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Abstract

We derive the supersymmetric structure present in W -gravities
which has been already observed in various contexts as Yang-Mills
theory, topological field theories, bosonic string and chiral W3-gravity.
This derivation which is made in the geometrical framework of Zuc-
chini, necessitates the introduction of an appropriate new basis of
variables which replace the canonical fields and their derivatives. This
construction is used, in theW2-case, to deduce from the Chern-Simons
action the Wess-Zumino-Polyakov action.

1 Introduction

In this article we show that the supersymmetric structure found in Chern-
Simons theory quantized in the Landau gauge [1] (so-called since the anti-
commuting relations of the generators describe a super algebra of the Wess-
Zumino type) is also present in the induced Wn-gravities. These theories
[2] are higher spin generalizations of 2-dim gravity whose symmetries are
the classical Wn-algebras, where n indicates the highest spin of the cur-
rents involved. The geometrical description[3] is based on a straightforward
generalization of the notion of projective coordinates. It reproduces the re-
sults obtained in the more conventional approaches based on sl(n,R) algebra
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[4, 5, 6] . The reference system of complex coordinates (z, z) corresponds to a
complex structure defined on the connected, 2-topological manifold on which
we are working. Then the underlying models of theW -gravities are described
by a connection A = Ωdz + Ω∗dz, with zero-curvature condition

F = dA−AA = 0 (1)

. The pair of matrices (Ω,Ω∗) contains respectively the currents and the
gauge fields of the theory which, in the Virasoro case n = 2, correspond re-
spectively to the spin 2 stress-energy tensor ρzz and the Beltrami coefficient
µz
z . The fields involved here are smooth functions of the holomorphic coor-

dinates (z, z). They are built through a basic object, an unimodular matrix
W (we denote by (∂, ∂) the partial derivatives with respect to (z, z)),

Ω = ∂WW−1 ; Ω∗ = ∂WW−1 (2)

The condition (1) becomes1

∂Ω− ∂Ω∗ + [Ω,Ω∗] = 0 (3)

allowing us to determine the elements of Ω∗ in terms of the elements of Ω
and to give the holomorphy conditions obeyed by the currents which are, in
fact, the Ward identities of the theory. The main advantage of [3] is to derive
easily the off-shell nilpotent BRST algebra which expresses the invariance of
the theory.

sA = −dC + [A, C] ; sC = CC (4)

where the ghost matrix C is traced from Ω∗ by substituting the gauge fields
by the ghost fields. These laws are formally the BRST transformations of
the Yang-Mills (Y-M) connection (d being the usual derivative operator)
and of the Faddeev-Popov ghost. The Wn-anomaly has been obtained in this
framework[3, 7] . After a general discussion of the supersymmetric structure,
we give explicit results in the case of W2 and W3-theories. Then a link with
the group properties underlying the formalism is made, allowing in principle
a general explicitation for Wn. Some general remarks on the global properties
of this formulation are given. Finally the formalism is used to deduce from
the Chern-Simons action the Wess-Zumino-Polyakov action.

1We adopt the convention that [A,B] stands for the anticommutator if both A and B

are grassmannian, else it is a commutator.
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2 Supersymmetric structure

A new and simple way of solving descent equations has been recently pre-
sented in ref.[8] where the case of the Y-M theory has been treated. The
method relies on the introduction of an operator ∆ which allows one to de-
compose the exterior derivative d as a BRST commutator

d = −[s,∆]. (5)

The closure of the algebra among d, s,and ∆ requires, in addition, the
introduction of a nilpotent operator G such that the following relations are
obeyed

[d,∆] = 2G ; [d,G] = 0 ; [s,G] = 0 ; [∆, G] = 0 (6)

This algebraic structure has already been found in topological field theories
such as the BF system [9], the cohomological Witten’s models[10] or the
topological Yang-Mills theory[11] , in bosonic string theory in the Beltrami
parametrization [12] and in chiral W3-gravity [13] . In fact as we shall see now
it appears also as a general characteristic of Wn-induced gravities, following
at once from the parallelism with Y-M theory.

As in the Y-M case we define the linear operators of even and odd degrees
respectively

∆ = A
δ

δC
+ (2AA− dA)

δ

δ(dC)
. (7)

G = (dA−AA)
δ

δC
+ d(AA)

δ

δ(dC)
(8)

and we choose as independent variables the set (A, dA, C, dC). Note that
the derivative of the connection A is taken as a variable. On the local matrix
space thus defined, the BRST operator s and the exterior derivative d act as
ordinary differential operators. Explicitly they read

s = (−dC + [A, C])
δ

δA
+ C2

δ

δC
− [dC, C]

δ

δ(dC)
− d[C,A]

δ

δ(dA)
, (9)

d = dC
δ

δC
+ dA

δ

δ(A)
(10)
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where the operator [...]δ/δΦ replaces the Φ field by the expression [...] by the
expression in the right hand side, and obeys the usual rules of derivatives in
grassmannian space.

In the case of bilinear conformal theories, the system of descent equations
relates the cocycles of the cohomology in the following way

sT 1

2 + dT 2

1 = 0 ; sT 2

1 + dT 3

0 = 0 ; s T 3

0 = 0 (11)

where the lower index denotes the form degree and the upper index the ghost
number.

Now starting from the trace of the C monomial of degree three, T 3
0 =

Tr(CCC), the operator ∆ generates the tower of descent equations by giving
the following solution for the cocycles

T 2

1 = ∆T 3

0 = 3Tr(CCA) (12)

T 1

2 =
1

2
∆∆T 3

0 = 3Tr(CAA) (13)

To get the last relation we have used the condition (1). T 1
2 appears as a

possible candidate for the non-integrated anomaly which satisfies the Wess-
Zumino consistency condition. Obviously this is in agreement with the
results[7] obtained in the usual way, through the Chern-Weil polynomial.

3 The n = 2 example

In the simplest case of the W2-model the connection A reads[4, 5]

A =

(
−1

2
∂µz

z̄dz κ

−1

2
∂2µz

z̄dz + ρzzds
1

2
∂µz

z̄dz

)
. (14)

where κ= dz + µz
z̄dz̄ . The set of fields appearing in (14) are the Beltrami

coefficient µz
z̄ (|µ

z
z̄| 6 1) and the projective connection ρzz . The ghost matrix

is obtained from the Ω∗ matrix by substituting for the Beltrami coefficient
µz
z̄ and the form degree the ghost field cz and the ghost degree respectively

C =

(
−1

2
∂cz cz

−1

2
∂2cz + ρzzc

z 1

2
∂cz

)
. (15)
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It is worthwhile to note that the differential form κappears in the well-

known local relation involving the holomorphic coordinates (Z,Z) , corre-
sponding to the structure parametrized by µz

z̄

dZ = ∂Z(dz + µz
z̄dz̄) = κ∂Z

Now the fields and their derivatives have to be considered as independent
variables. An adequate set of variables {a1, a2, a3; c1, c2, c3} is dictated by
the expression of the matrices (14,15) and is given by

a1 = κ ; a2 = ∂µz
z̄dz̄ ; a3 = ρzzκ − 1

2
∂2µz

z̄dz̄ ; (16)

c1 = cz ; c2 = ∂cz ; c3 = ρzzc
z − 1

2
∂2cz ; (17)

On the local space defined by these fields, the BRST operator s and the
exterior derivative d act as ordinary differential operators and are given by

d =
3∑

i=1

(
dci

δ

δci
+ dai

δ

δai

)
,

s =

3∑

i=1

(
sci

δ

δci
+ sai

δ

δai
+ sdci

δ

δdci
+ sdai

δ

δdai

)

.
Note that the dimensional constraints coming from matching conformal

indices and the dimension of the matrices fix the number of higher order field
derivatives to two. The explicit forms of the BRST transformations of these
new fields are easily deduced from the matrix laws (4)

sa1 = −dc1 + a1c2 + c1a2, sa2 = −dc2 + 2a3c1 + 2c3a1, (18)

sa3 = −dc3 + a2c3 + c2a3, (19)

sc1 = c1c2, sc2 = 2c3c1, sc3 = c2c3. (20)

whereas the ∆ operator (acting on the space {ci, dci}) is given by
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∆ =

3∑

i=1

(
ai

δ

δci
+∆dci

δ

δdci

)
, (21)

with ∆dc1 = 2a1a2 − da1 ; ∆dc2 = −4a1a3 − da2 ; ∆dc3 = 2a2a3 − da3.
These equalities betray the intrinsic relation between the ∆ operator and
the BRST operator s in this framework, since the relation between these
equalities and (18) is obvious.

Finally, the algebra closes on

G =

3∑

i=1

(
Gci

δ

δci
+ Gdci

δ

δdci

)
,

with Gc1 = da1 − a1a2 ;Gc2 = da2 + 2a1a3 ; Gc3 = da3 − a2a3;
and Gdc1 = d(a1a2) ; Gdc2 = −2d(a1a3) ; Gdc3 = d(a2a3).

Concerning the local cohomology of the BRST operator, we get from T 3
0 =

Tr(CCC) and (12,13) the cocycles in the zero and one form sectors with ghost
numbers three and two respectively which are already known[12] and the
non-integrated anomaly yielding the usual expression of the diffeomorphism
anomaly T 1

2 = −3

2
(∂cz∂2µz

z̄ − ∂2cz∂µz
z̄)dzdz̄, for the bosonic string in the

Beltrami parametrization[14] .

Up to now we have ignored the fact that the fields have to obey eq.(3).
In fact these constraints are incorporated in the explicit expressions (16,17)
of the new fields as functions of the canonical ones. However if we want to
derive this cohomology by applying straightforwardly the BRST operator to
the a fields we have to use explicitely the zero curvature condition, namely

da1 = a1a 2 ; da2 = 2a3a1 ; da3 = a2a3 (22)

Note that the above first two conditions are used to determine the elements
of Ω∗ in terms of the elements of Ω , whereas the third condition is the Ward
identity of the theory.

4 The induced W3-gravity

Now we present the way to derive the set of independent amplitudes cor-
responding to the W3-algebra. We consider, for instance, the ghost matrix
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{Cij}which in this case reads[7]

C =




1

6
∂2czz − 2

3
czzρzz − ∂cz cz − 1

2
∂czz czz

∂C11 −
1

2
czz∂ρzz −1

3
(∂2czz − czzρzz) cz + 1

2
∂czz

∂C21 + ∂ (czzρzzz) + czρzzz
+1

2
cz∂ρzz

1

2
∂C22 − ∂2cz + czρzz

+czzρzzz
∂C23 + C22




(23)
From this matrix we have to determine eight independent ghost fields,

three of them corresponding to the fields of the W2-algebra (which start with
a linear term of the form ∂ncz, n = 0, 1, 2), while the five remaining fields have
the linear terms ∂nczz, n = 0..4 respectively. Indeed, the formulation of the
W3-gravity has to contain theW2 results as a by-product. For instance, in the
expression of the W3-anomaly appears the W2-anomaly. However, as recently
shown [15], this extension is partially formal and not well understood; it does
not provide a true Beltrami differential since now the modulus of the Beltrami
coefficient µz

z appearing in the W3-formalism, is no more necessarily less than
one.

The issues of the band matrix extracted from (23) by considering the
main diagonal and the two adjacent ones allow the determination of six fields,
whereas the two remaining fields are given by the two remaining issues C13

and C31 of the matrix.

C =




c22 − c11 c01 − c12 c02
c32 − c21 −2c22 c01 + c12

c42 −c32 − c21 c22 + c11


 (24)

In cji the indices refer to the linear term contained in its expression: j is
the derivative power appearing in this term while i means that the ghost on
which this derivative acts concerns the W2-algebra (i = 1) or the W3-algebra
(i = 2). For instance c12 contains ∂czz.

The fields corresponding to the connection matrix {Aij} can be obtained
in the same way as above. Starting with[7]
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A =




(
1

6
∂2µzz

z − 2

3
µzz
z ρzz − ∂µz

z

)
dz κ − 1

2
∂µzz

z dz µzz
z dz

∂A11 −
1

2
µzz
z ∂ρzzdz −1

3
(∂2µzz

z − µzz
z ρzz) dz κ + 1

2
∂µzz

z dz

∂A21 ++ρzzzκ
+
(
∂ (µzz

z ρzzz) +
1

2
µz
z∂ρzz

)
dz

1

2
∂A22 + ρzzκ

− (∂2µz
z − µzz

z ρzzz) dz
∂A23 +A22




,

and defining

A =




a22 − a11 a01 − a12 a02
a32 − a21 −2a22 a01 + a12

a42 −a32 − a21 a22 + a11



 (25)

it is straightforward to read off the explicit expressions of ai. The indices
have the same meaning as before, the upper indices refering now to the linear
terms of the µ’s fields2. For instance the expression of a12 contains the term
∂µzz

z . The upper index corresponds to the power of the derivative whereas
the index 2 indicates that µzz

z is a field of the W3 algebra.
Having identified the basic fields in the connection and ghost field sectors

we give now their BRST transformations.

sc01 = 3c12c
2
2 + c32c

0
2 + c01c

1
1 sc11 = c42c

0
2 + c01c

2
1 + c12c

3
2 sc21 = 3c22c

3
2 + c42c

1
2 + c11c

2
1

sc02 = 2 (c02c
1
1 + c01c

1
2) sc12 = 3c01c

2
2 + c02c

2
1 + c12c

1
1 sc22 = c01c

3
2 + c12c

2
1

sc32 = 3c22c
2
1 + c11c

3
2 + c01c

4
2 sc42 = 2 (c32c

2
1 + c11c

4
2)

sa01 = −dc01 + 3 [a12, c
2
2] + [a01, c

1
1] + [a32, c

0
2] sa11 = −dc11 + [a12, c

3
2] + [a01, c

2
1] + [a42, c

0
2]

sa21 = −dc21 + 3 [a22, c
3
2] + [a11, c

2
1] + [a42, c

1
2]

sa02 = −dc02 + 2 [a02, c
1
1] + 2 [a01, c

1
2] sa12 = −dc12 + 3 [a01, c

2
2] + [a12, c

1
1] + [a02, c

2
1]

sa22 = −dc22 + [a01, c
3
2] + [a12, c

2
1] sa32 = −dc32 + 3 [a22, c

2
1] + [a11, c

3
2] + [a01, c

4
2]

2A careful reader would note that the expression of the a2
1
field is different from the

expression of the a3 field given previously in the W2-formalism since a2
1
= −∂2µz

z
dz +

1

2
ρzzκ. This is due to a trivial redefinition of the fields in the W3-framework.
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sa42 = −dc42 + 2 [a11, c
4
2] + 2 [a32, c

2
1] .

The brackets are defined by
[
aij , c

k
l

]
= aijc

k
l + cija

k
l and obey

[
aij , c

k
l

]
=[

cij , a
k
l

]
= −

[
ckl , a

i
j

]
. The ∆ operator has the same form as in equation (21)

with ∆ci = ai. The expression of ∆dci is simply deduced from the BRST
transformations above by replacing the cji ’s by the aji ’s.

Let us proceed to give the construction of the anomaly. Starting from
the cocycle

T 3

0 = tr(C3) = 6(−3c01c
2

2c
3

2+3c12c
2

1c
2

2+c01c
2

1c
1

1+c11c
1

2c
3

2+c01c
1

2c
4

2−c02c
2

1c
3

2+c02c
1

1c
4

2),
(26)

the cocycles of the descent equations are obtained by the action of the
operator ∆ and the following expression of the anomaly is easily deduced

T 1

2 = 6(−3a01a
2

2c
3

2 + 3a12a
2

1c
2

2 + a01a
2

1c
1

1 + a01a
1

2c
4

2 − a02a
2

1c
3

2 − 3c01a
2

2a
3

2

+3c12a
2

1a
2

2 + c01a
2

1a
1

1 + c11a
1

2a
3

2 + c01a
1

2a
4

2 − c02a
2

1a
3

2 + c02a
1

1a
4

2 − 3a01c
2

2a
3

2

+3a12c
2

1a
2

2 + a01c
2

1a
1

1 + a11c
1

2a
3

2 + a01c
1

2a
4

2 − a02c
2

1a
3

2 + a02c
1

1a
4

2).

The final form of this quantity in terms of the basic fields µz
z, ρzz, µ

zz
z , ρzzz

is straightforwardly available from the explicit expressions of the a and c fields
and is not given here since it is already known [7, 16] . The only point we want
to discuss is that the terms 6(a01a

2
1c

1
1 + a01c

2
1a

1
1) and −6(3a01a

2
2c

3
2 + 3a01c

2
2a

3
2 −

a01a
1
2c

4
2 − a01c

1
2a

4
2) contains respectively the leading terms ∂2µz

z∂c
z − ∂2cz∂µz

z

and ∂2µzz
z ∂3czz − ∂3czz∂2µzz

z ( called universal anomalies by Hull [19]).

5 The general formulation

From the examples of the W2 and W3 -models we can draw some general
lessons. There are n2 − 1 fields (and n2− 1 ghosts) necessary to describe the
Wn-model. They are decomposed in the following way :

n2 − 1 =

n∑

i=2

(2i− 1) (27)
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where each term in the sum corresponds to the subset of fields describing the
Wi-model. This express the fact that the Wn-algebra contains the nested set
of subalgebras Wk , k = 2, .., n − 1 : W2 ⊂ W3 ⊂ .. ⊂ Wn−1 ⊂ Wn, where
the inclusion symbol means that the formulation of Wi can be obtained from
Wi+1 by setting to zero the fields occuring at the level i + 1. Finally the
fields of the Wn-model are deduced from the 2(n−1) non-principal diagonals

following the decomposition 2
n−1∑
i=1

i , the main diagonal giving the n − 1

remaining fields. We note that the constraints imposed by the conformal
indices and the size of the matrices, building blocks of the Wn-model, imply
that the degree of derivatives appearing in the expressions of the fields must
be 2n− 2 at most.

More importantly, the BRST algebra of the ghost fields of the Wn-models
expressed in terms of the new fields (see eq.(20) for the example ofW2 and the
expressions given in sect.4. for W3 ) reflects the group symmetry sl(n,R). To
prove this let us remember the link between a Lie algebra and an antideriva-
tion operator. Let G be a vector space of dimension N with a basis (Tα,

α = 1, N ). The corresponding Lie algebra structure is defined by writing a
commutator of two generators of G as [Tα, Tβ] = f γ

αβTγ , where f γ
αβ are the

antisymmetric structure constants. Moreover the commutators satisfy the
Jacobi identity [[Tα, Tβ], Tγ ] + cyclic permutations = 0 . The Lie algebra
may be also defined in the dual space G∗ of G (with the wedge product ∧
between its elements). In a dual basis (Cα, α = 1, ..., N ) the antiderivation
s of degree 1 is defined by

sCα =
1

2
fα
βγC

β ∧ Cγ (28)

It is easy to verify that the nilpotency condition of s results from the Jacobi
identity and that the algebra (20) corresponds to the Lie brackets satisfied
by the generators of the groups sl(2,R) when they are identified with (28).
The transformations of the gauge fields are those of a Yang-Mills theory of
the sl(2,R) group:

saα = −dCα +
1

2
fα
βγa

βCγ

The generalization to higher Wn-models requires to take into account the
nested structure mentioned before. If 2j + 1

2
denotes the (2j+1)−dimensional

10



irreducible representation of sl(2,R), the (n2 − 1)−dimensional adjoint rep-
resentation of sl(n,R), adn has the branching rule

adn ⋍ 32 ⊕ 52 ⊕ ...⊕ 2n− 1
2

From this follows immediately the decomposition (27). Without going
into details3 we can give the corresponding basis of sl(3,R)

Jata =




J4

6
+ J5

2

J6

2
+ J7

2
J8

J2

2
+ J3

2
−J4

3
−J6

2
+ J7

2

J1 J2

2
− J3

2

J4

6
− J5

2




where the sl(2,R) subalgebra is given by J2, J5 and J7. The comparison
with (24) and (25) is obvious. Finally in order to illustrate the construction
in a less simple case we give the example of sl(4,R) :

Jata =




J7

2
+ J8 + J9 J5 + J6 J2 + J3 J1

J10 + J11 J7

2
− J8 − J9 J4 J2 − J3

J12 + J13 J14 −J7

2
+ J8 − J9 J5 − J6

J15 J12 − J13 J10 − J11 −J7

2
− J8 + J9




where now the sl(2,R) subalgebra is given by J2, J7 and J12 and the sl(3,R)
subalgebra is given by J3, J6, J8, J10 and J13.

6 Global aspects of the formulation

Clearly the formalism described up to now, is valid only on the plane and
on the sphere. When considering a Riemann surface of higher genus a global
formulation of the anomaly and of the cocycles linked to it by the cohomol-
ogy of the BRST operator is possible[18, 7]. However the field used to render
the expressions valid on any local coordinate chart is the ρzz field appearing
in (14) and (15). Indeed this field transforms with the Schwarzian derivative
under a conformal change of coordinates but is not a true projective connec-
tion since it is not locally holomorphic (∂ρzz 6= 0). In fact it obeys to the

3The technology of sl representations has been recently reviewed in [17]. We borrow
the group notations and conventions to these publications
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holomorphic condition (for the W2-model)

(∂ − µz
z∂ − 2∂µz

z)ρzz = −
1

2
∂3µz

z̄ (29)

which is formally the anomalous Ward identity of the induced 2-dim.
conformal gravity. This results in a serious drawback of this formulation
since the underlying field theory is ill defined, the holomorphic condition
(29) linking in a non-local way the µz

z and the ρzz fields. The situation is
even worse for the W3-model since then the ρzz field appears explicitly in
the BRST transformations of the cz and µz

z whereas the known expressions
of the non-integrated anomaly [7, 16] display terms containing the ρzz and
ρzzz fields. In fact this defect is inherent to any calculation starting from
the zero curvature condition (3) and being self-contained in the sense that
the field used to glue the expressions from different charts is provided by the
framework itself.

In [20] a different point of view was adopted. Working with a holomorphic
projective connection and thus avoiding to introduce non-locality in the the-
ory, Lazzarini and Stora derived the form of the Virasoro Ward identity (29)
on arbitrary Riemann surfaces. Unfortunately their work cannot be carried
through for the W3-model. Indeed replacing the ρ fields appearing in the Ω
matrix by holomorphic fields (and thus BRST inerts) obviously breaks the
BRST invariance of the integrated (or non-integrated) anomaly as well as
the nilpotency of the BRST transformations of cz and µz

z . The systematic
way to formulate the theory provided by the geometrical framework of [3] or
given by some zero curvature condition [5, 6, 16, 18] is lost.

7 The Wess-Zumino-Polyakov action

In this section we derive the Wess-Zumino-Polyakov action from the Chern-
Simons action for the W2-model. Following the formalism at work in Y-M
theory[21] the Chern-Simons action is given by

S =
k

4π

∫

Y

Tr

(
Ãd̃Ã −

2

3
ÃÃÃ

)

This action is defined on a 3-dimensional manifold Y whose boundary is the
two dimensional space (z, z). More precisely we assume for Y a ”space-time”

12



splitting of the form Σ × R where Σ is a Riemann surface (eventually with

boundary). Then the exterior derivative d̃ = dt∂t + d (∂t ≡ ∂
∂t
) and the

matrix form Ã = At +A are decomposed into a ”time” component and the
usual space components (z, z). The action above becomes

S = −
k

4π

∫

Y

Tr (A∂tAdt) +
k

2π

∫

Y

Tr (At(dA−AA)) (30)

Here At can be viewed as a Lagrange multiplier enforcing the constraints
(1) in the space direction. An effective action can then be derived by substi-
tuting the expression of A in terms of the variables {ai}into (30).

S =

∫

Y

(
a1z∂ta3z − a3z∂ta1z + a3z∂ta1z − a1z∂ta3z +

1

2
a2z∂ta2z −

1

2
a2z∂ta2z

)

(31)
The equations of motion are the zero curvature conditions (22). Now let
Σ = D be a disk; these constraints are automatically satisfied when the
gauge matrix field A is locally expressed as a pure gauge:

A = dWW−1 =

(
0 1

∂2g∂h− ∂2h∂g 0

)
dz+

(
∂g∂h− ∂g∂h ∂hg − h∂g

∂∂g∂h− ∂∂h∂g −∂g∂h + ∂g∂h

)
dz

where W =

(
g h
∂g ∂h

)
satisfies to

g∂h− h∂g = 1 (32)

The peculiar structure of the matrix W , a Wronskian structure, determines
the form of the matrix Ω as a function of the two independent fields (µz

z̄, ρzz).
The choice of two (-1

2
) differentials g = 1√

∂Z
, h = Z√

∂Z
makes the link

with the theory of two-dimensional Riemann surfaces[3, 4], since Z is in
fact, a generic coordinate of the conformal structure A(µ) associated to any
Beltrami differential µ . It is a local solution of the Beltrami equation and
ρzz is the Schwarzian derivative of Z.

The appearance of a third coordinate requires some explanation. It is
assumed that the matrix field W (t, z, z) is defined on a three-dimensional
hemisphere whose boundary tB coincides with the two-dimensional plane
where the original theory is defined in such a way that W (tB, z, z) ≡ W (z, z).
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Now by following the canonical formalism of Witten it is possible to relate
the action (30) to the theory in two dimensions. Integrating by parts we get

S = − k
4π

∫
dtdzTr(∂WW−1∂tWW−1)− k

4π

∫
dtdzTr(∂WW−1∂tWW−1)

+ k
12π

∫
Y
Tr(dWW−1)3

(33)
The change of variables from A to W involves a unit Jacobian since the
measure dÃδ(F) ≡ dW . In this way we have a path integral of the action
(33) which looks like the chiral version of the Wess-Zumino-Witten path
integral.

This action depends only on the boundary values of W on the conformal
space (z, z). The third term on the r.h.s of (33) is the generalization of
the usually called Wess-Zumino term [22], and in fact does not depend on
the t variable being a total derivative. To prove this latter statement it is
worthwhile to restore in its expression the full symmetry with respect to the
three variables z, z and t . This results in

∫
Y
Tr(dWW−1)3 =

∫
Y
[(∂∂g∂h− ∂∂h∂g)(∂tg∂h− ∂g∂th)

−(∂∂tg∂h− ∂∂th∂g)(∂g∂h− ∂g∂h) + (∂2g∂h− ∂2h∂g)(∂g∂th− ∂tg∂h)]

With the help of the condition (32) we see that this three dimensional integral
depends on boundary values only

∫
Y
Tr(dWW−1)3 =

∫
Y
∂t[ln g(∂∂g∂h− ∂h∂2g)] +

∫
Y
∂[ln g(∂2g∂th− ∂h∂∂tg)]

+
∫
Y
∂[ln g(∂∂tg∂h− ∂th∂∂g)]

The formal expression ln g which appears in the formula above has been
obtained by partial integration of ∂g

g
. Now we assume that g and h satisfy on

the boundary of the space (z,z) the relation h = ∂g (and g∂2g − (∂g)2 = 1
which preserves (32)). The three dimensional integral is reduced to

∫

Y

Tr(dWW−1)3 =

∫
dzdz ln g(∂∂g∂h− ∂h∂2g)

On the Riemann surface the result is (up to some integration by part) the
Wess-Zumino-Polyakov action

∫

Y

Tr(dWW−1)3 =

∫
dzdz

∂Z

∂Z
∂2 ln ∂Z

14



which solves the Ward identity. In particular this is a non-local functional of
the Beltrami coefficient obeying

δ

δµ

∫
dzdz

∂Z

∂Z
∂2 ln ∂Z = 2S(Z, z)

where S is the Schwarzian derivative.
Now we explain how the above results are related to other calculations of

the Wess-Zumino-Polyakov action. In fact starting from [16, 18]

∫
dzdz

∂Z

∂Z
∂2 ln ∂Z =

∫
dzdzTr(∂gg−1∂gg−1)−

∫
dzdzTr(Λg−1∂g)+

∫

Y

Tr(dWW−1)3

(34)

where Λ is the constant matrix

(
0 1
0 0

)
, the expressions in the r.h.s of (34)

can be reexpressed as

∫
dzdz ∂Z

∂Z
∂2 ln ∂Z = 1

4

∫
dzdz(2µz

z̄ρzz −
1

2
∂2µz

z̄)−
1

2

∫
dzdz(µz

z̄ρzz −
1

2
∂2µz

z̄)
+
∫
Y
Tr(dWW−1)3

Since the first two terms in the r.h.s reduce to a total derivative, we obtain
the desired result.

We have clarified how the Wess-Zumino-Witten action can be obtained in
this framework. We hope that this derivation will be generalizable to other
bi-dimensional conformal models.
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