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Supersymmetric nonlinear sigma models are obtained from linear sigma models by im-
posing supersymmetric constraints. If we introduce auxiliary chiral and vector superfields,
these constraints can be expressed by D-terms and F-terms depending on the target man-
ifolds. Auxiliary vector superfields appear as gauge fields without kinetic terms. If there
are no D-term constraints, the target manifolds are always non-compact manifolds. When
all the degrees of freedom in these non-compact directions are eliminated by gauge symme-
tries, the target manifold becomes compact. All supersymmetric nonlinear sigma models,
whose target manifolds are hermitian symmetric spaces, are successfully formulated as gauge
theories.

§1. Introduction

When the global symmetry G is spontaneously broken down to its subgroup
H, there appear massless Nambu-Goldstone (NG) bosons corresponding to broken
generators of the coset manifold G/H. At low energies, interactions among these
massless particles are described by the so-called nonlinear sigma models, whose la-
grangians are completely determined by the geometry of the target manifold G/H,
parameterized by NG-bosons. 1)

In supersymmetric theories, there appear massless fermions as supersymmetric
partners of NG-bosons. 2) These massless fermions together with NG-bosons are de-
scribed by chiral superfields in four-dimensional theories with N = 1 supersymmetry.
Since chiral superfields are complex, the supersymmetric nonlinear sigma models are
closely related to the complex geometry; their target manifolds, where field vari-
ables take their values, must be Kähler manifolds. 3) If the coset manifold G/H itself
happens to be a Kähler manifold, both real and imaginary parts of the scalar com-
ponents of chiral superfields are NG-bosons. If G/H is not a Kähler manifold, on the
other hand, there is at least one chiral superfield whose real or imaginary part is not
a NG-boson. This additional massless boson is called the quasi-Nambu-Goldstone
(QNG) boson. 2), 4)

The general method to construct supersymmetric nonlinear sigma models has
been discussed by Bando, Kuramoto, Maskawa and Uehara (BKMU). 5) When QNG
bosons are present, their effective lagrangians include arbitrary functions. This is
always the case when the target manifold of the nonlinear sigma model is larger than
the coset manifold G/H, where NG-bosons reside, since the geometry of the target
manifold cannot be fixed by the metric of its subspace G/H. 6) - 10) The arbitrariness
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636 K. Higashijima and M. Nitta

reflects the ambiguity of the metric in the direction of QNG bosons. When the coset
manifold G/H is itself Kähler, the effective lagrangian is uniquely determined by
the geometry of G/H, as has been shown in a beautiful paper by Itoh, Kugo and
Kunitomo. 11) (See Appendix A for a review.) Kähler potentials in this case have
been discussed by many authors 5), 11) - 18) (See references in Ref. 18).), and have
been used to construct the coset unification models, where fermionic partners of NG
bosons are considered as quarks. 19)

Nonlinear sigma models are considered low energy effective theories for massless
particles after integrating out the massive particles in the corresponding linear sigma
models. In this context, Lerche and Shore have shown that nonlinear sigma models
whose target manifolds are Kähler G/H manifolds cannot be obtained from linear
sigma models. 6) (See also Ref. 7) and Appendix B for a review.) According to this
theorem, there must exist at least one QNG bosons in effective field theories obtained
from linear sigma models.

On the other hand, it is known that sigma models on some Kähler G/H man-
ifolds, namely on CPN or on the Grassmann manifold GN,M (C), are obtained by
the introduction of gauge symmetry. 12), 20) - 22) The implicit assumption of Lerche
and Shore is the absence of gauge interactions in the linear sigma models. It seems
possible to eliminate unnecessary QNG bosons if we introduce an appropriate gauge
symmetry.

In this paper, we show that supersymmetric nonlinear sigma models on a cer-
tain class of Kähler G/H manifolds are obtained from linear sigma models with
gauge symmetry. We define nonlinear sigma models by imposing supersymmetric
constraints on linear sigma models. We introduce two kinds of constraints, D-term
and F-term constraints. If we introduce auxiliary fields, these correspond to vector
and chiral superfields. Vector auxiliary superfields appear as gauge fields. We suc-
cessfully formulate nonlinear sigma models on (irreducible and compact) hermitian
symmetric spaces∗) classified by Cartan as in Table I. 24),∗∗)

This paper is organized as follows. In §2, we review simple cases without F-
term constraints, namely the projective space CPN−1 and the Grassmann manifold
GN,M (C). Although these cases are known, it is instructive to discuss them with
emphasis on an interpretation in terms of NG and QNG bosons. In §3, we generalize
to other hermitian symmetric spaces by introducing F-term constraints in addition
to D-term constraints. Results in this section are new. As a by-product, we find ex-
plicit expressions of holomorphic constraints to embed G/H into CPN or GN,M (C).
Section 4 is devoted to conclusions and discussion. We discuss how the results can
be generalized to an arbitrary Kähler G/H manifold. In Appendix A, we review
the construction of the Kähler potentials for Kähler G/H using BKMU and IKK
methods, in the case of hermitian symmetric spaces. In Appendix B, we review the
theorem of Lerche and Shore. Appendices C, D and E are devoted to summaries of

∗) Symmetric spaces are homogeneous spaces G/H with an involutive automorphism. Since it

can be shown that any G-invariant differential form ω in a symmetric space is closed, dω = 0, a

fundamental two form of a hermitian symmetric space is also closed, and this is Kählerian. Hence,

the expression “Kähler symmetric space” has the same meaning.
∗∗) We use ‘dimC ’ for complex dimensions and ‘dim’ for real dimensions.
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Supersymmetric Nonlinear Sigma Models as Gauge Theories 637

Table I. Hermitian symmetric spaces. The first three manifolds, CPN−1, GN,M (C) and QN−2(C),

are called a projective space, a Grassmann manifold and a quadratic surface, respectively. The

projective space CPN−1 and the Grassmann manifold GN,M (C) are a set of complex lines and

M -dimensional complex planes in CN , respectively. BI (DI) corresponds to odd (even) N . In

the mathematical literature, EIII is written as E6/Spin(10)×U(1), since coset generators belong

to the SO(10) Weyl spinor.

Type G/H dimC(G/H)

AIII1 CPN−1 = SU(N)/S(U(N − 1) × U(1)) N − 1

AIII2 GN,M (C) = U(N)/U(N −M) × U(M) M(N −M)

BDI QN−2(C) = SO(N)/SO(N − 2) × U(1) N − 2

CI Sp(N)/U(N) 1
2
N(N + 1)

DIII SO(2N)/U(N) 1
2
N(N − 1)

EIII E6/SO(10) × U(1) 16

EVII E7/E6 × U(1) 27

SO, E6 and E7 algebras.
In the rest of this section, we introduce the notation and terminology used in

this paper.
The linear description of the nonlinear sigma model without a gauge symmetry

is given by

L =
∫

d4θφ†φ+
(∫

d2θφ0g(φ) + c.c.
)
, (1.1)

where the chiral superfield φ belongs to an irreducible representation of the global
symmetry group G, and φ0 is an auxiliary chiral superfield. The absence of kinetic
term of φ0 corresponds to the strong coupling limit of the Yukawa theory. Although
the superpotential W = φ0g(φ) is G-invariant, φ0 and g(φ) need not be G-invariant
separately. Instead, they may have indices transforming as a non-trivial representa-
tion of G, such as W = φ0ig(φ)i. If we integrate over the auxiliary field φ0, we obtain
F-term constraints, g(φ) = 0, which are holomorphic functions. Therefore, the F-
term constraints are invariant under the larger group GC , the complex extension of
G.

Let the number of F-term constraints be NF. If it is sufficiently large, the target
manifold M ′ becomes a GC-orbit of the vacuum v = 〈φ〉. Let the complex isotropy
group of the vacuum be Ĥ (Ĥv = v). Then, the target manifold of the nonlinear
sigma model is parameterized by the chiral superfields corresponding to complex
broken generators in GC−Ĥ.∗) Therefore M ′ is a complex coset space, M ′ � GC/Ĥ,
generated by these broken generators. As an example, let us consider a doublet
φ =

(
φ1

φ2

)
of G = SU(2) and suppose that they acquire the vacuum expectation

values v =
(

1
0

)
. Since the raising operator τ+ = 1

2(τ1 + iτ2) =
(

0 1
0 0

)
satisfies τ+v =

0, it is the complex unbroken generator in Ĥ. On the other hand, τ3 and the lowering
operator τ−(= τ+

†) are the elements of the broken generators in GC − Ĥ.
There are two kinds of broken generators: the hermitian broken generator X

∗) We use the calligraphic font for a Lie algebra corresponding to a Lie group.
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and the non-hermitian broken generator E.∗) The superfields corresponding to non-
hermitian and hermitian generators are called pure-type and mixed-type superfields,
respectively. 5), 6) In the previous example, where the representative of GC/Ĥ is given
by φ = exp i(ϕ3τ3 + ϕτ−) ·v, ϕ3 is a mixed-type and ϕ is a pure-type superfield. The
scalar components of the mixed-type multiplets consist of a QNG boson in addition
to a NG boson, whereas those of the pure-type multiplets consist of two genuine NG
bosons. Since the vacuum is invariant under Ĥ, we can multiply the representative
of the coset manifold by an arbitrary element of Ĥ from the right. In our previous
example, we can rewrite it as exp i(ϕ3τ3 + 
ϕτ1 + �ϕτ2) · v by multiplying an ap-
propriate factor generated by τ+ for sufficiently small |ϕ3| and |ϕ|. The NG-bosons
parameterizing S3 � SU(2) are 
ϕ3,
ϕ and �ϕ, whereas �ϕ3 is the QNG-boson
parameterizing the radius of S3. The number of chiral superfields parameterizing
the target manifold is

NΦ = dimC V −NF = NM +NP, (1.2)

where V is the representation space. The numbers of the mixed-type and pure-type
multiplets are denoted by NM and NP, respectively.

The directions parameterized by QNG bosons are non-compact, whereas those
of NG bosons are compact.∗∗) From the theorem of Lerche and Shore (see Appendix
B), there exists at least one mixed-type multiplet, and therefore the target manifold
M ′ becomes non-compact. Since no two points in the non-compact direction can be
connected by the compact isometry group G, M ′ is also non-homogeneous.

We rewrite the groups G and H defined above as G′ and H ′, and therefore
M ′ � G′C/Ĥ ′. In order to eliminate the degree of freedom of QNG bosons, we elevate
the subgroup of G′ to a local gauge symmetry. We assume G′ is the direct product of
a global symmetry and the gauge symmetry Ggauge; that is G′ = G×Ggauge, where
Ggauge = U(1) or U(N). The gauged linear lagrangian can be written as

L =
∫

d4θ
(
eV φ†φ− cV

)
+
(∫

d2θφ0g(φ) + c.c.
)
, (1.3)

where φ0 and V are auxiliary chiral and vector superfields. The absence of the
kinetic term of the gauge field corresponds to the strong coupling limit, where the
gauge coupling constant tends to infinity. Here, for simplicity, the gauge group is
assumed to be U(1). (See §2.2 for the non-Abelian case.) Integration over φ0 gives
the F-term constraint to define the non-compact manifold M ′, as discussed above.
The integration over V gives a D-term constraint that restricts M ′ to the compact
manifold M = M ′/GCgauge,

21) whose dimension is

dimCM = NΦ − dimGgauge. (1.4)

∗) In general, Ĥ is larger than HC , due to the existence of non-hermitian generators Ē. Ē is

the hermitian conjugate of E. They constitute the so-called Borel subalgebra B in Ĥ. 5)

∗∗) We use the word “compactness” in the sense of topology. The kinetic terms of QNG bosons

have the same sign as those of NG bosons.
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Supersymmetric Nonlinear Sigma Models as Gauge Theories 639

Since we introduce gauge fields to absorb all mixed type multiplets,∗) the dimension
of the gauge group and the compact manifold M are

dimGgauge = NM, dimCM = NP. (1.5)

The compact manifold M is parameterized by only pure-type multiplets.

§2. Nonlinear sigma models without the F-term constraint

Although examples in this section are well known, 21) we describe them in de-
tail, since the interpretation in terms of NG and QNG bosons is useful to find the
nonlinear sigma models on other compact manifolds.

2.1. Projective space: CPN−1 = SU(N)/S(U(N − 1)× U(1))

We consider the global symmetry G′ = U(N) = SU(N)×U(1)D
def= G×U(1)D.

Below, the phase symmetry U(1)D is gauged, while G = SU(N) remains global. We
prepare the fundamental fields �φ ∈ N , which acquire a vacuum expectation value.
First of all, we consider the canonical Kähler potential

K(�φ, �φ †) = �φ †�φ. (2.1)

For later purposes, we decompose G = SU(N) under the subgroup SU(N−1)×U(1).
A fundamental representation N is decomposed as N = (N − 1, 1)⊕ (1,−N + 1),
where the second factors are U(1) charges. Hence, we decompose the fields as
�φ =

(
x
yi

)
(i = 1, · · · , N − 1). Generators of SU(N) can also be decomposed into

the SU(N − 1) generators TA (A = 1, · · · , N2 − 2N), the U(1) generator T , the
N − 1 raising operators Ei represented by upper triangle matrices, and the lowering
operators represented by lower triangle matrices Ēi = (Ei)†. The transformation
law of �φ under the complexified group SU(N)C is

δ�φ =
(
iθT + iθATA + ε̄iE

i + εiĒi

)
�φ

=


 i
√

2(N−1)
N θ ε̄j

εi −iθAρ(TA)ij − i
√

2
N(N−1)θδ

i
j


( x

yj

)
, (2.2)

where ρ(TA) is an N − 1 by N − 1 matrix for the fundamental representation of
SU(N − 1). We normalized these generators as trTA

2 = trT 2 = tr ĒiE
i = 2 (no

sum). When ε = ε̄ and θ, θA ∈ R, this transformation law reduces to that of the real
group SU(N). The U(1)D transformation is generated by TD = 1N .

When �φ acquires a vacuum expectation value, it can be transformed by G′C to
the standard form,

�v =
〈
�φ
〉
=
(
1
0

)
. (2.3)

∗) The supersymmetric Higgs mechanism acts as follows: A vector superfield absorbs one mixed-

type multiplet to constitute a massive vector multiplet. If it absorbs a pure-type multiplet, one NG

boson remains massless. They cannot constitute a massive vector multiplet, and the supersymemtry

is spontaneously broken. 31)
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640 K. Higashijima and M. Nitta

By this vacuum, the global symmetry is spontaneously broken down as U(N) →
U(N−1) = SU(N−1)×U(1)′ def= H ′. Here, U(1)′ is generated by T ′ ∼ diag(0, 1, · · · ,
1), which is a linear combination of TD and T . The complex isotropy group Ĥ ′, which
leaves �v invariant, is larger than H ′C , since upper triangle generators Ei annihilate
the vacuum �v. Here, Ei generators constitute a Borel subalgebra B in Ĥ′. On the
other hand, the complex broken generators are the lower triangle generators Ēi and
the diagonal generator X = (1, 0, · · · , 0), which is also a linear combination of T and
TD. The non-hermitian generators Ēi are pure-type generators, and the hermitian
generator X is a mixed-type generator. The target manifold M ′ of the nonlinear
sigma model is a complex coset manifold M ′ � G′C/Ĥ ′ generated by these complex
broken generators. Since, by using its representative ξ′ = exp(ϕiĒi+iψX), the fields
can be written as �φ = ξ′�v, its form near the vacuum is

δ�v = (iψX + ϕiĒi)�v =
(
iψ
ϕi

)
. (2.4)

We thus find that ψ is a mixed-type chiral superfield, whose scalar components are
NG and QNG bosons, while the ϕi are pure-type chiral superfields, whose scalar
components are both NG bosons. Then the numbers of mixed-type and pure-type
chiral superfields are NM = 1 and NP = N − 1, respectively. This Kähler manifold
is non-compact and non-homogeneous due to the existence of the QNG boson.

To construct a compact homogeneous manifold, we wish to eliminate the QNG
boson (the mixed-type multiplet). Hence, we gauge the U(1)D symmetry by in-
troducing a vector superfield V , which will absorb the mixed-type multiplet. The
gauged Kähler potential is 31)

K(�φ, �φ †, V ) = eV �φ †�φ− cV, (2.5)

where cV is a Fayet-Iliopoulos (FI) D-term. 21), 31) Since the transformation law of
V is

eV → eV ′
= eV ei(θ†−θ), ei�θ ∈ U(1)D, (2.6)

where θ is a chiral superfield, the Kähler potential (2.5) is invariant under the com-
plex extension of the gauge symmetry, U(1)D

C . Note that the global symmetry
G = SU(N) cannot be complexified. The equation of motion of V is

δK/δV = eV �φ †�φ− c = 0. (2.7)

From this equation, V can be solved as

V (�φ, �φ †) = − log

(
�φ †�φ
c

)
. (2.8)

To eliminate the gauge field, we substitute V (�φ, �φ †) back into Eq. (2.5), obtaining

K(�φ, �φ †, V (�φ, �φ †)) = c log(�φ †�φ), (2.9)
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where we have omitted constant terms.∗) Since we have the gauge symmetry U(1)D
C ,

we can fix the gauge as

�φ =
(

1
ϕi

)
. (2.10)

By comparing Eqs. (2.4) and (2.10), we find that the mixed-type chiral superfield has
been eliminated by this gauge fixing. The gauge fixed field (2.10) can be rewritten
as

�φ = ξ�v, ξ = eϕ·Ē =
(

1 0
ϕi 1N−1

)
, (2.11)

where ξ can be considered as a representative of a complex coset manifold GC/Ĥ �
G/H = SU(N)/S(U(N − 1)× U(1)). Since this is a compact homogeneous Kähler
manifold, we have obtained the desired result. To obtain a compact manifold, gauge
fields are necessary. By substituting Eq. (2.10) into Eq. (2.9), we obtain

K(ϕ, ϕ†, V (ϕ, ϕ†)) = c log(1 + |ϕ|2). (2.12)

This is the well-known Kähler potential of the Fubini-Study metric for CPN−1 =
SU(N)/S(U(N − 1)× U(1)).

2.2. Grassmann manifold: GN,M (C) = U(N)/U(N −M)× U(M)

This subsection is a generalization of the last subsection. The picture of NG
and QNG bosons is discussed in Ref. 22). We consider a global symmetry G′ =
GL × GR = U(N)L × U(M)R (N > M). The basic fields are Φ ∈ (N ,M), which
are N ×M matrix-valued chiral superfields. The transformation law of Φ under G′C

is∗∗)

Φ → Φ′ = g · Φ def= gLΦgR
−1, g = (gL, gR) ∈ G′C , (2.13)

where gL and gR are N ×N and M ×M matrices, respectively.
The Kähler potential is canonical:

K(Φ,Φ†) = tr (Φ†Φ). (2.14)

Any vacuum can be transformed under G′C to

V = 〈Φ〉 =
(

1M

0

)
, (2.15)

where 1M is the M × M identity matrix and 0 is the (N − M) × M zero matrix.
The global symmetry is spontaneously broken as U(N)L ×U(M)R → U(N −M)L ×
U(M)V. Here, U(N − M)L is the group generated by

((
0M 0
0 T

)
,0M

)
∈ (GL,GR),

∗) Their contributions to the lagrangian vanish as a result of the d4θ integration.
∗∗) The conjugate representation �φ ∈N is defined to transform as �φ → (g−1)T �φ, since the group

is extended to its complexification and we must preserve the chirality.
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642 K. Higashijima and M. Nitta

where T are (N − M) × (N − M) matrices, and U(M)V is generated by((
T 0
0 0N−M

)
, T
)
∈ (GL,GR), where T are M×M matrices. The complex isotropy Ĥ′

that leaves 〈Φ〉 invariant is larger than H′C by E
def=
((

0M T
0 0N−M

)
,0M

)
, where T

are M×(N−M) matrices. Here, these E constitute a Borel subalgebra B of Ĥ′, and
its dimension is dimC B = M(N−M). On the other hand, the complex broken gener-
ators consist of non-hermitian generators, Ē def=

((
0M 0
T 0N−M

)
,0M

)
, which are her-

mitian conjugates of E, and hermitian generators, X def=
((

T 0
0 0N−M

)
,−T

)
, which

are elements of an axial symmetry U(M)A. The target manifold is a complex coset
manifold M ′ � G′C/Ĥ ′, and its representative is ξ′ = exp(ϕ·Ē+iψ ·X) def= (ξ′L, ξ′R).
The field can be written as �φ = ξ′ · V = ξ′LV ξ′R

−1. Its form near the vacuum is

δV =
(
2iψ
ϕ

)
. (2.16)

Here, ψ is an M × M matrix chiral superfield considered as mixed types and ϕ is
an (N − M) × M matrix chiral superfield considered as pure types. Hence, the
numbers of mixed-type and pure-type chiral superfields are NM = M2 and NP =
M(N −M)(= dimC B), respectively.

To absorb theM2 mixed-type chiral superfields, we gauge U(M)R by introducing
M2 vector superfields V = V ATA, where TA represents generators of U(M)R. The
gauged Kähler potential is

K(Φ,Φ†, V ) = tr (Φ†ΦeV )− c trV, (2.17)

where c trV is a Fayet-Iliopoulos D-term. Since the vector superfields are trans-
formed as

eV → eV ′
= gRe

V gR
†, (2.18)

the gauged Kähler potential is invariant under the complexified gauge symmetry
GR

C . To eliminate vector superfields, we use the equation of motion of V ,∗)

δK/δV = Φ†ΦeV − c1M = 0. (2.19)

Then V can be solved as

V (Φ,Φ†) = − log

(
Φ†Φ
c

)
. (2.20)

By substituting this into Eq. (2.17), we obtain

K(Φ,Φ†, V (Φ,Φ†)) = c tr log(Φ†Φ) = c log det(Φ†Φ), (2.21)

where we have omitted constant terms. We choose the gauge fixing as

Φ =
(

1M

ϕ

)
, (2.22)

∗) We treat e−V δeV as an infinitesimal parameter, since δtr (Φ†ΦeV ) = tr (Φ†ΦeV (e−V δeV )).

The second term is obtained from tr (δ logX) = tr (X−1δX), where X = eV .
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where ϕ is an (N−M)×M matrix-valued chiral superfield. By comparing Eq. (2.16)
and Eq. (2.22), we find that all mixed-type multiplets ψ have disappeared by this
gauge fixing condition. When ξ is a representative of GC/Ĥ = U(N)/U(N −M)×
U(M), Φ can be rewritten as

Φ = ξ · V = ξLV ξR
−1, ξ = eϕ·Ē =

((
1M 0
ϕ 1N−M

)
, 1M

)
= (ξL, ξR). (2.23)

Since the target space M is parameterized solely by pure-type multiplets, it is a
compact homogeneous Kähler manifold. By substituting Eq. (2.22) into Eq. (2.21),
we obtain the Kähler potential of M :

K(ϕ, ϕ†, V (ϕ, ϕ†)) = c log det(1M + ϕ†ϕ). (2.24)

This is the Kähler potential of the Grassmann manifold GN,M = U(N)/U(N−M)×
U(M). 3)

§3. Nonlinear sigma models with F-term constraints

Only D-term constraints appeared in the last two examples. In this section
we also introduce appropriate F-term constraints to define other Kählerian G/H
manifolds.

3.1. SO(N)/SO(N − 2)× U(1)

We consider a global symmetry, G′ = SO(N) × U(1)D = G × U(1)D. We
will gauge U(1)D symmetry later. The fields, which develop a vacuum expectation
value, are �φ in the defining representation N of SO(N). The U(1)D charge of �φ is
defined to be 1. The fundamental representation is decomposed under its subgroup
SO(N − 2)× U(1) as N = (N − 2, 0)⊕ (1, 1)⊕ (1,−1). Here, the second factor is
the U(1) charge. The fields can be written as

�φ =


 x
yi

z


 , (3.1)

where x, yi (i = 1, · · · , N −2) and z are a scalar, a vector and a scalar of SO(N −2),
respectively. Their U(1) charges are defined above. SO(N) is defined as the group
that leaves the quadratic form

I2
def= �φ 2 def= �φTJ�φ = 2xz + y2 (3.2)

invariant, where we have written the invariant tensor of rank 2 in a rather uncon-
ventional way (see Appendix C):

J =


 0 0 1

0 1N−2 0
1 0 0


 . (3.3)

The generators of SO(N) consist of the SO(N−2) generator Tij (i, j = 1, · · · , N−2),
the U(1) generator T , and the upper triangular matrices Ei (i = 1, · · · , N−2), which

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/3/635/1876727 by guest on 20 August 2022



644 K. Higashijima and M. Nitta

transform as (N − 2, 1), and their complex conjugates Ēi = (Ei)† in (N − 2,−1).
SO(N)C acts on the fundamental representation in our basis as

δ�φ =
(
iθT +

i

2
θijTij + ε̄iE

i + εiĒi

)
�φ

=


 iθ ε̄j 0
εi θij −ε̄i
0 −εi −iθ




 x
yj

z


 , (3.4)

where i
2θkl(Tkl)ij = θij . Here, these coefficients are normalized so that trT 2

ij =
trT 2 = trEiĒi = 2 (no sum). All parameters are complex when we consider
SO(N)C and real when we consider SO(N).

In order to impose the global symmetry SO(N) × U(1)D, we introduce the
superpotential

W (φ0, �φ) = φ0
�φ 2, (3.5)

with the lagrange multiplier field φ0. This is an SO(N) singlet, and its U(1)D charge
is defined to be −2, so that W is invariant under G′. Since the superpotential is a
holomorphic function of φ and φ0, the symmetry is enhanced to its complexfication
G′C = SO(N)C×U(1)D

C . We can eliminate the auxiliary field by using its equation
of motion,∗)

∂W/∂φ0 = I2 = 2xz + y2 = 0. (3.6)

We thus obtain an F-term constraint (NF = 1). This equation is immediately solved
to give

z = − y2

2x
. (3.7)

Then, the field �φ constrained by the F-term can be written as

�φ =


 x

yi

− y2

2x


 . (3.8)

When this develops a vacuum expectation value, any vacuum can be transformed by
G′C to the standard form,

�v =
〈
�φ
〉
=
(
1
0

)
. (3.9)

By this vacuum expectation value, the global symmetry is spontaneously broken
as SO(N) × U(1)D → SO(N − 2) × U(1)′, where the unbroken U(1)′ is generated

∗) There is another way to obtain the F-term constraint. If we take K = λφ0
†φ0 + �φ †�φ and

W = φ0
�φ 2, then the potential reads V = 1

λ
|�φ 2|2 + |φ0|2|�φ|2. We obtain the F-term constraint in

the limit λ → 0.
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by a linear combination of the U(1) subgroup and U(1)D.∗) The complex broken
generators consist of X, which is hermitian and generates a mixed-type multiplet,
and the Ei, which are non-hermitian and generate pure-type multiplets. Then, the
number of the mixed- and pure-type multiplets are NM = 1 and NP = N − 2,
respectively. The target manifold M ′ generated by these generators is non-compact
and non-homogeneous due to the presence of the QNG boson. The field near �v is

δ�v = (iψX + ϕiĒi)�v =


 iψ
ϕi

0


 , (3.10)

where ψ is a mixed-type multiplet and ϕi are pure-type multiplets.
We elevate U(1)D to a local gauge symmetry to obtain a compact manifold by

eliminating the mixed-type multiplet, as in the case of CPN−1. The gauged Kähler
potential is the same as Eq. (2.5). By integrating out the auxiliary superfields, we
obtain Eq. (2.9), with the constraint �φ 2 = 0. By using the gauge symmetry U(1)D

C ,
we can choose the gauge fixing as x = 1:

�φ =


 1

ϕi

−1
2ϕ

2


 . (3.11)

Here we have rewritten yi as ϕi. This �φ can be rewritten by using the representative
ξ of the complex coset manifold GC/Ĥ = SO(N)/SO(N − 2)× U(1) as

�φ = ξ�v, ξ = eϕ·Ē =


 1 0 0

ϕi 1N−2 0
−1

2ϕ
2 −ϕi 1


 . (3.12)

We thus obtain a Kähler potential of GC/Ĥ,

K(ϕ, ϕ†, V (ϕ, ϕ†)) = c log
(
1 + |ϕ|2 +

1
4
ϕ†2ϕ2

)
. (3.13)

This is exactly the Kähler potential of SO(N)/SO(N − 2)× U(1). 13), 23), 10)

In our derivation of the Kähler potential, we used the D-term constraint after
imposing the F-term constraint first. Instead, we could impose the D-term constraint
first. If we do so, we obtain the previous CPN−1 model. The F-term constraint is
used as the holomorphic embedding condition of QN−2(C) = SO(N)/SO(N − 2)×
U(1) to CPN−1. It is a well-known method to obtain QN−2(C) in the mathematical
literature. 24) (See also p. 278 of Ref. 25).)

∗) Note that the condition I2 = 0 is essential to introduce the gauge symmetry. To impose

I2 = f2 �= 0, we have to use W = gφ0(I2 − f2). In this case there is no U(1)D symmetry, and there

is a supersymmetric vacuum alignment. 9), 10) Thus the unbroken global symmetry H can depend

on the choice of the vacuum expectation value: H = SO(N − 1) at the symmetric points, where

φ†φ = f2, and H = SO(N − 2) at the non-symmetric points, where φ†φ > f2. Whereas I2 = 0

corresponds to an open orbit, I2 �= 0 corresponds to closed orbits. In general, in closed orbits, there

is a supersymmetric vacuum alignment. (See, e.g., §3.3 for the E6 case.) In this paper, we do not

discuss closed orbits, since we cannot gauge the U(1)D symmetry.
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3.2. SO(2N)/U(N) and Sp(N)/U(N)

In this subsection, we consider the global symmetry G′ = GL ×GR, where GL is
either SO(2N) or Sp(N) and GR = U(N)R, which will be gauged later. To embed
GL into a 2N × 2N matrix of U(2N), we write its elements by using four N × N
matrices:

g =
(
A B
C D

)
∈ U(2N). (3.14)

This is an element of SO(2N) or Sp(N) if it satisfies

gTJ ′g = J ′, (3.15)

where J ′ is the invariant tensor of SO(2N) or Sp(N):

J ′ =
(

0 1N

ε1N 0

)
. (3.16)

Here ε = +1 corresponds to SO(2N) and ε = −1 to Sp(N). Equation (3.15) can be
written explicitly as(

ATC + εCTA ATD + εCTB
BTC + εDTA BTD + εDTC

)
=
(

0 1N

ε1N 0

)
. (3.17)

We consider the global symmetry as either G′ = SO(2N)L × U(N)R for ε = +1
or G′ = Sp(N)L × U(N)R for ε = −1. The field content is Φ ∈ (2N ,N ), which
acquires a vacuum expectation value. Its transformation law under G′ is

Φ → Φ′ = g · Φ = gLΦgR
−1, g = (gL, gR) ∈ GL ×GR. (3.18)

The G′C invariant superpotential is

W (Φ0, Φ) = tr (Φ0Φ
TJ ′Φ), (3.19)

where Φ0 is an N ×N auxiliary matrix chiral superfield, whose transformation law
is

Φ0 → gRΦ0gR
T . (3.20)

Since I2
′ def= ΦTJ ′Φ is symmetric (anti-symmetric) for ε = 1 (ε = −1), Φ0 satisfies

Φ0
T = εΦ0. (3.21)

Hence, Φ0 belongs to a symmetric (anti-symmetric) rank-2 tensor representation of
SU(N)R for ε = 1 (ε = −1), and its U(1)D(∈ U(N)R) charge is defined to be −2
to cancel with the Φ charge. Note that I2′ = ΦTJ ′Φ is invariant under GL, but not
invariant under GR.

To eliminate the auxiliary field Φ0, we solve its equation of motion

δW/δΦ0 = ΦTJ ′Φ = 0. (3.22)
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We thereby obtain F-term constraints for the fields Φ. Their number is NF =
1
2N(N + 1) for ε = 1 and NF = 1

2N(N − 1) for ε = −1. Then the dimension of
the resulting manifold M ′ constrained by the F-term is NΦ = 2N2 − 1

2N(N + 1) =
3
2N

2 − 1
2N for ε = 1 and NΦ = 2N2 − 1

2N(N − 1) = 3
2N

2 + 1
2N for ε = −1. When

the field Φ acquires a vacuum expectation value, any vacuum can be transformed by
G′C to the standard form,

V = 〈Φ〉 =
(

1N

0N

)
. (3.23)

Hence, the F-term constrained manifold is a G′C-orbit of V . The breaking pattern
of the global symmetry is either SO(2N)L×U(N)R → U(N)V for ε = 1 or Sp(N)L×
U(N)R → U(N)V for ε = −1. Here, in both cases, the element of U(N)V can be
written as ((

h 0
0 h−1T

)
, h

)
∈ U(N)V, (3.24)

where we have used Eq. (3.17). The complex isotropy group Ĥ ′ consists of complex
extension of these elements and elements of the type((

1N B
0N 1N

)
, 1N

)
def= eE , E =

((
0N B
0N 0N

)
, 0N

)
, (3.25)

with the constraints, from Eq. (3.17),

B + εBT = 0. (3.26)

These E constitute a Borel subalgebra B of Ĥ′. The dimensionality of B is dimC B =
1
2N(N − 1) for ε = +1 and dimC B = 1

2N(N + 1) for ε = −1. The pure-type broken
generators are the complex conjugation of E ∈ B: Ē = (E)†.

To obtain a compact coset manifold, we gauge the U(N)R symmetry by introduc-
ing vector superfields, as in the Grassmann manifold. The gauged Kähler potential
is the same as Eq. (2.17), but with F-term constraints. Since the procedure of in-
tegrating out the gauge fields is also the same as for the Grassmann manifold, we
obtain Eq. (2.21). We can choose the gauge fixing as

Φ =
(

1M

ϕ

)
, (3.27)

where ϕ satisfies the F-term constraints Eq. (3.22):

ΦTJ ′Φ = ϕ+ εϕT = 0. (3.28)

The fields ϕ are all pure-type chiral superfields, since Φ is generated by the pure-type
broken generators Ē from the vacuum V :

Φ = ξ · V, ξ = eϕ·Ē =
((

1N 0N

ϕ 1N

)
, 1N

)
. (3.29)
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648 K. Higashijima and M. Nitta

Here, from Eq. (3.17), ϕ satisfies ϕ + εϕT = 0, which is consistent with (3.28). By
substituting Eq. (3.27) into Eq. (2.21), we obtain the Kähler potential

K(ϕ, ϕ†, V (ϕ, ϕ†)) = c log det(1N + ϕ†ϕ), ϕ+ εϕT = 0. (3.30)

The fields ϕ are anti-symmetric (symmetric) parts of the matrix chiral superfield of
the Grassmann manifold G2N,N for ε = +1 (−1). Their dimensions are dimCM =
1
2N(N − 1) for ε = +1 and dimCM = 1

2N(N + 1) for ε = −1. Again, it is well
known that these manifolds are submanifolds of the Grassmann manifold G2N,N in
the mathematical literature. 24)

3.3. E6/SO(10)× U(1)

This and the next subsections are devoted to the gauge theory construction of
exceptional-type hermitian symmetric spaces. The situation here is slightly different
from the classical group cases. Namely, in the present case, an F-term constrained
manifold M ′ is characterized by the derivative of a G-invariant (∂I = 0), but not
the G-invariant itself (I = 0), as in the case of classical types.

As in the QN−2(C) case, we consider the global symmetry G′ = E6 × U(1)D =
G × U(1)D. The field belongs to the fundamental representation of E6: �φ ∈ 27,
which will acquire a vacuum expectation value. We decompose E6 under its maximal
subgroup SO(10)×U(1). Since the fundamental representation can be decomposed
as 27 = (1, 4)⊕ (16, 1)⊕ (10,−2), 27) where the second entries are the U(1) charges,
the basic field �φ can be written as

�φ =


 x
yα

zA


 . (3.31)

Here, x, yα (α = 1, · · · , 16) and zA (A = 1, · · · , 10) are an SO(10) scalar, a Weyl
spinor and a vector, respectively. The decomposition of the adjoint representation,
78 = (45, 0) ⊕ (1, 0) ⊕ (16, 1) ⊕ (16,−1), 27) implies that the E6 algebra can be
constructed with the SO(10) generators TAB (A,B = 1, · · · , 10), the U(1) generator
T , upper half generators Eα, which belong to a Weyl spinor of SO(10), and their
conjugates Ēα. (See Appendix D for details.)

The transformation law of �φ under the complex extension of E6 is 15), 28)

δ�φ =
(
iθT +

i

2
θABTAB + ε̄αEα + εαĒ

α
)
�φ

=




2i√
3
θ ε̄β 0

εα
i
2θAB(σAB)α

β + i
2
√

3
θδβ

α − 1√
2
(ε̄σBC)α

0 − 1√
2
(CσA

†ε)β θAB − i√
3
θδAB




 x

yβ

zB


 , (3.32)

where i
2θCDρ(TCD)AB = θAB, and ρ(TAB) is the vector representation matrices of

SO(10). The 16 × 16 matrices σA, σAB and C are (off-diagonal blocks of) SO(10)
gamma matrices, spinor rotation matirices and the charge conjugation matrix, re-
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spectively. Normalizations are fixed by trT 2 = trTAB
2 = trEαĒ

α = 6 (no sum).∗)
The decomposition of the tensor product, 27⊗27 = 27s⊕· · ·, implies that there

exist a rank-3 symmetric invariant tensor Γijk and its complex conjugate Γ ijk. 28)

By using this invariant tensor, a cubic invariant I3 of E6 is defined as

I3
def= Γijkφ

iφjφk = xz2 +
1√
2
zA(yCσA

†y). (3.33)

Note that this is not invariant under U(1)D.
We construct the superpotential

W (�φ0, �φ) = Γijkφ0
iφjφk. (3.34)

Here �φ0 represents auxiliary fields whose U(1)D charges should be chosen so as to
make the superpotential invariant. If we assign the U(1)D charge 1 to �φ, �φ0 must
have charge −2, so that they belong to (27,−2). The equations of motion for the
auxiliary fields φ0

i, δW/δφ0 = Γijkφ
jφk = 0, are

∂W/∂z0
A = ΓAjkφ

jφk = 2zAx+
1√
2
yα(CσA

†)αβyβ = 0, (3.35)

∂W/∂y0α = Γαjkφ
jφk =

√
2(CσA

†)αβyβz
A = 0, (3.36)

∂W/∂x0 = Γ0jkφ
jφk = z2 = 0. (3.37)

In the second equation, we have used the fact that (CσA
†)αβ is symmetric. Note

that these equations can also be written as

∂I3 = 0, (3.38)

where the differentiation is with respect to φi. In these 27 equations, only the first
10 equations are independent. The first equation can be solved to yield

zA = − 1
2
√
2x

y(CσA
†)y. (3.39)

Then, the last two equations are not independent, since they are automatically sat-
isfied as

√
2(CσA

†)αβyβz
A = − 1

2x
(CσA

†)αβyβ

(
y(CσA

†)y
)
= 0, (3.40)

z2 =
1

8x2

(
y(CσA

†)y
)2

= 0, (3.41)

with the help of the identity

(εCσA
†ψ)(ψCσA

†η) = −1
2
(εCσA

†η)(ψCσA
†ψ). (3.42)

∗) trTAB
2 = 6 has been calculated from tr ρ(TAB)2 = 2, while tr (σAB)2 = 4 and others have

been fixed to this.
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650 K. Higashijima and M. Nitta

Hence, the number of F-term conditions is NF = 10, and the dimension of M ′ is
NΦ = 27 − 10 = 17. The manifold M ′ satisfying these F-term constraints can be
written as

�φ =


 x

yα

− 1
2
√

2x
(yCσA

†y)


 . (3.43)

On M ′, the value of the E6 invariant is

I3 ∼ (yCσA
†y)2 = 0, (3.44)

by the identity (3.42). Note that I3 must vanish, since it is not invariant under
U(1)D.

When the fields �φ develop a vacuum expectation value, any vacuum can be
transformed under G′C to the standard form,

�v =
〈
�φ
〉
=
(
1
0

)
. (3.45)

The global symmetry is spontaneously broken as E6 × U(1)D → SO(10) × U(1)′ =
H ′.∗) The unbroken U(1)′ is generated by T ′ = T − 2√

3
127 = diag(0,−

√
3

2 δβ
α,

−√
3δAB), and SO(10) is generated by TAB. The complex isotropy Ĥ′ is larger

than the complexification of H′ due to the existence of the Eα. These 16 Eα con-
stitute a Borel subalgebra B in Ĥ′. The complex broken generators are composed
of pure-type generators Ēα and another combination of U(1) generators of a mixed-
type X ∼ (1, · · ·). Their numbers are NP = 16 and NM = 1, respectively. The target
manifoldM ′ generated by these broken generators has dimension dimM ′ = NΦ = 17.
Since this coincides with the dimension of the manifold constrained by the 10 in-
dependent F-term conditions, any vacuum that satisfies F-term constraints can be
transformed to the form of Eq. (3.45) by a G′C transformation.

To remove the mixed-type multiplet and to obtain a compact manifold, we gauge
the U(1)D symmetry as in the case of CPN−1. The gauged Kähler potential is the
same as in Eq. (2.5). Since the procedure to eliminate the vector superfield is also
the same as in the CPN−1 case, we obtain Eq. (2.9). We can choose a gauge fixing
as

�φ =


 1

ϕα

− 1
2
√

2
(ϕCσA

†ϕ)


 , (3.46)

where we write ϕα for yα. By using the representative ξ of the complex coset manifold
M = GC/Ĥ � E6/SO(10)× U(1), �φ can be rewritten as

�φ = ξ�v, ξ = eϕ·Ē =


 1 0 0

ϕα 116 0
− 1

2
√

2
(ϕCσA

†ϕ) − 1√
2
(CσA

†ϕ)β 110


 . (3.47)

∗) As in the case of SO(N) discussed in §3.1, there is no U(1)D symmetry if I3 �= 0. In this case,

the E6
C-orbit is closed, and, by a supersymmetric vacuum alignment, there exist two regions with

different unbroken global symmetries, 9) symmetric points and non-symmetric points. The breaking

patterns of E6 are E6 → F4 at the symmetric points and E6 → SO(8) at generic points. 28)
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By substituting Eq. (3.46) into Eq. (2.9), we obtain the Kähler potential

K(ϕ, ϕ†, V (ϕ, ϕ†)) = c log
(
1 + |ϕ|2 +

1
8
(ϕ†σAϕ†)(ϕσA

†ϕ)
)
, (3.48)

where we have used the basis in which C = 1. 15) This coincides with the Kähler
potential of E6/SO(10) × U(1) constructed in Refs. 24), 15) and 23). (It is also
equivalent to Ref. 14).) Its dimension is dimCM = 27− 10 − 1 = 16. If we do not
introduce the superpotential, the manifold is CP 26. Hence, E6/SO(10) × U(1) is
embedded in CP 26 by 10 F-term constraints, ∂I3 = 0. In fact, Yasui constructed
E6/SO(10)× U(1) as a submanifold of CP 26 by using the Jordan algebra. 16)

3.4. E7/E6 × U(1)

In this subsection, we consider another exceptional group, E7. The global sym-
metry in this case is G′ = E7 × U(1)D = G × U(1)D. The basic fields �φ belong
to the fundamental representation 56. Under a maximal subgroup E6 × U(1), this
representation can be decomposed as 56 = (27,−1

3)⊕ (27, 1
3)⊕ (1,−1)⊕ (1, 1). 27)

Therefore, we write �φ as

�φ =




x
yi

zi

w


 , (3.49)

where yi and zi are 27 and 27, respectively, and x and w are scalars. By a decomposi-
tion of the adjoint representation under E6×U(1), 27) 133 = (78, 0)⊕(1, 0)⊕(27, 1)⊕
(27,−1), we can construct the E7 algebra from the E6 algebra TA (A = 1, · · · , 78),
the U(1) generator T , the upper half generators Ei (i = 1, · · · , 27), belonging to 27,
and their conjugates Ēi = (Ei)†, belonging to 27. (Their commutation relations
are discussed in Appendix E.) The action of the E7 algebra on the fundamental
representation is

δ�φ =
(
iθT + iθATA + ε̄iE

i + εiĒi

)
�φ

=




i
√

3
2θ ε̄j 0 0

εi iθAρ(TA)ij + i
√

1
6θδ

i
j Γ ijk ε̄k 0

0 Γijkε
k −iθAρ(TA)T i

j − i
√

1
6θδi

j ε̄i

0 0 εj −i
√

3
2θ







x
yj

zj

w


 ,

(3.50)

where ρ(TA) is the 27×27 representation matrix for the fundamental representation,
Γijk is the E6 invariant tensor, defined in the last subsection, and Γ ijk is its conjugate.
Here normalizations have been determined by trT 2 = trTA

2 = trEiĒi = 12 (no
sum).∗)

∗) trTA
2 = 12 has been calculated with the normalization tr (ρ(TA)2) = 6 for the E6 fundamental

representation, as in the previous subsection. Other normalizations have been fixed relative to this.

In the calculation of trEiĒi = 12, we have used the identity Eq. (D.5).
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In the tensor products 27) 56⊗ 56 = 1a ⊕ · · · and 56⊗ 56⊗ 56⊗ 56 = 1s ⊕ · · ·,
there exist the rank-2 anti-symmetric invariant tensor fαβ and the rank-4 symmetric
invariant tensor dαβγδ, respectively. Their components are calculated in Appendix
E. By using this invariant tensor, we can construct the quartic invariant of E7 as

I4
def= dαβγδφ

αφβφγφδ

= −1
2
(xw − yizi)2 − 1

3
wΓijky

iyjyk − 1
3
xΓ ijkzizjzk

+
1
2
Γ ijkΓilmzjzky

lym. (3.51)

Again, note that this is not invariant under U(1)D.
The superpotential invariant under E7 × U(1)D is

W (�φ0, �φ) = dαβγδφ0
αφβφγφδ, (3.52)

where the φ0
α are auxiliary fields belonging to (56,−3). Here the second component

is the U(1)D charge assigned to cancel the U(1)D charge of φα. (The term with rank-
2 tensor fαβ is forbidden by U(1)D symmetry.) To eliminate the auxiliary fields φ0,
we consider F-term constraints obtained from their equation of motions:

∂W/∂y0
i = w(xzi − Γijky

jyk)− ziy
jzj + Γ jklΓjimzkzly

m = 0,

∂W/∂w0 = xyizi − wx2 − 1
3
Γijky

iyjyk = 0,

∂W/∂z0i = x(wyi − Γ ijkzjzk)− yiyjzj + Γ jikΓjlmzky
lym = 0,

∂W/∂x0 = wyizi − xw2 − 1
3
Γ ijkzizjzk = 0. (3.53)

Note that these equations can be written as

∂I4 = 0, (3.54)

where the differentiations are with respect to φα. We show that only half of these
58 equations are independent. To solve these equations, we put the ansatz

zi =
c

x
Γijky

jyk, (3.55)

where c is a constant. By substituting this ansatz into the first and second equations,
we obtain

w(c− 1)Γijky
jyk +

c2

3x2
ΓijkΓlmny

jykylymyn = 0, (3.56)

w =
c− 1

3

x2
Γijky

iyjyk. (3.57)

From these equations we obtain the equation

4(c− 1
2)

2

3x2
Γijky

jykΓlmny
lymyn = 0, (3.58)
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which gives c = 1
2 . By substituting c = 1

2 back into Eqs. (3.55) and (3.57), we obtain
the results,

zi =
1
2x

Γijky
jyk, w =

1
6x2

Γijky
iyjyk. (3.59)

In the same way, the third and the fourth equations in Eq. (3.53) can be solved as

yi =
1
2w

Γ ijkzjzk, x =
1

6w2
Γ ijkzizjzk. (3.60)

We can show that these equations are not independent of Eq. (3.59) with the help of
the Springer relation, Eq. (D.6). Then the number of F-term constraints is NF = 28,
and the dimension of M ′ is dimCM ′ = 56− 28 = 28. Thus, the F-term constraints
can be solved as

�φ =




x
yi

1
2xΓijky

jyk

1
6x2Γijky

iyjyk


 . (3.61)

On these points, the value of the E7 invariant is

I4 = 0, (3.62)

where we have used the Springer relation (D.6). Note that U(1)D invariance requires
I4 = 0.

By using G′C , any vacuum expectation value of �φ can be transformed to

�v =
〈
�φ
〉
=
(
1
0

)
. (3.63)

On this vacuum, global symmetry is spontaneously broken as E7 × U(1)D → E6 ×
U(1)′ def= H ′. Here U(1)′ is generated by a linear combination of the U(1) generator
T and the U(1)D generator TD = 156. From Eq. (3.50), we see that the complex
isotropy Ĥ′ is larger than H′C due to the presence of the Ei, which constitute a
Borel subalgebra. The complex broken generators constitute a hermitian generator
X, which is a linear combination of TD and T , and non-hermitian generators Ēi.
Hence, the numbers of mixed- and pure-type multiplets are NM = 1 and NP = 27,
respectively. The target manifold M ′ is generated by these broken generators, and
its dimension is dimCM ′ = 28, which coincides with the dimension of the manifold
constrained by the F-term conditions in Eq. (3.61).

The target manifold M ′ obtained above is non-compact due to the QNG boson.
We gauge the U(1)D symmetry to remove the mixed-type multiplet and to obtain
a compact manifold. Since the situation is the same as for the CPN−1, QN−2(C)
and E6/SO(10) × U(1) cases, by integrating out the vector superfield, we obtain
Eq. (2.9). We can choose the gauge fixing as

�φ =




1
ϕi

1
2Γijkϕ

jϕk

1
6Γijkϕ

iϕjϕk


 , (3.64)
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where we rewrite yi as ϕi. As in the previous subsections, this can be written as

�φ = ξ�v, ξ = eϕ·Ē =




1 0 0 0
ϕi 127 027 0

1
2Γijkϕ

jϕk Γijkϕ
j 127 0

1
6Γijkϕ

iϕjϕk 1
2Γijkϕ

jϕk ϕi 1


 . (3.65)

Hence the target manifoldM , obtained by integrating out the vector superfield, is the
coset manifold generated by Ēi, which is M � E7/E6 ×U(1). Then, by substituting
(3.64) into Eq. (2.9), we obtain the Kähler potential

K(ϕ, ϕ†, V (ϕ, ϕ†)) = c log
(
1 + |ϕ|2 +

1
4
|Γijkϕ

jϕk|2 +
1
36

|Γijkϕ
iϕjϕk|2

)
. (3.66)

This form coincides with Ref. 13). Its dimension is dimCM = 56− 28− 1 = 27. It
can be embedded into CP 55 by holomorphic constraints ∂I4 = 0.

§4. Conclusions and discussion

We have obtained nonlinear sigma models whose target manifolds are the her-
mitian symmetric spaces G/H, which are compact and homogeneous, from lin-
ear models. For this purpose, we introduced appropriate superpotentials for G =
SO, SU, Sp,E6 and E7 to impose F-term constraints. By solving these F-term
constraint equations, we have obtained constrained manifolds M ′, which are non-
compact and non-homogeneous due to the existence of QNG bosons. When there
is no gauge symmetry, there must be at least one QNG boson, by the theorem of
Lerche and Shore, 6) and the manifold inevitably becomes non-compact and non-
homogeneous (see Appendix B). In order to get rid of these unwanted QNG-bosons,
we further introduced suitable local gauge symmetry. By choosing suitable gauge
conditions, we obtained the Kähler potentials of all the hermitian symmetric spaces,
where decay constants (overall constants of Kähler potentials) originate from FI-
terms of gauge fields.

The gauging procedures to eliminate QNG bosons can be summarized as follows:∗)

R+ × SU(N)× U(1)D
SU(N − 1)× U(1)′

U(1)D−→ SU(N)
S(U(N − 1)× U(1))

,

(R+)M
2 × U(N)L × U(M)R

U(N −M)L × U(M)V
U(M)R−→ U(N)L

U(N −M)L × U(M)L
,

R+ × SO(N)× U(1)D
SO(N − 2)× U(1)′

U(1)D−→ SO(N)
SO(N − 2)× U(1)

,

∗) From the result in Ref. 9), in all cases considered in this paper, we know that there exists no

supersymmetric vacuum alignment, since there is no non-singlet broken generators under the real

unbroken subgroup H. Hence, the F-term constrained manifolds M ′ 
 G′C/Ĥ ′ are topologically

isomorphic to direct products of a QNG boson factor R+ = {θ|θ ∈ R, θ > 0}, which is non-compact,

and a NG bosons factor G′/H ′, which is compact. For example, in the case of CN without an F-

term constraint, M ′ 
 G′C/Ĥ ′ = (SU(N)×U(1)D)C

(SU(N−1)×U(1)′)C∧B 
 R+ × SU(N)×U(1)D
SU(N−1)×U(1)′ = R+ × G′

H′ . Then,

by gauging U(1), we obtain GC/Ĥ 
 G/H = CPN−1.
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(R+)N
2 × SO(2N)L × U(N)R

U(N)V
U(N)R−→ SO(2N)L

U(N)L
,

(R+)N
2 × Sp(N)L × U(N)R

U(N)V
U(N)R−→ Sp(N)L

U(N)L
,

R+ × E6 × U(1)D
SO(10)× U(1)′

U(1)D−→ E6

SO(10)× U(1)
,

R+ × E7 × U(1)D
E6 × U(1)′

U(1)D−→ E7

E6 × U(1)
.

The left-hand sides denote the F-term constrained manifolds M ′ (if there is a su-
perpotential). All M ′ are non-compact and non-homogeneous, due to the existence
of QNG bosons represented by R+. This implies that they are scale factors. The
arrows represent the gauging and the right-hand sides denote the manifold M ob-
tained by integrating out the vector superfields. The relation between M and M ′ is a
Kähler quotient, M = M ′/GCgauge. All M are compact and homogeneous, since they
are parameterized by only NG bosons. In the cases of CPN−1 and GN,M , there are
no F-term constraints. Other cases have GC-invariants, superpotentials and F-term
constraints, as summarized in Table II.

The F-term constraints can be classified into two types:
• G = SO, Sp: I = 0. (They are GC-invariant.)
• G = E6, E7: ∂I = 0. (Although the ∂I are not GC-invariant, the constraints

themselves are GC-invariant.)
In each case, the value of the GC-invariant vanishes on the constrained manifolds,
since, even in the cases of the exceptional groups, the constraints ∂I = 0 lead to
I = 0. This remarkable fact can be understood as follows: Note that, in each case,
the GC-invariant I is not invariant under a gauge group. Hence, it must vanish to
be consistent with a gauge symmetry. We call this the “consistency condition with a
gauge symmetry”.∗)

If we forget the F-term constraints and impose only the D-term constraints, the
manifolds become CPN−1 or G2N,N . This means that all of the hermitian symmetric
spaces are holomorphically embedded in CPN−1 or GN,M by F-term constraints, as
is shown in the last column of Table II. Although some of the constraints are already
known in the mathematical literature, the explicit forms of the constraints in the
E6 and E7 cases are new results: E6/SO(10)× U(1) is holomorphically embbedded
in CP 26 by 16 quadratic homogeneous constraints, and E7/E6 × U(1) is embed-
ded in CP 55 by 28 tripletic homogeneous constraints. The consistency condition
with a gauge symmetry can be understood if we interpret the F-term constraints
as the embedding conditions. Since GN,M can be embedded into CPN , all hermi-
tian symmetric spaces are embedded in CPN . If we want to embed M into CPN ,
the constraint must be homogeneous, when it is written in terms of homogeneous

∗) By combining the result in Ref. 10), this condition can be understood as the condition that

the manifold before gauging must be an open orbit, not a closed orbit. In Ref. 10), it was shown

that an open orbit includes a compact and homogeneous manifold as a submanifold. Contrastingly,

a closed orbit does not have such a submanifold.
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Table II. F-term constraints and embedding. Here, J , J ′, Γ and d are rank-2, rank-2, rank-3 and

rank-4 invariant symmetric tensors of SO(N), SO(2N) or Sp(N), E6 and E7, respectively, and

I2, I2
′, I3 and I4 are GC-invariants composed of them. Each superpotential gives an F-term

constraint, which is I = 0 in the case of classical groups and ∂I = 0 in the case of exceptional

groups. Only 10 equations of the 27 equations are independent in the E6 case, and only 28

equations among 56 equations are independent in the E7 case. The last column denotes the

projective or Grassmann manifold, in which each hermitian symmetric space is embedded by

the F-term constraint.

G/H GC-invariants superpotentials constraints embedding
SO(N)

SO(N−2)×U(1)
I2 = �φTJ�φ φ0I2 I2 = 0 CPN−1

SO(2N)
U(N)

, Sp(N)
U(N)

I2
′ = ΦTJ ′Φ tr (Φ0I2

′) I2
′ = 0 G2N,N

E6
SO(10)×U(1)

I3 = Γijkφ
iφjφk Γijkφ0

iφjφk ∂I3 = 0 CP 26

E7
E6×U(1)

I4 = dαβγδφ
αφβφγφδ dαβγδφ0

αφβφγφδ ∂I4 = 0 CP 55

coordinates.∗)
In this paper, we have used the equation of motion for the vector auxiliary

field. In the path integral formalism, this procedure corresponds to integrating over
the vector field. In a separate paper, 26) we show that the path integration can be
performed exactly.

Now we discuss possible generalizations of our results to a wider class of Kählerian
G/H. In this paper, we treated hermitian symmetric spaces, which are a special class
of homogeneous Kähler manifolds. We confined ourselves to the gauge groups of U(1)
or U(N).

1. Even within this limitation, it is possible to generalize our construction to a
wider class of homogeneous Kähler manifolds. Let us consider Kähler G/H,
where H has only one U(1) factor, H = Hss×U(1), with Hss being a semisimple
subgroup of H. To be specific, let us generalize SO(2N)/U(N). By generalizing
Φ to a 2N × M matrix (N ≥ M), transforming under SO(2N) × U(M) as
Φ → gLΦgR

−1, with the same superpotential (3.19) (where J is the same as in
Eq. (3.16)), we obtain

(R+)M
2 × SO(2N)L × U(M)R

SO(2N − 2M)L × U(M)V
U(M)R−→ SO(2N)L

SO(2N − 2M)L × U(M)L
.

This reduces to SO(2N)/SO(2N−2)×U(1) when M = 1 and to SO(2N)/U(N)
when N = M . Similarly, Sp(N)/U(N) can also be generalized. By generalizing
Φ to a 2N ×M matrix (N ≥ M), we obtain

(R+)M
2 × Sp(N)L × U(M)R

Sp(N −M)L × U(M)V
U(M)R−→ Sp(N)L

Sp(N −M)L × U(M)L
.

2. Now we consider generalization to the case of many U(1) factors. Remember
that the FI parameter c becomes a decay constant, which represents the size of
G/H, after integrating out the vector superfield. Then, we can consider there

∗) The manifold, which can be embedded into CPN , is a (projective) algebraic variety and can

be understood as a Hodge manifold.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/3/635/1876727 by guest on 20 August 2022



Supersymmetric Nonlinear Sigma Models as Gauge Theories 657

to be a one-to-one correspondence between the decay constants and the FI-
parameters. Hence, to obtainG/H withH = Hss×U(1)n we must prepare n FI-
parameters. We thus consider a global symmetry, G′ = G×G1 × · · ·Gn, where
each Gi includes a U(1) factor. If we gauge all Gi, the gauged Kähler potential
has n FI terms. After integrating out vector superfields, we obtain G/H ′×G1×
· · ·Gn = G/Hss×U(1)n, where H ′ is the remaining part after embedding all Gi

into G. Here we have put Hss = H ′ ×G1ss × · · ·Gnss. In the case of hermitian
symmetric spaces, we have introduced an irreducible representation of G as the
basic field. It seems that we have to introduce more irreducible representations
in these generalizations. Then we must impose orthogonality relations on these
fields with D-term or F-term constraints. At the moment, we are unable to find
consistent constraints in these cases.
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Appendix A
BKMU-IKK Construction of Kähler Potentials

of Compact Homogeneous Kähler Manifolds

Bando et al. (BKMU) gave the general method to construct the G invariant
Kähler potential of GC/Ĥ. 5) However, there remained an ambiguity in the choice
of the projection operators ηi introduced below, Eq. (A.1). Itoh et al. (IKK) con-
structed these operators explicitly for the case that the target is compact, namely
GC/Ĥ � G/H. 11) Note that their method does not ensure that such models can be
obtained from linear models. In this appendix, we review their method to compare
with our method, which, on the other hand, has a linear origin.

First of all, we need the projection matrices, which project a fundamental repre-
sentation space onto a Ĥ invariant subspace. 5) They satisfy the projection conditions

η† = η, ηĤη = Ĥη, η2 = η. (A.1)

In an arbitrary Kähler G/H, the number of projection matrices is equal to the
number of U(1) factors in H. Since there is only one U(1) factor in the hermitian
symmetric cases, there is one projection matrix. In each case, it can be written as 11)

η =
(
1

0

)
. (A.2)

By using this, the Kähler potentials of compact Kähler manifolds can be written
as 5)

K = c log detηξ†ξ, (A.3)

where ξ is a representative of the complex coset GC/Ĥ. Since the form of ξ can be
calculated as Eqs. (2.11), (2.23), (3.12), (3.29), (3.47) and (3.65), they give the same
Kähler potential obtained from linear models in this paper.
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Appendix B
The Non-Compactness Theorem of Lerche and Shore

The nonlinear sigma model, whose target manifold is compact and homogeneous,
has a unique Kähler potential, as discussed in the last appendix. 5), 11) Although these
models include neither a QNG boson nor an arbitrariness in the Kähler potential and
they are mathematically beautiful, they cannot be obtained from any linear model,
at least when there is no gauge symmetry: It was shown that there exists at least one
QNG boson, and therefore the target must be non-compact and non-homogeneous.
In this appendix, we review the theorem obtained by Lerche and Shore 6) (see also
Ref. 7)).

The fact that the model has a linear origin implies that the target manifold can
be obtained from some F-term conditions (if there is no gauge symmetry). Since
they are holomorphic equations, the invariance under the global symmetry G en-
larges to the complexification GC , and the manifold becomes a GC-orbit of the
vacuum expectation value v.∗) The pure-type multiplets require that the real broken
generators are divided into complex unbroken and complex broken generators, Ei

and Ēi(= (Ei)†). Since Ēi is broken, we obtain

0 �= |Ēiv|2 = v†
[
Ei, Ēi

]
v = α(i)av†Hav, (B.1)

where α(i)a is a root vector and Ha is a Cartan generator. Therefore, at least one
Cartan generator, Ha, must be broken. Since this is hermitian, there exists at least
one mixed-type generator, and therefore at least one QNG boson.

Appendix C
SO(N) Algebra

Since the basis of SO(N) used in §3.1 is not in the standard form, here we give
its relation to the ordinary basis. The SO(N) generators in the ordinary basis are

(Tij)kl =
1
i
(δk

i δjl − δk
j δil). (C.1)

In the basis, the vacuum expectation value satisfying �v 2 = 0 can be written as

�v =



− i√

2

0
1√
2


 . (C.2)

∗) If there are not enough F-term constraints, the manifold may become larger than a GC-orbit.

However, the proof is valid also in such cases, since they include at least one GC-orbit.
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The real unbroken generators, at the center of the matrix, generate SO(N −2). The
complex unbroken and broken generators are

Ei =




· · · − i√
2

· · ·
...

...
i√
2

0N−2 − 1√
2

...
...

· · · 1√
2

· · ·



, Ēi =




· · · − i√
2

· · ·
...

...
i√
2

0N−2
1√
2

...
...

· · · − 1√
2

· · ·



,

(C.3)

where i = 1, · · · , N − 2 and only the i-th components are nonzero. The broken U(1)
generator is

T =


 −i

0N−1

i


 . (C.4)

This generator will become unbroken after gauging U(1)D. Here, we change the basis
by a unitary transformation with

U =




i√
2

1√
2

1N−1

− i√
2

1√
2


 . (C.5)

Since U is a unitary matrix (U †U = UU † = 1), �φ †�φ is invariant, and then log(�φ †�φ)
also is invariant. By the unitary transformation, the vacuum expectation value is
transformed to the standard form,

U�v =
(
1
0

)
. (C.6)

The SO(N − 2) generators are not transformed, and the other generators are trans-
formed as

UEiU † =




· · · 1 · · ·
...

...
0 0N−2 −1
...

...
· · · 0 · · ·



, UĒiU

† =




· · · 0 · · ·
...

...
1 0N−2 0
...

...
· · · −1 · · ·



,

UTU † =


 1

0N−1

−1


 . (C.7)

We thus obtain the transformation law (3.4) used in §3.1. Moreover, the second
rank invariant tensor is transformed as δij → (UδUT )ij = Jij , where J is defined in
Eq. (3.3).
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Appendix D
E6 Algebra

In this appendix, we construct the E6 algebra by referring to Refs. 15) and 28).

D.1. Construction of E6 algebra

Since an adjoint representation is decomposed as 78 = (45, 0)⊕(1, 0)⊕(16, 1)⊕
(16,−1), 27) we construct the E6 algebra as E6 = SO(10)⊕U(1)⊕16⊕16: We prepare
the SO(10) generator TAB , the U(1) generator T , 16 as Eα, and 16 as Ēα = (Eα)†.
Then their commutation relations can be calculated as follows: 15), 28)

[TAB, TCD] = −i(δBCTAD + δADTBC − δACTBD − δBDTAC), [T, TAB] = 0,
[TAB, Eα] = −(σAB)αβEβ , [TAB, Ē

α] = (σ∗
AB)αβĒ

β ,

[T,Eα] =
√
3
2
Eα, [T, Ēα] = −

√
3
2
Ēα,

[Eα, Eβ ] = [Ēα, Ēβ ] = 0, [Eα, Ē
β] = −1

2
(σAB)α

βTAB +
√
3
2
δα

βT. (D.1)

The U(1) charge of Eα is determined by the difference between U(1) charges of x and
y or y and z in Eq. (3.32): 2√

3
− 1

2
√

3
= 1

2
√

3
− (− 1√

3
) =

√
3

2 . The second coefficient
of the last equation has the same value as the U(1) charge of Eα, from the anti-
symmetric property of the structure constants. The relative weight of the first and
the second terms is determined by using the Jacobi identity, [Ē, [E,E]]+(cyclic) = 0,
and the nontrivial identity for the spinor generators, 15), 28)

ΣAB(σAB)α[β(σAB)γδ] =
3
2
δα

[βδγ
δ]. (D.2)

D.2. Invariant tensor of E6

From the tensor product 27) 27⊗ 27 = 27s ⊕ · · ·, we know there exists a rank-3
symmetric tensor invariant under E6. The components of Γijk are 28)

Γijk =



Γ0AB = δAB,
ΓAαβ = 1√

2
(CσA

†)αβ ,

otherwise 0.
(D.3)

These components can be calculated as follows. First, construct the SO(10)× U(1)
invariant of order three:

I3 = Axz2 +
1√
2
zAyα(CσA

†)αβyβ . (D.4)

By the requirement of the invariance of E or Ē, we can conclude A = 1. (Here
we have used the identity (3.42).) The components (D.3) can be read from this
invariant.

It is known that there is an identity 29),∗)

ΓijkΓ
ijl = 10δl

k. (D.5)
∗) In the calculation of ΓijAΓ

ijB = 10δAB, we have used the identity 2−4tr (CσA
†σBC)

= δAB . 28)
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Under the normalization in Eq. (D.5), there is the Springer relation 29)

Γijk(Γ jl{mΓno}k) = δi
{lΓmno}, (D.6)

where we have used the notation A{ij···} = Aij··· + Aji··· + · · ·. These identities are
used many times in the analysis of the E7 algebra.

Appendix E
E7 Algebra

In this appendix, we construct the E7 algebra in the same way as in the last
appendix.

E.1. Construction of E7 algebra

The decomposition of the adjoint representation of E7 under the maximal sub-
group E6 × U(1) is 133 = (78, 0) ⊕ (1, 0) ⊕ (27, 1) ⊕ (27,−1), where the second
components are the U(1) charges. 27) Hence, we can construct the E7 algebra by
adding generators Ei and Ēi(= (Ei)†) (i = 1, · · · , 27), which belong to the E6 funda-
mental and anti-fundamental representations, respectively, to the E6×U(1) algebra,
TA (A = 1, · · · , 78) and T : E7 = E6 ⊕ U(1) ⊕ 27 ⊕ 27. In the same manner as we
constructed the E6 algebra in the last appendix, their commutation relations are
obtained as follows:

[TA, TB ] = ifAB
CTC , [T, TA] = 0,

[TA, E
i] = ρ(TA)ijE

j , [TA, Ēi] = −ρ(TA)T i

j
Ēj ,

[T,Ei] =
√

2
3
Ei, [T, Ēi] = −

√
2
3
Ēi,

[Ei, Ej ] = [Ēi, Ēj ] = 0, [Ei, Ēj ] = ρ(TA)ijTA +
√

2
3
δi

jT. (E.1)

Here ρ(TA) is a fundamental representation matrix, and the fAB
C are structure

constants of E6, whose explicit forms were obtained in the last section. The U(1)
charge of Ei is determined from the difference of x and yi, etc., in Eq. (3.50), and
Ēi is its conjugate. In the last equation, the coefficient of the second term coincides
with the U(1) charge of Ei due to the anti-symmetricity of the structure constants
of E7. The first term is determined by the Jacobi identity [Ē, [E,E]] + (cyclic) = 0
and the nontrivial identity for the E6 fundamental representation, 30)

ΣA ρ(TA)[ijρ(TA)k]
l = −2

3
δ[i

jδ
k]

l. (E.2)

This is satisfied when tr ρ(TA)2 = 6.

E.2. Invariant tensors of E7

From the tensor product of fundamental representations 27), 56⊗ 56 = 1a ⊕ · · ·
and 56 ⊗ 56 ⊗ 56 ⊗ 56 = 1s ⊕ · · ·, there exist the rank-2 anti-symmetric tensor
fαβ and the rank-4 symmetric tensor dαβγδ as E7 invariant tensors. To find their
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components, we construct a linear combination of E6 × U(1) invariants of quartic
order and require invariance under E or Ē, as in the last appendix. The result is

I4 = dαβγδφ
αφβφγφδ

= −1
2
(xw − yizi)2 − 1

3
wΓijky

iyjyk − 1
3
xΓ ijkzizjzk

+
1
2
Γ ijkΓilmzjzky

lym. (E.3)

Here, I4 is invariant due to the Springer relation for theE6 invariant tensor, Eq. (D.6).
The components can be read from this invariant. Since we do not use the anti-
symmetric tensor fαβ , we do not construct it here.
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