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Super symmetricquantum mechanicsand new potentials

Elso Drigo Filho

Instituto de Fisica Tedrica, Universidade Estadual Paulista, Rua Pamplona
145, Sdo Paulo, 01405, SP, Brasil

and

Instituto de Biociéncia Letras e Ciéncias Ezatas, Universidade Estadual
Paulista, Rua Cristévao Colombo 1165, Sdo José do Rio Preto, 15055, SP,
Brasil

Received May 30, 1990

Abstract Using supersymmetric quantum mechanics we generalize some
exactly solvable potentials: the particle in the box, Poschl-Teller and Rosen-
Morse. Weevauate the new potentialsand indicate their eigenfunctions and
spectra.

1. INTRODUCTION

We know that the number of Schrédinger equations that have analytic solutions
is quite small. In recent years some works have tried to increase this number,
starting from potentials whose solutions are known (e.q. Abraham and Moses'
and Pursey?). Supersymmetric quantum mechanics (S@M) has also been used for

that purpose. The superalgebra is used to construct a hierarchy of Hamiltonians®

and to build new Hamiltoniansfrom a Ricatti equation®®®.

The method to construct new potentials from known potentials using SQM,
which we use in this paper, was proposed by Nieto* and Alves and Drigo Filho®.
It is based on the factorisation method which was applied by Mielnik? to the
harmonic oscillator and by Fernandez® to the Coulomb potential. This method is
also applicable to spatially limited potentials. We will see it through the example

of the particle in the box.
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Supersymmetric quantum mechanics and new potentials

Here, we use the superalgebra to construct new potentials from exactly solv-
able potentials. This construction was used to generalize the Coulomb and the
harmonic oscillator potentials®, aswell as the Morse potential®. Firstly, we present
the method for a general potential in sec. 2. Then, we apply it to the simple po-
tential of a particlein abox (sec. 3). We treat the Poschl-Teller and Rosen-Morse
potentials in sec. 4 and we comment on the results in sec. 5.

2. Generalization method

In SQM%!° we have two supersymrnetric charges Q and @; they satisfy the

anticommutation relations

{QaQ+} = H.q.s' 3 (Q7 Q) =0 ) (Q+5Q+) =0 (1)
A simple realization of this algebrais
¢ o 0 g+
o=(L 9) wa e=(5 %) )
and we have
_ H, 0 _ dtd~ 0
Ha = ( 0 H.) B ( 0 d—d+> (8)

H_ is called the supersymmetric partner of H+;they have the same spectrum

except for the zero-energy ground state which belongs to H+ only. We note that

][] w e S)[]

ie., Qand @* induce transformations between the ""bosonic" sector (i>+) and the
“fermionic” sector (-). Then, the H_ eigenfunctionscan be written in terms of
H+ eigenfunctions (¢ o d~4). The reciprocalis also true, i.e. >t « d*9- are
the eigenfunctions o H+ with the exception o the ground-state. With operators

d* writtem in the usual form

d dw
+_ ¢ & 5
& =F -+ -(2) (5)

the supersymmetric Hamiltonian is written as
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2 T2
—% + [%(z)r + 037;—1W(z) (6)

where o3 is the Pauli matrix, W (z) is called superpotential and is associated with

Hy =

the H+ ground state eigenfunctions ¢ o

W(z) = _ln¢o(z) (7)
We can construct the new potentials from a generaization d the d* operators

D" =% +Fz) (®)

Thefunction F(z) is determined when we impose that

H_= D~ D? (9)
and we obtain the Ricati equation

d d?

d ' 2 -
2 — = —_— 10
Fi(a) + 7, F(a) =W + V(@) (10)
The commutator of the new operators is
(D-, D" = 2L F(z) (11)
’ dz
that definesa new Hamiltonian
+p- -pt - p+ -t d
¥ =D'D"=D"D'-[D",D"|=D"D —ZEF(z) (12)

X4 givesa new potential which is differentfrom the H+ and H- potentials. How-
ever, from the supersymmetric algebra we know that the ¥+ spectrum is the same

as that of H- and the X4 eigenfunctions (¥,) are

¥, =D*y_=D"d ¢, ' (13)
This map is not complete, because it excludes the ¥, ground state. It is obtained
by the equation
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DV¥,o=0 (14)

3.Particle in the box

The Hamiltonian of the one-dimensional particle in the box! is

d? 1 1
=——"—1 : —p<z<-= 15
H, az2 1 27I’ sSrs 27f ( )
H+ has eigenfunctions and eigenvaluesgiven by

2 sin (nx) n even
Yin(z) = \/E (16)

\/; cos (nz) n odd
E,=n*-1 n=12.3 (17)

The constant term in (15) only displace the spectrum. It sets the eigenvalue
o the ground state to zero, Ey = 0.
We note that eq.(15) can be factorized, H+=d*d~, by

4
dz

Thus, the supersymmetric partner of H+ is

d d
dtf = ¥ — T Inyy 1{z}) = ¥,-+tanz (18)

d
+ EW(::) =¥ dz

d? 1+sin’z

g gt = & 19
H-=dd dz? + cos’z (19)
Defining new operators D*, asin egs. (8), we obtain F(z) given by
F(z) =tanxt Acos®X  _yony+ #(z) (20)
sin2z T 2z T 4T
Thus, the new Hamiltonian is
d? 32cos z{(z t 2I') sinx + cos x]
— Nt — n—nt _ - +1 - 1
Mo =DTD7 = D7D - [D7, D7) = a2 ! (+Sin2:c+217+4I‘)2( )
21

which corresponds to the generalized potential
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32cos z|[{z + 2I')sin x T cos x]
- (sin2z + 2z +412)

The constant T is arbitrary and is chosen to avoid singularitues; here we choose:

(22)

V+(Z) =-1

[ < -% o T > %. Thespectrum of this Hamiltonian is the same d the particle
in the box (17). Its eigenfunctions are

U4 n(2) = DV n(2) = DT d™ Py n(2) (23)

With ¢4 » given by (16) and the ground state (¥ ) is evaluated by using (14)
” x
V,acos iz :r-{/ qS(i:)di} (24)
r
-7

4. Other potentials
Using the Péschl-Teller potentiall! we write the Hamiltonian

H_(FPT):__‘i+k\(k_1?+A@‘_l)_(k—A)2 , 2= ar (25)

dz* sin? 2 cos? z
where &, k and A are constants. The eigenfunctions and eigenvaluesare!?

_1,.1
'»bi?;; = N(a, k, A, n)(sin z)¥(cos z)AP,EIc 2 f)(1 — 2sin? 2) (26)
Ey=(k+X+2n)% — (k+X)? (27)

where

_1,.1
,Ek b 7)(1—25in2,z)

are the Jacobi polynomials and N{e, K, A, n) is the normalization constant. The
factor [ - (k‘|' A)2] in (25) sets the ground state eigenvalueto zero.
The Hamiltonian (25) isfactorized by
d d

d
d:rf'r:ia;“’“ EWPT(Z) = :Fa—kcotz%-)\ta.nz (28)

and the supersymmetric partner is
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PT _ - _
HS )= dPTdf;T = d;TdPT - [dPT’d;T] =
2
d k{k +1) B A +1) 3 (,\+k)2 (29)

dz? sin? z cos? z

The generalization o the operators (28), as indicated in (8), leavesus with

[(sinz)?* + cos z)?] !
Tpr T [7[(sin2)?* T (cos 2)22|-1dz
= _kcot z T Atan +épr(2) (30)

Fpr(z) = —k cotgz + Xig 2 +

We choose I'pr > 0 to avoid singularities . Thus, the new Hamiltonian is

¥pr = DgpDpy = Dpp Dy — [Dpp, Dip] =

L. k(k—l)-—(/\+k)2—2dizlﬁPT(z) (31)

T dz?

cos? z sen?z

and the potential is

Vor(e) = XATD KD e 22 (e (32)

C082 F4 sin” 2

This Hamiltonian has the spectrum given by (27) and its eigenfunctions are

WPT(2) = DELdg UET (33)

and the ground state (¥pr(z)) is

Upr(z)a(sin z) ¥ (cos z) ™ exp { /: quT(Tz)dE} (34)

The other potential that we treat is the Rosen-Morse onel®. It was recently
studied by Nieto*? and Arag&o de Carvalho!“. Its Hamiltonian be written in the
form

2

' d
HfM = kzgog{ -3 + Btanh z — fy+sechzz} +p% + o {35)
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where z = kpoz; 8 = 2u/k2po; 74 = (1 T K)/K?% k,0 and p are constants. The
eigenvalues and the eigenfunctions o this Hamiltonian are

tﬁg?f:{) = Nk, pp,p;n)e** cosh*b(z)F( —n, {4y + 1)1/2

—nja+b+1;1/2[1 + tghz]) (36)

E, = — K202 a? + b 2 S —B

and
b= ";'{(4fy+ +1)Y?2 —2n—1] (37)

We can factorize the Hamiltonian (35) by the operators

d _
dfim = q:lupozi; i potanhztu (38)

that satisfy the commutation relation
[dan diag] = 2kpsech®z (39)

The supersymmetric partner o (35) is

d2
H™M = gt doy == k2<pg{ -5 Btanhz — 'y_sechzz} +ut+ol (40)

where
1—-k

From the generalized operators (8) we obtain

e*#(cosh z) ~2#0 -
Trm + fy €7 2##(cosh z)2odz —

= pgtanh z + g + drm(2) (41)

Fam(2) = potanhztp t

To avoid singularities we choose I'ras = 0. Then, the new Hamiltonian is
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¥am = DD = Prna Dl Prne Dl =

d? 2 d 2 2
— 22 _ & _ _ = _= +upct
k ‘Po{ i + ptanhz — v sechz koo dz¢RM(z)} LT ¥
' (42)
whose potential is
2 d
Vam = 2pop tanhz — wo(k + |)sech<z - 2k<po~dz¢RM(z) (43)

We note that the new Hamiltonian (42) has the spectrum given by (37) and tis
eigenfunctions are given in terms of the functions z/)fff) (36):

¥ (2) = Diydpen’ (44)
with ground state
Urm(z) a(cosh 2)1/ke##/Fe0 exp { ’ 2(E)-dz} (45)
o ko

5. Conclusion

From the potentials studied (particle in the box, Pdschl-Teller and Rosen-
Morse) we obtained new potentials (eg. (22}, (32) and {43)), which are different
from the original ones, but whose spectra and eigenfunctions are known. The
relation between the old system and the new one is established through the SQM.

As the spectrum of one potential is the same as that of its generalized version,
some papers have appeared trying to distinguish these systems through the scat-
tering produced by them. Cooper et al'® and Kare and Sukhatme!® have worked
in this direction but they use a generalization method different from the one we
used here.

Nieto® explored the link between the generalization of the potential from super-
symmetry and from the inverse scattering method. Using this result, the potential
obtained in (22) should be the same (up to integration constants) as the potential
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found by Abraham and Moses! for the particle in the box. Unfortunately, these
potentials are different. However, we can see that in ref. 1 eq. (44) is not a solu-
tion of eg. (10) and also that eq. (45} is not derived from eq. (44); these mistakes
justify the difference between the results.

The author wishes to thank Dr. M. A. Manna for helpful discussions about
the paper o AM and Drs. R. M. Ricottae V. Pleitez for their useful suggestions
to this paper.
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Resumo

Usando a mecanica quantica supersimétrica vamos generalizar os potenciais:
da particula em uma caixa, Pochl-Teller e Rosen-Morse. Calculamos os novos
potenciais e indicamos suas respectivas autofuncdes e espectro.



