYl-IY2. (2,34) 

(Here we have shown the Y-charge eigenvalues in [ ] for the ease of understanding.) 

ii) Then, in this representation, projection operators 7Ji onto any upper blocks of the form 

(~ ~) satisfy the property (2'29), fi7Ji = 7Jifi7Ji, since.Jhe generators {XI, Sa, iYa} of j{ were 

chosen to be those carrying positive or zero Y -charges and hence never lower the Y­

charge of the basis vector. So, for the Grassmannian example, we have two projection 

operators 

(2· 35) 

where l's and o's are block unit and null matrices of course. 

The proje<::tion operators constructed this way are in fact shown to be sufficient for 

finding all the Ca(¢, ¢) functions via the BKMU formula (2'30) and (2'32). This is 

always true if we work in any representation of G. llJ We can also see this fact here by 

showing an interesting formula which expresses the general Kahler potential K(¢, ¢) of 

(2,28) ~orresponding to the charge y=tv ' Y directly in terms of the BKMU's functions 

(2·30). Consider any irreducible representation of G and decompose the repr~sentation 

basis vector into H-irreducible pieces ¢., whose dimension and Y-charges we denote by 

dim Vi and Y(O, respectively. We arrange them in the order of the Y-charge values 

tv' Y(o: 

¢=(;) (2'36) 

Let us define projection operators 7Ji such that 7J/¢ = e¢l, t¢2, "', t¢i, 0, 0, "', 0) and con-
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struct Kahler potentials K;(¢, (f) by the BKMU formula (2-30) with those projection 

operators 7}i. Since we have K i -Ki"':'I=(2/i)c-Y(i)XdimVi from (2-32) and Naoap 

=tr( YaYp) =L:f=IYa(i)Yp(i)dim Vi, we find that the Kahler potential K(¢, (f) of (2-28) 

corresponding to the charge Y = tv- Y becomes 

Here Ko = KN = 0*) has been used. Although all of the K/s are not necessarily mutually 

independent, this formula anyhow show the completeness of the BKMU functions K;. 

Equation (2-37) has another implication that the Kahler potential given by a linear 

combination of BKMU's functions K i , 

N-l N-l 

K(¢, (f) = L: wiK;(¢, (f) = L: wdndet~t[e((f)~(¢)] 
i=l i=l 

(2-38) 

is valid only when all the coefficients Wi are Positive. The reason is as follows: As 

explained before, the positivity of metric requires tv- YI >0 for all the Y-charges YI of the 

generators X I E.1t -( g c_3{C). The generators XI are represented by upper triangular 

matrices on the basis vector (2-36) and so carry Y-charge eigenvalues ofthe form YI=YU) 

- y(j) with i > j. Clearly the conditions tv- YI >0 are satisfied if (and only if) tv- (YU) 

- YU-l») >0 hold for i = 1,2, ---, N, but they are just the coefficients of K; in (2- 37). q.e.d. 

It is interesting that somewhat complicated conditions on the parameters va are converted 

into simple ones Wi >0 for the coefficients of K/s (Of course, for the cases in which Kl ~ 

KN - 1 are not mutually independent, K can be expressed in terms of suitably chosen 

independent K/s and then the constraints on the coefficients of those K/s remain no longer 

so simple.) 

2.5. Example G/H=SU(t+m+n)/S[U(t) x U(m) x U(n)] 

Let us give an explicit form of the Kahler potential for the above Grassmannian-like 

case. If we choose Y= Y1 of (2-17), the H-irreducible blocks of the representation basis 

vector taken in § 2.2. are already in the correct order, and the BKMU variable ~(¢) takes 

the form (2 -1). (N otice that ~(¢) = e(J-j( always become the lower block triangular form 

like (2 -21) in our representation convention, since XI's carry negative Y -charges.) Then 

the BKMU formula (2-30) with the projection operators 7}1,2 of (2-35) yields 

(2-39) 

where 

*) KN=O since 7JN=l and trY=O owing to the semi·simpleness of G. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

5
/2

/3
8
6
/1

8
9
9
0
4
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



396 K. Itoh, T. Kugo and H. Kunitomo 

m 

o ) I 
1 m. 

q/ n 

(2·40) 

Since k = 2 in this example, the BKMU functions Kl and K2 are mutually independent 

and complete, and the general Kahler potential is given by 

K(¢, ¢)=wIKI(¢, ¢)+w2K2(¢, ¢) 

(2·41) 

where use has been made of (2·37) and the Y-charge eigenvalues y(i} of the basis vector 

in (2·17). As we have seen generally in the above, this expression is vaiid only when both 

the coefficients WI and W2 are positive. This can also be confirmed in this simple example 

directly by expanding the K ( ¢, ¢) around ¢ = 0: 

. (2·42) 

Since this implies the metric gij*=diag[(wl+w2)oAA, (WI+W2)OBB, W20Cc] at the origin ¢ 

=0, WI and W2 clearly must be positive. The positive region of (WI, W2) corresponds to the 

region of the parameters VI and v2 satisfying -nv l <(t+m+n)v2 < Iv l and the Kahler 

potential (2·41) is valid for the Y-charge y=tv · Y in such a region. 

2.6. Invariant complex structures 

As promised we now explain a practical method how to find all the possible invariant 

complex structures GC 
/ fj for a given G/ H. 

The problem is how to split the generators of g - j{ into two sets, XI'S of j{ - j{c and 

XI'S of g c_j{. So, first plot the Y-charge vectors YI of all the generators of g -j{ in 

k-dimensional Euclidian space, and draw arbitrarily a (k-l)-dimensional plane contain­

ing the origin but none of the YI vectors. Then we can choose as X/s the generators with 

YI vectors sitting in the one side of the plane and as X/s those in the other side. A normal 

vector v = (vI, ... , vk
) to the plane can be identified with the charge Y = tv· Y and the Y 

charge eigenvales tv· YI of XI generators are (II vii times of) the distances of the points YI 

to the plane. As rotating the plane, for each timE; the plane crosses a vector YIo, we find 

a new set of complex broken generators XI corresponding to NG superfields ¢I. In this 

way we can count the number of possible invariant complex structure as well as the NG 

superfield content for each case. This task in easily carried out by nand for k=l, 2, 3 and 

would' not be difficult also for higher k by the help of computer. 

For the cases Ed5U(5) X 5U(3) X U(l) and E 8 /50(10) X 5U(3) X U(1), for which 

we will calculate the Kahler potential explicitly in this paper, the central charge in H is 

unique, i.e., k=l. There are two invariant complex structurt;s for such cases of k=l, 

which come from the sign change Y -4 - Y of the unique central charge, corresponding 

physically to replace all the chiral NG superfields by anti-chiral ones. So if there are no 

matter-superfields to which the chirality of the NG superfields can be referred, the super­

symmetric nonlinear Lagrangian is actually unique. 

For illustration of the above procedure, let us consid~r the case G/ H = 5U( 1+ m+ n) 
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(I,m,n)=(1,1,2) 

A 

(]]) (VI) 

B B 
--~~------~----~~~--y, 

(V) 

c 

Fig, 1. Arrows show Y-charge eigenvalue vectors YI 

in (2'18) of the broken generators of SU(t+m 

+n)/S[U(t) x U(m)X U(n)]. This figure is 

drawn by taking the scale (t, m, n) = (1, 1,2). 

/S[U(l) x U(m) x U(n)) again. Broken 

generators in this case are A, B, C, A, B, 

C shown in (2·16) and carry Y-charge 

eigenvalues YI of (2·18). According to 

the above procedure, we have plotted these 

vectors YI(I=A, B, C,.4, 13, C) by arrows 

in Fig. 1, and have drawn a typical "plane" 

(a line in this k=2 case) as well as its 

normal ny, whose direction corresponds to 

the axis of the chosen Y -charge yex: tn· Y. 

For such a choice of "plane", the positive­

Y-charge generators XIEj{ _j{c are C, 
A and B evidently from the figure, and 

hence the corresponding N G superfields 

are rPc, rPA, rPB which transform under the 

SU(l) x SU(m) x SU(n) as (1, m*, n), (t, 

m*, 1), (t, 1, n*), respectively. We see 

clearly from Fig. 1 that there are six possi­

bilities to draw an oriented "plane" leading 

to different complex structures; the select­

ed set of XI generators are (I) (A, B, C), (II) (C, A, B), (III) (13, C, A), (IV) (.4,13, C), 

(V) (C,.4, 13) and (VI) (B, C, .4), respectively for each of the six cases. Notice that 

there exist impossible combinations like, for instance, (A, B, .4). It is this point that is 

interesting in building models. The possible combinations of H-quantum numbers of NG 

superfields are restricted and the restriction is more stringent as k becomes lower. 

For k=3 cases, one needs to draw a 3-dimensional picture if he works similarly. We, 

however, notice that we needed in fact only the information of the direction of y-charge 

eigenvalue vectors YI. SO, by considering a cuboid with its center at the origin, for 

instance, we can replace the each vector YI by a point on the surface of the cuboid at which 

a line in the direction of YI from the origin crosses the surface. Similarly the plane 

containing the origin is replaced by a suitable line on the surface. Further if one changes 

suitably the length of the edges of the cuboid (and its direction also if necessary), all the 

points corresponding to Y/s can be gathered to appear only on a pair of (opposite) 

surfaces among six rectangular surfaces. Then the problem to find all the possible 

complex structures is reduced to drawing a line on the one surface of that pair. 

§ 3. Exceptional Groups E 6, E 7 and E 8 

3.1. Lie algebras of Es, E7 and Es 

The exceptional groups seem still not familiar to the usual physicists. So we present 

here the Lie algebras of Es_s groups explicitly, briefly explaining how to obtain them. 

The easiest way to write down the Lie algebra for an exceptional group is to choose the 

generators referring to its convenient maximal subgroup. 

3.1.1. Es algebra 

Let us start with Es. As a maximal subgroup of it we choose SO(16) for our 
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398 K. Itoh, T. Kugo and H. Kunitomo 

convenience to discuss E s/50(10) x 5U(3) x U(l) later. The dimensions of Es and 

50(16) are 248 and 120, respectively. The generators corresponding to the rest dimen­

sion 248-120=128 must span a representation of the maximal subgroup 50(16), and 

hence are easily guessed to be a 50(16) Majorana-Weyl spinor possessing 2l6f2-l = 128 real 

components. So the generators of Es are given by 50(16) generators, denoted by TABC4, 

B=1~16), and generators E,,(il=1~128) of a 50(16) Weyl-spinor. Throughout this 

paper we adopt the convention to take the generators essentially anti-hermitian; so TAli is 

taken to satisfy TAlit = - TliA= TAli, and E" is subject to an anti-Majorana condition: 

(3·1) 

where Cl6 is the 50(16) charge conjugation matrix. [See Appendix A for our conven­

tions for the 50(2n) Clifford algebra and spinor representations.] 

The Es algebra is obtained as follows: First, TAB'S of course satisfy the usual 50(16) 

algebra, 

[TAB, Tcn]=OBcTAn+OAnTBc-OAcTBn-OBnTAc. 

Second, since E" is an 50(16) Weyl spinor, it obeys 

[E", TAB]=(O'AB)!E p 

(3·2a) 

(3·2b) 

with a representation matrix O'AB of TAB. [See Appendix A.] Finally, the commutator 

[E", Ei] is in general given by a linear combination of TAB'S and E/s, but the Ei terms are 

absent since a spinor-representation cannot be constructed from the product of two 

spinor-representations. Thus, from 50(16) covariance, we obtain 

(3·2c) 

The factor 1/2 in (3' 2c) depends in fact on the normalization convention of E" 

generators. We have fixed it so that all the generators TI = ( TAB, E,,) have a common 

normalization in the sence of Killing form; namely, the adjoint representation matrices 

(ad TIVJ=JI/, given by the structure constant JIJK through [TI, TJ]=JIJTK, satisfy 

(3·3) 

with a common factor N. In the above case of Es algebra (3·2), N =60. 

In our hermiticity convention for the generators TI = (TAB, E,,), the real-group Es 

elements are given by exp8IT I =exp('.E,A>B8ABTAB+€"E,,) with parameters 81 = (8AB, €") 

satisfying hermit icy (8AB) * = 8BA and Majorana €" = (Cl6)"P(€P)* conditions. It should be 

noted that the corresponding matrix representations exp( 81 ad TI) are unitary only when 

the generators are commonly normalized like (3·3) since otherwise the structure constant 

does not satisfy ad( TI t) = [ad TIP. 

3.1.2. E7 algebra 

Next is the 133 dimensional E7 group. We take 5U(8) as a maximal subgroup 

and denote the 63 (traceless anti-hermitian) generators by t/ (I, J =1 ~8); t/ =0, (t/P 
= - t/. As is easily guessed also here, the remaining 133 - 63 = 70 generators span a real 

representation § or 5 U (8), namely a totally anti symmetric tensor EIJKL (I, J, K, L = 1 ~ 
8) subject to a reality constraint (EIJKL) t = - (1/ 4!) €IJKLMNOPEMNOP. 
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The E7 algebra is obtained quite similarly to the above E8 case, by taking into account 

the 5U(8) covariance: 

(3·4a) 

[f/, EKLMN] = i(oIiElLMN+ O/EKIMN+ o AiEKLlM + OtiEKLMI- ~ oIEKLMN) , (3·4b) 

(3·4c) 

Here also the coefficient 1/2 is fixed by the Killing form normalization condition (3·3) 

[with N = 494 in this case]. The real group elements of E7 are given by exp( 81 f/ 
+(1/4!)8IIKLEIIKL) with parameters 8 satisfying reality conditions (8/)* = 8/ and 

(8IIKL)*-(1/4f)c 8MNOP - . ",IIKLMNOP . 

3.1.3. E6 algebra 

A maximal subgroup of 78 dimensional E6 is 50(10) X U(l) with 45+ 1 generators, 

TAB (A, B = 1 ~ 10) and T. The rest 78-46=32 generators just fall into a 50(10) (anti-) 

Majorana spinor (Ea, E a), where Ea (a = 1 ~ 16) stand for its "upper" 16 components, 

a "right-handed" Weyl spinor, and E for their anti-hermitian conjugates Ea='-(Ea)t. 

Considering 50(10) covariance we obtain the E6 algebra: 

[TAB, T]= [T, T]=O, (3·5a) 

(3·5b) 

(3·5c) 

Here the relative weight of TAB and T terms appearing in the r.h.s. of the last equation 

can be determined by the Jacobi identity [Ea, [Ep , E r]]+(cyc1ic permutations) =0. Other 

factors are fixed so that the normalization conditions (3·3) are satisfied with N =24. The 

E6 real group elements exp(8T++8AB TAB + €aEa+€aEa) are given in termsof "real" 

parameters satisfying 8*=8, (8AB)*=8BA and (€a)*=€a. 

Thus we have completed the presentation of the algebra E8, E7 and E6 by Eqs. (3·2), 

(3·4) and (3·5), respectively. A comment may be useful on the same identities which are 

necessary in checking the Jacobi identities as a consistency of the above algebra. For the 

E6 case, we used the Jacobi identity [Ea, [Ep , Er]] + 2-terms= 0 in the above, but there we 

had in fact needed a nontrivial identity 
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400 K. Itoh, T. Kugo and H Kunitomo 

Similar identities necessary for the E7 and E8 cases are: 

with· 

e
- ABCD = lcABCDEFGHe 

- 4! co EFGH, 

(6x§Ll(6x§)/(CIl)ii+(cyclic in a, jj and f) =0. 

3.2. Decomposition of the generators into Jl and gc-Jl 

(3·6) 

(3· 7) 

(3· 8) 

For the purpose of constructing Kahler potentials for G/H=Ed5U(5) x 5U(3) 

x U(l) and E 8 /50(10) x 5U(3) x U(l), it is necessary to further decompose the above 

generators into irreducible components with respect to the subgroups 5U(5) x 5U(3) 

x U(1) and 50(10) x 5U(3) x U(l), respectively. For the E 6 /50(10) x U(l) case, the 

above construction of the algebra already gives the desired decomposition since 50(10) 

x U(l) was a maximal subgroup. However, including this E6 case also, we need to 

specify the complex broken generators XI corresponding to the coset space GC 
/ fj. 

3.2.1. {]C-3( for E 6 /50(10) x U(l) 

The center of 50(10) x U(l) is the U(l) itself. So the central charge Y discussed in 

§2 is unique in this case and given by Tin (3·5). For convenience, however, we define Y 

by Y == - i (2 T/ 13) , so that Y becomes hermitian and has the simplest eigenvalues as 

follows: 

Y-charges of (Ea, TAB, T, Ea) = (1,0,0, -1) . (3·9) 

Hence, as the general procedure in §2 shows, the generators XI carrying negative Y­

charges are given by 16 generators E: 

(3·10) 

We thus have an 50(10) spinor NG superfield CPa, namely one generation 16, in this case. 

3.2.2. Q c_3{ for Ed5U(5) x 5U(3) >:< U(l) 

The generators Tf and EIJKL in the algebra (3·4) should first be decomposed into 

irreducible components with respect to 5U(5) x 5U(3) x U(l). This is easily done by 

decomposing the 5U(8) indices I,], ... =1 ~8 into 5U(5) indices a, b, ... and 5U(3) 

indices i, j, ... running over 1 ~5 and 6~8, respectively. We thus find the following 

irreducible generators: 

T b-T-b 113T a = a -zVlO ' 

/25 - /28 -
T==2y T5~l·T/ = -2y T5~6 T/ , 
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E a- 1 abedeE =4T€ bede, 

E i - 1 iikE ab =2T€ abijk , E ab - 1 abedeE 
i =3T€ edei. (3·11) 

Here we still retain the common normalization condition (3,3) with N=24. The gener­

ators Tab, T/ and T stand for the 5U(5), 5U(3) and U(l) generators of the unbroken 

subgroup H, respectively, and the others for the broken generators. 

The E7 algebra (3' 4) is immediately rewritten in terms of these generators of (3 ·12). 

We cite here only the commutation relations of broken generators since other ones trivial 

by 5U(5) 5U(3) covariance: 

[rriTb]- '(~bTi ~jTb 212~i~bT) [TiE]- 'E i 
.1 a, j - - z ,u a j - U i a - V 1"5u j U a , a, b - - Z ab, 

[rr i E j ] - Z ijk . E de 
.1 a, be - -2T€ €abede k , 

[E i Ej]- Z'€iik€ T e [EaTi]_[EaEb]_[EaEbe]-o ab, ca - - abcde k , ,b - , - ,i - . (3 ·12) 

The unique central charge in H is T in this case, and we define the Y -charge by Y 

== - il15/ 2 T. Then the Y-charge eigenvalues of the E7 generators become: 

= (3, 2, 1, 0, 0, 0, -1, - 2, - 3) . (3·13) 

Therefore the complex broken generators XI of Ge 
/ ii, which carry negative Y -charges, 

are now given by 

(3 ·14) 

and hence the corresponding NG superfields are (CPiab , CPai, cpa), which possess the 5U(5) 

x 5U(3) quantum numbers {(10, 3*), (5*,3), (5, I)}, namely three generations (of quarks 

/ leptons plus one Higgs supermultiplet 5 ).3).5) 

3.2.3. QC_j{ for E8/50(10)X5U(3) X U(1) 

The E8 generators TAB and Eli in (3·1) are 50(16) multiplets. The decomposition 

into 50(10) X 5U(3) X U(l) is accomplished in two steps; first 50(16) ~ 50(10) X 50(6) 

and then 50(6) ~ 5U(4) ~ 5U(3) X U(l). 

Let us start with TAB. The 50(16) indices A, B=l ~16 are divided into the 50(10) 

indices A, B=1~10 and the 50(6) indices a, b=1l~16. So TAB splits into three pieces 

TAB, TAa and Tab. The isomorphism 50(6)~5U(4) implies that the 50(6) generators 

Tab and the 50(6) vector TAa are equivalent to 5U(4) generators T!( r, J =1 ~4) and 

5 U (4) 6 representation TAl i.JJ represented by B, respectively. The conversion is 

performed by the matrices 6 ab and 6a of 50(6) Clifford algebra in Appendix A: 
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(3 ·15) 

These 5 U (4) indices i are further decomposed into 5 U (3) 's one i = 1 ~ 3 and a singlet one 

4. Thus TAl [.J] yields the following two irreducible generators: 

(3 ·16) 

which are anti-hermitian conjugates of each other as can be shown by the help of Eq. 

(A·20). The 5U(4) generators T! yields 3+3 anti-hermitian conjugate pair 

in addition to the 5U(3) and U(I) generators defined by 

T - !4T 4_ !4.J, T J; 
="13 4 --"13(:1 k • 

(3·17) 

(3 ·18) 

Next is the decomposition of the 50(16) anti-Majorana Weyl spinor generator Eli. 

Since the 50(16) r-matrices can be constructed as a tensor product of the 50(10) and 

50(6) r-matrices, the right-handed Weyl spin or Eli consists of a right X right spin or Ear 

and a leftXleft one Ear, with a and i denoting the 50(10) and 50(6) ~ 5U(4) spin or 

indices, respectively. The anti-Majorana property (3·1) of Eli implies E ar= -(Ear) t. 

[See Appendix A for these.] So the 50(10) x 5U(3) x U(I) decomposition yields 

Ea=Ea4, 

(3·19) 

By summarizing the above procedure, the Es generators have decomposed into the 

unbroken 50(10) X 5U(3) x U(I) generators (TAB, T/, T) and the broken ones (TAi, fAi, 

T i
, fi' Ea, E a, E ai , Ea;). The various numerical factors in the above definitions of these 

generators were chosen so as to keep the common normalization condition (3·3). Now 

it is straightforward to'rewrite the Es algebra in terms of these generators. We cite again 

only the broken generators' commutation relations here: 

[T E aj]- Z ( t)aPE ~ j 
Ai, - /2 (}A PUi , 
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Supersymmetric Non-Linear Lagrangians of Kahlerian Coset Spaces G/ H 403 

[Eai , Ep]= - )z(OA)apTAi' 

[Eai , E
pj

] = - ~ (!1AB)/o/TAB+ i( T/- 2}3 o/T), 

[Eai , E P]= io/Ti, [Ea, E P]= - ~ (OAB)/TAB+ i/fo!T , 

(3·20) 

Again the unique central charge in H is T and the Y -charge is defined by Y 

= - i213 T. The Es generators carry the following Y -charges: 

= (4,3,2,1,0,0,0, -1, -2, '-3, -4) . 

Hence the complex broken generators XI of GC 
/ H are given by 

fJC-Jt={Eai, TAi,Ea, Ti} 

(3·21) 

(3·22) 

in this E s/SO(10) x SU(3) x U(l) case. The appearing NG superfields{¢ai, ¢iA, ¢a, ¢i} 

thus have 50(10) x SU(3) quantum number {(I6, 3), (10,3*), (16,*,1), (1,3*)}, containing 

three left-handed generations 3 x 16 plus one right-handed generation 16* as announced in 

the Introduction.6
),7) 

3.3. The cases of H with more than one central charges 

We have considered in the previous subsection only the cases of H having one 

dimensional center, for each of which the NG superfield content was unique. For the 

cases G/H=EdSU(5) x SU(3) x U(l) and E s/SO(10) x SU(3) x U(l), however, we are 

free to reduce the unbroken subgroup H to smaller ones as far as keeping the grand 

unified group SU(5) or 50(10). All the possibilities not violating the Kahler property of 

C/H are to replace the SU(3) x U(l) in H 6
) by SU(2) x [U(l)Y or [U(l)P. The invari­

ant complex structure are no longer unique for these G/ H cases as was explained in § 2. 

So it is an intriguing question whether the NG superfield contents can or cannot be 

changed in a phenomenologically interesting manner. 

Let us first consider the case G/H=EdSU(5) XSU(2}X [U(l»)2. The addittional 

central charge, say Y2, is the so-called hypercharge (1L2 ) of the SU(3). The broken 

generators in the previous E 7 /SU(5) x SU(3) x U(l) case, E a, Tai, E i
ab and their anti­

hermitian conjugates, are now further decomposed into 

Ea~ E a(5, 1; 3, 0) , 

T i~{Tai(5*'2; 2,1), (i=1,2) 

a Ta3(5*, 1; 2,-2) , 

E ,ab ~ {E ilz
b
(10, 2; 1, -1) , 

, E 3
ab (IO, 1; 1, 2) 

(3' 23) 

and their anti-hermitian conjugates, where the numbers in the brackets denote the 
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404 K. Itoh, T. Kugo and H. Kunitomo 

multiplets under the SU(5) x SU(2) as well as Y1 and Yz charges. Additional broken 

generators coming from previously unbroken SU(3) part are 

(3·24) 

According to the procedure in § 2.6., we plot the Y = (Y1, Yz) charge eigenvalue 

vectors of those broken generators in Fig. 2. Clearly there are ten possibilities in drawing 

an oriented "plane" to choose a set of complex broken generators Xl E g c - j{; by 

denoting X/sby the SU(5) x SU(2) quantum numbers, we find 

1) [(5*,1), (10,2), (5,1), (5*,2), (10,1), (1,2)], 

II) [(5,1), (5*,2), (10,1), (1,2), (5,1), (10*,2)], 

III) 

IV) 

V) 

[(5*,2), (10, 1), (1,2), (5, 1), (10*,2), (5*,1)], 

[(10,1), (1,2), (5,1), (10*,2), (5*,1), (5,2)], 

[(1,2), (5,1), (10*,2), (5*,1), (5,2), (10*,1)] (3·25) 

and their hermitian conjugate combinations. The first set (I) is the nearest one to the 

previous NG field set [(5*,3), (10, 3*), (5,1)] in the case of EdSU(5) x SU(3) x U(l). 

The other sets (II) ~ (V) do not contain the NG field content which can be identified with 

the three generations of quarks and leptons (5*+10) x3. Similar result is obtained also 

for E 7 /SU(5) x [U(l)p. 

Although not interesting phenomenologically, these simple examples tell us that 

increasing the central charges much loosen the constraints on the possible choices of NG 

superfield set. So it is interesting to see whether one can have four right-handed genera­

tions for Es case instead of the previous "three right-handea plus one left-handed genera­

tions." 

The answer is "NO", unfortunately. We present, however, a discussion for the case 

Es/SO(IO) x [U(1)P to illustrate our pro­

cedure in particular for k=3, explicitly. 

V
2 

5 

2* 
----+---~JF-.:...----+- v, 

lX2 

Fig. 2. Y=( Y), Yz) charge eigenvalue vectors ofthe 

broken generators (3·23), (3·24) of E,!5U(5) 

x 5U(2) x [U(1) F. 

The additional central charges Yz and Y3 

are the hypercharge (1Lz) and the third 

component of isospin (1-10) of the SU(3) of 

the previous Es/SO(IO) x SU(3) x U(I). 

The broken generators there, T i
, E a, TAi , 

E ai and their anti-hermitian conjugates in 

(3·20), now decompose into following 

multiplets: 

SO(IO); Yl, Yz, Y3, 

T;~{ T' (1; 4, 1, 1), 

T Z (1; 4, 1, -1), 

T3 (1; 4, -2, 0), 

(16*; 3, 0, 0) , 
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Supersymmetric N on-Linear Lagrangians of Kiihlerian Coset Spaces G / H 405 

{ T" (10; 2, -1, -1), 

TAi -+ TA2 (10; 2, -1, 1), 

T A3 (10; 2, 2, 0), 

{ E"' (16; 1, 1, 1), 

E ai 
-+ E a2 (16; 1, 1, -1), (3-26) 

E a3 (16; 1, -2, 0) 

and their anti-hermitian conjugates. Other than these there appear six broken generators 

T/ (i *- j) coming from the 5 U (3), but we omit them for simplicity since they are 

phenomenologically uninteresting 50(10) singlets. 

According to the procedure explained in § 2.6., we consider the 3-dimensional Y = ( Y1 , 

Y2 , Y3)-charge vector space and a cuboid with its center at the origin whose surfaces are 

taken to cross at (±1, 0, 0) (0, ±a, 0) and (0,0, ±b) perpendicularly to each axis YI, Y2 

and Y3, respectively. Then with a and b chosen suitably large, all the Y-charge 

eigenvalue vectors YI= (YI, Y2, Y3) of the broken generators (3-26) with YI >0, intersect the 

cuboid only on the "top surface" perpendicular to Y1 axis with coordinate Y 1 = + 1, while 

their conjugate generators with YI < 0 on the "bottom surface" with Y 1 = -1. We plot the 

cross points (Y2/YI, Y3/YI) of YI vectors of (3-26) with the top surface in Fig. 3. To draw 

a plane including the origin in the 3-dimensional Y space is equivalent to drawing an 

arbitrary line on the top surface, and the generators on the one side of the line plus the 

anti-hermitian conjugates of the generators on the other side are identified with the 

complex broken generators XI. We have drawn an example of such a line on the Fig. 3., 

for which the generators XI are thus given by 

{XI} = [E al (16), E a2(16), TA3, T2, £a(16), £a3(16*) , 1\, 1'3, 1'A\ 1'A2] . 

In this case also we have three 16 plus on 16* .. We see from Fig. 3 that the point of the 

generator Ea(16*) is placed inside a triangle made by the three points E ai (16) (i=I, 2, 3), 

and thus it is impossible to draw a line to have four 16 as the complex broken generators 

XI. 

v, 
b 

1 

TA2 • 

• T' 

-2 -1 T' 

Q 

E"'<l§) E~(!.§·) liT 2 

To" / 

-1 

-b 
I 

. 
Q, 

:::::<:'~ 

1 

. 

/ 

E"'C!.§) 

TA3 

E"2(l§) 

2 
V2 

Q 

Fig. 3. Plot of the crossing points (Y2/Yl, Y3/Yl) on the top surface Y, = 1 corresponding to Y-charge 

eigenvalue vectors Y=(Yl, Y2, Y3) of broken generators (3'26) of £8/50(10) x [U(1)]3. 
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406 K. Itah, T. Kuga and H. Kunitama 

§ 4. Kihler potentials 

In this section we construct the Kahler potential K(p, ¢) in a closed form for each of 

the physically interesting coset spaces E 6 /50(10) x U(1), Ed5U(5) x 5U(3) x U(l) and 

E s/50(10) x SU(3) x U(l). The Kahler potential is unique in these cases up to the 

possibility of chirality inversion of all the NG superfields. Hence, for simplicity, we 

calculate K ( p, ¢) based on the lowest dimensional representation of G for each case G 

=E6 - S • Expanding the obtained K(p, ¢) in a power series in p and ¢, we compare our 

results with the other authors' ones which were given up to quartic order for E7 and Es 
cases. 5),6) 

We alsQ give the explicit expression of the function F( p) in the Kahler potential 

transformation law, 

K(p', ¢')=K(p, ¢)+F(p)+F*(¢) , 

since F(p) becomes important when the system is coupled to supergravity. 

4.1. E 6 /50(10) x U(1) 

The lowest dimensional representation of E6 is 27, which is known to be decomposed, 

with respect to the subgroup 50(10) x U(l), aslS) 

27=(1; ~)+(16; ~)+(10; - ~). (4·1) 

Here the first numbers in the brackets denote 50(10) multiplets and the second the 

eigenvalues with respect to the central charge Y = - i(2/ /3) T defined previously in 

§ 3.2.1. Corresponding to the 50(10) x U(l) decomposition (4·1),we can write the repre· 

sentation basis vector ¢ as 

(4· 2) 

with 50(10) spinor index a = 1 ~6 and vector index A = 1 ~ 10 as before. [Notice that 

these H -irreducible pieces x, y, z are ordered according to our rule referring to the Y­

charge values.] 

The E6 generators TAB, T, E a, jla in (3·5) are represented in this space as 

2 ·0 €p 0 
I3

z 
X 

-€a ~ OAB(6AB)l+ 2~Ool h( €6B) a 
YP (4·3) 

1 o AB - _Z-Oo AB 0 --(6At €)P ZB 12 13 

where 6Aand 6AB are the I-matrices and rotation matrices of 50(10) in spinor representa· 

tion, respectively, defined in Appendix A. This expression (4·3) is easily obtainable by 
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Supersymmetric Non-Linear Lagrangians of Kahlerian Coset Spaces C/H 407 

the help of the 50(10) covariance and the E6 algebra (3·5). 

The complex broken generators XI with negative Y -charge are Ea alone as was seen 

in (3·10). Reading the representation of Ea from (4·2), we can immediately obtain the 

following expression for the BKMU variable ;: 

1 

-¢a 
(4·4) 

2}z(¢O"A t ¢) 

Notice here that e",·E =1 +¢E+(¢E)2/ 2 because of the nilpotency (E)3=0. As a projec­

tion operator 7J satisfying (2·29) necessary for the BKMU formula, we adopt the projec­

tion operator into the highest Y-chargesubspace spanned by x: 

Then the BKMU formula (2·30) with (4·4) yields the desired Kahler potential: 

K(¢, ¢)=lndetq);t(¢);(¢)) 

=In[l+¢¢+~ (¢O"A¢)(¢O"A¢)]. 

Here the determinant is trivial since the 7Jx-projected space is one dimensional. 

(4· 5) 

(4·6) 

We next determine the transformation law of the NG superfields ¢a under the 

infinitesimal Es-transformation. By substituting ;( ¢) of (4·4) and g = 1 +O'g = 1 + (BT 

+BABTAB/2+ [aEa+€aEa) with matrix representation (4·3) into the BKMU transforma­

tion law (2·25) 

(4· 7) 

we easily find the infinitesimal field change O'¢ = ¢' - ¢ as well as h( ¢, 1 + O'g): O'¢ is given 

by 

Table I. Explicit matrix representation of Eq. (4·14) [E7 generators]. 

Uij -4ig/t8J/+i /5658(8,>8/-8,'8/) 
8</J= '-16 

Wai - 2il:al'8 /1 

X
ai _ fiklfa 

·Yab 0 
Zij 0 

VC>d 

1 h ef 
ZE"acdef i , 

-2il:(e8~1 

cabcdef
e 

o 

We. 

2il:(!,MI 
-fUkE C 
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408 K. Itoh, T. Kugo and H. Kunitomo 

8¢a= ta- 2~ 8¢a- ~ 8AB(6AB¢ )a- ~ (¢6A¢) ( E6A) a , 

and, as for the h(¢, 1 +8g), we only cite its (1,1) matrix element (XT/xhT/x, 

T/xh(¢, 1+8g)T/x=T/xg~(¢)r;x 

=( 1 + hi8- E¢ )T/x, 

(4· 8) 

(4·9) 

where the first equality follows from (4·7) and the properties hT/x = T/xhT/x and T/x~( ¢') T/x . 

=T/x. Thus, since the change of the Kahler potentiallndet~(~t~) is generally given by 

lndet~h-l(g, ¢)+h.c. as seen in (2·33), the infinitesimal change of the present Kahler 

potential (4·6) is now found to be 

8K(¢, (f) = E¢+t(f. (4·10) 

The purely imaginary term 2i8/13 has dropped here as it should be since the Kahler 

potential is truly invariant under the H=SO(10) x U(I) transformation which is linearly 

realized on ¢ as is indeed seen in (4·8). 

The Kahler potential for this irreducible manifold E 6 /S0(10) x U(1) was also 

obtained by Achiman, Aoyama and van Holten l9
) as well as by Delduc and Valent,20) in a 

heuristic way. Their results of K(¢, (f) and· the transformation law coincide exactly 

with ours (4·6), (4·8) and (4·10). It is however noted thatthe expression K(¢, (f) by the 

former authors is apparently different: 

K(¢, (f) = 4
1
8 (f[Q- 1ln(1 + Q)]¢, 

• 
Q/:={~ 8/8/-(6AB)/(6AB)/}P¢S. (4·11) 

The equivalence of this to ours (4·6) is rather difficult to show directly but can be seen 

from the fact that both (4·6) and (4·11) transform in the same way as (4·10) under the E6 

transformation and coincide with each other around ¢ = (f = 0; that is, they satisfy the 

same set of first order differential equations and the same boundary condition at ¢ = (f =0, 

and hence must coincide with each other for all ¢ and (f owing to the uniqueness of the 

solution of that set of differential equations. 

cOkEe 

-2iLk ,aO/' 

- Eikmfi7ic 

YC>d 

o 
- EabCde E e 

2iL/ coa
dJ 

- ~ Eacdefh~f 

- EijmhmCd 

o 
o 

tiklEa 
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4.2. EdSU(5) x SU(3) x U(I) 

The lowest dimensional representation of E7 is 56 and its H = SU(5) x SU(3) x U(I) 

decomposition isIS) . 

56=(1,3; ~)+(10,1; ~)+(5*,3*; ~) 

+( 5,3; - ~ )+(10,1; - ~ )+(1,3*; - ~). (4 ·12) 

As before, here the H -irreducible components are ordered according to the Y 

= - ijl5/ 2 T charge eigenvalues denoted by the last numbers in the brackets. The 

representation basis vector <P is written accordingly as 

(4·13) 

where a, b, ... and i, j, ... denote the SU(5) and SU(3) indices, respectively, and the 

square bracket [ ] implies that the indices are anti-symmetric. For those quantities with 

anti-symmetric indices we treat hereafter only the independent quantities like Ui>j (half 

as many as Uij); therefore, for instance, M[ijlUi>j=~i>jM[ijlUij=I/2~i,jM[ijlUij. 

The matrix representation of the E6 generators of (3,11) in this space are also easily 

obtained by the help of the SU(5)xSU(3) covariance and the E7 algebra (3·12). We 

show in Table I the explicit matrix expression of the infinitesimal Ertransformation 

O<Pc=(AbaT a
b+g/T/+8T+ ~iaTai+ I:aiTia 

+ - E a+ aE- + 1 h-i Eab+ 1 h abE-i) _I, 
€ a € a Z ab i Z i ab 'f', (4·14) 

where parameters are "hermitian"; (Aba)*=Aab, (g/)*=g/, 8*=8, (~/)*=I:ai, (Ea)* 

= €a, (h~b) * = h i
ab . The symbol [ ] in Table I denotes the anti-symmetrization with 

"weight I"; e.g., I:{aMl = 1/ 2(I:a
iOb

c- I:biOaC). 

The complex broken generators XI in this case are E~b, T/ and Ea as was shown in 

(3,14), and the corresponding NG superfields ¢iab , ¢ai, ¢a are now denoted by using 

different letters for the ease of distinction as ¢i
ab

, <Pa
i
, Xa. The exponent of the BKMU 

variable ~(¢) is seen from Table I to have the following matrix representation: 

Uij 

Vab 

=Wai 

X
ai 

Yab 

0 

_€klm¢mab 

-2i<Pa[kO/l 

_€iklXa 

o 
o 

Vc>d Wck YC>d 

0 
o 

. (4·15) 

1¢ ef 
Z€aCdef i 

-2i<p{cO~1 

o 
€ikm¢mac o 

2i<P[~ogl ~ €abcef¢k
ef 

0 

o -€ijkXC 2i<Pc[iO/l _€ijm¢mCd 0 
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410 K. Itoh, T. Kugo and H.Kunitomo 

adopt the parametrization 

(4 '16) 

which is slightly easier to calculate and equivalent to the original one through the change 

of third variable xa
-4 xa

+ CCPiabcf;/ with a certain constant c. Now we take the projection 

operator 7Ju into the Ui>j sector (3-dimensionaO with the highest Y -charge 5/2 and 

calculate the first column (ui>j-column) ~u(cp) of the matrix ~(cp) (4'16). This is because 

we need only the column "vector" ~u(cp) (56X3 matrix, more precisely) in applying the 

BKMU formula (2'30) with 7Ju: 

(4'17) 

The first column "vector" ~u( cp) is calculated straightforwardly and is given explicitly by 

Wck 2 ',1. [i~ jl 1 ijm A.. abA.. de 
- Z'f'C Uk - 4x2! t tabCde'f'm 'f'k 

x _ cUkXC+ Z·cUmA.. ecA.. k __ l_cijlckmnc A.. abA.. ecA.. fg 
co co 'f'm 'f'e 4x3! co " co abefg'f' I 'f'm 'f'n 

y 2"./i ".jl 1 Um eA.. fg + i Um ,I.n A.. abA.. ef - 'f' c'f'd --:-2t tcdefgX 'f'm 4t tabef[c'f'dl'f'm 'f'n 

1 ijm pno A.. aPA.. lieA.. reA.. fg 
- 8X4! t t taPr8et Cdefg'f'm 'f'n 'f'p 'f'0 

Z -2itkl [icf;/ I
X e+ ~ tUm'tklntabefgCPmabcpnfgXe 

+ 
cUmA.. ab,l. it ,I. l+~cumc con[k,I.I]A.. abA.. e<A.. fg 
co 'f'm 'f'a 'f'b 12 co "abefgco 'f'< 'f'm 'f'0 'f'n 

+ 1 ijm' l'n'n kim A.. abA.. UP'A.. erA.. aPA.. fg 
16X5! t t t tabea'P'taPrfg'f'm' 'f'n' 'f'l' 'f'm 'f'n . (4'18) 

Equation (4 ·17) with (4 ·18) gives the desired full order explicit expression of the 

Kabler potential for EdSU(5) X SU(3) X U(I). Here for comparison with the previous­

ly obtained quartic order result,5) we expand it up to quartic order incp and¢ : 

lndet(~u t( ¢) ~u(cp)) = cpiabcp~b+4cf;ai¢ia+6XaXa 
3x3 

+ ~ {( cpiab¢~b)2- (cpiab¢~b) (cp/d¢~d) -4( CPiac¢tC)( cp/d¢~d)} 

-2( cf;ai¢i
b
)( cf;b

j ¢/) -3( XaX
a
)2- (cp~bCPiab)( ¢/cf;/) + (cpiab¢~b) (cf;c

i ¢/) 

+2(
A.. ab;[i )(,1. j,1. C) 2 (;[i A.. ab)( ,I. C,I. j) 2A.. ac;[i b-
'f'i 'f'ac 'f'b 'f'j -3 'f'aC'f'j 'f'i 'f'b - 'f'i 'f'bCX Xa 
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Table II. Explicit matrix representa!ion of Eq. (4·25) [Es generators]. 

Pk qP rck SPk tCD 

-ig! 
. P; 

+i ~OO! 
-iWPi iEiikAc

i i€po/ 0 

0tjJ= - ~ .E1](aij) / 
i - ( t)1a hAck(act)ap €r(aCD)/ qa - iwak 

+100/ 

- .;zWrk ac 

- hWn(aA)rp 
.EACok;+ioAcg/ 

- hc;JkWrJ(aA t)1P YA
i -iEijkAA} Z . -ZOIAcAbl 

+ 1300Acok 

l.Eij( ) Po k 

icaO! 
i i ri() 

2 aI] a ; 
-Wri(aCD)/ Sai .;zALi(aI)ap .;zC;JkW ac ra 

. kOP+ i OOPOk - Igi a 213 a i 

t..B 0 CAaABl/ 20{;'ADlk -wrk(aAB)/ -406,.EBID 

U -i..Lhk 
13 

.13 
-ITcp .1A 

-I 13 Ck -i-1-wPk 
213 

0 

ih;o/ 
"A oi+io;A io/wPi - ~ o/wPk v/ 

- ~ o/h
k 0 -l Cj k 3 j Ck 0 

Wai 0 ihiopa i ( t)aPO i .;zcr.ac k - hc;JkA/j(a/)ap Wri(aCD)/ 

XAi 0 0 iC;JkhJoAC i ( t)1Po k - .;zcr aA ; -20IAcADIi 

Ya 0 0 0 -ihko/ - cr(aCDlar 

Zi 0 0 0 0 0 

+4{ - (cPdi ¢id) (X a Xa) + (¢iacPbi) (X b Xa)} 

1 abCde( ¢i cP j)( - cP k) 1 ijk (¢ c¢ ab)( ¢ e d) -,[CijkC ab C Xd e -'[c cabCde j i k X , (4·19) 

where xa 
denotes the redefined field i a == xa + ~ ¢iabcPbi with omission of ~ .. This express­

ion (4 ·19) indeed agrees with the known one in Ref. 5) aside from trivial scale transfor­

mations. 

We can also obtain the Edransformation laws of the NG superfields ¢iab , cPai, xa and 

of the Kahler potential following the same steps as for the previous E6 case. The change 

of the Kahler potential (4 ·17) under the infinitesimal E7 transformation with parameters 

defined in (4· 14) is simply given by 
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412 K. Itoh, T. Kugo and H. Kunitomo 

u v/ w
p
• Xc. yp z· 

z -
ih.8,' 

-i I3hi I - 0 0 0 0 
-38.'hi 

.13 -a 
-ITt 0 ih.8/ 0 0 0 

-i-1-AAi 
- iAA'8.' 

)z €'((JA),p8. i +-.i8.' AA i 
- i8ACti}' h j 0 0 

13 
3 

1 
iWa.8,' 

)ztij.AJ((J/) aP i -r( ) 8' -i ZI3Wai i 8 ,- - /2 l' (Jc ar i -ihi8/ 0 
-3· Wai 

0 0 Wr.((JAB) / z 8['3. A B] • - €r((JAB)/ 0 

i . 1 A' .13 -P . Z -
0 0 

zl3
Wai I 13 C ITt I I3h. 

ig.'8/ 
- iWpj8.' iAci8/ -ihj8.' 

0 i . i .-. 0 i-
-ig/8.' +38/ wp• -38/ Ac +38/ h • 

- iwa'8.' 1 X/]( ) a8 i 
. 1 ai 

-2 (J/I P • 
- ~ tU'wrA(Jc f)'a - )zAJ((J/ flap 

I Zl3w + ~ 8.'w
ai 

+ig.'8/- z!rz88/8/ 

- i€a8.' 

.1A 
iAA.8,' 

1 rj() 
X AC8!-ig!8AC 

i - ( f) rP 
- ~ 8.'AAi 

. i • itij.AA
j 

I 13 Ai /2 tij,W (JA,P 
-1388AC8i 

/2Wrj (JA 

1 X/I( ) P 
.13 

0 - )zA/,((J/)ap i rk( ) 
2 (J/I a 

iWak ITta /2W (Jc ra 
-1i88/ 

. z hi 
-ih'8.' 

. i Z 88 i 
113 +-.i8 .'hi - itp8.' - i€iJk ACj iwPi 

Ig. -73 • 
3 

(JK(rf;, 1))= ~ h~brf;iab+2(..t/¢ai)+3(€aXa)+h.c. (4· 20) 

It requires more tedious calculation although straightforward to obtain the field transfor­

mation laws in a closed form. We omit them since they are lengthy and not illuminating. 

4.3. E 8 /50(10) x 5U(3) x U(l) 

The lowest dimensional representation of E8 is the adjoint representation 248 itself. 

We have decomposed the E8 generators into 50(10) X 5U(3) x U(l) irreducible pieces in 

§ 3.2 already. They are arranged in the order of Y-charge eigenvalue in (3·20) as 

(4·21) 

On this basis the basis vector in the adjoint representation is given by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

5
/2

/3
8
6
/1

8
9
9
0
4
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Supersymmetric Non-Linear Lagrangians of Kahlerian Coset Spaces G/ H 413 

(4·22) 

with the component vector <P 

(4·23) 

Notice that it is the component vector <P that we mean by "representation basis vector", 

as is the usual convention among physicists. Weare following this rule in this paper. 

The matrix representation of the generators in the adjoint representation are given by 

the structure constant of course: 

(4·24) 

Thus, from (4·22), the basis vector <P is transformed under the infinitesimal Es tr~nsforma­

tion as follows: 

o<p=ad( ~ 2;AB TAB+g/T/+8T+ AAiTAi+ AAiTAi 

(4·25) 

The structure constant is readable from the Es algebra (3·19) and we cite the explicit form 

of the adjoint matrix in (4·25) in Table II. 

The complex broken generators XI in this case are itai , TA
i, ita and Ti as was shown 

in (3·21) and we denote the corresponding NG superfields by ¢ai, <PAi, Xa and Si, re­

spectively. Then the exponent of the BKMU variable is represented by the following 

matrix as is seen from Table II: 

Pk r/ 

Pi 0 

qa _i¢ak 0 

rAi - i€i}k<pAi 

Sai iXaO/ 

i ¢ri ( ) 0 - 12 6A rp 

/z<PAi (6A)ap i r j() 0 /2€ijk 6c ra 

tAB 0 Xr(6AB)/ 20[~<PBJk -¢rk(6AB)/ 

U 
. 2 Sk 

-z 13 
.13 Z __ i_¢Pk 

-ZTXP - I3<PCk 213 
Vij iSiO/- ~ O/Sk 0 .<P 0 i+ iOi<p - Z cj k 3 j Ck i¢PiO/- ~ oj¢Pk 

wai 0 iSiO/ i ( t)aPo i /2 Xp 6c k - /z€ijk<pAi(6A t)ap 

XAi 0 0 i€ijkSjOAC i ( tFPo k - /2Xr 6A i 

Ya 0 0 0 - iSkO/ 

Zi 0 0 0 0 
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414 K. !toh, T. Kugo and H. Kunitomo 

tc u Vkl wPk 
XCk YP Zk 

P~u 0 0 

Vij 0 0 0 0 

wai 
¢ri((JCD) / 

_i_¢ai 

2/3 
- i¢alo k

i +fo kl¢ai 0 

Z 
i¢AkO / -fo kl¢Ai i ¢rj() XAi -20(h¢D]i /3¢Ai l2€ijk (JA rP 0 

- Xr(6cD)a
r 

./3 
0 - }z¢Ak((JA)ap Jz ¢ rk( (Jc) ra Ya ZTXa 0 

· 2 ~i - i~lOki+ ~ Okl~i Zi 0 z/3 -ixpo/ - i€ijk¢Cj i¢Pi 0 

(4·26) 

~ 

Similarly to the previous E7 case, we adopt the parametrization 

(4·27) 

for the BKMU variable .;( ¢). Taking the projection operator 7}p into the Pi sector with 

highest Y-charge +4, we can calculate the BKMU Kahler potential straightforwardly 

(although somewhat tedious): 

(4·28) 

where the first column "vector" ';p( ¢) (in fact 248 x 3 matrix) is given explicitly by 

tCD 

u 

v/ 

0/ 

-i¢Pi 

· imk,l. 1 ( ) ",rU,8k 
- Z€ 'l'cm - 212 (Jc r8'1' 'I' 

.~ i + 1 ( ) ,I. ",ri 1 () ( ) ",ri",8m",an 
ZUkXP 12 (JE rP'I'Ek'l' -I2€kmn (JE r8 (JE aP'I' 'I' 'I' 

· imn,l. ,I. .( ) 8",ri + i ( ) ,I. ",ri",8m 
- Z€ 'l'cm'l'Dn - Z (JCD r 'I' X8 12 (J[C r8'1'DJm'l' 'I' 

· 2 yi /3 ",ri + i !3( ) ",ri",8j,l. 
- Z /3 \:, -T'I' Xr 6'1/ Z- (JE r8'1' 'I' 'l'Ej 

.~ iyk i ~ kyi 1 Uk ,I. ,I. + i ( ) ",ri",8k,l. 
ZUl \:, -TUl \:, -Z-€ 'l'M'I'Al 212 (JA r8'P 'P 'PAL 

i ~ k( ) ",ri",8j". + 1 () ( ) '" ri",8m",an",Pk - 612 U 1 (JA r8'P 'P 'PM 48€lmn (JA r8 (JA aP'P 'P 'P- 'P 

- Jz€ikm((JEt)8P¢EmX8+¢Pi~k- ~ €kmn((JEF)/¢Em¢Fn¢ri 

- l ((JE) r8( (JE t) ap¢ ri¢ 8kXa + f1 ((JE) r8¢ ri¢8[k¢PmJ¢Em 
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XCk 

+ ¥ (6E)7i1(6EF)l¢7i¢iI[k¢am)¢Fm 

i () ( ) ,l.7i,l.ill,l.am,l.Pn,l.Ek 
-2X5!€lmn 6E 7i1 6E aE'f' 'f' 'f' 'f' 'f' 

1 S' i( t)7i1 S'i,l. ym+,I. Yi+ i imn,l. ,I. ,I. 
2/2Uk 6c X7XiI-Uk 'f'em':, 'f'ek':, 2t 'f'em'f'En'f'Ek 

/2 () ,I. 7i,l.ilm,l.an + i/2 ( ) E( ) ,I. 7i,l. ilm,l.an 
-z:rtkmn 6c 7i1'f' 'f' 'f' Xa 12€kmn 6CE a 6E 7i1'f' 'f' 'f' XE 

i -( ) ( ) ,I. 7i,l. iln,l.al,l. Em ,I. 
-g(f€lmn 6CEF aE 6E 7i1'f' 'f' 'f' 'f' 'f'Fk 

+ 4~ tkmn(6E) 7i1(6E) aE¢ 7i¢ilm¢an¢Ej¢Cj 

+ 16 X ~! /2 €lmn€kPi 6E) 7i1(6EFG) aE( 6FGc) A"¢ 7i¢iln¢al¢Em¢AP¢"q 

1 ( ) ( ) ( ) ,I. 7i,l.iln,l.am,l.EP,l.Al,l."q 
2X6!/2€lmn€kpq 6E 7i1 6E aE 6c A,,'f' 'f' 'f' 'f' 'f' 'f' 

y i + i imn ( ) iI ,I. ,I. + i ( ) 7 ( ) iI ,I. ei 
':, Xp 2€ 6EF P XiI'f'Em'f'Fn 4 6EF E 6EF P X7XiI'f' 

+ 2~ (6E)7i1 (6EFG)ap¢7i¢iI[m¢an)¢F[m¢Gn) 

+ 1~ (6[E) 7i1(6F))ap¢7i¢iI[m¢an)¢Em¢Fn 

+_1_ () ( ) ( ) A,l.7i,l.iln,l.al,l.Em 8x4! €lmn 6E 7i1 6EFG aE 6FG p'f' 'f' 'f' 'f' XA 

/2 _ (6 ') ( ) ( ) ',l.7 i ,l.iln,l.al,l.Em,l.Aj". 
32X 5! tlmn E 7i1 6EFG aE 6FGA AP'f' 'f' 'f' 'f' 'f' 'f'Aj 

_ /2 () ( ) ( ) ,I. 7i,l.iln,l.al,l.Ej,l.Am,l. 
4X5! €lmn 6E 7i1 6E aE 6A AP'f' 'f' 'f' 'f' 'f' 'f'Aj 

/2 () ( ) ( ) ,I. 7i,l. iln,l.al,l. Em,l.Aj,I. 32X5! €lmn 6E 7i1 6EFG aE 6F AP'f' 'f' 'f' 'f' 'f' 'f'Gj 

- 4;7! €lmntpqr(6E)7i1(6A)ap[~ (6EBC)AE(6ABc)~,,¢Em¢~p 

+ (6E) AE(6A) ~,,¢ EP¢~m ] ¢ 7i¢ iln¢Al¢ "q¢ar 
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{;i{;k_ i~ timk«(]EtFIl¢EmXrXIl+ ~ timk¢Am¢An{;n 

1 imn kpq ,I. ,I. ,I. ,I. . i' k '" ri + 1 kmn ( ) 11 ,I. ,I. ,I. ri -8t t 'f'Em'f'Fn'f'EP'f'Fq- Z." Xr'f' 2t (]EF r XIl'f'Em'f'Fn'f' 

- ~ «(]E) rll«(]E t ) Ea¢ri¢llkXEXa+ 1«(]E)rll¢ri¢Em[¢llk{;m~ ~¢Ilm{;k] 

+ i12 klm( ) ,I. ,I. ,I. ",ri",lln -8-t (]E rll'f'El'f'Fm'f'Fn'f' 'f' 

i12( ) ",ri",ll[k",alJ[ ,I. +2( ) E ,I. ] -12 (]E rll'f' 'f' 'f' Xa'f'El (]EFaXE'f'Fl 

+ 1~2 tlmn( (]E) rll¢ri¢lln¢al [t
kpq

( (]EFG) Ea¢Em¢FP¢Gq-4i «(]E) aE¢fk {;m] 

1 ( ) ( ) '" ri",ll[k",all",fmd. ,I. -4[ (fE rll (]E af'f' 'f' 'f' 'f' 'f'Am'f'Al 

- 8;-5! tlmn( (]E) rll¢ ri¢ Iln¢al¢ EkXp [( (]EFG) a~( (]FG) /¢~m +4( (]E) ae¢Pm] 

i12 + 32X5! tlmn«(]E)rll[«(]EAB)af«(]ABF)A~ 

+8( (]E) aA «(]F) f~]¢ri¢lln¢al¢ fm¢A[k¢ ~jJ¢Fj 

- 32 ~ 8! tlmntpqr( (]E) rll¢ ri¢lln¢Al¢pq¢ar ¢ rk[8( (]E) u( (]A) ~p( (]A) ar¢ fP¢ ~m 

+ «(]EAB) u( (]ABc) ~p( (]c) ar¢fm¢ ~P] 

(4·29) 

where (]ABC = (][A(]B t (]C), i.e., antisymmetrization in A, Band C with weight 1. 

Equation (4·28) with (4·29) gives our final answer to the explicit closed form of the 

Kahler potential for E 8 /50(10) X 5U(3) X U(l). Here again we cite its expansion up to 

quartic order in ¢ and ¢: 

K(¢, ¢)=(¢¢)+2(¢¢)+3(ix)+4(fS) 

-2( f{;)2_2( f{;)( ¢¢) +2( ¢A f)( (/!A {;) - (¢i¢j)( fj{;i) -3( f{;)(ix) 

- - 1 - - 1- -
- ¢Ai¢Ai¢Bj¢Bi +2¢Ai¢Ai¢Bi¢B

j 
+T¢Ai¢Bj( ¢j(]AB¢i) 

- - 5 - . -. 1 - -
- (¢A¢B)(¢(]AB¢) +6( ¢i¢J) ¢A'¢Aj-2( ¢¢)( ¢¢) 

- - - - 1- -
+2( ¢A¢B) (X(]ABX) - (XX) (¢¢) -2( ¢i¢j) (¢j¢i) 

- ~ (iX)2+ ~ (X(]Atx)(i(]Ai)- lztijk(i(]A¢i) {;j¢Ak 

- lztijk(X(]At¢i)fj¢AK-(ix)(¢¢)- lz(i(]Ai)({;¢A)- jz(X(]Atx)(f¢A). 
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- ~ 6
ijk

epAjepBk(X6AB¢i) + ~ 6ijk¢A
j
¢B

k
«(pi6ABX) . (4·30) 

Here in (4·30), and only here, the fields X and S denote the following tilde fields 

(4·31) 

which was introduced to eliminate the (¢)I(¢)2 or (¢)2(¢)1 terms like Xa(6A)ap¢PiepAi from 

the Kahler potential (4·30). One can see after a suitable Fierz transformation that this 

expression (4·30), excePt for the last four terms, agrees with Ong's results6
) which was 

obtained up to quartic order by a different method. The last four terms are multiplied by 

a factor 2 in Ong's results, but it is probably his error or simply a misprint. We actually 

cross-checked the correctness of our result (4·30) by confirming directly the E8 invariance 

of (4·30) by substituting the field transformation law which we give now below. 

As before, g~(¢)=~(¢')h(¢, g) determines the transformation laws of the NG 

superfields ¢=(¢ai, epAi, Xa, Si). We cite here them up to quadratic order in ¢ since they 

have appeared in no literature. Omitting the unbroken generators of 50(10) x SU(3) 

x U(l) under which the transformations are trivial, we take the infinitesimal transforma­

tion parameters as 

as in (4·25). Then the explicit matrix forms of this given in Table II and of ~(¢) of (4·27) 

lead to the following transformation laws: 

O¢ai = OJai + )z 6 ijk( Wj6A t)aepAk - ! (Wj6A t) a( ¢i6A¢j) + (Wj¢ i) ¢ai 

- )zJU(X6A t)a+ ~ ()fep) ¢ai + jfjepBj(¢i6AB)a_ AAiepAj¢aj+( EX) ¢ai 

+ 1 ijk( - )a,l. ,I. + 1 ( - )a('/'i ) '-ayi 3 -a(,/,i ) 2 6 66AB 'YAj'YBk 2 66AB 'Y 6ABX - 16 '" -4 6 'Y X 

+ 1 iikh- ,I. ( t)a+ h- ,/,aiyi ./2 6 j'YAk X6A j'Y '" , 

-lA- j,l. ,I. + i ('/'j t k)+ i (- t)+ 1 (-,/,),1. 1 (- ,/,j),I. - 2 A 'YBi'YBj 2./2 6ijk 'Y 6A OJ ./2 OJi6A X 4 OJ'Y 'YAi -4 OJi'Y 'YAj 

1 ( - j) k 1 - ( t) - -
+2./26ijk WA¢ S + 2./2 hi X6A X -hi(epAS)+(hs)epAi, 

OXa= 6a+ hU6A)a(epAS) - ! (E6A)(X6A t X) +( EX)xa+ ~ (Aep)xa-(AAepB)(6ABX)a 
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418 K. [toh, T. Kugo and H. Kunitomo 

;:'Yi-hi+(h-Y)Yi+(- )Yi+ 1 - iikA ,I. 1 A ("'i ",j)+l(A-".)Yi 1 A-i.!.Yj 
u~ - ~ ~ £X ~ 2£ Aj'f'Ak- 4/2 Aj 'f' (fA'f' 2 'f' ~ -2 A 'f'Aj~ 

+ 1 A- i( t )+.( i) 1 ( j "'i),/. 1 iik(- t ),/. 2/2 A X(fAX Z (f) X - 2/2 (f) (fA'f' 'f'Aj- 2/2 £ (f)j(fA X 'f'Ak. (4·32) 

The Kahler potential transformation law can be derived much more simply and in a closed 

f0rm as explained in the Es case, and is given in this case by 

(4·33) 

Direct substitution of the field transformation laws (4·32) into the above quartic order 

expression (4·30) of K(r/J, ¢) also confirmsEq. (4·33) as we have mentioned above. 

§ 5. Summary and discussion 

In this paper we have first clarified the general procedure how to construct the 

supersymmetric Lagrangians for any given Kahlerian coset spaces G/ H. Next we 

presented the explicit form of the Lie algebras of the exceptional grous E s, E7 and E8 as 

well as the 5U(5) x 5U(3) x U(l) and 50(10) x 5U(3) x U(l) decompositions of gener­

ators for the latter two groups respectively. Based on these we have explicitly construct­

ed the Kahler potential (or equivalently, supersymmetric Lagrangians) in a closed form 

for the three phenomenologically important cases G/H=Es/50(10) x U(l), E7/5U(5) 

x 5U(3) x U(l) and E8/50(10) x 5U(3) x U(l). A comment was also made on the point 

how the NG superfield contents can be changed if the center of H is relaxed to be more 

than one dimensional as is the case, e.g., E 8/50(10) x 5U(2) x [U(l)F or E8/50(10) 

x [U(l)P. 

Our general theory for construction of supersymmetric Lagrangians will probably 

have wider applications. Our work in the latter part in this paper, however, just provides 

a basis for the further study of the models of the origin of generations based on E7 and E8 

groups. Much more works have to be done in order to make these models actually 

realistic. As stated in the Introduction the problems are: i) how to introduce an explicit 

breaking of the global E7 (or E 8) symmetry, ii) how to obtain the explicit or spontaneous 

breaking of supersymmetry, iii) how to understand the GUT gauge interaction, dynamically 

or elementary, and so on. 

If these questions are solved in a natural and satisfactory manner, then those models 

indeed become exciting super-GUT's which can answer the origin of, generations as well 

as mixings among generations. To those models, which may be named "nonlinear (f­

model super-GUT's", we can have two alternative attitudes. One is the ordinary one of 

composite approach; the nonlinear (f-model is regarded as a "low energy effective Lagran­

gians" of a certain preon theory in which the global symmetry G = E7 or E8 is linearly 

realized and supposed to be spontaneously broken into H. The other is an unorthodox 

viewpoint to regard the nonlinear (f-model as already a fundamental Lagrangian. This 
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viewpoint rather differs from that in conventional GUT approach in which the renormal­

izability of theory is one of the central principles. Nevertheless, we think it very interest­

ing viewpoint since nobody knows whether it is actually meaningful to impose the usual 

renormalizability constraint to select the theories in such a high energy scale as large· as 

Planck mass. In addition we know that the nonlinear Lagrangian indeed appears for 

instance even in supergravity theories which is currently believed to be most fundamental 

theory. 

To conclude this paper we add comments on some points concerning the above quoted 

problems. First is about a technical problem in gauging a subgroup of or the full global 

group G. Such gauging is necessary when one wants to introduce the GUT 5U(5) or 

5U(10) gauge interaction into the above E7 or E8 nonlinear models simply by hand. 

Further it is known that if the gauging is performed on a subgroup larger than H[5U(5) 

(50(10)) x 5U(3) x U(l) in this case], then the supersymmetry is necessarily broken 

spontaneously,2l),23) So it can serve as a possible natural mechanism for the required 

supersymmetry breaking. The gauging problem of the isometry group G (or its sub­

group) was in fact solved by Bagger and Witten21
) and by Ong22) independently, but their 

gauging method is based on the "trial and errors" N oether procedure and further is 

restricted to the so-called on-shell formalism. Therefore one cannot use their results and 

must repeat the tedious N oether procedure once any matter superfields are introduced into 

system. The gauging procedure in an off-shell (i.e., system independent) manner is indeed 

simple in our formalism based on the BKMU formula (2·30): For any subgroup 5 of G 

which one wants to gauge, introduce vector superfields va transforming under superspace 

gauge transformations as 

Here A=AaTa (A a; chiral superfield parameter) and V= vaTa are Lie algebra valued 

and the matrices T a 
are hermitian generators of 5. The Qriginal global transformation 

(2'25), g~(¢) = ~(¢') h(¢, g), of the BKMU variable ~(¢) under gE 5~ G, is now replaced 

by the following superspace gauge transformation, 

(5' 2) 

It is easy to see in the same way as for the global transformation case that the action 

J d 4xd
4
8K( ¢, ¢) is supersymmetric and gauge invariant under 5 ~ G if the BKMU Kahler 

potential K(¢, ¢)=lndet~(e(¢)~(¢)) is replaced by*) 

(5'3) 

This formula is clearly of bff-shell since it is written in terms of superfields. One more 

advantage of this formula is that it is made trivial to couple to supergravity. This is 

simply achieved, for instance, in old minimal supergravity by the Lagrangian 

(5'4) 

*) Actually the present authors were informed of this formula (5·3) by S. Uehara. The priority of this 

formula should be attributed to BKMU. 
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420 K. Itoh, T. Kugo and H. Kunitomo 

where CPo is the compensating chiral multiplet and [···]D means the D-term action formula 

inlocal superconformal framework. 24
),2S) Hence it is only necessary to apply the super­

conformal tensor calculus formula 26
) to the function e-(l/3)K(;,f; V), but not to repeat the 

Noether procedure (further tedious in supergravity!) as Bagger27
) did actually. 

Second comments are concerned with some problems occuring in coupling the non­

linear system to supergravity. Coupling to supergravity is an important issue in this 

context since the scale of "decay constant" in those nonlinear models should be already of 

./ the order of Planck mass and further it may also provide a possible source of spontaneous 

supersymmetry breaking (and even of explicit global G symmetry breaking as will be 

explained shortly). When the system is coupled to supergravity as in (5'4), the change 

of the Kahler potential oK = F( cp) + F*( ¢) no longer vanishes as in global supersymmetry 

case (in which ..L'=[Kb and o..L'=[F(cp)]D+h.c.=O), but yields a change on the compen­

sating multiplet: 

(5·5) 

This change is equivalent to a combination of local superconformal transformations, 

dilatation, chiral and S-supersymmetry, on the scalar and fermion component fields of the 

compensating multiplet CPo, after the auxiliary fields are eliminated as we assume hence­

forth. . Since those local supercomformal transformations are the symmetry of the system 

(at least at the classical level) , the above change (5' 5) has no effect on the Lagrangian if 

the same superconformal transformations are perfomed simultaneously on the component 

fields of cpl, scalar rpl and fermions Xl, as well as on the vierbeine"m and Rarita-Schwinger 

field ¢,,; these transformations are given as follows explicitly.*) 

Xl ~exp( - ~ ReF(rp) + ~ ImF(rp)ys). Xl, 

(5'6) 

At the quantum level those superconformal transformations suffer from anomalies28
) 

and are no longer symmetries of the system. Thus the G global symmetry of the 

nonlinear model, whose transformation induces a charge of the Kahler potential as oK 

= F( cp) + F* ( ¢), becomes broken explicitly by the supercomformal anomalies in the 

presence of supergravity. [The linearly realized subgroup H remains still unbroken since 

F( cp) vanishes for H transformation.] This may serve as a possible mechanism by which 

*) Scalar fields <pI remain intact since they have vanishing Weyl and chiral weights. t is the S·supersymmetry 

transformation parameter whose right-handed component is given by 

tR= ~~:[ l-exp( - ~ ReF(<p)+ ~ ImF(<p) )]- 6~oxl d~~r) . 

Here <Po and XOR are scalar and spinor components of chiral compensator <Po which are fixed in such a way that (5·4) 

yields the canonical Einstein and Rarita-SchwJnger terms;29) explicitly, 

mo=l3e(1/6)K(~.~·), _ 1 /dK(<p, <pO) 
y XOR-T<poXR d<PI 
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the global symmetry G (or g -j{ part, more precisely) is broken explicitly. This 

mechanism was in fact proposed by Ong,6) although he mentioned incompletely only to the 

conformal chiral (=R-symmetry) anomaly. 

There may be, however, a problem in this idea, since those anomalies imply that the 

nonlinear (J model cannot be defined globally on the manifold G/ H. On a topologically 

nontrivial manifold C/ H, the coordinate system ¢/ covers only a portion of C/ H. That 

is, we must cover G/ H by patches {Ba} and the Kahler potential is defined patchwise: On 

the overlap regions Ban Bp, the Kahler potential Ka of Ba is not equal to Kp of Bp in general 

but is related by a Kahler transformation Ka - Kp = Fap( ¢) + Fap( ¢). Owing to the above 

stated superconformal anomalies, however, the Lagrangian is not invariant under the 

Kahler transformation and therefore the nonlinear (J model coupled to supergravity is 

not consistently defined globally on G/ H. If this global problem is crucial for the consistency 

of the model itself, one cannot couple the nonlinear (J models to supergravity unless the 

superconformal anomalies are cancelled. It may, however, be meaninguful to consider 

the nonlinear (J ~odel only within a patch B which is extended as far as K ( ¢, ¢) remains 

nonsingular with given coordinate ¢I. If so, the model can be coupled to supergravity 

and the superconformal anomalies can be used peacefully as a source of C symmetry 

breaking as stated above. 

Witten and Bagger30) discussed a similar global consistency problem of the same 

system, putting the superconformal anomaly problem aside.' They found that the global 

consistency of the conformal chiral transformation phase (ImF(¢) part) of (5'6) associat­

ed with the Kahler transformations on the overlap regions require that the Kahler 

manifold C/H be of restricted type (Hodge manifold). This constraint is mee!) fortu­

nately for· the present exceptional type manifolds E 6 /50(10) X U(l), Ed5U(5) x 5U(3) 

X U(l) and E 8 /50(10) x 5U(3) x U(l) as was noticed by Irie and YasuP) 

Similar global obstruction problem occurs already in rigid supersymmetry case in the 

nonlinear d models, and is recently discussed by many authors32),33) under the name 

"nonlinear (J model anomaly." (This anomaly is associated with the field dependent 

(Le., local H transformation induced by the global C transformation. The difference 

with the usual gauge theory anomaly is only that the H gauge fields here are not 

elementary vectors but are given by certain functions of the NG boson fields') Here also, 

if this anomaly is present, not only the global C symmetry is broken explicitly but the 

nonlinear (J model itself becomes ill-defined globally on C/H. There has been found no 

simple method to judge which supersymmetric nonlinear (J models have this type of 

anomalies. Recently, however, Moriya and YasuP3) reported that E 6 /50(10) x U(l) is 

free of this anomaly but Ed5U(5) x 5U(3) x U(l) and E 8 /50(10) x 5U(3) x U(l) are 

not. If their conclusion is true, then one has to introduce some modifications to the E7 and 

E8 models, such as to enlarge the dimension of the center of H or to introduce matter 

superfields other than NG ones. The above-mentioned standpoint to consider the non­

linear (J rhodel only within one patch may also be good. 
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422 K. Itok, T. Kugo and H. Kunitomo 

Appendix A 

-- Properties 0/ Spinor Representation 0/ SO(2n) --

We summarize here some properties of spin or representation of 50(6), 50(10) and 

50(16), which are used in §§ 3 and 4 in the text, omitting the proofs. [See Refs. 34) and 

35) for details'] 

A.1. 50(2n) 

The 50(2n) spinor ¢ has 2n components and the 2n gamma matrices r ll (fl=l, 2, "', 

2n) are 2n x 2n matrices satisfying the Clifford algebra: 

(A ·1) 

The complete set of 2n x2n matrices is spanned by the {r{f)}, /=0,1, "', 2n, with 

(A·2) 

where [J/ 2] is the largest integer ~f/ 2 and [fll, ... flf] indicates antisymmetrization with 

"strength one." 

Since ±rll
' form an equivalent representation of the Clifford algebra, the charge 

conjugation matrix C exist such that 

r ll = 7)C~1 r ll ' C (A·3) 

for either choice of 7) = ± 1. Further it can be shown thae4
) 

C
T 

= EC with E =cos ~ n+ 7) sin ~ n , (A·4) 

(A·5) 

In Table III, we summarize and the symmetry properties of cr{f) in various dimensions 

2n implied by these equations. 

Majorana spinor can exist only when E = + 1 and is defined by 

¢*=C¢ . 

The usual /5 matrix analogue, r 2n
+

l
, is definable: 

Weyl spinors ¢± with chirality ± 1 is defined by 

(A·6) 

(A'7) 

(A·S) 

(A'9) 
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Table III. Sign factor E and symmetry properties of cr(f) of SO{2n). 

choice of 7) n (mod 4) E cr(f) symmetric cr(f) antisymmetric 

0,1 +1 /=0,1 (mod 4) /=2,3 (mod 4) 
7)=1 

2,3 -1 /=2,3 (mod 4) /=0,1 (mod 4) 

0,3 +1 /=0,3 (mod 4) /=1,2 (mod 4) 
7)=-1 

1, 2 -1 /=1,2 (mod 4) /=0,3 (mod 4) 

Majorana-Weyl spin or is defined by the equation 

(A ·10) 

which has nonzero solution only if both conditions n = even (by (A· 8» and t = + 1 (by 

(A·6» are satisfied. That is possible only when n=O (mod 4), i.e., 2n=8, 16, .... 

We cite here a very useful Fierz identity in Ref. 35) which is needed to prove some 

Jacobi identities in § 3 in the text: 

(A·l1) 

where rU). r U)= ~ r P1"'Pf r P1 ···Pf • 

Jll>Jl2>···>f1.f 

A.2. 50(6), 50(10) and 50(16) 

50(16) is a maximal subgroup of E 8 , which we need decompose into 50(10) X 50(6) 

in § 3. For these three groups we fix to choose the following sign factors, 

50(16) : 7}!6= -1, tI6=+1, 

50(10) : 7/10= -1, tlO=-l, 

50(6) : 716= + 1, t6=-1, (A ·12) 

so as to satisfy 7116 = 7110·716 since it is necessary when the gamma matrices of 50(16) are 

constructed by a tensor product of those of 50(10) and of 50(6). The sign factors t in 

(A ·12) are read from Table III. 

Consider 50(6) and 50(10) first. We take (chirality)r2n
+

1 diagonal representation 

r 2n
+

1 =(6 -~), and write spinor ¢ by the chirality ±1 compollents t(';ti, 7jti) with lower and 

upper spinor indices Ci( =1 ~2n-l), respectively. The gamma matrices are block off­

diagonal in this representation since they change chirality. Using different letters for 

indices of 50(6) and 50(10), we denote them by 

a_( 0 (6a) iJ) . T_ 

50(6): 
6a - -6a , 

(A ·13) r6 - (6a t )!! o ' a=l ~6, [,I=1~4, 

50(10): A_( 0 (6A)ap) 6A T =6A, 
(A ·14) r 10

- (6A t)ap o ' A=1~10, a,8=1~16. 
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424 K. Itoh, T. Kugo and H. Kunitomo 

The charge conjugation matrix C also changes chirality when n is odd by (A· 8), i.e., 

changes ; into r; and vice versa. Changing the definition of the base r; relative to ; in 

such cases, we can always bring C into the form (±1 1) depending on the sign t= ±1. In 

our case t6= tlO= -1, and so we have 

C=(_~ ~) for both 50(6) and 50(10). (A ·15) 

The 50(16) gamma matrices niC4=1 ~16) can be constructed by a tensor product 

of those of 50(10), (A·14), and of 50(6), (A·13): 

(A ·16) 

From this the chirality multiplication rule follows: rN = rN®r6 7
• So is the charge 

conjugation matrix, C16 = CIO®C6. Hence now the charge conjugation matrix CI6 com­

mutes with chirality matrix rN and therefore is block diagonal; more explicitly, from 

(A ·15), 

(A ·17) 

where we have shown explicitly only the positive r l7 chirality sector since we are 

interested only in the Maj orana -W ey I spinor generators Eli of Es with r 17 = + 1 in the text. 

Notice that r l7 = + 1 Weyl spinor is given as (;a;[, r;ar/) in terms of 50(10) and 50(6) 

spinors. 

The generators l:AB of 50(16) group are defined by [nt rl~]/ 4 and have the follow­

ing form in terms of 50(10) and 50(6) gamma matrices: 

where l:ff is the 50(10) generators 

(JAB = ~ ((JA(JBt - (JB(JAt) , 

iJ AB = ~ ((JA t (JB - aB t (JA) , 

and similar expressions for the 50(6) generatorsl:6
ab

• 

Finally we note a relation 

1 --
( ) -- ---((J t) kl 

(Ja [j -2t Ukl a 

(A ·18) 

(A ·19) 

(A ·20) 
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for the 50(6) matrices (Ja, which implies that the representation 6 of 50(6) is a self-dual 

representation B of 5U(4) (~50(6)), and an identity of the 50(10) matrices: 

f '\' 78 - ( ) 7 ( ) 8 3 ~ 7 ~ 8 or £JaP= (JAB a (JAB P -2Ua Up . (A ·21) 

This identity is necessary to check the Jacobi identity consistency of E6 algebra, and can 

be proven by using the Fierz identity (A ·11) for the cases A = 0 and 2. 
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