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As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which
describes the motion of a spin one- -half particle in the one-dimensional space, we construct a model of the
supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin
one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum -

. mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model
of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative
signs, which was studled in detail in our recent paper-in connection with “accidental degeneracy” as well
as the “graded groups”. This simplest model is discussed in some detail as an example of the three-
dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry
of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the
supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimen-
sional model; this result is contrasted to the corresponding one in the oné-dimensional model.

§1. Introduction

Supersymmetry (SUSY) has recently attracted renewed interest in high energy
physics. In his study of the dynamical breaking of the supersymmetry, Witten” has
proposed “Supersymmetric Quantum Mechanics” and constructed a simple, but non-trivial
model of supersymmetric quantum mechanics which describes the motion of a 'spin one-
half particle in a one-dimensional space. An example of SUSY quantum mechanics in a
two-dimensional space has been given in our recent paper.? In a series of papers, we shall
present several realistic examples of the SUSY quantum mechanics in a three-dimensional
space. The present paper, which is the first of the series, deals with a system of a spin
one-half particle in central and spin-orbit potentials within the context of non-relativistic
quantum mechanics. A more realistic case of a two-particle system will be treated in the
second paper. ‘ ' '

After brief introduction to SUSY quantum mechanics in the next section, we construct
in §3 a three-dimension model of SUSY quantum mechanics, which describes the motion
of a spin one-half particle in central and spin-orbit potentials, both of which are deter-
mined by a single (super) potential V(7). With the simplest choice of the superpotential,
this model is shown to reduce to the model of the harmonic oscillator plus constant spin-
orbit potentlal of unit strength of both positive and negative signs, which was studied in
detail in our recent paper® in connection with “accidental degeneracy” as well as “graded
groups”. This simplest model is discussed in §4 as an example of the three-dimensional
- SUSY quantum mechanical system, in which the supersymmetry is an exact symmetry of
the system. A more general case of a polynomial superpotential is treated in the final
section. " It is shown that the supersymmetry is not broken for any polynomial super-
potential. This result is contrasted to the corresponding result of the one-dimensional
model. :
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§2. Supersymmetric quantum mechanics

In this section, we briefly summarize the supérsymmetric duantum mechanics
proposed by Witten" in a form well-adapted to our purposes. Let Q;(i =1, 2, -, N)be the

hermitian supercharges. Following Witten, ‘we call the supersymmetric quantum

mechanics if the Hamiltonian H of a system and the supercharges @): are governed by the
following set of relations:

{Q:, Q;}=06,;H and [H, Qi]=0. (i=1, 2,-,N) : (.1)

Needless to say, this set of relations is one of the well-known definitions of “supercharge”
in high-energy physics” when H is replaced by the energy-momentum operator Pp.

In the case N =2, Witten has constructed a simple, but non-trivial model of the
supersymmetric quantum mechanics, which describes the motion of spin one- half particle
on a line (say, the r-axis). @ and @, are defined by

Q:1=(1/2)o1pz+ 02 W(I )} and Qz:(l/z){o'zp'z_Q'l W(I h (2)

‘where p-=(#/i)(d/dx), W(x) a function of x and 0:(i=1, 2, 3) the Pauli spin matrix.

The Hamiltonian of the system, whose wave function is a two-component spinor, is given
by

(3)

H= [p,2+{W(x)}2+haadW(x)]

d.

It is easy to check that H, @: and Q: satisfy (1) for N =2. ' Hence, the model constitutes
a (N =2) supersymmetric quantum mechanics. To examine the structure of the theory,
let us introduce the non-hermitian supercharge Q=(1/v2)(— Q:+iQ:) and its hermitian
conjugate, Q*=(1/v2)(— Q.—iQ.), which — transcrlbed in two-by-two matrices — are
represented as

0 D 00
0 0 D*0

where D= (1/ V2 W (x )+ hd/dx} and D+—(1//_){W(x) hd/dx}. In terms of these D
and D*, H can be written as '

Q+=( )szi ahd'Q=( )=a_D_+, 4’ | (4)

(DD+ 0

H={Q, Q*}= DD

)=/, D+}+(1/2)03[D D*l. NG

The deﬁmng set of Eq. (1) of the (N=2) supersymmetrlc quantum mechanics reads

QZZ'{Q+}2: , - : . | (63) v
H={Q, @}, : (6b)
[H, QI=[H, ¢*1=0. N (6c)

It is now trivial to see that (4) and (5) satisfy set (6), independently of the explicit forms
of D and D*. From this, we observe that a direct generalization of Witten’s one-dimen-
~ sional model to three-dimensional problems will be possible by appropriate choices of the
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operators D and D*. In subsequent sections, we shall take a specific form of these
operators which can be represented in two-by-two matrices. Therefore, @ and @™ in this
case are four-by-four nilpotent matrices.

Finally, we note that the three relations in () are not mutually independent.
Namely, [H, Q]=[H, @*]=0 which states the conservation of supercharges is a mere
consequence of the nilpotent forms of @ and @* in (6a) and the assumed form of H in (6b).

§3. A three-dimensibnél model of SUSY quantum mechanics

In this section, we shall construct a realistic model of a SUSY quantum mechanics in
the three-dimensional space, which describes the motion of a spin one-half particle in
" central and spin-orbit potentials.

First, we introduce the supercharges‘through

Q=p—(0.r.D.z:++O'yDy++GzDz+):p-—6'iD+ N ' (7a)
Q+:0+(0'1Dx+0'yDy+0'zDz):.0+d'D s (7b)

where the operators D and D™ will be specified shortly. Here, ¢ is the spin of particle

under consideration and p:=4(p1%1i02), p:(i=1, 2, 3) being another set of the Pauli
matrices. In the matrix form, @ and @* are represented as

Q’=(O_.0DJr | g) and Q+=(g GOD) (7c)

which should be compared with (4). The supersymmétric Hamiltonian H is then given
by . : o

(6-D)Xo-D") 0 >
0 (6-D*)o-D)

=(1/2){(6-D), (6-DH)N+(1/2)0sl(6- D), (6-DH)]. ®)

H=(@ @')=(

For the spin-independent D and D*, we obtain

((6-D), (6:DM}=, & _(Ds, D'+ 3 ioe([Ds, Dy1-[DoD2"D),  (92)
(o-D), (6:D")]=_F, [Ds, Di'l+ 3 io:({Ds, Ds*}={D5.D:*)). (9b)

As a natural generalization of Witten’s construction, we now take the following forms of
- D and D*: : ‘

D.=(1/V2)XoV/ox +nolox);  Dz*=(1/v/2)(dV/ox— hdlox),
D,=(1/V/2(aV/y+hd/ay);  Dy*=(1/V2)0V/y—hday),
D.=(1/v/2)(aV/oz+ hdloz); H=(1/v2)0V/8z— 1d/dz). (10)

Here, the (super) pbtential V is assumed to be a function of # alone, so that we can write

oV (r)/ox =(x/r)(@V/dr) and so on. With these choices of D and D*, the commutators

-and anticommutators appearing on the right-hand side of (9) are quickly calculated to
obtain , :
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[Dz, D:*]= hazV/axz—h[(l/r)(aV/ar)+(xz/r)a{(l/r)(aV/ar)}/ar]

[Dz, D,*1=[D,, D*1=12*V/ozoy

{Dz, Dz*}=(3V/ox — 1*o*/ax?

Dz, Dy*}={Dy, D=*}=2n{(3V/dy)d/ox —(8V/dx )d/ay)} ‘
=27(1/ 7 XOV/3r o/ ax — 23] ow)= —~2i(1/r(aV/ar)L..
Hence, we have |

{(6:D), (6D N=—WP*+(FP V-F V), -
(6D), (6D N=1*P*V+2(1/r)aV/ar)(5-L) W)

from which we finally determine the explicit form of the supersymmetrlc Hamiltonian, H
in (8):

a=gl-wr (G e[ 33 52 (L ) o]

where

12(3 (1)) and ps=((1) _g)

It is now clear that our model Hamiltonian describes the motion of a spin one-half particle
in the central and spin-orbit potentials, both of which are defined through the single
(super) potential V(7). Hence, our model may be regarded as a natural generalization
of Witten’s model in one-dimension to the three-dimensional space.

In summary, we have defined the supercharges, @ and Q*, through (7a) and (7b).
The relation, {Q}*={Q*}*=0, is evident from (7c). The explicit form of the supersym-

metric Hamiltonian H={Q, Q*} has been given by (12). As noted at the end of the

preceding section, the relation, [H, Ql=[H, Q*]=0, is trivially satisfied.

Finally, we present the spherical forms of (¢-D) and (¢-D*): By making use of
(10), we obtain

V26 -D)=(6-7)oV/or)+nlc-F)

- oV _(o-L) , 0
(O' r){ » 1 ”af’}
B e i e,

/E(a-m):(o-f)(av/ar)—h(o-V)
=(o- r){ (6 L) —h a}

7 “or
[V _(6°L) 3h_, & 1\, . .
—{ a L) _3h_p 2 r}(" 7). (13b)

Elementary manipulations yield the result in (12). The spherical form of the supercharges

2202 1SNBNY | 40 JaSN BOSNF 4O USRS "§'MHAT |LEESBL/E|8/V/CL/I0MHE/did/L0O dNO 0IWaPEOe)/:SARL LIOY POPEOUMOQ.



Supersymmetric Quantum Mechanics in Three-Dimensional Space. I 817

are simply obtained by inserting (13a) and (13b) into (7c). This form of the
supercharges will be particularly suited for examining the normalizability of the zero-
energy solution of the system, by which we can conclude whether the supersymmetry is
broken or not, as will be seen in the next section.

§4. An example

We have constructed the model of the supersymmetric quantum mechanics which
describes the motion of spin one-half particle in the central and spin-orbit potentials, both
of which are determined by a single (super) potential V(7)..

As an example, we now take the simplest form of the (super) potential: V(r)
=(1/2)wr®. With this choice, the Schrédinger equation Hx=Ex of the system reads

1 3 v
—(p2+a)2r2)+——ha)+a)(o‘-L) B X5
2 2

—(p2+a)2r2)———ha) w(o-L) ( > E(xp) (14)

As usual, we shall call the upper-component s the bosonic state and the lower-component
xr the fermionic state. As seen from (14), the bosonic and fermionic sectors are reversed
when we take the negative sign of the (super) potential; V(»)=—(1/2)w»*. Hereafter,
we shall use the unit #=1 and take w=+1. ,

It is amusing to note that the bosonic and fermionic sectors of this model have been
separately studied in detail in our .recent paper® in connection with the accidental
degeneracy as well as the graded groups. The full details of the algebraic structure of

. each sector can be found there. We here discuss the model with respect to the supersym-
metric quantum mechanics. For this purpose, let us summarize the general properties of
the (N =2) SUSY quantum mechanics, which can be directly- obtained from its defining
relations; {Q}*={Q*}*=0, H={Q, Q*} and [H, Q]=[H, Q*] 0.

(A) All the eigenvalues of H are non-negative.
(B) For the positive-energy solutions, @ brings a bosonic state to a fermionic state of
the same eigenvalue E, while @ transforms a fermionic state into a bosonic state,

ie, Qus=vE xr and Q" xr=vE xs. Thus, the supersymmetry pairs the bosonic

and fermionic states of all positive energy solutions — boson-fermion degeneracy.

(C) For the supersymmetry to be a good symmetry, the supercharges, @ and @*, should
annijhilate the ground state x;; Qxs= Q" x¢=0. It then follows that Hyo=1{Q,
Q*}xs=0. Namely, for the supersymmetry to be a good symmetry, the ground
state energy should be zero. It is also clear that, when the supersymmetry is
spontaneously broken, the ground-state energy cannot be zero. Since all the states
are paired except the zero-energy solution from (B), there exist unpaired (zero-
energy) solutions only if the supersymmetry is an exact symmetry of the system —
the famous Witten index theorem. ‘

We present in Fig. 1 the level scheme of our model, where the right-hand side is the
fermionic sector, the left-hand side the bosonic sector. From the figure, we observe that
there is boson-fermion degeneracy in all the excited states and that there exist zero-energy
solutions in the fermionic sector alone. This latter observation immediately leads to the
conclusion that the supersymmetry is a good symmetry of our model.
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- = — = ==~ — —~ — — = Fig.l Thelevel scheme of the simplest model of the

h 1g 1f 1d Ip|2s 2 2d 2§ 29 * three-dimensional supersymmetric quantum
-} — mechanics in Eq. (14). The upper (bosonic)
Os | Op : ’

sector is displayed on the left-hand side, while the
lower (fermionic) sector is shown on the right-
hand side. The absissa of both sides denotes the
total angular moméntum 7 of the state and the

Note that the #-th excited states are infinitely
N T Y B V¥ ¥ % T % degenerate when n=even (including the ground
—j —J - state), while it is finitely degenerate when

Bosonic Sector. <= [ = Fermionic Sector

each sector, see our previous paper.”

It will be instructive to derive here the zero-energy solutions of the model within the
context of our SUSY quantum mechanics, because the same procedure is applicable to the
more general choice of the (super) potential V(7). ‘As noted in (C), the ZEero-energy
solutions can be obtained by Qx,= Q*x,=0. Denoting the bosonic and fermionic states
in %y as |[B) and |F'), we have Q|B)=0 and Q*|F)=0. Our problem is now to examine
whether there are acceptable (normalizable, non-singular) solutions in these equations.
We adopt the spherical forms of @ and Q* presented in (13a) and ( 13b). The radial parts
of the equations, Q|B)=0 and Q*|F)=0, are simply given by

<aal:+ (o‘;L) a_i)m)':o’ (15a)

OV _(6°L) . 3\ S -
(ar , TW)'F.)_O' (15b)

These first-order differential equations can be easily integrated to obtain the solutions,
|B)=const e"(”r‘f""’”, , ' (16a)
|F)=const e"V"ye-b - ‘ (16b)

With our simplest choice of V(7)=+#2/2, it is now clear from the behaviors of (16a) and
(16b) at large 7 that there is no acceptable zero-energy solution in the bosonic sector,
while the fermionic states in (16b) have the correct behavior exp(— 7%/ 2) at large . To
examine the behavior of |F') at » =0, we note that the total angular momentum j is always
the good quantum number of our model and that, for an eigenstate of the total angular
momentum, (6- L) takes the value +7 or —(/+1) according to whether j=17+7% or j=1

0s Op 0d Of Og : ordinate the (absolute) energy in units of #w. .

=odd. For detail of the algebraic structure of
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—7, { being the orbital angular momentum. From the requirement that the solutions
_ should be non-singular at »=0, we exclude the states with j=/—%. Thus, we finally
obtain the radial part of the normalizable, non-singular zero-energy solutions

‘F:j=l+—%—)=’const rle”™?  for all I,

which constitute all the nodeless j= [+ states, as displayed in Fig. 1. This procedure
illustrates a method to examine the existence of the zero-energy solution for more general
choice of (super) potential V' (7), from which we can easily conclude whether the supet-
symmetry is broken or not for this choice of V.

Finally, we present other, but equivalent forms of @, @* and H of our simplest model.

Since dV/dx=x for our specific choice V =(1/2)7? D, and D.* defined by (10) can be

identified with the boson: annihilation and creation operators, b, and b:* respectlvely
Hence, we have

sz;(oxbx++oyby+'—f-azbz+);p_(d-b*) and Q*=p.(0-b)
and

H:(b-b+(4)_o‘-L b+.bgd.L>-'

Since (6- b*) and (0 b) in the above forms of supercharge are pseudoscalar, the boson-
fermion degeneracy in the positive energy solutions in Fig. 1 is now almost evident (for
detail, see Ref. 3)). ‘A more compact representation of the above H in ‘terms of the
paraboson operator, (6-b) and (6 b*), can be found in our prev10us paper.”

§4. Discussion

In the preceding section, we have discussed a model of the three-dimensional SUSY
quantum mechanics, in which the simplest form of the (super) potential V(r)=(1/2)r*is
adopted. Here, we shall discuss the more general case of the polynomial (super)
potential, V(7)=X7-0arr", (ax>0). Although the excited states of this model cannot be
solved analytically, its zero-energy solutions can be easily obtained in just the same way
as that is the preceding section. Namely, by inserting this V(7) into (16a) and (16b), we
observe that there is no (acceptable) zero-energy solutions in the bosonic sector. Further,
by applying the same arguments as given below Eq. (16b), we obtain the radial part of the
zero-energy solutlons in the fermionic sector

. v
’F: j= l+—2—>=const r‘exp{né!oanr"}. (axn>0)

Thus, we have again the infinitely degenerate (zero-energy) ground state in the fermionic
sector. Needless to say, if we take — V(#) instead of + V (7), the fermionic and bosonic
sectors are reversed. '

From the existence of the zero-energy solutions, we conclude that the supersymmetry
is a good symmetry in our three-dimensional model with any polynomial superpotential
V(7). In this connection, it is interesting to compare this result with that of the corre-
sponding one-dimensional model,” in which the one-dimensional superpotential U(x),
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U(x)=dW (x)/dx in §2, is taken to be an N-th order polynomial of z: U (x)=3"_, a.x"

In this model, the zero-energy solution can be obtained by Q|B) 0 and Q*|F)=0in (4)
which in turn are ertten as

{d[éix) e }IF) 0 and ‘{%F%}IB):O-

Hence, we have
|[F)=const e’ and |B)=const ¢*Y™®,

The normalizability of these formal solutions can be examined simply by observing their
behaviours at x ==+oco. It is now clear that the zero- energy solution exists only when N
is even — either in the fermionic sector or in the bosonic sector depending on whether ax
is positive or negative. When N is odd, there is no zero- energy solution. Namely, the
supersymmetry is spontaneously broken for the N-th order polynomial superpotential
when N =odd, while the supersymmetry is a good symmetry when N =even — the well-

known result” of the one-dimensional model. On the contrary, we have shown that in our -

three-dimensional model, which is a natural generalization of the one-dimensional model

by Witten, the supersymmetry cannot be spontaneously broken for any polynomial
superpotential V(7).
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