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As a direct generalization of the model of supersymmetric quantum mechanics· by Witten, which 
describes the motion of a spin one·half particle in the one·dimensional space, we construct a model of the 
supersymmetric quantum mechanics in the three·dimensional space, which describes the motion of a spin 
one· half particle in central and spin· orbit potentials in the context of the nonrelativistic quantum 
mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model 
of the harmonic oscillator plus constant spin· orbit potential of unit strength of both positive and negative 
signs, which was studied in detail in our recent paper in connection with "accidental degeneracy" as well 
as the "graded groups". This simplest model is discussed in some detail as an example of the three­
dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry 
of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the 
supersymmetry cannot be spohtaneously broken for any polynomial superpotential in our three-dimen· 
sional model; this result is contrasted to the corresponding one in the one·dimensional model. 

§ 1. Introduction 

Supersymmetry (SUSY) has recently attracted renewed interest in high energy 
physics. In his study of the dynamical breaking of the supersymmetry, Witten l

) has 
proposed "Supersymmetric Quantum Mechanics" and constructed a simple, but non-trivial 
model of supersymmetric quantum mechanics which describes the motion of a spin one­
half particle in a one-dimensional space. An example of SUSY quantum mechanics in a 
two-dimensional space has been given in our recent paper.2

) In a series of papers, we shall 
present several realistic examples of the SUSY quantum mechanics in a three-dimensional 
space. The present paper, which is the first of the series, deals with a system of a spin 
one-half particle in central and spin-orbit potentials within the context of non-relativistic 
quantum mechanics. A more realistic case of a two-particle system will be treated in the 
second paper. 

After brief introduction to SUSY quantum mechanics in the next section, we construct 
in §3 a three-dimension model of SUSY quantum mechanics, which describes the motion 
of a spin one-half particle in central and spin-orbit potentials, both of which are deter­
mined by a single (super) potential V (r ). With the simplest choice of the superpotential, 
this model ,is shown to reduce to the model of the harmonic oscillator plus constant spin­
orbit potential of unit strength of both positive and negative signs, which was studied in 
detail in our recent paper3

) in connection with "accidental degeneracy" as well as "graded 
groups" . This simplest model is discussed in §4 as an example of the three-dimensional 
SUSY quantum mechanical system, in which the supersymmetry is an exact symmetry of 
the system. A more general case of a polynomial superpotential is treated in the final 
section. It is shown that the supersymmetry is not broken for any polynomial super­
potentiaL This result is contrasted to the corresponding result of the one-dimensional 
model. 
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814 H. Ui 

§ 2. Supersymmetric quantum mechanics 

In this section, we briefly ~UIIlIll,arize the supersymmetric quantum mechanics 
proposed by Witten!) in a form well-adapted to our purposes. Let QiCi = 1, 2, "', N) be the 
hermitian supercharges. Following Witten, we call the supersymmetric quantum 
mechanics if the Hamiltonian H of a system and the supercharges Qi are governed by the 
following set of relations: 

( i=l 2 ... N) , , , (1) 

Needless to say, this set of relations is one of the well-known definitions of "supercharge" 
in high-energy physics4

) when H is replaced by the energy-momentum operator P,.. 
In the case N = 2, Witten has constructed a simple, but non-trivial model of the 

supersymmetric quantum mechanics, which describes the motion of spin one-half particle 
on a line (say, the x-axis). Ql and Q2are defined by 

(2) 

where Px=(h/i)(d/dx), W(x) a function of x and O'iCi=l, 2, 3) the Pauli spin matrix; 
The Hamiltonian of the system, whose wave function is a two-component spinor, is given 
by 

(3) 

It is easy to check that H, Ql and Q2 satisfy (1) for N=2. Hence, the model constitutes 
a (N=2) supersymmetric quantum mechanics. To examine the structure of the theory, 
let us introduce the non-hermitian supercharge Q=(l/I2)( - Q2+iQl) and its hermitian 
conjugate, Q+ = (1112)( - Q2- iQd, which - transcribed in two-by-two matrices - are 
represented as 

Q+=(O D)=O' D' and· Q=(O O)=O'_D+ o 0 +. D+O· , (4 ) 

where D=(l/ I2){W(x)+ hd/dx} and D+=(l/ I2){W(x)- hd/dx}. In terms of these D 
and D+, H can be written as 

(5) 

The defining set of Eq. (1) of the (N=2) supersymmetric quantum mechanics reads 

Q2={Q+}2=O, 

H={Q, Q+}, 

.[H, Q]=[H, Q+]=O. 

(6a) 

(6b) 

(6c) 

It is now trivial to see that (4) and (5) satisfy set (6), independently of the explicit forms 
of D and D+. From this, we observe that a direct generalization of Witten's one-dimen­
sional model to three-dimensional problems will be possible by appropriate choices ofthe 
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Supersymmetric Quantum Mechanics in Three-Dimensional Space. I 815 

operators D and D+. In subsequent sections, we shall take a specific form of these 
operators which can be represented in two-by-two matrices. Therefore, Q and Q+ in this 
case are four-by-four nilpotent matrices. 

Finally, we note that the three relations in (6) are not mutually independent. 
Namely, [H, Q]= [H, Q+]=O which states the conservation of supercharges is a mere 
consequence of the nilpotent forms of Q and Q+ in (6a) and the assumed form of H in (6b). 

§ 3. A three-dimensional model of SUSY quantum mechanics 

In this section, we shall construct a realistic model of a SUSY quantum mechanics in 
the three-dimensional space, which describes the motion of a spin one-half particle in 
central and spin-orbit potentials. 

First, we introduce the supercharges· through 

Q=p-«(JxDx ++ (JyDy++ (JzDz +)=p_a o D+ , 

Q+=p+«(JxDx+ (JyDy+ (JzDz)=p+a 0 D , 

(7a) 

(7b) 

where the operators D and D+ will be specified shortly. Here, a is the spin of particle 
under consideration and P±=-t(Pl±iP2), p;(i=I, 2, 3) being another set of the Pauli 
matrices. In the matrix form, Q and Q+ are represented as 

Q=( 0 0) and Q+=(O a
o 

D) 
aoD+ 0 0 0 

(7c) 

which should be compared with (4). The supersymmetric Hamiltonian H is then given 
by 

H={Q Q+}=(aoD)(aoD+) 0 ) 
, 0 (aoD+)(aoD) 

=(1/2){(a o D), (a o D+)}l +(1/2)P3[(a o D), (a o D+)]. (8) 

For the spin-independent D and D+, we obtain 

{(aoD), (aoD+)}= 2: {D k , D k+}+ 2: i(JA[Dx, Dy+]-[Dy,Dx+]), (9a) 
k=x,y,z cyclic 

As a natural generalization of Witten's construction, we now take the following forms of 
D and D+: 

D x=(1/ /2)(iJV/iJx + hiJ/iJx); 

D y=(1/ /2)(iJV/iJy+ hiJ/iJy); 

Dz=(I/ /2)(iJV/iJz+hiJ/iJz); 

Dx+=(I/ /2)(iJV/iJx- hiJ/iJx), 

Dy+= (1/ /2)(iJV/iJy- hiJ/iJy), 

Dz += (1/ /2)(iJV/iJz- hiJ/iJz). (10) 

Here, the (super) potential V is assumed to be a function of r alone, so that we can write 
iJV(r)/iJx=(x/r)(iJV/iJr) and so on. With these choices of D and D+, the commutators 
and anticommutators appearing on the right-hand side of (9) are quickly calculated to 
obtain 
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816 H. Ui 

[Dx, Dx +]= ha2 v/aX2= M(1/r )(av/ar )+(x2/r )a{(l/r )(av/ar )}/ar], 

[Dx, Dy+] = [Dy, D x+]=ha2V/axj)y, 

{Dx, D x+}=(av/aX)2-h2j)2/aX2, 

{Dx, Dy+}- {Dy, D x+}=2h{(aV/j)y )a/ax-(av/ax )a/j)y)} 

=2h(1/r )(av/ar )(ya/ax - xa/j)y)= -2i(1/r )(av/ar )Lz . 

Hence, we have 

{(d' D), (d' D+)}= - h2 v2+(17 V·17 V), 

[(d' D), (d' D+)]= h2 v2 V +2(1/r )(av/ar )(d' L) (11) 

from which we finally determine the explicit form of the supersymmetric Hamiltonian, H, 
in (8): 

(12) 

where 

(1 0) (1 0). 
1 = Oland Pa = ° _ 1 . 

It is now clear that our model Hamiltonian describes the motion of a spin one-half particle 
in the central and spin-orbit potentials, both of which are defined through the single 
(super) potential V (r ). Hence, our model may be regarded as a natural generalization 
of Witten's model in one-dimension to the three-dimensional space. 

In summary, we have defined the supercharges, Q and Q+, through (7a) and (7b). 
The relation, {QP={Q+p=O, is evident from (7c). The explicit form of the supersym­
metric Hamiltonian H = {Q, Q+} has been given by (12). As noted at the end of the 
preceding section, the relation, [H, Q]= [H, Q+]=O, is trivially satisfied. 

Finally, we present the spherical forms of (d' D ) and (d' D +): By making use of 
(10), we obtain 

/2(d' D )=(d' f)(aV/ar)+ h(d·l7) 

=(d' f){ av (d·L) +h..1..} 
ar r ar 

={av + (d·L) +~+hr..1..l}(d' f) 
ar r r arr ' 

/2(d' D+)=(d' f)(aV/ar)- h(d·l7) 

= (d' f){ a V + (d' L) h..1..} 
ar r ar 

3h hr..1..l}(d' f). 
r ar r 

(13a) 

(13b) 

Elementary manipulations yield the result in (12). The spherical form of the supercharges 
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Supersymmetric Quantum Mechanics in Three-Dimensional Space. I 817 

are simply obtained by inserting (13a) and (13b) into (7c). This form of the 
supercharges will be particularly suited for examining the normalizability of the zero­
energy solution of the system, by which we can conclude whether the supersymmetry is 
broken or not, as will be seen in the next section. 

§ 4. An example 

We have constructed the model of the supersymmetric quantum mechanics which 
describes the motion of spin one-half particle in the central and spin-orbit potentials, both 
of which are determined by a single (super) potential V (i ). 

As an example, we now take the simplest form of the (super) potential: V(r) 
=(1/2)wr2. With this choice, the Schrodinger equation Hx=Ex of the system reads 

As usual, we shall call the upper-component XB the bosonic state and the lower-component 
x~ the fermionic state. As seen from (14), the bosonic and fermionic sectors are reversed 
when we take the negative sign of the (super) potential; V(r)=-(1/2)wr2. Hereafter, 
we shall use the unit h=l and take w=+1. 

It is amusing to note that the bosonic and fermionic sectors of this model have been 
separately studied in detail in our .recent paper3

) in connection with the accidental 
degeneracy as well as the graded groups. The full details of the algebraic structure of 

. each sector can be found there. We here discuss the model with respect to the supersym­
metric quantum mechanics. For this purpose, let us summarize the general properties of 
the (N = 2) SUSY quantum mechanics, which can be directly obtained from its defining 
relations; {Q}2={Q+}2=O, H={Q, Q+} and [H, Q]=[H, Q+]=O. 
(A) All the eigenvalues of H are non-negative. 
(B) For the positive-energy solutions, Q brings a bosonic state to a fermionic state of 

the same eigenvalue E, while Q+ transforms a fermionic state into a bosonic state, 
i.e., QXB=/E XF and Q+XF=/E XB. Thus, the supersymmetry pairs the bosonic 
and fermionic states of all positive energy solutions - boson-fermion degeneracy. 

(C) For the supersymmetry to be a good symmetry, the supercharges, Q and Q+, should 
annihilate the ground state xu; Qxu= Q+xu=O. It then follows that Hxu= {Q, 
Q+}xu=O. Namely, for the supersymmetry to be a good symmetry, the ground 
state energy should be zero. It is also clear that, when the supersymmetry is 
spontaneously broken, the ground-state energy cannot be zero. Since all the states 
are paired except the zero-energy solution from (B), there exist unpaired (zero­
energy) solutions only if the supersymmetry is an exact symmetry of the system -
the famous Witten index theorem. 

We present in Fig. 1 the level scheme of our model, where the right-hand side is the 
fermionic sector, the left-hand side the bosonic sector. From the figure, we observe that 
there is boson-fermion degeneracy in all the excited states and that there exist zero-energy 
solutions in the fermionic sector alone. This latter observation immediately leads to the 
conclusion that the supersymmetry is a good symmetry of our model. 
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2h 29 2f 2d 2p 35 3p 3d 3f 39 

Op Is Ip Od 

4- Fig. I. The level scheme of the simplest model of the 
Ih 19 If Id Ip 25 2p 2d 2f 29 three-dimensional supersymmetric quantum 

mechanics in Eq. (l4). The upper (bosonic) 
Os Op sector is displayed on the left-hand side, while the 

- 2- lower (fermionic) sector is shown on the right-
Oh 09 Of Od Op Is Ip Id If 19 

hand side. The absissa of both sides denotes the 
total angular momentum j of the state and the 

O~ Op Od Of 09 ordinate the (absolute) energy in units of hw. 
Note that the n-th excited states are infinitely 

9-'2 7/2 5/2 3.-2 1/2 1.-2 3/2 5t2 7-"2 91;> degenerate when n=even (including the ground 
-j -j state), while it is finitely degenerate when n 

<= I ~ Fermionic Sector 
=odd. For detail of the algebraic structure of 

Bosonic Sector each sector, see our previous paper.') 

It will be instructive to derive here the zero-energy solutions of the model within the 
context of our SUSY quantum mechanics, because the same procedure is applicable to the 
more general choice of the (super) potential VCr). As noted in (C), the zero-energy 
solutions can be obtained by Qxu= Q+Xu=O. Denoting the bosonic and fermionic states 
in Xu as IB) and IF), we have QIB)=O and Q+IF)=O. Our problem is now to examine 
whether there are acceptable (normalizable, non-singular) solutions in these equations. 
We adopt the spherical forms of Q and Q+ presented in (13a) and (13b). The radial parts 
of the equations, QIB)=O and Q+IF)=O, are simply given by 

( a v + «(1. L) a )IB) ° 
ar r ar =, (15a) 

( av _ «(1·L) +~)IF)=O. 
ar r ar 

(15b) 

These first-order differential equations can be easily integrated to obtain the solutions, 

(16a) 

(16b) 

With our simplest choice of V( r)= + r2/ 2, it is now clear from the behaviors of (16a) and 
(16b) at large r that there is no acceptable zero-energy solution in the bosonic sector, 
while the fermionic states in (16b) have the correct behavior exp( - r2/ 2) at large r. To 
examine the behavior of IF) at r=O, we note that the total angular momentum j is always 
the good quantum number of our model and that, for an eigenstate of the total angular 
momentum, «(1. L) takes the value + I or - (t + 1) according to whether j = I ++ or j = I 
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Supersymmetric Quantum Mechanics in Three-Dimensional Space. I 819 

-t, I being the orbital angular momentum. From the requirement that the solutions 
should be non-singular at r=O, we exclude the states with j= I-t. Thus, we finally 
obtain the radial part of the normalizable, non-singular zero-energy solutions 

IF:j=l+ ~)=const rle-r2/2 for all I, 

which constitute all the nodeless j = I +t states, as displayed in Fig. 1. This procedure 
illustrates a method to examine the existence of the zero-energy solution for more general 
choice of (super) potential V(r), from which we can easily conclude whether the super­
symmetry is broken or not for this choice of V_ 

Finally, we present other, but equivalent forms of Q, Q+ and H of our simplest model. 
Since av/ax=x for our specific choice V=(1/2)r2, Dx and Dx+ defined by (10) can be· 
identified with the boson annihilation and creation operators, bx and bx + respectively. 
Hence, we have 

Q=p-(oxbx ++oyby ++ozbz +)=p-«(1. b+) and Q+=p+«(1' b) 

and 

Since «(1. b+) and «(1. b) in the above forins of supercharge are pseudoscalar, the boson­
fermion degeneracy in the positive energy solutions in Fig. 1 is now almost evident (for 
detail, see Ref. 3)). A more compact representation of the above H in terms of the 
paraboson operator, «(1. b) and «(1. b+), can be found in our previous paper.3

) 

§ 4. Discussion 

In the preceding section, we have discussed a model of the three-dimensional SUSY 
quantum mechanics, in which the simplest form ofthe (super) potential V( r)= (1/ 2)r2 is 
adopted. Here, we shall discuss the more general case of the polynomial (super) 
potential, V( r)= ~~=oanrn, (aN >0). Although the excited states of this model cannot be 
solved analytically, its zero-energy solutions can be easily obtained in just the same way 
as that is the preceding section. Namely, by inserting this V(r) into (16a) and (16b), we 
observe that there is no (acceptable) zero-energy solutions in the bosonic sector. Further, 
by applying the same arguments as given below Eq. (16b), we obtain the radial part of the 
zero-energy solutions in the fermionic sector 

IF: j=l+ ~)=const rlexp{i:oanrn}. 

Thus, we have again the infinitely degenerate (zero-energy) ground state in the fermionic 
sector. Needless to say, if we take - V( r) instead of + V( r), the fermionic and bosonic 
sectors are reversed. 

From the existence of the zero-energy solutions, we conclude that the supersymmetry 
is a good symmetry in our three-dimensional model with any polynomial superpotential 
V (r ). In this connectiOJ;l, it is interesting to compare this result with that of the corre­
sponding one-dimensional model/) in which the one-dimensional superpotential U(x), 
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820 H. Ui 

U(x )=dW(x )/dx in §2, is taken to be an N-th order polynomial of x: U(x )=~~=o an:r n
. 

In this model, the zero-energy solution can be obtained by QIB)=O and Q+IF)=O in (4), 
which in tum are written as 

Hence, we have 

IF)=const e-U(X) and IB)=const e+U(X). 

The normalizability of these formal solutions can be examined simply by observing their 
behaviours at x = ±OO. It is now clear that the zero-energy solution exists only when N 
is even - either in the fermionic sector or in the bosonic sector depending on whether aN 
is positive or negative. When N is odd, there is no zero-energy solution. Namely, the 
supersymmetry is spontaneously broken for the N -th order polynomial superpotential 
when N=odd, while the supersymmetry is a good symmetry when N=even - the well­
known resule) of the one-dimensional model. On the contrary, we have shown that in our 
three-dimensional model, which is a natural generalization of the one-dimensional model 
by Witten, the supersymmetry cannot be spontaneously broken for any polynomial 
superpotential V( r). 
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