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Supersymmetric nonlinear sigma models are obtained from linear sigma models by im-
posing supersymmetric constraints. If we introduce auxiliary chiral and vector superfields,
these constraints can be expressed by D-terms and F-terms depending on the target man-
ifolds. Auxiliary vector superfields appear as gauge fields without kinetic terms. If there
are no D-term constraints, the target manifolds are always non-compact manifolds. When
all the degrees of freedom in these non-compact directions are eliminated by gauge symme-
tries, the target manifold becomes compact. All supersymmetric nonlinear sigma models,
whose target manifolds are hermitian symmetric spaces, are successfully formulated as gauge
theories.

§1. Introduction

When the global symmetry G is spontaneously broken down to its subgroup
H, there appear massless Nambu-Goldstone (NG) bosons corresponding to broken
generators of the coset manifold G/H. At low energies, interactions among these
massless particles are described by the so-called nonlinear sigma models, whose la-
grangians are completely determined by the geometry of the target manifold G/H,
parameterized by NG-bosons. 1)

In supersymmetric theories, there appear massless fermions as supersymmetric
partners of NG-bosons. ?) These massless fermions together with NG-bosons are de-
scribed by chiral superfields in four-dimensional theories with N = 1 supersymmetry.
Since chiral superfields are complex, the supersymmetric nonlinear sigma models are
closely related to the complex geometry; their target manifolds, where field vari-
ables take their values, must be Kéhler manifolds. ®) If the coset manifold G/ H itself
happens to be a Kéhler manifold, both real and imaginary parts of the scalar com-
ponents of chiral superfields are NG-bosons. If G/H is not a Kéhler manifold, on the
other hand, there is at least one chiral superfield whose real or imaginary part is not
a NG-boson. This additional massless boson is called the quasi-Nambu-Goldstone
(QNG) boson. 24

The general method to construct supersymmetric nonlinear sigma models has
been discussed by Bando, Kuramoto, Maskawa and Uehara (BKMU). 5) When QNG
bosons are present, their effective lagrangians include arbitrary functions. This is
always the case when the target manifold of the nonlinear sigma model is larger than
the coset manifold G/H, where NG-bosons reside, since the geometry of the target
manifold cannot be fixed by the metric of its subspace G/H.% =19 The arbitrariness
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636 K. Higashijima and M. Nitta

reflects the ambiguity of the metric in the direction of QNG bosons. When the coset
manifold G/H is itself Kédhler, the effective lagrangian is uniquely determined by
the geometry of G/H, as has been shown in a beautiful paper by Itoh, Kugo and
Kunitomo. ') (See Appendix A for a review.) Kihler potentials in this case have
been discussed by many authors®: ) ~18) (See references in Ref. 18).), and have
been used to construct the coset unification models, where fermionic partners of NG
bosons are considered as quarks. 1%

Nonlinear sigma models are considered low energy effective theories for massless
particles after integrating out the massive particles in the corresponding linear sigma
models. In this context, Lerche and Shore have shown that nonlinear sigma models
whose target manifolds are Kéhler G/H manifolds cannot be obtained from linear
sigma models. %) (See also Ref. 7) and Appendix B for a review.) According to this
theorem, there must exist at least one QNG bosons in effective field theories obtained
from linear sigma models.

On the other hand, it is known that sigma models on some Kéhler G/H man-
ifolds, namely on CPY or on the Grassmann manifold Gy /(C), are obtained by
the introduction of gauge symmetry.12):20-22) The implicit assumption of Lerche
and Shore is the absence of gauge interactions in the linear sigma models. It seems
possible to eliminate unnecessary QNG bosons if we introduce an appropriate gauge
symmetry.

In this paper, we show that supersymmetric nonlinear sigma models on a cer-
tain class of Kéhler G/H manifolds are obtained from linear sigma models with
gauge symmetry. We define nonlinear sigma models by imposing supersymmetric
constraints on linear sigma models. We introduce two kinds of constraints, D-term
and F-term constraints. If we introduce auxiliary fields, these correspond to vector
and chiral superfields. Vector auxiliary superfields appear as gauge fields. We suc-
cessfully formulate nonlinear sigma models on (irreducible and compact) hermitian
symmetric spaces*) classified by Cartan as in Table I.24)**)

This paper is organized as follows. In §2, we review simple cases without F-
term constraints, namely the projective space CPV~1 and the Grassmann manifold
Gn,m(C). Although these cases are known, it is instructive to discuss them with
emphasis on an interpretation in terms of NG and QNG bosons. In §3, we generalize
to other hermitian symmetric spaces by introducing F-term constraints in addition
to D-term constraints. Results in this section are new. As a by-product, we find ex-
plicit expressions of holomorphic constraints to embed G/H into CPY or Gy (C).
Section 4 is devoted to conclusions and discussion. We discuss how the results can
be generalized to an arbitrary Kéhler G/H manifold. In Appendix A, we review
the construction of the Kéhler potentials for Kéhler G/H using BKMU and IKK
methods, in the case of hermitian symmetric spaces. In Appendix B, we review the
theorem of Lerche and Shore. Appendices C, D and E are devoted to summaries of

*) Symmetric spaces are homogeneous spaces G /H with an involutive automorphism. Since it
can be shown that any G-invariant differential form w in a symmetric space is closed, dw = 0, a
fundamental two form of a hermitian symmetric space is also closed, and this is K&hlerian. Hence,
the expression “Kéhler symmetric space” has the same meaning.

**) We use ‘dim¢’ for complex dimensions and ‘dim’ for real dimensions.
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Supersymmetric Nonlinear Sigma Models as Gauge Theories 637

Table I. Hermitian symmetric spaces. The first three manifolds, CPY = G, (C) and QY ~2(C),
are called a projective space, a Grassmann manifold and a quadratic surface, respectively. The
projective space CPY ! and the Grassmann manifold G v, M (C) are a set of complex lines and
M-dimensional complex planes in C” | respectively. BI (DI) corresponds to odd (even) N. In
the mathematical literature, EIII is written as Eg/Spin(10) x U(1), since coset generators belong
to the SO(10) Weyl spinor.

Type G/H dimc(G/H)
AIll, | CPY"T=SU(N)/S(U(N —1) x U(1)) N-1
Alll, | Gym(C)=U(N)/UN — M) x U(M) | M(N — M)
BDI | QN¥72(C) = SO(N)/SO(N —2) x U(1) N -2

CI Sp(N)/U(N) IN(N+1)
DITI SO(2N)/U(N) IN(N -1)
EII FEs/SO(10) x U(1) 16
EVII E;/Es x U(1) 27

SO, Eg and FEr algebras.

In the rest of this section, we introduce the notation and terminology used in
this paper.

The linear description of the nonlinear sigma model without a gauge symmetry
is given by

L= /d49¢ﬂ¢> + (/ 00g(0) + c.c.> , (1-1)

where the chiral superfield ¢ belongs to an irreducible representation of the global
symmetry group G, and ¢q is an auxiliary chiral superfield. The absence of kinetic
term of ¢ corresponds to the strong coupling limit of the Yukawa theory. Although
the superpotential W = ¢gg(¢) is G-invariant, ¢o and g(¢) need not be G-invariant
separately. Instead, they may have indices transforming as a non-trivial representa-
tion of G, such as W = ¢, g(4)". If we integrate over the auxiliary field ¢g, we obtain
F-term constraints, g(¢) = 0, which are holomorphic functions. Therefore, the F-
term constraints are invariant under the larger group G, the complex extension of
G.

Let the number of F-term constraints be Ng. If it is sufficiently large, the target
manifold M’ becomes a G€-orbit of the vacuum v = (¢). Let the complex isotropy
group of the vacuum be H (I:I v = v). Then, the target manifold of the nonlinear
sigma model is parameterized by the chiral superfields corresponding to complex
broken generators in G€ —H.*) Therefore M’ is a complex coset space, M’ ~ G€/ H ,
generated by these broken generators. As an example, let us consider a doublet
¢ = <z;) of G = SU(2) and suppose that they acquire the vacuum expectation

1
0

0, it is the complex unbroken generator in H. On the other hand, 73 and the lowering
operator 7_(= 7, 1) are the elements of the broken generators in G€ — H.
There are two kinds of broken generators: the hermitian broken generator X

values v = ( ) Since the raising operator 74 = %(ﬁ +im) = (8 (1)) satisfies T4v =

*) We use the calligraphic font for a Lie algebra corresponding to a Lie group.
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and the non-hermitian broken generator E.*) The superfields corresponding to non-
hermitian and hermitian generators are called pure-type and mixed-type superfields,
respectively. 6 In the previous example, where the representative of G€ / His given
by ¢ = expi(p373 + ©7_) v, @3 is a mixed-type and ¢ is a pure-type superfield. The
scalar components of the mixed-type multiplets consist of a QNG boson in addition
to a NG boson, whereas those of the pure-type multiplets consist of two genuine NG
bosons. Since the vacuum is invariant under H , we can multiply the representative
of the coset manifold by an arbitrary element of H from the right. In our previous
example, we can rewrite it as expi(¢373 + Ko7 + Sp72) - v by multiplying an ap-
propriate factor generated by 7 for sufficiently small |p3| and |p|. The NG-bosons
parameterizing S3 ~ SU(2) are Rp3, Ry and J¢, whereas Jip3 is the QNG-boson
parameterizing the radius of S2. The number of chiral superfields parameterizing
the target manifold is

Ng = dimg V — Ng = Ny + Np, (1-2)

where V is the representation space. The numbers of the mixed-type and pure-type
multiplets are denoted by Ny and Np, respectively.

The directions parameterized by QNG bosons are non-compact, whereas those
of NG bosons are compact.** From the theorem of Lerche and Shore (see Appendix
B), there exists at least one mixed-type multiplet, and therefore the target manifold
M’ becomes non-compact. Since no two points in the non-compact direction can be
connected by the compact isometry group G, M’ is also non-homogeneous.

We rewrite the groups G and H defined above as G’ and H’, and therefore
M ~G'C) H’. In order to eliminate the degree of freedom of QNG bosons, we elevate
the subgroup of G’ to a local gauge symmetry. We assume G’ is the direct product of
a global symmetry and the gauge symmetry Ggayge; that is G/ = G x Ggauge, Where
Ggauge = U(1) or U(N). The gauged linear lagrangian can be written as

L= /d40 (ququa — cv) + (/ d?0p0g(0) +c.c.> , (1-3)

where ¢g9 and V are auxiliary chiral and vector superfields. The absence of the
kinetic term of the gauge field corresponds to the strong coupling limit, where the
gauge coupling constant tends to infinity. Here, for simplicity, the gauge group is
assumed to be U(1). (See §2.2 for the non-Abelian case.) Integration over ¢¢ gives
the F-term constraint to define the non-compact manifold M’, as discussed above.
The integration over V gives a D-term constraint that restricts M’ to the compact
manifold M = M’/GS,,,.,%" whose dimension is

gauge’

dimg M = Ng — dim Ggauge- (1-4)

) In general, H is larger than HC, due to the existence of non-hermitian generators E. E is
the hermitian conjugate of E. They constitute the so-called Borel subalgebra B in H.D
**) We use the word “compactness” in the sense of topology. The kinetic terms of QNG bosons
have the same sign as those of NG bosons.
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Supersymmetric Nonlinear Sigma Models as Gauge Theories 639

Since we introduce gauge fields to absorb all mixed type multiplets, the dimension
of the gauge group and the compact manifold M are

dim Ggauge = N, dimg M = Np. (1-5)
The compact manifold M is parameterized by only pure-type multiplets.

§2. Nonlinear sigma models without the F-term constraint
Although examples in this section are well known,2!) we describe them in de-
tail, since the interpretation in terms of NG and QNG bosons is useful to find the
nonlinear sigma models on other compact manifolds.

2.1.  Projective space: CPN~! = SU(N)/S(U(N —1) x U(1))
def

We consider the global symmetry G’ = U(N) = SU(N)xU(1)p = G x U(1)p.
Below, the phase symmetry U(1)p is gauged, while G = SU(NN) remains global. We
prepare the fundamental fields (E € N, which acquire a vacuum expectation value.
First of all, we consider the canonical Kahler potential

K($,¢") =4'6. (2:1)
For later purposes, we decompose G = SU(N) under the subgroup SU(N—1)xU(1).
A fundamental representation IN is decomposed as N = (N —1,1) & (1,—N + 1),

where the second factors are U(1) charges. Hence, we decompose the fields as

‘5: (;) (i =1,---,N —1). Generators of SU(N) can also be decomposed into

the SU(N — 1) generators Ty (A = 1,---, N2 — 2N), the U(1) generator T, the
N — 1 raising operators E' represented by upper triangle matrices, and the lowering
operators represented by lower triangle matrices F; = (EZ)Jr The transformation
law of ¢ under the complexified group SU (N)C is

0 = (0T +i0' T + &E' + €'E;) 6

i /2=y €
N J €T
€ —iGAp(TA)Zj —1 L%Zj Y

NN=T)
where p(T4) is an N — 1 by N — 1 matrix for the fundamental representation of
SU(N —1). We normalized these generators as tr Ta2 = trT? = tr E;E' = 2 (no
sum). When € = € and 6,04 € R, this transformation law reduces to that of the real
group SU(N). The U(1)p transformation is generated by Tp = 1.

When qg acquires a vacuum expectation value, it can be transformed by G’ € to

the standard form,
/AN (1 )
v—<q§>—<0>. (2-3)

*) The supersymmetric Higgs mechanism acts as follows: A vector superfield absorbs one mixed-
type multiplet to constitute a massive vector multiplet. If it absorbs a pure-type multiplet, one NG

boson remains massless. They cannot constitute a massive vector multiplet, and the supersymemtry
31)

is spontaneously broken.
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640 K. Higashijima and M. Nitta

By this vacuum, the global symmetry is spontaneously broken down as U(N) —
U(N—1) = SUN—-1)xU(1) % H'. Here, U(1)’ is generated by T’ ~ diag(0, 1, - -,
1), which is a linear combination of T and T'. The complex isotropy group H' , which
leaves ¥ invariant, is larger than H’ C, since upper triangle generators E’ annihilate
the vacuum #. Here, E' generators constitute a Borel subalgebra B in H'. On the
other hand, the complex broken generators are the lower triangle generators F; and
the diagonal generator X = (1,0,---,0), which is also a linear combination of 7" and
Tp. The non-hermitian generators E; are pure-type generators, and the hermitian
generator X is a mixed-type generator. The target manifold M’ of the nonlinear
sigma model is a complex coset manifold M’ ~ G’ ¢ / H' generated by these complex
broken generators. Since, by using its representative & = exp(p'E; +iX), the fields

can be written as ¢ = £'v, its form near the vacuum is

60 = (i X + ¢'E;)0 = (Z/j) (2:4)
We thus find that 1 is a mixed-type chiral superfield, whose scalar components are
NG and QNG bosons, while the (' are pure-type chiral superfields, whose scalar
components are both NG bosons. Then the numbers of mixed-type and pure-type
chiral superfields are Ny = 1 and Np = N — 1, respectively. This Kahler manifold
is non-compact and non-homogeneous due to the existence of the QNG boson.

To construct a compact homogeneous manifold, we wish to eliminate the QNG
boson (the mixed-type multiplet). Hence, we gauge the U(1l)p symmetry by in-
troducing a vector superfield V', which will absorb the mixed-type multiplet. The
gauged Kahler potential is 3%

K($.6",V)=¢"1¢ ~cV, (2:5)

where ¢V is a Fayet-Iliopoulos (FI) D-term. 23 Since the transformation law of
Vis

eV eV = Vel -0) e c U(1)p, (2-6)

where 0 is a chiral superfield, the Kédhler potential (2-5) is invariant under the com-
plex extension of the gauge symmetry, U (1)DC. Note that the global symmetry
G = SU(N) cannot be complexified. The equation of motion of V' is

SK/§V =eV¢Td—c=0. (2:7)
From this equation, V' can be solved as
- - o6
V(¢ ¢") = ~log (— : (2:8)

c
To eliminate the gauge field, we substitute V(d_;, qg ) back into Eq. (2-5), obtaining

K(6,61,V(d,6") = clog(¢'¢), (2:9)
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Supersymmetric Nonlinear Sigma Models as Gauge Theories 641

where we have omitted constant terms.*) Since we have the gauge symmetry U (l)DC,

we can fix the gauge as
- 1
= 5. 2-10
i- () (210)

By comparing Egs. (2-4) and (2-10), we find that the mixed-type chiral superfield has
been eliminated by this gauge fixing. The gauge fixed field (2:10) can be rewritten
as

e I (211)

where ¢ can be considered as a representative of a complex coset manifold G€ / H ~
G/H = SU(N)/S(U(N —1) x U(1)). Since this is a compact homogeneous Kéahler
manifold, we have obtained the desired result. To obtain a compact manifold, gauge
fields are necessary. By substituting Eq. (2-10) into Eq. (2-9), we obtain

K(p.¢", V(o o) = clog(1 + [o]?). (2:12)
This is the well-known Kéhler potential of the Fubini-Study metric for CPN=1 =
SU(N)/S(U(N —1) x U(1)).
2.2, Grassmann manifold: Gy (C) =U(N)/UN — M) x U(M)

This subsection is a generalization of the last subsection. The picture of NG
and QNG bosons is discussed in Ref. 22). We consider a global symmetry G’ =
GL x Gr = UN)L, x U(M)g (N > M). The basic fields are & € (IN, M), which
are N x M matrix-valued chiral superfields. The transformation law of @ under G’ ¢

is**)

S —-P =qg- P W aPgr, g=(9L,9R) € G/Ca (2-13)

where g1, and ggr are N x N and M x M matrices, respectively.
The Kahler potential is canonical:

K(®,8") = tr (01d). (2-14)

Any vacuum can be transformed under G’ € to

V= (d) = (134>, (2-15)

where 157 is the M x M identity matrix and 0 is the (N — M) x M zero matrix.
The global symmetry is spontaneously broken as U(N)p, x U(M)gr — U(N — M)y, x

U(M)y. Here, U(N — M)y, is the group generated by ((0(])” g) ,OM) € (G, 0r),

*) Their contributions to the lagrangian vanish as a result of the d*6 integration.
**) The conjugate representation ¢ € IV is defined to transform as ¢ — (g7 T ¢, since the group
is extended to its complexification and we must preserve the chirality.
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642 K. Higashijima and M. Nitta

where T are (N — M) x (N — M) matrices, and U(M)y is generated by

((:g ONO,M ) ,T) € (Gr,0r), where T" are M x M matrices. The complex isotropy H
. . . C def 0 T

that leaves (@) invariant is larger than H'™ by E = (( o ON_M) ,OM), W}qere T

are M x (N — M) matrices. Here, these F constitute a Borel subalgebra B of H’, and

its dimension is dimg B = M (N —M). On the other hand, the complex broken gener-

. .. = def (/0 0 .
ators consist of non-hermitian generators, £ = (( 7{” O M) ,0 M), which are her-

mitian conjugates of F, and hermitian generators, X def <(:g ON(iAI) ,—T), which
are elements of an axial symmetry U(M)a. The target manifold is a complex coset

manifold M’ ~ G'® /H’, and its representative is & = exp(p-E+ith- X) o (&1,&8R)-

The field can be written as ¢ = & -V = ¢/ V&R L. Its form near the vacuum is

5V = (2;¢). (2-16)

Here, ¢ is an M x M matrix chiral superfield considered as mixed types and ¢ is
an (N — M) x M matrix chiral superfield considered as pure types. Hence, the
numbers of mixed-type and pure-type chiral superfields are Ny = M? and Np =
M(N — M)(= dime B), respectively.

To absorb the M? mixed-type chiral superfields, we gauge U (M )g by introducing
M? vector superfields V = VAT,, where T4 represents generators of U(M)g. The
gauged Kahler potential is

K(®,8",V) = tr (dIde") — ctrV, (2-17)
where ctrV is a Fayet-lliopoulos D-term. Since the vector superfields are trans-

formed as

eV =V = gre” grl, (2:18)

the gauged Kahler potential is invariant under the complexified gauge symmetry
Gr€. To eliminate vector superfields, we use the equation of motion of V,*)

SK )6V = &TdeY — 1y = 0. (2:19)
Then V can be solved as
ol P
V(®,8") = —log (T) . (2-20)

By substituting this into Eq. (2-17), we obtain
K(®,8", V(®,8")) = ctr log(d'®) = clog det(PTd), (2-21)

where we have omitted constant terms. We choose the gauge fixing as
P = (1M) : (2-22)
¥

*) We treat e~V de" as an infinitesimal parameter, since dtr ('de") = tr (dTde (e7Vde")).
The second term is obtained from tr (§log X) = tr (X '6X), where X = ¢".
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where ¢ is an (N — M) x M matrix-valued chiral superfield. By comparing Eq. (2-16)
and Eq. (2-22), we find that all mixed-type multiplets 1 have disappeared by this
gauge fixing condition. When £ is a representative of GE/H = U(N)/U(N — M) x
U(M), @ can be rewritten as

D=¢ V=6V, =e"F= ((1(24 1NO_M> ; 1M> = (§L,€r). (2:23)

Since the target space M is parameterized solely by pure-type multiplets, it is a
compact homogeneous Kéhler manifold. By substituting Eq. (2-22) into Eq. (2-21),
we obtain the Kahler potential of M:

K(p, 0", V(p, ")) = clogdet(1a + ¢'¢p). (2:24)

This is the Kéhler potential of the Grassmann manifold Gy = U(N)/U(N —M) x
U(M).%

§3. Nonlinear sigma models with F-term constraints

Only D-term constraints appeared in the last two examples. In this section
we also introduce appropriate F-term constraints to define other Kéahlerian G/H
manifolds.

3.1. SO(N)/SO(N —2)xU(1)

We consider a global symmetry, G' = SO(N) x U(l)p = G x U(1l)p. We
will gauge U(1)p symmetry later. The fields, which develop a vacuum expectation
value, are ¢ in the defining representation N of SO(N). The U(1)p charge of ¢ is
defined to be 1. The fundamental representation is decomposed under its subgroup
SO(N —-2)xU(l)as N = (N —-2,0)4(1,1) ¢ (1, —1). Here, the second factor is
the U(1) charge. The fields can be written as

where z, ' (i = 1,---, N —2) and z are a scalar, a vector and a scalar of SO(N —2),
respectively. Their U(1) charges are defined above. SO(N) is defined as the group
that leaves the quadratic form

LY g2 ST 55— 9ns 442 (3-2)

invariant, where we have written the invariant tensor of rank 2 in a rather uncon-
ventional way (see Appendix C):

0 0 1
J=[0 1y, 0]. (3-3)
1 0 0

The generators of SO(N) consist of the SO(NN —2) generator Tj; (4,j = 1,---, N —2),
the U(1) generator T, and the upper triangular matrices E* (i = 1,---, N —2), which
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644 K. Higashijima and M. Nitta

transform as (N — 2,1), and their complex conjugates F; = (E%)! in (N — 2, —1).
SO(N)€ acts on the fundamental representation in our basis as

760 €; 0 x
= ¢ 9,']‘ —€; yj , (34)
0 —€e —if z

where %le(Tkl)ij = 0;;. Here, these coefficients are normalized so that tr Tfj =

trT? = tr B°E; = 2 (no sum). All parameters are complex when we consider
SO(N)€ and real when we consider SO(N).

In order to impose the global symmetry SO(N) x U(1)p, we introduce the
superpotential

W (¢o, ) = pod?, (3-5)

with the lagrange multiplier field ¢g. This is an SO(N) singlet, and its U(1)p charge
is defined to be —2, so that W is invariant under G’. Since the superpotential is a
holomorphic function of ¢ and ¢q, the symmetry is enhanced to its complexfication
G'° = SO(N)C xU(1)p®. We can eliminate the auxiliary field by using its equation
of motion,*

OW /8¢y = I = 222+ y* = 0. (3-6)

We thus obtain an F-term constraint (Np = 1). This equation is immediately solved
to give
y?

-Z (3-7)

z =
Then, the field qg constrained by the F-term can be written as

6= ( yiQ) - (3-8)
¥
2x

When this develops a vacuum expectation value, any vacuum can be transformed by

G’C to the standard form,
S - 1

By this vacuum expectation value, the global symmetry is spontaneously broken
as SO(N) x U(1)p — SO(N — 2) x U(1)’, where the unbroken U(1)" is generated

*) There is another way to obtain the F-term constraint. If we take K = A¢oTdo + q;T(E and
W = ¢o¢?, then the potential reads V = +|$>|* + |¢o|*|¢|>. We obtain the F-term constraint in
the limit A — 0.
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Supersymmetric Nonlinear Sigma Models as Gauge Theories 645

by a linear combination of the U(1) subgroup and U(1)p.”) The complex broken
generators consist of X, which is hermitian and generates a mixed-type multiplet,
and the E’, which are non-hermitian and generate pure-type multiplets. Then, the
number of the mixed- and pure-type multiplets are Nyy = 1 and Np = N — 2,
respectively. The target manifold M’ generated by these generators is non-compact
and non-homogeneous due to the presence of the QNG boson. The field near ¥ is
W
60 = (X + o' E)v = | ¢ |, (3-10)
0

where 1) is a mixed-type multiplet and ¢ are pure-type multiplets.

We elevate U(1)p to a local gauge symmetry to obtain a compact manifold by
eliminating the mixed-type multiplet, as in the case of CPN~1. The gauged Kéhler
potential is the same as Eq. (2-5). By integrating out the auxiliary superfields, we
obtain Eq. (2-9), with the constraint 52 = 0. By using the gauge symmetry U(l)DC,
we can choose the gauge fixing as ¢ = 1:

— 1
o=1 ¢ . (3-11)

Here we have rewritten y* as ¢'. This gAZ_; can be rewritten by using the representative
¢ of the complex coset manifold G¢/H = SO(N)/SO(N —2) x U(1) as

) i 1 0 0
b= t=e"P=| ¢ 1y, 0] (312)
We thus obtain a Kahler potential of GC/I:I,
1
K(p.o! Vipoh) = clog (14 [of? + 3672 (313)

This is exactly the Kihler potential of SO(N)/SO(N — 2) x U(1).13):23),10)

In our derivation of the Kéhler potential, we used the D-term constraint after
imposing the F-term constraint first. Instead, we could impose the D-term constraint
first. If we do so, we obtain the previous CPN~! model. The F-term constraint is
used as the holomorphic embedding condition of QV~2(C) = SO(N)/SO(N — 2) x
U(1) to CPN~1. It is a well-known method to obtain @ ~2(C) in the mathematical
literature. ) (See also p. 278 of Ref. 25).)

*) Note that the condition Iy = 0 is essential to introduce the gauge symmetry. To impose
I, = 2 # 0, we have to use W = g¢o(I2 — £2). In this case there is no U(1)p symmetry, and there
is a supersymmetric vacuum alignment. 9:10) Thus the unbroken global symmetry H can depend
on the choice of the vacuum expectation value: H = SO(N — 1) at the symmetric points, where
¢T¢ = 2, and H = SO(N — 2) at the non-symmetric points, where ¢'¢ > f2. Whereas I, = 0
corresponds to an open orbit, I3 # 0 corresponds to closed orbits. In general, in closed orbits, there
is a supersymmetric vacuum alignment. (See, e.g., §3.3 for the Eg case.) In this paper, we do not
discuss closed orbits, since we cannot gauge the U(1)p symmetry.
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646 K. Higashijima and M. Nitta

3.2. SO(2N)/U(N) and Sp(N)/U(N)
In this subsection, we consider the global symmetry G’ = G1, x Gr, where G, is
either SO(2N) or Sp(N) and Gr = U(N)r, which will be gauged later. To embed

Gy, into a 2N x 2N matrix of U(2N), we write its elements by using four N x N
matrices:

g= (é g) € U(2N). (3-14)

This is an element of SO(2N) or Sp(N) if it satisfies
g'Ig=1J, (3-15)

where J' is the invariant tensor of SO(2N) or Sp(N):

! _ 0 1N .
J—<€1N 0). (3-16)

Here € = +1 corresponds to SO(2N) and € = —1 to Sp(N). Equation (3-15) can be
written explicitly as

(ATC+€CTA ATD—i—eC'TB) :< 0 1N)

BTC +e¢DTA BTD+ eDTC ely 0 (3-17)

We consider the global symmetry as either G’ = SO(2N), x U(N)g for € = +1
or G' = Sp(N)p, x U(N)R for ¢ = —1. The field content is ® € (2IN, N), which
acquires a vacuum expectation value. Its transformation law under G’ is

®— P =g-b=g.Pgr ", 9= (91, 9r) € GL X Gr. (3-18)
The G’C invariant superpotential is
W (Pg, D) = tr (Bo®’ J'®), (3-19)

where &g is an N x N auxiliary matrix chiral superfield, whose transformation law
is

By — grPogr - (3-20)
Since I,' & &7 J' is symmetric (anti-symmetric) for e = 1 (e = —1), g satisfies
®o! = edy. (3-21)

Hence, @\ belongs to a symmetric (anti-symmetric) rank-2 tensor representation of
SU(N)g for e =1 (e = —1), and its U(1)p(€ U(N)r) charge is defined to be —2
to cancel with the @ charge. Note that Iy’ = &7 .J'® is invariant under Gy, but not
invariant under GR.

To eliminate the auxiliary field @(, we solve its equation of motion

SW/o®y = T J'® = 0. (3-22)
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We thereby obtain F-term constraints for the fields @. Their number is Np =
IN(N+1) for e =1and Np = LN(N — 1) for ¢ = —1. Then the dimension of
the resulting manifold M’ constrained by the F-term is Ny = 2N? — IN(N + 1) =
SN2 —IN for e =1 and Ng = 2N? — IN(N — 1) = SN2 + IN for e = —1. When
the field @ acquires a vacuum expectation value, any vacuum can be transformed by
G'C to the standard form,

V= (d) = (1N> . (3-23)

On

Hence, the F-term constrained manifold is a G’ C_orbit of V. The breaking pattern
of the global symmetry is either SO(2N)p, x U(N)g — U(N)y for e =1 or Sp(N)r, x
U(N)r — U(N)y for e = —1. Here, in both cases, the element of U(N)y can be

written as
((8 h_OlT) , h> € U(N)y, (3-24)

where we have used Eq. (3:17). The complex isotropy group H’ consists of complex
extension of these elements and elements of the type

i1y B def p _((O~n B .

with the constraints, from Eq. (3-17),
B+ eBT =0. (3-26)

These E constitute a Borel subalgebra B of H'. The dimensionality of B is dim¢e B =
IN(N —1) for e = +1 and dimg B = L N(N +1) for e = —1. The pure-type broken
generators are the complex conjugation of F € B: F = (E)Jr

To obtain a compact coset manifold, we gauge the U (N )gr symmetry by introduc-
ing vector superfields, as in the Grassmann manifold. The gauged Kahler potential
is the same as Eq. (2-17), but with F-term constraints. Since the procedure of in-
tegrating out the gauge fields is also the same as for the Grassmann manifold, we
obtain Eq. (2-:21). We can choose the gauge fixing as

b= (1M) , (3-27)

P
where ¢ satisfies the F-term constraints Eq. (3-22):
STTD =+ e’ =0. (3-28)

The fields ¢ are all pure-type chiral superfields, since @ is generated by the pure-type
broken generators E from the vacuum V:

D=¢-V, gzev"E=<<1g (;Z)’lN)‘ (3-29)
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648 K. Higashijima and M. Nitta

Here, from Eq. (3-17), ¢ satisfies ¢ 4 ep” = 0, which is consistent with (3-28). By
substituting Eq. (3:27) into Eq. (2:21), we obtain the Ké&hler potential

K(p, 0", V(p,0")) = clogdet(1y + ¢'p), p+epl =0.  (3:30)

The fields ¢ are anti-symmetric (symmetric) parts of the matrix chiral superfield of
the Grassmann manifold Gon n for € = +1 (—1). Their dimensions are dimg M =
IN(N —1) for e = +1 and dimg M = IN(N +1) for e = —1. Again, it is well
known that these manifolds are submanifolds of the Grassmann manifold Gan, N in
the mathematical literature. 24

3.3. Eg/SO(10) x U(1)

This and the next subsections are devoted to the gauge theory construction of
exceptional-type hermitian symmetric spaces. The situation here is slightly different
from the classical group cases. Namely, in the present case, an F-term constrained
manifold M’ is characterized by the derivative of a G-invariant (0I = 0), but not
the G-invariant itself (I = 0), as in the case of classical types.

As in the QV~=2(C) case, we consider the global symmetry G’ = Fg x U(1)p =
G x U(1)p. The field belongs to the fundamental representation of Eg: ¢ € 27,
which will acquire a vacuum expectation value. We decompose Eg under its maximal
subgroup SO(10) x U(1). Since the fundamental representation can be decomposed
as 27 = (1,4) @ (16,1) ® (10, —2), 2" where the second entries are the U(1) charges,

the basic field ¢ can be written as
. T
o= % |- (3-31)
zA

Here, , yo (@ = 1,---,16) and 2z (A = 1,---,10) are an SO(10) scalar, a Weyl
spinor and a vector, respectively. The decomposition of the adjoint representation,
78 = (45,0) @ (1,0) @ (16,1) @ (16, —1),2”) implies that the Eg algebra can be
constructed with the SO(10) generators Tap (A, B =1,---,10), the U(1) generator
T, upper half generators E,, which belong to a Weyl spinor of SO(10), and their
conjugates E%. (See Appendix D for details.)

The transformation law of q; under the complex extension of Eg is %) 28)

55: (i@T + %QABTAB +e*E, + eaE_'O‘> 5

20 &b
\/59 | € | 0 "
= | e 0an(oan)a” + 55008  —J5(€0p0)a v |+ (332)
0 —%(CUATE)”B Osp — ﬁe(SAB z

where %chp(TCD)A g = 0ap, and p(Tap) is the vector representation matrices of
SO(10). The 16 x 16 matrices 04, c4p and C are (off-diagonal blocks of) SO(10)

gamma matrices, spinor rotation matirices and the charge conjugation matrix, re-
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spectively. Normalizations are fixed by tr 72 = tr Typ? = tr E,E* = 6 (no sum).*)

The decomposition of the tensor product, 27 ®27 = 27,®- - -, implies that there
exist a rank-3 symmetric invariant tensor I5;; and its complex conjugate I' ik 28)
By using this invariant tensor, a cubic invariant I3 of Fg is defined as

¢ o 1
LY Mpdd ¢* = 222 + —=24(yCaaly). (3-33)
V2

Note that this is not invariant under U(1)p.

We construct the superpotential

W (¢, ) = Lijrdo’ e’ 6" (3-34)

Here q;o represents auxiliary fields whose U(1)p charges should be chosen so as to
make the superpotential invariant. If we assign the U(1)p charge 1 to (5, (50 must
have charge —2, so that they belong to (27, —2). The equations of motion for the
auxiliary fields ¢o’, SW/6¢o = Iijp¢’¢* = 0, are

, 1
8W/8z0‘4 = FA]k¢]¢k = QZAIL’ + ﬁya(CUAT)aﬁyﬂ = O, (335)
OW /DYoo = Tajud’ " = V2(Coa")*Pys2? = 0, (3-36)

8W/8x0 = Fojk(;5j¢k = 22 =0.

In the second equation, we have used the fact that (C’UAT)O‘ﬁ is symmetric. Note
that these equations can also be written as

0I3 =0, (3-38)
where the differentiation is with respect to ¢'. In these 27 equations, only the first
10 equations are independent. The first equation can be solved to yield

1
ZA = —
A 2\/§l‘

Then, the last two equations are not independent, since they are automatically sat-
isfied as

y(Coaly. (3-39)

1
ﬂ(CJAT)aﬂyﬁzA = —ﬁ(CUAT)O‘Byg (y(C’UAT)y) =0, (3-40)
1 2
2?2 = 2 (y(CUAT)y) =0, (3-41)

with the help of the identity

(cCoaty)(wCoatn) = ~ 3 (Casn) (¥CoaTy). (342

*) tr Tap? = 6 has been calculated from tr p(TAB)2 = 2, while tr (O’AB)2 = 4 and others have
been fixed to this.
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650 K. Higashijima and M. Nitta

Hence, the number of F-term conditions is Nrp = 10, and the dimension of M’ is
Ng = 27 — 10 = 17. The manifold M’ satisfying these F-term constraints can be

written as
x
¢ = ( e ) . (3-43)
—575; WCoaly)
On M'’, the value of the Eg invariant is
I3 ~ (yCoaTy)* =0, (3-44)

by the identity (3-42). Note that I3 must vanish, since it is not invariant under
U(1)p.

When the fields qg develop a vacuum expectation value, any vacuum can be
transformed under G'C to the standard form,

7=(3)= ((1)) (3-45)

The global symmetry is spontaneously broken as Fg x U(1)p — SO(10) x U(1)" =

H'*) The unbroken U(1)" is generated by T' = T — 2157 = diag(0, —4247,

—V/3845), and SO(10) is generated by Ts4p. The complex isotropy H' is larger
than the complexification of H’ due to the existence of the F,. These 16 E, con-
stitute a Borel subalgebra B in H'. The complex broken generators are composed
of pure-type generators E* and another combination of U(1) generators of a mixed-
type X ~ (1,---). Their numbers are Np = 16 and Ny = 1, respectively. The target
manifold M’ generated by these broken generators has dimension dim M’ = Ng = 17.
Since this coincides with the dimension of the manifold constrained by the 10 in-
dependent F-term conditions, any vacuum that satisfies F-term constraints can be
transformed to the form of Eq. (3-45) by a G’C transformation.

To remove the mixed-type multiplet and to obtain a compact manifold, we gauge
the U(1)p symmetry as in the case of CPN~!. The gauged Kihler potential is the
same as in Eq. (2-5). Since the procedure to eliminate the vector superfield is also
the same as in the CPV~! case, we obtain Eq. (2:9). We can choose a gauge fixing

as
1
¢ = ( | ) : (3-46)
—5v5(@Caale)

where we write pq for y,. By using the representative § of the complex coset manifold
M = GC/H ~ Es/SO(10) x U(1), ¢ can be rewritten as

1 0 0
$: U, E=etF = ( Yo 146 0 ) . (3:47)
—5v3(9Coale)  —5(Coale)? 14

) As in the case of SO(N) discussed in §3.1, there is no U(1)p symmetry if I3 # 0. In this case,
the E¢C-orbit is closed, and, by a supersymmetric vacuum alignment, there exist two regions with
different unbroken global symmetries, ) symmetric points and non-symmetric points. The breaking
patterns of Eg are Eg — Fy at the symmetric points and Eg — SO(8) at generic points. 28)
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Supersymmetric Nonlinear Sigma Models as Gauge Theories 651
By substituting Eq. (3-46) into Eq. (2-9), we obtain the Kéhler potential
1
K(p.o Vigoh) = clog (14 ol + S (elaloD(gaaty) ) (348)

where we have used the basis in which C' = 1.'® This coincides with the Kihler
potential of Fg/SO(10) x U(1) constructed in Refs. 24),15) and 23). (It is also
equivalent to Ref. 14).) Its dimension is dimg M = 27 — 10 — 1 = 16. If we do not
introduce the superpotential, the manifold is CP?. Hence, Eg/SO(10) x U(1) is
embedded in CP?® by 10 F-term constraints, dI3 = 0. In fact, Yasui constructed
E/S0(10) x U(1) as a submanifold of CP?® by using the Jordan algebra. '6)

3.4. E7/E6 X U(l)

In this subsection, we consider another exceptional group, E7. The global sym-
metry in this case is G’ = E; x U(l)p = G x U(1)p. The basic fields ¢ belong
to the fundamental representation 56. Under a maximal subgroup Fg x U(1), this
representation can be decomposed as 56 = (27,—1) & (27, 1) @ (1,—1) & (1,1).27
Therefore, we write 5 as

x

¢ = ) (3-49)
Zq
w

where ¢’ and z; are 27 and 27, respectively, and  and w are scalars. By a decomposi-
tion of the adjoint representation under Egx U (1),2") 133 = (78,0)®(1,0)®(27,1)®
(27,—1), we can construct the E7 algebra from the Fg algebra T4 (A =1,---,78),
the U(1) generator T, the upper half generators E’ (i = 1,---,27), belonging to 27,
and their conjugates E; = (Ei)T, belonging to 27. (Their commutation relations
are discussed in Appendix E.) The action of the E7 algebra on the fundamental
representation is

66 = (i6T +i6ATs + 6E' + ¢'E;) &

i\/30 & 0 0 )

_ ¢ Z'HAP(TA)ij + i\/%c%ij ik, 0 v
= 0 FijkEk —ieAp(TA)TZ-j . i\/%%ij & z |’
0 0 ¢/ —z'\/ge Y
(3-50)

where p(T4) is the 27 x 27 representation matrix for the fundamental representation,
I';ji, is the Eg invariant tensor, defined in the last subsection, and I kis its conjugate.
Here normalizations have been determined by tr7? = tr T42 = tr B'E; = 12 (no
sum).*)

*) tr T4? = 12 has been calculated with the normalization tr (p(T4)?) = 6 for the Eg fundamental
representation, as in the previous subsection. Other normalizations have been fixed relative to this.
In the calculation of tr E'E; = 12, we have used the identity Eq. (D-5).
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652 K. Higashijima and M. Nitta

In the tensor products?”) 56 56 =1, D --- and 56 @ 56 R 56 R 56 = 1, - - -,
there exist the rank-2 anti-symmetric invariant tensor f,g and the rank-4 symmetric
invariant tensor d,g.s, respectively. Their components are calculated in Appendix
E. By using this invariant tensor, we can construct the quartic invariant of F7; as

def a
It Z duprsd®dP¢7 0

1 . 1 . 1.
= —5(zw —y'z)? = cwlipy'y'y" - gl‘F”kZz‘ZjZk

2 3
1 ..
+§F”kfl-lmzjzkylym. (3-51)

Again, note that this is not invariant under U(1)p.
The superpotential invariant under E7 x U(1)p is

W (o, §) = daprsdo®d’¢7¢’, (3-52)

where the ¢o® are auxiliary fields belonging to (56, —3). Here the second component
is the U(1)p charge assigned to cancel the U(1)p charge of ¢*. (The term with rank-
2 tensor f,3 is forbidden by U(1)p symmetry.) To eliminate the auxiliary fields ¢,
we consider F-term constraints obtained from their equation of motions:

8W/8y0i = w(rz; — Fijk.yjyk) — ziyjzj + ijlfjimzkzlym =0,
OW /0wy = zy'z — wa’ — éfijkyiyjyk =0,
OW /0zp; = x(wyi — Fijkzjzk) — yiyjzj + Fjikfjlmzkylym =0,
OW/dxg = wy'z; — zw? — éfijkzizjzk =0. (3-53)
Note that these equations can be written as
AL, = 0, (3-54)

where the differentiations are with respect to ¢®. We show that only half of these
58 equations are independent. To solve these equations, we put the ansatz

C .
Zi = 7 ijkyjyk7 (3‘55)

where c is a constant. By substituting this ansatz into the first and second equations,
we obtain

02

32 Fijknmnyjykylymyn =0, (3-56)

w(c — 1)Fijkyjyk +
1

IS .
w = m231}jky’y]yk. (3-57)

From these equations we obtain the equation

TQ)Fijkyj Y Dny'y™y"™ = 0, (3:58)
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which gives ¢ = % By substituting ¢ = % back into Egs. (3-55) and (3-57), we obtain
the results,
Z = L 'yt w = LFz"kl;lzi;/jyk- (3-59)
2z Y ’ 62" "
In the same way, the third and the fourth equations in Eq. (3-53) can be solved as

, 1 .. 1 .
Yt = %kazjzlm T = w]””kzizjzk. (3-60)

We can show that these equations are not independent of Eq. (3-59) with the help of
the Springer relation, Eq. (D-6). Then the number of F-term constraints is Np = 28,
and the dimension of M’ is dimg M’ = 56 — 28 = 28. Thus, the F-term constraints
can be solved as

T
. i
= j 3-61
¢ =Dyl y* (3-61)
sz Liny'y7y"
On these points, the value of the Er invariant is
I, =0, (3-62)

where we have used the Springer relation (D-6). Note that U(1)p invariance requires
Iy =0.
By using G’ C, any vacuum expectation value of ¢ can be transformed to

7= <$> = (é) . (3-63)

On this vacuum, global symmetry is spontaneously broken as FE7 x U(1)p — Eg X
U1y ©f 1. Here U (1)" is generated by a linear combination of the U(1) generator
T and the U(1)p generator Tp = 1z6. From Eq. (3:50), we see that the complex
isotropy H is larger than H'C due to the presence of the E!, which constitute a
Borel subalgebra. The complex broken generators constitute a hermitian generator
X, which is a linear combination of Tp and 7', and non-hermitian generators E;.
Hence, the numbers of mixed- and pure-type multiplets are Ny = 1 and Np = 27,
respectively. The target manifold M’ is generated by these broken generators, and
its dimension is dimg M’ = 28, which coincides with the dimension of the manifold
constrained by the F-term conditions in Eq. (3:61).
The target manifold M’ obtained above is non-compact due to the QNG boson.
We gauge the U(1)p symmetry to remove the mixed-type multiplet and to obtain
a compact manifold. Since the situation is the same as for the CPN =1, Qn_2(C)
and Fg/SO(10) x U(1) cases, by integrating out the vector superfield, we obtain
Eq. (2-9). We can choose the gauge fixing as
1
. 7
i=| 1ppoet | (3:64)
Tkt "
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where we rewrite y* as ¢*. As in the previous subsections, this can be written as

1 0 0 0
- B ¢ 127 027 O
= ”U7 g e‘P E = SO . .

$=¢ : sTiing? oF Lijrp? 127 0

th'eioh  Shpied b 1

Hence the target manifold M , obtained by integrating out the vector superfield, is the

coset manifold generated by Ej;, which is M ~ E7/FEg x U(1). Then, by substituting
(3-64) into Eq. (2-9), we obtain the Kéahler potential

(3-65)

1 . 1 .
K(p, 0", V(p, ")) = clog (1 + [ + Z!Fz-jw]w"“F + %\mez@]@k@ . (3:66)

This form coincides with Ref. 13). Its dimension is dimg M =56 — 28 — 1 = 27. It
can be embedded into C P> by holomorphic constraints I = 0.

§4. Conclusions and discussion

We have obtained nonlinear sigma models whose target manifolds are the her-
mitian symmetric spaces G/H, which are compact and homogeneous, from lin-
ear models. For this purpose, we introduced appropriate superpotentials for G =
S0, SU, Sp, Eg and E7 to impose F-term constraints. By solving these F-term
constraint equations, we have obtained constrained manifolds M’, which are non-
compact and non-homogeneous due to the existence of QNG bosons. When there
is no gauge symmetry, there must be at least one QNG boson, by the theorem of
Lerche and Shore,% and the manifold inevitably becomes non-compact and non-
homogeneous (see Appendix B). In order to get rid of these unwanted QNG-bosons,
we further introduced suitable local gauge symmetry. By choosing suitable gauge
conditions, we obtained the Kéhler potentials of all the hermitian symmetric spaces,
where decay constants (overall constants of Kéhler potentials) originate from FI-
terms of gauge fields.

The gauging procedures to eliminate QNG bosons can be summarized as follows:*)

SUN)xU(l)p v@)p SU(N)
SUNN-1)xU1)Y  SUN-1)xU(1))’
U(N)L X U(M)R U(_M))R U(N)L
U(N—M)LXU(M)V U(N—M)LXU(M)L’

SON)xU(l)p v@)p SO(N)
SO(N-2)xU(1)  SON—2)xU(1)’

R" x

(RJF)M2 X

R" x

*) From the result in Ref. 9), in all cases considered in this paper, we know that there exists no
supersymmetric vacuum alignment, since there is no non-singlet broken generators under the real
unbroken subgroup H. Hence, the F-term constrained manifolds M’ ~ G'C/FI’ are topologically
isomorphic to direct products of a QNG boson factor R™ = {#|6 € R, 8 > 0}, which is non-compact,
and a NG bosons factor G'/H’, which is compact. For example, in the case of C" without an F-

. 1o ~C i (SUMNXUWD)C o pt SUMN)XU(Wp  _ p+ o G
term constraint, M’ ~ G~ /H' = SUN 1)xU())CAB ~ R" x SUN-DxUa)Y = R™ x 7. Then,

by gauging U(1), we obtain G¢/H ~ G/H = CPN 1.
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(R) S S,
U(N)y U(N)L
2 Sp(N)r, x U(N)r u)r Sp(N)L
S T T
+ o Es x U(1)p UQ)D Eg
SO(10) x U(1) SO(10) x U(1)’

R+XE7XU(1)D UQ)D FE7 '
E6 X U(l)/ E6 X U(l)
The left-hand sides denote the F-term constrained manifolds M’ (if there is a su-
perpotential). All M’ are non-compact and non-homogeneous, due to the existence
of QNG bosons represented by RT. This implies that they are scale factors. The
arrows represent the gauging and the right-hand sides denote the manifold M ob-
tained by integrating out the vector superfields. The relation between M and M’ is a
Kéhler quotient, M = M’/ cha'mge. All M are compact and homogeneous, since they
are parameterized by only NG bosons. In the cases of CPY~! and G N,M, there are
no F-term constraints. Other cases have GC-invariants, superpotentials and F-term
constraints, as summarized in Table II.
The F-term constraints can be classified into two types:
e G =50, Sp: I =0. (They are G€-invariant.)
e G = Es, BE7: O = 0. (Although the OI are not GC-invariant, the constraints
themselves are GC-invariant.)

In each case, the value of the G€-invariant vanishes on the constrained manifolds,
since, even in the cases of the exceptional groups, the constraints 01 = 0 lead to
I = 0. This remarkable fact can be understood as follows: Note that, in each case,
the G€ -invariant I is not invariant under a gauge group. Hence, it must vanish to
be consistent with a gauge symmetry. We call this the “consistency condition with a
gauge symmetry”.*)

If we forget the F-term constraints and impose only the D-term constraints, the
manifolds become CPN~1 or Gy ~,~. This means that all of the hermitian symmetric
spaces are holomorphically embedded in CPN~! or G ~,m by F-term constraints, as
is shown in the last column of Table II. Although some of the constraints are already
known in the mathematical literature, the explicit forms of the constraints in the
Es and E7 cases are new results: Eg/SO(10) x U(1) is holomorphically embbedded
in CP%* by 16 quadratic homogeneous constraints, and E7/Eg x U(1) is embed-
ded in C P> by 28 tripletic homogeneous constraints. The consistency condition
with a gauge symmetry can be understood if we interpret the F-term constraints
as the embedding conditions. Since Gy, can be embedded into CPV, all hermi-
tian symmetric spaces are embedded in CPYN. If we want to embed M into CPY,
the constraint must be homogeneous, when it is written in terms of homogeneous

*) By combining the result in Ref. 10), this condition can be understood as the condition that
the manifold before gauging must be an open orbit, not a closed orbit. In Ref. 10), it was shown
that an open orbit includes a compact and homogeneous manifold as a submanifold. Contrastingly,
a closed orbit does not have such a submanifold.
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Table II. F-term constraints and embedding. Here, J, J’, I" and d are rank-2, rank-2, rank-3 and
rank-4 invariant symmetric tensors of SO(N), SO(2N) or Sp(N), Es and E7, respectively, and
I, I, Is and I, are GC-invariants composed of them. Each superpotential gives an F-term
constraint, which is I = 0 in the case of classical groups and 91 = 0 in the case of exceptional
groups. Only 10 equations of the 27 equations are independent in the Egs case, and only 28
equations among 56 equations are independent in the E7 case. The last column denotes the
projective or Grassmann manifold, in which each hermitian symmetric space is embedded by
the F-term constraint.

G/H GC-invariants superpotentials | constraints | embedding
SO(;Q—;)A;)U(U L=¢"J¢ ®ol2 I, =0 cphN-t
Sg((?\f];])’ ?Jp((ly)) L'=o"J'o tr (Pol2’) L'=0 Gan,N

W Is = Iijro' ¢’ o* Tijro’¢? ¢* 0I3 =0 cp*
Pt | 1= depis9” 97879 | daprsdo®¢’¢7¢’ | 9L =0 cP®

coordinates.®

In this paper, we have used the equation of motion for the vector auxiliary
field. In the path integral formalism, this procedure corresponds to integrating over
the vector field. In a separate paper,2®) we show that the path integration can be
performed exactly.

Now we discuss possible generalizations of our results to a wider class of Kéhlerian
G/H. In this paper, we treated hermitian symmetric spaces, which are a special class
of homogeneous Kahler manifolds. We confined ourselves to the gauge groups of U(1)
or U(N).

1. Even within this limitation, it is possible to generalize our construction to a
wider class of homogeneous Kéhler manifolds. Let us consider Kahler G/H,
where H has only one U(1) factor, H = Hy x U (1), with Hg being a semisimple
subgroup of H. To be specific, let us generalize SO(2N)/U(N). By generalizing
@ to a 2N x M matrix (N > M), transforming under SO(2N) x U(M) as

® — g, Pgr !, with the same superpotential (3-19) (where J is the same as in
Eq. (3-16)), we obtain
(R*)MQ " SO2N)L, xUM)r UMz SO(2N)y,

SO@2N —2M), x U(M)y  SO@2N —2M);, x U(M)y,’

This reduces to SO(2N)/SO(2N —2)xU(1) when M = 1 and to SO(2N)/U(N)
when N = M. Similarly, Sp(N)/U(N) can also be generalized. By generalizing
® to a 2N x M matrix (N > M), we obtain

Sp(N)L x U(M)r  U(M)x Sp(N)L

M? Al'¢
(B X 0N —ahy < UMDy Sp(N — M)1, x U(M)y,

2. Now we consider generalization to the case of many U(1) factors. Remember
that the FI parameter ¢ becomes a decay constant, which represents the size of
G/H, after integrating out the vector superfield. Then, we can consider there

*) The manifold, which can be embedded into CPY, is a (projective) algebraic variety and can
be understood as a Hodge manifold.
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to be a one-to-one correspondence between the decay constants and the FI-
parameters. Hence, to obtain G/H with H = Hgx U (1)" we must prepare n FI-
parameters. We thus consider a global symmetry, G’ = G x G; x - - - G,,, where
each G; includes a U (1) factor. If we gauge all G;, the gauged Kahler potential
has n FI terms. After integrating out vector superfields, we obtain G/H’ x G x
+++Gp = G/HgxU(1)", where H' is the remaining part after embedding all G;
into G. Here we have put Hys = H' X G1g X -+ - Gpes. In the case of hermitian
symmetric spaces, we have introduced an irreducible representation of G as the
basic field. It seems that we have to introduce more irreducible representations
in these generalizations. Then we must impose orthogonality relations on these
fields with D-term or F-term constraints. At the moment, we are unable to find
consistent constraints in these cases.
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Appendix A

—— BKMU-IKK Construction of Kahler Potentials
of Compact Homogeneous Kdahler Manifolds

Bando et al. (BKMU) gave the general method to construct the G invariant
Kihler potential of G€/ H.% However, there remained an ambiguity in the choice
of the projection operators n; introduced below, Eq. (A-1). Itoh et al. (IKK) con-
structed these operators explicitly for the case that the target is compact, namely
Gc/ﬁ ~ G/H.'"Y Note that their method does not ensure that such models can be
obtained from linear models. In this appendix, we review their method to compare
with our method, which, on the other hand, has a linear origin.

First of all, we need the projection matrices, which project a fundamental repre-
sentation space onto a H invariant subspace. ®) They satisfy the projection conditions

n'=n, nHn = Hn, n* =n. (A1)

In an arbitrary Kéhler G/H, the number of projection matrices is equal to the
number of U(1) factors in H. Since there is only one U(1) factor in the hermitian
symmetric cases, there is one projection matrix. In each case, it can be written as 11)

=" o) (A-2)

By using this, the Kéhler potentials of compact Kéhler manifolds can be written
5)
as

K = clogdet,&T¢, (A-3)

where ¢ is a representative of the complex coset G€/ H. Since the form of & can be
calculated as Eqs. (2-11), (2-23), (3-12), (3-29), (3-47) and (3-65), they give the same
Kahler potential obtained from linear models in this paper.
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Appendix B
——— The Non-Compactness Theorem of Lerche and Shore

The nonlinear sigma model, whose target manifold is compact and homogeneous,
has a unique Kéhler potential, as discussed in the last appendix. ®» 1) Although these
models include neither a QNG boson nor an arbitrariness in the Kéhler potential and
they are mathematically beautiful, they cannot be obtained from any linear model,
at least when there is no gauge symmetry: It was shown that there exists at least one
QNG boson, and therefore the target must be non-compact and non-homogeneous.
In this appendix, we review the theorem obtained by Lerche and Shore® (see also
Ref. 7)).

The fact that the model has a linear origin implies that the target manifold can
be obtained from some F-term conditions (if there is no gauge symmetry). Since
they are holomorphic equations, the invariance under the global symmetry G en-
larges to the complexification G€, and the manifold becomes a G€-orbit of the
vacuum expectation value v.*) The pure-type multiplets require that the real broken
generators are divided into complex unbroken and complex broken generators, E°
and E;(= (E)"). Since E; is broken, we obtain

0# |Ew|*> =of [E’,EZ} v = (i) Hyv, (B-1)

where «(i)* is a root vector and H, is a Cartan generator. Therefore, at least one
Cartan generator, H,, must be broken. Since this is hermitian, there exists at least
one mixed-type generator, and therefore at least one QNG boson.

Appendix C
—— SO(N) Algebra

Since the basis of SO(N) used in §3.1 is not in the standard form, here we give
its relation to the ordinary basis. The SO(N) generators in the ordinary basis are

1

(Tij)*, = ;(@kcsﬂ — 6%64). (C-1)

In the basis, the vacuum expectation value satisfying 2 = 0 can be written as

i=| o |. (C-2)

*) If there are not enough F-term constraints, the manifold may become larger than a G-orbit.
However, the proof is valid also in such cases, since they include at least one G€-orbit.
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The real unbroken generators, at the center of the matrix, generate SO(N —2). The
complex unbroken and broken generators are

i i
V2 V2
; Z 1 n 7 1
E' = 72 On—2 -5 |- E=| &5 On—2 7|
L _ L
V2 V2
(C-3)
where i = 1,---, N — 2 and only the i-th components are nonzero. The broken U(1)
generator is
—1
T= On_1 . (C4)
1

This generator will become unbroken after gauging U(1)p. Here, we change the basis
by a unitary transformation with

i 1
V2 V2
U= T . (C5)
7 1
V2 V2

Since U is a unitary matrix (UTU = UUT = 1), qugZ_; is invariant, and then log(ggqu)
also is invariant. By the unitary transformation, the vacuum expectation value is
transformed to the standard form,

U = (é) (C-6)

The SO(N — 2) generators are not transformed, and the other generators are trans-
formed as

1 0
UEU =| 0 On_» -1 |, UEBU'=| 1 On_» 0
0 —1
1
UTU" = On_1 : (C7)
—1

We thus obtain the transformation law (3-4) used in §3.1. Moreover, the second
rank invariant tensor is transformed as é;; — (USU T),-j = J;j, where J is defined in
Eq. (3-3).
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Appendix D
—— FEg Algebra

In this appendix, we construct the Eg algebra by referring to Refs. 15) and 28).

D.1. Construction of Eg algebra

Since an adjoint representation is decomposed as 78 = (45,0)®(1,0)® (16,1)®
(16, —1),27 we construct the Eg algebra as & = SO(10)®U(1)H16@H16: We prepare
the SO(10) generator Typ, the U(1) generator T, 16 as E,, and 16 as E® = (E, ).
Then their commutation relations can be calculated as follows: 15):28)

[Tap,Tcp] = —i(0pcTap +9apTpc — dacTep — 0pTac), [T,Tap] =0,
[Tap, Bo) = —(04B)a” Es,  [Tap, E*] = (UZB)a,gEﬁv

Ecw [T7 Ea] = _@Ea’

[T,E,] = 5

|5

_ _ 1
[Ea,Eﬁ] = [EOC,Eﬁ] = 0, [Ea,Eﬁ] = _§(O-AB)QBTAB + \égé‘aﬁT (Dl)

The U(1) charge of E, is determined by the difference between U(1) charges of x and
y or y and z in Eq. (3-32): % - 2—\1/§ = ﬁ - (—%) = § The second coefficient
of the last equation has the same value as the U(1) charge of E,, from the anti-
symmetric property of the structure constants. The relative weight of the first and

the second terms is determined by using the Jacobi identity, [E, [E, E]]+ (cyclic) = 0,

and the nontrivial identity for the spinor generators, 15),28)
3
EAB(UAB)Q['B<UAB)76] = 55(1[5575]- (D-2)

D.2. Invariant tensor of Eg
From the tensor product??) 27 ® 27 = 27, @ - - -, we know there exists a rank-3

symmetric tensor invariant under Eg. The components of I are 28)
I'vap = 4B,
Lijk = § Taap = %(CUAT)‘W? (D-3)
otherwise 0.

These components can be calculated as follows. First, construct the SO(10) x U(1)
invariant of order three:
1

Is = Azz® + — 20 (Coa")*Pys. D4

3 757 valCoa )"y (D-4)
By the requirement of the invariance of E or E, we can conclude A = 1. (Here
we have used the identity (3-42).) The components (D-3) can be read from this
invariant.

It is known that there is an identity 29)*)

T = 106%. (D-5)

*) In the calculation of FUAF”B = 1064, we have used the identity 2 44y (CO’ATUBC)

— 5AB ) 28)
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Under the normalization in Eq. (D-5), there is the Springer relation 29)
Djk(Fjl{anO}k) _ 6i{lano}’ (DG)
where we have used the notation AW~} = A% 4 A7 4 ... These identities are

used many times in the analysis of the E; algebra.

Appendix E
—— E7 Algebra

In this appendix, we construct the F; algebra in the same way as in the last
appendix.

E.1. Construction of E7 algebra

The decomposition of the adjoint representation of F; under the maximal sub-
group Fg x U(1) is 133 = (78,0) @ (1,0) & (27,1) & (27, 1), where the second
components are the U(1) charges. 27) Hence, we can construct the E; algebra by
adding generators E* and E;(= (E*)") (i = 1,---,27), which belong to the Eg funda-
mental and anti-fundamental representations, respectively, to the Eg x U(1) algebra,
Ty (A=1,---,78) and T: & = E dU(1) & 27 & 27. In the same manner as we
constructed the Ejg algebra in the last appendix, their commutation relations are
obtained as follows:

[T, Tg] = ifap“Tc, [T,Ta] =0,
[TA7 El] = p(TA)i ‘Ej7 [TAin] = _p(TA)Ti]Ej?
T, E'] = \[E [T,E;] =— §Ei7
_ A 5
BB = (B B =0, (B Byl = p(Ta)Ta [ 5057, (B)

Here p(T4) is a fundamental representation matrix, and the f4p® are structure
constants of Eg, whose explicit forms were obtained in the last section. The U(1)
charge of E* is determined from the difference of z and y*, etc., in Eq. (3-50), and
E; is its conjugate. In the last equation, the coefficient of the second term coincides
with the U(1) charge of E* due to the anti-symmetricity of the structure constants
of E;. The first term is determined by the Jacobi identity [E,[E, E]] + (cyclic) = 0
and the nontrivial identity for the Eg fundamental representation, 3°

, 2 ..
XA P(TA)[ZJ'MTA)’C]Z = _gé[lj‘sk]l- (E2)

This is satisfied when tr p(T4)? = 6.

E.2. Invariant tensors of Fr

From the tensor product of fundamental representations2”), 56 @ 56 = 1, @ - - -
and 56 ® 56 ® 56 ® 56 = 14 @ - - -, there exist the rank-2 anti-symmetric tensor
fap and the rank-4 symmetric tensor d,g,s as E7 invariant tensors. To find their
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components, we construct a linear combination of Fg x U(1) invariants of quartic
order and require invariance under E or F, as in the last appendix. The result is

Iy = dpprsd™ P 7 ¢°

1 X 1 o 1 .
= ——(zw —y'z)? — cwlijy'yy* — ng”kzizjzk

2 3
1 ijk L, m
+§F Limzjzy'y™. (E-3)

Here, I is invariant due to the Springer relation for the Eg invariant tensor, Eq. (D-6).
The components can be read from this invariant. Since we do not use the anti-
symmetric tensor f,g, we do not construct it here.
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