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Guided by the gauging of U(N) isometry associated with the special Kähler geometry,
and the discrete R symmetry, we construct the N = 2 supersymmetric action of a U(N)
invariant nonabelian gauge model in which rigid N = 2 supersymmetry is spontaneously
broken to N = 1. This generalizes the abelian model considered by Antoniadis, Partouche
and Taylor. We shed light on complexity of the supercurrents of our model associated
with a broken N = 2 supermultiplet of currents, and discuss the spontaneously broken
supersymmetry as an approximate fermionic shift symmetry.

§1. Introduction

Continuing investigations have been made for more than two decades on super-
symmetric field theories,†) hoping to obtain realistic description of nature by broken
N = 1 supersymmetry at an observable energy scale. On the other hand, it is most
natural to view that physics beyond this energy scale is controlled by string the-
ory, which, without nontoroidal backgrounds, produces extended supersymmetries
in four dimensions. Breaking of extended supersymmetries in this vein provides a
bridge between gauge field theory and string theory. String theory does not possess
genuine coupling constants: instead, they are the vacuum expectation values of some
supersymmetry preserving moduli fields. We are thus led to search for the possibility
of spontaneous partial breaking of extended supersymmetries in four dimensions.

In the context of N = 2 supergravity,4) spontaneous breaking of local N = 2
supersymmetry to its N = 1 counterpart has been accomplished by the simultaneous
realization of the Higgs and the super Higgs mechanisms. Sizable amount of literature
has been accumulated till today along this direction.5)–7) There have been active
researches carried out on nonlinear realization of extended supersymmetries in the
partially broken phase.8)–13) These are closely related to the effective description of
string theory,14) brane dynamics15)–20) and domain walls.21)

After Refs. 8) and 9) and prior to the remainder of the works on nonlinear
realization, there was a work within the linear realization done by Antoniadis, Par-
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430 K. Fujiwara, H. Itoyama and M. Sakaguchi

touche and Taylor22) who constructed an N = 2 supersymmetric, self-interacting
U(1) model with one (or several) abelian N = 2 vector multiplet(s)23) which breaks
N = 2 supersymmetry down to N = 1 spontaneously. See also Refs. 24) and 25).
The partial breaking of supersymmetry is accomplished by the simultaneous pres-
ence of the electric and magnetic Fayet-Iliopoulos terms, which is a generalization
of Ref. 26). In the present paper, generalizing the work of Ref. 22), we construct
the N = 2 supersymmetric action of a U(N) invariant nonabelian gauge model in
which rigid N = 2 supersymmetry is spontaneously broken to N = 1. The gauging
of U(N) isometry associated with the special Kähler geometry, and the discrete R
symmetry are the primary ingredients of our construction.

Let us recall that partial breaking of extended rigid supersymmetries appears
not possible on the basis of the positivity of the supersymmetry charge algebra:

{
Q̄i

α, Qjα̇

}
= 2(1)αα̇δ

i
jH. (1.1)

In fact, if Q1|0〉 = 0, one concludes H|0〉 = 0 and Qi|0〉 = 0 for all i. If Q1|0〉 �= 0,
then H|0〉 = E|0〉 with E > 0 and Qi|0〉 �= 0 for all i. The loophole to this argument
is that the use of the local version of the charge algebra is more appropriate in
spontaneously broken symmetries and the most general supercurrent algebra is{

Q̄j
α̇,Sm

αi(x)
}

= 2(σn)αα̇δ
j
iT

m
n (x) + (σm)αα̇C

j
i , (1.2)

where Sm
αi and Tm

n are the supercurrents and the energy momentum tensor respec-
tively. We have denoted by Cj

i a field independent constant matrix permitted by
the constraints from the Jacobi identity.27) This last term does not modify the su-
persymmetry algebra acting on the fields. The abelian model of Ref. 22) and our
nonabelian generalization provide a concrete example of this local algebra within
linear realization from the point of view of the action principle.

The Lagrangian of our model has noncanonical kinetic terms coming from the
nontrivial Kähler potential and does not fall into the class of renormalizable La-
grangians. As a model with spontaneously broken N = 2 supersymmetry, the pre-
potential F is present from the beginning of our construction. This is in contrast
with breaking N = 2 to N = 1 by the operator (superpotential) W (Φ), where F
appears aposteriori according to the recent developments beginning with Dijkgraaf
and Vafa.28) The model has a U(1) sector interacting with an SU(N) sector and
the spontaneously broken supersymmetry acts as an approximate fermionic shift
symmetry. Piecing through all these properties, we conclude that the action of the
model should be regarded as a low energy effective action which applies to various
processes and that the dynamical effects including those of (fractional) instantons
are to be contained in the prepotential as an input. This input should be supplied
by a separate means of calculation. The connection with the exact determination
of the prepotential via Refs. 29) and 30) and from integrable systems31),32) offers a
new avenue of thoughts with this regard.

In §2, we provide the construction of the N = 2 supersymmetric action of the
U(N) invariant nonabelian gauge model which is equipped with the Fayet-Iliopoulos
D term and a specific superpotential. Gauging of the noncanonical kinetic terms
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Supersymmetric U(N) Gauge Model 431

coming from the Kähler potential is a necessary step to complete the action. In §3,
we provide the transformation law of the extended supersymmetries associated with
the model. We note that the SU(2) automorphism of N = 2 supersymmetry has
been fixed in the parameter space. In §4, we fix the form of the prepotential and
determine the vacuum with unbroken gauge symmetry. We exhibit partial breaking
of N = 2 supersymmetry and discuss a mechanism which enables this. In §5, we
examine a broken N = 2 supermultiplet of currents33) associated with the model.
The U(1)R current is not conserved except for the case where the prepotential has
an R-weight two. Despite this, we show that the broken N = 2 supermultiplet of
currents provides a useful means to construct the extended supercurrents. We shed
light upon their complexity. In §6, we discuss a role played by the spontaneously
broken supersymmetry. We see that it acts as a approximate U(1) fermionic shift
symmetry in the limit of letting the magnetic Fayet-Iliopoulos term large relative
to the electric one. Our discussion in section two and that in section three leading
to N = 2 supersymmetric Lagrangian exploit an algebraic operation denoted by R.
This operation is defined by including the sign flip of the Fayet-Iliopoulos parameter
ξ → −ξ into the standard discrete canonical transformation R. It is a legitimate
algebraic process to use R to demonstrate the second supersymmetry and in section
three we obtain N = 2 supersymmetry transformation by demanding the covariance
under R. In Appendix A, we give a more pedagogical proof of N = 2 supersymmetry
of our action, using the canonical R. The two approaches are thus shown to be
equivalent. In Appendix B, we reexamine the N = 1 current supermultiplet34) in
the Wess-Zumino model.

§2. N = 2 U(N) gauge model

Let us first state our strategy to obtain the N = 2 supersymmetric action with
nonabelian U(N) gauge symmetry. We adopt the N = 1 superspace formalism
to write down a U(N) invariant action consisting of a set of N = 1 U(N) chiral
superfields and vector superfields in the adjoint representation. The action at this
level is equipped with the terms required for the gauging, the Fayet-Iliopoulos D term,
and a generic superpotential. Imposing the discrete element of SU(2) automorphism
ofN = 2 supersymmety algebra as symmetry of our action,2),22) we obtain the action
mentioned in the introduction.

What is meant by this last procedure is, however, a little more subtle than one
might first think and we pause to explain this here in more detail. In the presence
of the Fayet-Iliopoulos D term with its coefficient ξ, N = 1 Lagrangian is in general
not invariant under the discrete R symmetry. (See Eq. (2.39).) Best one can do is
therefore to consider simultaneously an inversion of the parameter ξ. (See Eq. (2.49).)
Under this extended operation denoted by R, we will find

R : L → L, R : L′ → L′. (2.1)

(See Eqs. (2.26) and (2.33).) Combining this with the algebra

Rδ1R
−1 = δ2, (2.2)
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we conclude that our final actions (2.33) and (2.64) with (2.45) and (2.48) are invari-
ant under N = 2 supersymmetry. Here we denote by δ1 and δ2, the transformation
of the first supersymmetry and that of the second supersymmetry respectively. This
definition R turns out to be consistent with an interpretation that full rigid SU(2)
symmetry has been fixed in the parameter space. This is discussed in §3.

2.1. U(N) gauge model

Let us introduce a set of N = 1 chiral superfields

Φ(xm, θ) =
N2−1∑
a=0

Φata . (2.3)

Here, ta, a = 0, 1, · · · , (N2− 1), are N ×N hermitian matrices which generate u(N)
algebra, and tâ, â = 1, · · · , (N2 − 1), generate su(N) algebra

[tâ, tb̂] = if ĉ
âb̂
tĉ. (2.4)

The index 0 refers to the overall u(1) generator. The scalar fields A = Aata in Φ
undergo the adjoint action

A→ UAU †, (2.5)

under U(N).
The kinetic term for A is generated by

LK =
∫
d2θd2θ̄ K(Φa, Φ∗a), (2.6)

where K(Aa, A∗a) is the Kähler potential. The Kähler potential we employ is given
by

K(Aa, A∗a) =
i

2
(AaF∗

a −A∗aFa), (2.7)

where Fa = ∂aF = d
dAaF and F is an analytic function of A.†) The Kähler potential

can be written using a hermitian metric on the bundle compatible with the symplectic
structure as

K = − i
2

〈
Ω|Ω̄〉

,
〈
Ω|Ω̄〉

= −ΩT

(
0 I

−I 0

)
Ω∗ . (2.8)

The Kähler metric

gab∗ = ∂a∂b∗K = ImFab (2.9)

constructed this way always admits a U(N) isometry. The holomorphic Killing
vectors ka = ka

b∂b are generated by the Killing potential Da, to be introduced
shortly, as

ka
b = −igbc∗∂c∗Da, k∗a

b = igcb∗∂cDa. (2.10)
†) The Ω = (Aa

Fb
) can be regarded as a section of a holomorphic symplectic bundle on a special

Kähler geometry (see Ref. 34) and references therein). We work in special coordinates in this paper.
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Supersymmetric U(N) Gauge Model 433

These form an algebra [ka, kb] = −f c
abkc. The Aa and Fa transform in the adjoint

representation of U(N)

δbA
a = −fa

bcA
c, δbFa = −f c

abFc . (2.11)

One finds that the commutator of two of δa is given by [δa, δb] = f c
abδc. Comparing

this with the commutator of two Killing vectors, we are able to identify δa with −ka.
Equation (2.11) is rewritten as

kb
c∂cA

a = fa
bcA

c, kb
c∂cFa = −f c

baFc . (2.12)

The isometry group can be embedded in the symplectic group, and the Da is given
by

Da = −1
2

〈
Ω|TaΩ̄

〉
= −1

2
(Fbf

b
acA

∗c + F∗
b f

b
acA

c), Ta =
(
f b

ac 0
0 −f b

ac

)
. (2.13)

Note that Dâ are completely determined by this formula while D0 is determined up
to a constant.

In order to gauge the U(N) isometry, we introduce a set of N = 1 vector
superfields

V (xm, θ, θ̄) =
N2−1∑
a=0

V ata. (2.14)

The U(N) gauging of LK is accomplished35) by adding

LΓ =
∫
d2θd2θ̄Γ, Γ =

[∫ 1

0
dαe

i
2
αva(ka−k∗

a)vcDc

]
va→V a

, (2.15)

where [· · · ]va→V a means the replacement of va by V a after evaluating · · · . Combining
LK with LΓ , we obtain

LK + LΓ = −gab∗DmA
aDmA∗b − i

2
gab∗ψ

aσmD′
mψ̄

b +
i

2
gab∗D′

mψ
aσmψ̄b

+gab∗F
aF ∗b − 1

2
gab∗,c∗F

aψ̄bψ̄c − 1
2
gbc∗,aF

∗cψaψb

+
1√
2
gab∗(λcψak∗c

b + λ̄cψ̄bkc
a) +

1
2
DaDa , (2.16)

where we have exploited 1
4gac∗,bd∗ψ

aψbψ̄cψ̄d = 0 as gac∗,bd∗ = 0 for the choice of K
in (2.7). The covariant derivatives are defined as

DmA
a = ∂mA

a − 1
2
vb
mkb

a, (2.17)

D′
mψ

a = Dmψ
a + Γ a

bcDmA
bψc, (2.18)

Dmψ
a = ∂mψ

a − 1
2
vb
m∂ckb

aψc , (2.19)
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where Γ a
bc = gad∗gbd∗,c.

The gauged kinetic action for the vector superfield V is given by

LW2 = − i
4

∫
d2θτabWaWb + c.c. , Wα = −1

4
D̄D̄e−VDαe

V =Wa
αta , (2.20)

where τab = (τ1)ab + i(τ2)ab is an analytic function of Φ, and will be determined by
requiring N = 2 supersymmetry. The LW2 is evaluated as

LW2 = −1
2
τabλ

aσmDmλ̄
b − 1

2
τ̄abDmλ

aσmλ̄b − 1
4
(τ2)abv

a
mnv

bmn − 1
8
(τ1)abε

mnpqva
mnv

b
pq

−i
√

2
8

(∂cτabψ
cσnσ̄mλa − ∂c∗τ

∗
abλ̄

aσ̄mσnψ̄c)vb
mn

+
1
2
(τ2)abD

aDb +
√

2
4

(∂cτabψ
cλa + ∂c∗τ

∗
abψ̄

cλ̄a)Db +
i

4
∂cτabF

cλaλb

− i
4
∂c∗τ

∗
abF

∗cλ̄aλ̄b − i

8
∂c∂dτabψ

cψdλaλb +
i

8
∂c∗∂d∗τ

∗
abψ̄

cψ̄dλ̄aλ̄b, (2.21)

where we have defined

va
mn = ∂mv

a
n − ∂nv

a
m −

1
2
fa

bcv
b
mv

c
n, (2.22)

Dmλ
a = ∂mλ

a − 1
2
fa

bcv
b
mλ

c. (2.23)

In addition, we include the superpotential term

LW =
∫
d2θW (Φ) + c.c.

= F a∂aW − 1
2
∂a∂bWψaψb + F ∗a∂a∗W ∗ − 1

2
∂a∗∂b∗W

∗ψ̄aψ̄b , (2.24)

and the Fayet-Iliopoulos D-term26)

LD = ξ

∫
d2θd2θ̄V 0 =

√
2ξD0. (2.25)

The superpotential W will be determined by requiring N = 2 supersymmetry. Fi-
nally, putting all these together, the total action is given as

L = LK + LΓ + LW2 + LW + LD. (2.26)

For the sake of our discussion in the next subsection, we present the on-shell
action, eliminating the auxiliary fields by using the equations of motion

Da = D̂a − (τ−1
2 )ab

(
1
2
Db +

√
2ξδ0b

)
, (2.27)

F a = F̂ a − gab∗∂b∗W
∗, (2.28)

F ∗a = F̂ ∗a − gba∗
∂bW , (2.29)
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where

D̂a = −
√

2
4

(τ−1
2 )ab

(
∂dτbcψ

dλc + ∂d∗τ
∗
bcψ̄

dλ̄c
)
, (2.30)

F̂ a = −gab∗
(
− i

4
∂b∗τ

∗
cdλ̄

cλ̄d − 1
2
gcb∗,dψ

cψd

)
, (2.31)

F̂ ∗a = −gba∗
(
i

4
∂bτcdλ

cλd − 1
2
gbc∗,d∗ψ̄

cψ̄d

)
. (2.32)

The action L takes the following form:

L′ = Lkin + Lpot + LPauli + Lmass + Lfermi4 , (2.33)

where

Lkin = −gab∗DmA
aDmA∗b − 1

4
(τ2)abv

a
mnv

bmn − 1
8
(τ1)abε

mnpqva
mnv

b
pq (2.34)

−1
2
τabλ

aσmDmλ̄
b − 1

2
τ∗abDmλ

aσmλ̄b

− i
2
gab∗ψ

aσmDmψ̄
b +

i

2
gab∗Dmψ

aσmψ̄b,

Lpot = −1
2

(
τ−1
2

)ab
(

1
2
Da +

√
2ξδ0a

)(
1
2
Db +

√
2ξδ0b

)
− gab∗∂aW∂b∗W

∗, (2.35)

LPauli = −i
√

2
8
∂cτabψ

cσnσ̄mλavb
mn + i

√
2

8
∂c∗τ

∗
abλ̄

aσ̄mσnψ̄cvb
mn, (2.36)

Lmass = −1
2
∂a∂bWψaψb − gab∗∂aW

(
− i

4
∂b∗τ

∗
cdλ̄

cλ̄d − 1
2
gcb∗,dψ

cψd

)

−1
2
∂a∗∂b∗W

∗ψ̄aψ̄b − gab∗
(
i

4
∂aτcdλ

cλd − 1
2
gac∗,d∗ψ̄

cψ̄d

)
∂b∗W

∗

+
1√
2
gab∗

(
λ̄cψ̄bkc

a + λcψak∗c
b
)

−
√

2
4

(
τ−1
2

)ab
(

1
2
Da +

√
2ξδ0a

) (
∂dτbcψ

dλc + ∂d∗τ
∗
bcψ̄

dλ̄c
)
, (2.37)

Lfermi4 = − i
8
∂c∂dτabψ

cψdλaλb +
i

8
∂c∗∂d∗τ

∗
abψ̄

cψ̄dλ̄aλ̄b

− 1
16

(
τ−1
2

)ab
(
∂dτacψ

dλc + ∂d∗τ
∗
acψ̄

dλ̄c
) (

∂fτbeψ
fλe + ∂f∗τ∗beψ̄

f λ̄e
)

−gab∗
(
i

4
∂aτcdλ

cλd − 1
2
gac∗,d∗ψ̄

cψ̄d

)(
− i

4
∂b∗τ

∗
ef λ̄

eλ̄f − 1
2
geb∗,fψ

eψf

)
.

(2.38)

2.2. Discrete R-symmetry

We shall show that our Lagrangian (2.33) L′ can be made invariant under the
action

R :
(

λa

ψa

)
→

(
ψa

−λa

)
, (2.39)
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which is a discrete element of the SU(2) R-symmetry that acts as an automorphism
of N = 2 supersymmetry.

First, we examine the invariance of LPauli, Lfermi4 and Lkin under the action
(2.39). The invariance of LPauli and that of Lfermi4 under (2.39) require

∂cτab = ∂aτcb, (2.40)

and

∂c∂dτab = ∂a∂bτcd , ∂cτab = Fabc, (2.41)

respectively. In addition, the invariance of the fermion kinetic terms in Lkin implies
that

Im(τab) = Im(Fab) (2.42)

and

−2∂a∂b∗Dc = τadf
d
cb + τ∗bdf

d
ca, (2.43)

as well as the last condition in (2.41) which comes from that the terms with a
derivative of A∗ vanish. The first condition (2.42) comes from the terms with a
derivative of λ or ψ while the second one (2.43) from those including va

m. For the
boson kinetic terms in Lkin, the invariance is obvious because they do not contain
fermionic fields. From the conditions (2.41) and (2.42), we conclude that

τab = Fab, (2.44)

so that gab∗ = (τ2)ab. It is easy to show that the Killing potential Da defined in
(2.13) solves the condition (2.43).

Secondly, we examine the invariance of the λλ and ψψ mass terms in Lmass under
(2.39). The key relation required for this invariance is

− i
4
gcd∗∂cτab∂d∗W

∗ =
1
2
gcd∗∂cWgad∗,b − 1

2
∂a∂bW. (2.45)

Writing the U(N) invariant function W as W = eA0 +mφ(A), where the e and m
are real constants, it reduces to

Fabc

(
1

F − F∗

)cd

(∂dφ− ∂d∗φ
∗) = ∂a∂bφ, (2.46)

which can be solved by φ = F0 + const. Thus we can choose

W = eA0 +mF0, (2.47)

up to an irrelevant constant.
Thirdly, we examine the ψλ terms in Lmass. Because ψaλb is odd under the

action (2.39), the coefficient, 1√
2
gac∗k

∗
b
c −

√
2

8 (τ−1
2 )cd∂aτcb(Dd + 2

√
2ξδ0d), must be

odd. This implies the key relation for the invariance

i∂aDb + i∂bDa − 1
2
(τ−1

2 )cd∂aτcbDd = 0, (2.48)
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as well as

R; ξ → −ξ. (2.49)

Equation (2.48) can be proven as follows. First, we note that

Facf
c
db + Fbcf

c
da = −Fabcf

c
deA

e, (2.50)

which is derived as a derivative of the second relation in (2.12). Using this relation
and the definition (2.13), one finds that

i∂aDb + i∂bDa = − i
2
Fabcf

c
deA

∗dAe. (2.51)

On the other hand, the Killing potential is shown to be rewritten as

Da =
1
2
f b

cdA
∗cAd(F∗

ab −Fab) = −igabf
b
cdA

∗cAd (2.52)

by using the second relation in (2.12). Equations (2.51) and (2.52) are enough to see
that Eq. (2.48) is true.

Lastly, we examine Lpot. The invariance of Lpot under (2.49) follows from the
fact that the term linear in ξ in Lpot vanishes:

−1
2
(τ−1

2 )abDa

√
2ξδ0b = −

√
2

2
ξga0(−igabf

b
cdA

∗cAd) = i

√
2

2
ξf0

cdA
∗cAd = 0, (2.53)

where we have used (2.44) and (2.52).
In summary, we have shown that our on-shell action (2.33) admits the discrete

R-symmetry (2.39) and (2.49) if we choose τab as (2.44) and W as (2.47).
We will show that the discrete R-symmetry can be realized in the off-shell action

(2.26) with (2.44) and (2.47). In an ungauged theory without a superpotential, the
discrete action on the auxiliary fields is Da → −Da and F a → F ∗a. In our model,
this is modified as is seen below. The terms which need to be checked are those
including auxiliary fields. First, we examine bosonic terms including F a and F ∗a,

gab∗F
aF ∗b + F a∂aW + F ∗a∂a∗W ∗. (2.54)

Apparently, this is not invariant under F → F ∗. Rewriting it as

gab∗(F a + gac∗∂c∗W
∗)(F ∗b + gdb∗∂dW )− gab∗∂aW∂b∗W

∗, (2.55)

one finds that the action

R : F a + gac∗∂c∗W
∗ → F ∗b + gdb∗∂dW (2.56)

is a symmetry. Secondly, we consider the ψψ and λλ mass terms in (2.16), (2.24)
and (2.21). Under the action (2.39) and (2.56) the ψψ mass terms become

(
i

4
Fabc(F c + gcd∗∂d∗W

∗)− i

4
Fabcg

dc∗∂dW − 1
2
∂a∂bW

)
λaλb. (2.57)
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Equating it with the original λλmass term, i
4∂cτabF

cλaλb, we find that the invariance
implies

i

4
Fabc(gcd∗∂d∗W ∗ − gdc∗∂dW )− 1

2
∂a∂bW = 0. (2.58)

It is easy to see that the superpotential (2.47) solves this equation. Thirdly, we
examine the ψλ mass term in (2.16) and (2.21)

1√
2

(
gac∗k

∗
b
c +

1
2
∂aτbcD

c

)
ψaλb. (2.59)

We rewrite it as

1√
2

(
gac∗k

∗
b
c − 1

4
∂aτbcg

cdDd

)
ψaλb +

1
2
√

2
∂aτbc

(
Dc +

1
2
gcdDd

)
ψaλb. (2.60)

The invariance of the first term is guaranteed by (2.48), and thus we find

R : Dc +
1
2
gcdDd → −

(
Dc +

1
2
gcdDd

)
(2.61)

for the invariance. Lastly, let us turn to the bosonic terms including Da

1
2
(τ2)abD

aDb +
1
2
Da

(
Da + 2

√
2ξδ0a

)
. (2.62)

We rewrite it as

1
2
gab

(
Da +

1
2
gac(Dc + 2

√
2ξδ0c )

)(
Db +

1
2
gbd(Dd + 2

√
2ξδ0d)

)

− 1
8
gab

(
Da + 2

√
2ξδ0a

) (
Db + 2

√
2ξδ0b

)
. (2.63)

The first term in (2.63) is obviously invariant under the action (2.49) and (2.61).
The last term is also invariant under the action (2.49) because the term linear in ξ
vanishes as is shown in (2.53).

As a result, we have found that the off-shell action L (2.26) is invariant under
the discrete R-symmetry (2.39), (2.49), (2.56) and (2.61) if we choose τab as (2.44)
and W as (2.47). For completeness, we present the off-shell action of our U(N) gauge
model which is invariant under the discrete R-symmetry:

L = −gab∗DmA
aDmA∗b − 1

4
gabv

a
mnv

bmn − 1
8
Re(Fab)εmnpqva

mnv
b
pq

−1
2
Fabλ

aσmDmλ̄
b − 1

2
F∗

abDmλ
aσmλ̄b − 1

2
Fabψ

aσmDmψ̄
b − 1

2
F∗

abDmψ
aσmψ̄b

+gab∗F
aF ∗b + F a∂aW + F ∗a∂a∗W ∗ +

1
2
gabD

aDb +
1
2
Da

(
Da + 2

√
2ξδ0a

)

+
(
i

4
FabcF

∗c − 1
2
∂a∂bW

)
ψaψb +

i

4
FabcF

cλaλb +
1√
2

(
gac∗k

∗
b
c +

1
2
FabcD

c

)
ψaλb
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+
(
− i

4
F∗

abcF
c − 1

2
∂a∗∂b∗W

∗
)
ψ̄aψ̄b − i

4
F∗

abcF
∗cλ̄aλ̄b

+
1√
2
(gca∗kb

c +
1
2
F∗

abcD
c)ψ̄aλ̄b

−i
√

2
8

(Fabcψ
cσnσ̄mλa −F∗

abcλ̄
aσ̄mσnψ̄c)vb

mn

− i
8
Fabcdψ

cψdλaλb +
i

8
F∗

abcdψ̄
cψ̄dλ̄aλ̄b, (2.64)

where gab∗ = Im(Fab) and W = eA0 +mF0. In the above expression, the covariant
derivatives are defined as

DmΨ
a = ∂mΨ

a − 1
2
fa

bcv
b
mΨ

c, Ψa = {Aa, ψa, λa}, (2.65)

va
mn = ∂mv

a
n − ∂nv

a
m −

1
2
fa

bcv
b
mv

c
n. (2.66)

By the reasoning we explained at the beginning of this section, our action (2.33) and
(2.64) are invariant under N = 2 supersymmetry.

§3. Extended supersymmetry transformation

Our action is manifestly invariant under the N = 1 supersymmetry transforma-
tion. We have made our action invariant under the discrete transformation R, and
the algebra of extended supersymmetry permits us to argue for the invariance of our
action under the extended N = 2 supersymmetry transformation. In this section,
we will first lift the N = 1 supersymmetry transformation

δη1A
a =
√

2η1ψ
a, (3.1)

δη1ψ
a = i

√
2σmη̄1DmA

a +
√

2η1F
a, (3.2)

δη1v
a
m = iη1σmλ̄

a − iλaσmη̄1, (3.3)
δη1λ

a = σmnη1v
a
mn + iη1D

a, (3.4)

to its N = 2 counterpart by exploiting the discrete symmetry R. We will sub-
sequently examine SU(2) covariance of the N = 2 supersymmetry transformation
obtained.

Let us first form a following doublet of fermions:

λ a
i ≡

(
λa

ψa

)
, λia ≡ εijλ a

j =
(

+ψa

−λa

)
, (3.5)

λ̄
ia ≡ λ a

i =
(

λ̄a

ψ̄a

)
, λ̄

a
i ≡ εikλ̄ka =

( −ψ̄a

+λ̄a

)
= −λia. (3.6)

We carry out the raising and the lowering of i, j indices by εij ; ε12 = ε21 = 1,
ε21 = ε12 = −1. Recall the action of R:

R : λ a
i =

(
+λa

+ψa

)
−→ λia =

(
+ψa

−λa

)
,
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λ̄
a

i =
( −ψ̄a

+λ̄a

)
−→ λ̄

ia =
(

+λ̄a

+ψ̄a

)
, (3.7)

and therefore the terms F̂ a in (2.31) and D̂a in (2.30) which are bilinear in fermions
undergo the action:

R :
F̂ a −→ F̂ ∗a

D̂a −→ −D̂a . (3.8)

Note that this is nothing but (2.61) and (2.56). The bosonic fields Aa, va
m are

invariant under R. So from (3.1) and (3.3), we see that the grassman parameter η2

for the second supersymmetry forms a doublet with η1 such that

R : ηi ≡
(
η1

η2

)
−→

(
+η2

−η1

)
≡ ηi ≡ εijηj . (3.9)

Demanding the covariance under R, we obtain the extended supersymmetry
transformation:

δAa =
√

2ηjλ
ja, (3.10)

δλ a
j = σmnηjv

a
mn +

√
2i

(
σmη̄j

)DmA
a

+i
(

D̂a +i
√

2F̂ ∗a

−i√2F̂ a −D̂a

)(
η1

η2

)
− i

2
ηjg

abDb

−
√

2igab∗ ∂

∂A∗b

(
ξA∗0 +i(eA∗0 +mF∗

0 )
−i(eA∗0 +mF∗

0 ) −ξA∗0

)(
η1

η2

)
, (3.11)

δva
m = iηjσmλ̄

ja − iλ a
j σmη̄j . (3.12)

Here

η̄j ≡
(
η̄1

η̄2

)
and η̄j ≡ εjiη̄i =

( −η̄2

+η̄1

)
. (3.13)

The transformation (3.11) is further recast into the following form:

δλ a
j = (σmnηj)v

a
mn +

√
2i(σmη̄j)DmA

a + i(τ ·Da) k
j ηk −

1
2
ηjf

a
bcA

∗bAc, (3.14)

δλ̄
ja = −(η̄j σ̄mn)va

mn −
√

2i(−ηjσm)DmA
∗a − iη̄k(τ ·D∗a) j

k −
1
2
η̄jfa

bcA
bA∗c,

(3.15)

Da = D̂
a −
√

2gab∗ ∂

∂A∗b
(EA∗0 + MF∗

0

)
. (3.16)

Here

D̂
a

= (D̂a
1 , D̂

a
2 , D̂

a
3),




D̂a
1 + iD̂a

2 = −i√2F̂ a,

D̂a
1 − iD̂a

2 = +i
√

2F̂ ∗a,
D̂a

3 = D̂a,

(3.17)

E = (0, −e, ξ), (3.18)
M = (0, −m, 0), (3.19)
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and τ are the Pauli matrices. We have used (2.52) in the last term of (3.14) and that
of (3.15). Finally, we can easily check that (2.2) in fact holds in these transformations.

Let us now examine the SU(2) covariance of the extended susy transformation
given by (3.10), (3.11) and (3.12). All except the last term in (3.11) are manifestly
covariant under the rigid SU(2) transformations. In particular, D̂

a
, given by (2.30)–

(2.32) which are bilinear in fermions, transforms as a real triplet under SU(2),

iτ · D̂a
= i
√

2
(

D̂a i
√

2F̂ ∗a

−i√2F̂ a −D̂a

)

= gab∗gcb∗,dλ
{c
j λd}k + gab∗gcb∗,d∗λ̄

{c
j λ̄

d}k
. (3.20)

The last term in (3.11) is SU(2) covariant provided the two three-dimensional
real vectors E and M transform as triplets. Their actual form (3.18) and (3.19) tell
us that the rigid SU(2) has been gauge fixed in this six-dimensional parameter space
of (E, M), by making these two vectors point to a specific direction. The manifest
SU(2) covariance is lost at this point. The transformation law we have exhibited
generalizes the one seen in the literature3) by the inclusion of the ξ term and the
superpotential.

A very important property of the triplet of the auxiliary fields Da is that it is
complex as opposed to be real. Indeed, it has a constant imaginary part:

Im Da = δa
0(−
√

2m) (0, 1, 0) . (3.21)

This supplies an essential ingredient for partial breaking of N = 2 supersymmetry
in the next section.

The supersymmetry transformation law for the auxiliary fields is determined by
requiring the closure of the η1- and η2-supersymmetries:

δF a = −i
√

2Dmψ
aσmη̄1 − η̄1λ̄

bkb
a

+δη2(g
ab∂bW − gab∂b∗W

∗) + i
√

2η2σ
mDmλ̄

a + η2ψ
bk∗b

a, (3.22)
δDa = −η1σ

mDmλ̄
a −Dmλ

aσmη̄1

−δη2(g
abDb)− η2σ

mDmψ̄
a −Dmψ

aσmη̄2, (3.23)

where the Dm represents the gauge covariant derivative (2.65). The supersymmetry
transformation forms the algebra

[δη, δη′ ]Ψa = −2i(ησmη̄′ − η′σmη̄)DmΨ
a, Ψa = {Aa, ψa, F a, va

mn, λ
a, Da}, (3.24)

where (η, η′) = (η1, η
′
1) or (η2, η

′
2).

§4. Some properties of the vacuum

In order to discuss properties of our model, let us fix the form of F . The first
equation in (2.12) implies that ka

b = f b
acA

c and thus k0
a = ka

0 = 0, while the second
equation in (2.12) implies that

kâ
b̂∂b̂F0 = 0, (4.1)
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as well as kâ
b̂∂b̂Fĉ = −f b̂

âĉFb̂. An obvious solution to (4.1) is

F = f(A0) + cA0 G(B̂) + F̂(Â), (4.2)

where f(A0), G(B̂) and F̂(Â) are analytic functions of A0, B̂ = Tr(Â2)/2c2 and a
trace function of Â = Aâtâ, respectively. We can choose G(0) = 0 without loss of
generality. The constant c2 is the quadratic Casimir defined by Tr(tâtb̂) = c2δâb̂.
One finds that for this prepotential the Kähler metric becomes

g00∗ = Im(f00), gâ0∗ = δâb̂Im(G′cAb̂), gâb̂∗ = Im
(
cA0(δâb̂G′ + G′′δâĉδb̂d̂A

ĉAd̂) + F̂âb̂

)
.

(4.3)
Note that the U(1) part and the SU(N) part have non-trivial mixings as long as
c �= 0. In the following we examine the model specified by (4.2).

Let us first examine the local minimum of the scalar potential V ≡ −Lpot

V = gab

(
1
8
DaDb + ξ2δ0aδ

0
b + ∂aW∂b∗W

∗
)

= gab

(
1
8
DaDb + ∂a

(EA0 + MF0

) · ∂b∗
(EA0 + MF0

)∗)
, (4.4)

where we have used (2.53). Here, we consider the unbroken SU(N) phase at which
the Aâ do not acquire vacuum expectation values. Substituting Aâ = 0 into the
equation

0 = δV/δAa = −gbd∂agdeg
ec

(
1
8
DbDc + ξ2δ0b δ

0
c + ∂bW∂c∗W

∗
)

+gbc

(
1
4
Db∂aDc + ∂a∂bW∂c∗W

∗
)
, (4.5)

we obtain

i

2
f000g

−2
00 δ

0
a

(
ξ2 + (e+mf00)(e+mf∗00)

)
+ g−1

00 mf000δ
0
a(e+mf∗00) = 0. (4.6)

Here we have derived

〈Da〉 = 0, 〈∂aW 〉 = δ0a(e+mf00), ∂0∂aW = δ0amf000, ∂ag00 = − i
2
f000δ

0
a, (4.7)

as well as
〈
g00

〉
= g−1

00 ,
〈
g0â

〉
= 0. (4.8)

The expressions with bracket 〈· · · 〉 imply · · · evaluated at Aâ = 0. It is obvious that
(4.6) is satisfied when f000 = 0, but it is a saddle point because 〈∂0∂0∗V〉 = 0, and
thus does not represent a stable vacuum. The stable minimum is at

f00 = − e

m
± i ξ

m
. (4.9)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/113/2/429/1834748 by guest on 21 August 2022



Supersymmetric U(N) Gauge Model 443

We shall show that at the stable minimum (4.9) massless fermions emerge. For
this purpose, we examine the fermion mass term

Lmass = − i
4
gcd∗∂cτab∂d∗W

∗(ψaψb + λaλb)

+
1

2
√

2

(
gac∗k

∗
b
c − gbc∗k

∗
a
c −
√

2ξδ0c (τ
−1
2 )cd∂aτbd

)
ψaλb + c.c. . (4.10)

Substituting Aâ = 0 into this mass term Lmass, we find that the U(1) fermions and
the SU(N) fermions decouple because 〈F00â〉 = 0,

Lmass =
1
2
λ 0

i M
ij
U(1)λ

0
j +

1
2
δâb̂λ

â
i M

ij
SU(N)λ

b̂
j + c.c.,

M ij
U(1) = − i

2
g−1
00 f000

(
e+mf∗00 −iξ
−iξ e+mf∗00

)
,

M ij
SU(N) = − i

2
g−1
00 c

〈G′〉
(
e+mf∗00 −iξ
−iξ e+mf∗00

)
. (4.11)

It is easy to diagonalize these mass matrices and one finds that the U(1) fermions
1√
2
(λ0 ± ψ0) acquire masses

∣∣− i
2g

−1
00 f000(e+mf∗00 ∓ iξ)

∣∣, while the SU(N) fermions
1√
2
(λâ ± ψâ) acquire masses

∣∣− i
2g

−1
00 c 〈G′〉 (e+mf∗00 ∓ iξ)

∣∣.
At the stable minimum f00 = − e

m ± i ξ
m , the U(1) fermion 1√

2
(λ0 ∓ ψ0) and the

SU(N) fermions 1√
2
(λâ ∓ ψâ) remain massless, while the U(1) fermion 1√

2
(λ0 ± ψ0)

and the SU(N) fermions 1√
2
(λâ±ψâ) become massive with masses, |−m 〈〈f000〉〉| and

|−mc 〈〈G′〉〉|, respectively. Here, 〈〈· · ·〉〉 is the expectation value of · · · at the vacuum.
The U(1) massless fermion is regarded as the Nambu-Goldstone fermion.

Let us demonstrate this last statement from the transformation law (3.11). Tak-
ing the expectation value, we see

〈〈
δλ0

〉〉
= −
√

2i
〈〈
g00

〉〉(
ξ i 〈〈e+mf∗00〉〉

−i 〈〈e+mf∗00〉〉 −ξ
)(

η1

η2

)

= ∓
√

2im
(

1 ±1
∓1 −1

) (
η1

η2

)
, (4.12)

〈〈
δλâ

〉〉
= 0. (4.13)

We have used (4.8) and (4.9). Therefore,
〈〈
δ(λ0 ∓ ψ0)√

2

〉〉
= ∓2mi(η1 ± η2),

〈〈
δ(λ0 ± ψ0)√

2

〉〉
= 0. (4.14)

One linear combination of the U(1) fermion, 1√
2
(λ0 ∓ ψ0), is in fact the Nambu-

Goldstone fermion.
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Finally, let us discuss a mechanism which is responsible for partial breaking of
N = 2 supersymmetry to be realized. We see that partial breaking requires that
the 2× 2 matrix 〈〈τ ·Da〉〉 in (3.14) has one nonvanishing eigenvalue for some a. We
obtain

−〈〈det τ ·Da〉〉 = 〈〈Da ·Da〉〉
= 〈〈ReDa ·ReDa〉〉 − 〈〈ImDa · Im Da〉〉+ 2i 〈〈ReDa · Im Da〉〉
= 0, (4.15)

which implies that partial breaking is certainly not possible without nonvanishing
imaginary part of Da. Using (3.21), we convert this condition into〈〈

ReDâ
〉〉

= 0,

‖ 〈〈ReD0
〉〉 ‖ = ‖ Im D0‖ =

√
2m,〈〈

ReD0
〉〉 · Im D0 = 0. (4.16)

Coming back to the extremum condition (4.5) of the scalar potential at the unbroken
SU(N) phase, we see that it can also be converted as

0 =
δV
δAa

=
i

4
〈〈
f000δ

0
a

〉〉 〈〈
D0

〉〉 · 〈〈D0
〉〉
. (4.17)

The condition for a stable vacuum is obviously equivalent to that of partial super-
symmetry breaking (4.16). Note that at the vacuum

〈〈V〉〉 = 〈〈
g−1
00

〉〉 (
ξ2 +

〈〈
|e+mf00|2

〉〉)
= ±2mξ �= 0 . (4.18)

§5. N = 2 supercurrents

In the previous section, the rigid SU(2) symmetry, in particular, its discrete
element R has been exploited to provide N = 2 supersymmetry of our model. In
this section, we discuss another rigid transformation, namely, the one associated with
the U(1)R transformation and the attendant supermultiplet of currents.

It is well known that the Wess-Zumino model consisting of the scalar super-
field with a superpotential permits the U(1)R current, the supercurrent and the
energy momentum tensor as a supermultiplet of currents when the superpotential
is a monomial in scalar superfield.36) It is then possible to assign R weight one to
the superpotential. (Extended) supermultiplet of currents exists for (N = 2) super
Yang-Mills as well 36),33) Starting from the U(1)R current, we can use this multiplet
structure to derive the form of the supercurrent and the energy momentum tensor
and to check the consistency of supersymmetry algebra. We illustrate this in the
Wess-Zumino model in the Appendix A. Our model has N = 2 supermultiplet of
Noether currents when it is possible to assign R weight two to the prepotential F .
We show how this is used to derive the N = 2 supercurrents for generic F .

The R transformation is given by

R : Φ(x, θ, θ̄)→ eiαΦ(x, e−
iα
2 θ, θ̄),
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Wα(x, θ, θ̄)→Wα(x, e−
iα
2 θ, θ̄), (5.1)

R : A→ eiαA, vm → vm,

ψ → e
iα
2 ψ, λ→ e

iα
2

λ,

F → F, D → D. (5.2)

We assume that the prepotential F is transformed as weight two under R

F → e2iαF . (5.3)

The U(1)R current associated is

θJθ̄ ≡ (τ2)ab

(
θ̄λ̄

ia
λ b

i θ + iA∗a
θ
←→D · σθ̄Ab

)
(5.4)

≡ (τ2)ab

(
θjabθ̄ + 2θ∆jabθ̄

)
. (5.5)

The second term is known as the improvement term. Using the transformation law
of rigid N = 2 supersymmetry in §3, we obtain

θδJθ̄ = (τ2)ab

(
θδjabθ̄ + 2θδ(∆j)abθ̄

)
+ δ(τ2)ab

(
θjabθ̄ + 2θ(∆j)abθ̄

)
, (5.6)

where

θδjabθ̄ = θ̄λ̄
jb

(
(θσmnηj)v

a
mn +

√
2i(θσmη̄j)DmA

a

+ i(τ ·Da) k
j (θηk)−

1
2
(θηj)f

a
cdA

∗cAd

)

−
(

(η̄j σ̄mnθ̄)v b
mn +

√
2i(−ηjσmθ̄)DmA

∗b

+ i(η̄kθ̄)(τ ·D∗b) j
k +

1
2
(η̄j θ̄)f b

efA
eA∗f

)
θλ a

j , (5.7)

θδ(∆jab)θ̄ =
√

2
2
iA∗aθ

←→D mσ
mθ̄ηjλ

jb +
√

2
2
iη̄jλ̄

a
j θ
←→D mσ

mθ̄Ab

+
i

2
A∗aθδ

←→D mσ
mθAb, (5.8)

2iδ(τ2)ab =
√

2
(
τabc(Ad)ηiλ

ic − τ∗abc(A
∗d)η̄iλ̄

c
i

)
. (5.9)

In the case where the prepotential is a degree two polynomial in Aa, δ(τ2)ab = 0
and Eq. (5.6) provides construction of N = 2 improved supercurrents which are
conserved:

ηjS(j)m + η̄jS̄
m

(j) ≡ −
1
2
(τ2)ab tr σ̄m

(
δ(jab) + 2δ(∆jab)

)
. (5.10)

Here “tr” implies a trace in the spinor space.
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The R current is not conserved when F is not a degree two polynomial in A and
the above construction would appear not useful for the general construction of the
conserved supercurrents. We will show below that this is not the case. Let us write
the prepotential F generically as

F =
∑
n,j

h
(n)
j C

(n)
j (Aa). (5.11)

Here C(n)
j (Aa) are n-th order U(N) invariant polynomials in Aa properly normalized

and labelled by the index j, and h(n)
j are their coefficients. We first observe that we

can assign weight two to F in (5.11) provided h
(n)
j transform as weight −(n − 2).

Let us consider the local version of the U(1)R transformation (5.2), replacing α by
α(x). We obtain

S[Aeiα(x), λje
iα(x)

2 , · · · ]− S[A, λj , · · · ]
=

∫
d4x ∂m

(
α(x)

(
−1

2

)
tr σ̄mJ

)
+

∫
d4x α(x)∂m

(
1
2

tr σ̄mJ

)

+
∫
d4x iα(x)

∑
n,j

(n− 2)
∂

∂h
(n)
j

L. (5.12)

Here L and S are the Lagrangian and the action of our model respectively. The
left-hand side vanishes by the equation of motion, and we obtain

∂m

(
−1

2
tr σ̄mJ

)
= i


∑

n,j

(n− 2)
∂

∂h
(n)
j


L ≡ ∆hL. (5.13)

Taking the supersymmetry variation of this equation, we obtain

∂m

(
−1

2
tr σ̄mδJ

)
= ∆hδL. (5.14)

As our action is N = 2 supersymmetric, the right hand side is written as

∆h∂mX
m = ∂m∆hX

m, (5.15)
Xm = ηjy

j + η̄jȳj , (5.16)

for some operator Xm linear in ηi and η̄i. Hence

∂m

(
−1

2
tr σ̄mδJ −∆hX

m

)
= 0. (5.17)

This provides a general construction of the conserved N = 2 supercurrents of our
model:

ηjS(j)m + η̄jS̄ m
(j) ≡ −

1
2

tr(σ̄mδJ)−∆hX
m. (5.18)
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The form of the supercurrents given in Eq. (5.18) tells us that our model does
not permit a universal coupling to N = 2 supergravity. The piece −∆hX

m is not
generic and depends on the functional form of the prepotential F(A) in A. This and
the previous analysis in Refs. 22) and 24) support the point of view that N = 2
supersymmetric gauge models with nontrivial Kähler potential should be viewed as
a low energy effective action.

Let us now further transform (5.18)

δ
(
ηjS(j)m + η̄jS̄ m

(j)

)
= −1

2
tr σ̄mδδJ −∆hδXm. (5.19)

This generates the N = 2 supersymmetry algebra (1.2) quoted in the introduction
and at the same time provides its consistency conditions. Let us note that

θδδJθ̄ = (τ2)ab

(
θδδjabθ̄ + 2θδδ(∆j)abθ̄

)
+ 2δ(τ2)ab

(
θδjabθ̄ + 2θδ(∆j)abθ̄

)

+δδ(τ2)ab

(
θjabθ̄ + 2θ(∆j)abθ̄

)
. (5.20)

Denote by δηj (δη̄j) the transformation in which only ηj(η̄j) is kept in δ. The
conditions

δηjS(j)m = 0
δη̄j S̄(j)m = 0

with j not summed (5.21)

provide

−1
2

tr σ̄mδηjδηjJ −∆hηjδηjy
j = 0 with j not summed (5.22)

and its complex conjugate. Their actual expressions are quite involved as one sees
from (5.20) and the transformation laws (3.10)–(3.16). We will not discuss Eq. (5.22)
further in this paper. In the case where F is degree two in A, yj = 0, and δ(τ2)ab = 0,
Eq. (5.22) can be checked easily as in Ref. 33) and in Appendix (B.18) with the aid
of the equations of motion.

Let us finally read off the constant matrix C j
i in (1.2) from our algebra (5.19).

The only piece in (5.20) which can contribute to C j
i is the part in (τ2)abδδjab which

is linear both in Da and in D∗a. This part is computed as

2 (τ2)ab D∗b ·Daθ̄ (η̄η) θ + 2i (τ2)ab

(
D∗b ×Da

)
· θ̄η̄τηθ. (5.23)

Substituting the expressions (3.16)–(3.19) into this equation, we find that the second
term contains 8mξθ̄η̄τ1ηθ. Translated into (1.2), this implies

C j
i = +2mξ(τ 1)

j
i . (5.24)

This is consistent with (4.18).
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§6. Fermionic shift symmetry

Equations (4.12) and (4.13) express the extended supersymmetry transforma-
tion of the SU(2) doublet of U(N) fermions on the vacuum as U(1) fermionic shift
generated by

χi ≡
√

2m
(
η1

η2

)
=

(
χ1

χ2

)
. (6.1)

Note that the coupling constants e, m, ξ of our model carry dimension two and that
χi carry dimension 3/2. The Nambu-Goldstone fermion is the maximal mixing of
the U(1) gauge fermion and the U(1) matter fermion.

Restricting our attention to the U(N) field strength gauge superfield Wα, let us
recast (4.12) into

〈〈δWα〉〉 = (∓χ1 − χ2)1N×N ≡ 4πχα1N×N . (6.2)

We obtain

〈〈δS〉〉 = χα 〈〈wα〉〉 , (6.3)
〈〈δwα〉〉 = Nχα, (6.4)

where

S =
1

32π2
trWαWα, wα =

1
4π

trWα. (6.5)

In this sense, our spontaneously broken supersymmetry is realized on the vacuum
as the U(1) fermionic shift noted by Ref. 37) in the N = 2 U(N) super Yang-Mills
deformed by the superpotential W (Φ). See also Ref. 38). As for its transformation
acting on the fields or equivalently on a generic state, let us note that

δλ a
j =

〈〈
δλ a

j

〉〉
+ · · · . (6.6)

Here
〈〈
δλ a

j

〉〉
is given in (4.12), and · · · denotes the parts which do not receive the

vacuum expectation values. This latter part is to be suppressed by 1
m with the

replacement ηj → fflj√
2m

when

e

m

 1,

ξ

m

 1, ξ �= 0 (6.7)

for appropriate low energy processes. The spontaneously broken supersymmetry
operates as an approximate fermionic U(1) shift symmetry in this regime.
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Appendix A

In the text, we exploited the extended operation R which involves the sign
change of the parameter ξ as well as the transformation of the two component spinor
parameter ηj to demonstrate that our action L or L′ is invariant under N = 2 su-
persymmetry. Though the use of R is logical from an algebraic point of view, clearly
it is not a symmetry in the sense of Noether. In this appendix, we provide another
proof, using the more conventional operation which involves the transformation of
the fields alone. To be more specific, let R be a generator such that

RλaR−1 = ψa, RψaR−1 = −λa, RAaR−1 = Aa and Rv a
mR

−1 = v a
m . (A.1)

Let us start from the equations of the N = 1 transformation laws (3.1)–(3.4),
replacing η, by θ and writing F a and Da explicitly by (3.16) and (3.17).

δ
(1,ξ)
θ Aa =

√
2θψa, (A.2)

δ
(1,ξ)
θ ψa = i

√
2σmθ̄DmA

a +
√

2θ
(
F̂ a −

√
2gab∗ ∂

∂A∗b
(
eA∗0 +mF∗

0

))
, (A.3)

δ
(1,ξ)
θ v a

m = iθσmλ̄
a − iλaσmθ̄, (A.4)

δ
(1,ξ)
θ λa = σmnθva

mn + iθ

(
D̂a −

√
2gab∗ ∂

∂A∗b
(
ξA∗0)) , (A.5)

where D̂a and F̂ a are given in terms of fermion bilinears by (2.30) and (2.31). We
have introduced the superscript (1, ξ) to label the transformation fully. Operating
R from the left and R−1 from the right on (A.5), we obtain

Rδ
(1,ξ)
θ λaR−1 =

(
Rδ

(1,ξ)
θ R−1

)
ψa

= σmnθv a
mn + iθ

(
−D̂a −

√
2gab∗ ∂

∂A∗b
(
ξA∗0)) , (A.6)

where we have used RD̂aR−1 = −D̂a. Eqation (A.6) is compared with δψa at η1 = 0
in (3.11) of the text, and we find

Rδ
(1,ξ)
η1=θR

−1 = δ
(−ξ)
η1=0,η2=θ ≡ δ(2,−ξ)

η2=θ (A.7)

on ψa. We have introduced the subscript and the superscript to δ to specify the
transformation completely. Proceeding in a similar way on (A.1), we obtain
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Rδ(1,ξ)ψaR−1 = Rδ(1,ξ)R−1(−λa)

= i
√

2σmθ̄DmA
a +
√

2θ
(
F̂ ∗a −

√
2gab∗ ∂

∂A∗b
(
eA∗0 +mF∗

0

))
. (A.8)

We see that (A.7) is true on λa as well. It is easy to check from (A.2) and (A.4) that
(A.7) holds on Aa and on va

m. We conclude that (A.7) is valid on all fields.
Once this is established, it is immediate to provide a proof that our action is

invariant under N = 2 supersymmetry. Let

S(ξ) =
∫
d4xL(x) or

∫
d4xL′(x), (A.9)

where L(x) and L′(x) are given by (2.26) and by (2.33) respectively. N = 1 super-
symmetry implies

δ
(1,ξ)
η1=θS(ξ) = 0 . (A.10)

Multiplying R from left and R−1 from right, we obtain(
Rδ

(1,ξ)
η1=θR

−1
)
RS(ξ)R−1 = δ

(2,−ξ)
η2=θ S(−ξ) = 0, and thus δ

(2,ξ)
η2=θS(ξ) = 0, (A.11)

which is a statement that our action is N = 2 supersymmetric.

Appendix B

In this appendix, we reexamine the current supermultiplet in the Wess-Zumino
model. While its superfield expression is well-known, we will present this supermul-
tiplet in the component formalism, so that the reasoning here is applicable to the
discussion in the text. The action is

S =
∫
d4xL , L =

∫
d2θd2θ̄Φ∗Φ+

∫
d2θW (Φ) +

∫
d2θ̄W ∗(Φ∗) (B.1)

and the superpotential W (Φ) (or W ∗(Φ∗)) is a monomial of degree k in Φ (or Φ∗).
The model possesses U(1)R symmetry associated with

R : Φ(x, θ, θ̄)→ eiα/kΦ(x, e−iα/2θ, θ̄), (B.2)

so that

R : A→ eiα/kA,

ψ → eiα( 1
k
− 1

2
)ψ, (B.3)

F → eiα( 1
k
−1)F.

The proper Noether current Jαα̇ is given by

θJθ̄ = ψ̄θ̄θψ + c
i

2
A∗θ
←→
∂ · σθ̄A (B.4)

≡ θjθ̄ + cθ∆jθ̄, (B.5)
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where
c =

1
1− k/2 (B.6)

in accordance with the R weights of the fields which are read off from (B.3). We have
introduced grassman coordinates θα, θ̄α̇ to contract and suppress spinorial indices.
The dot implies a contraction of Minkowski indices. The second term (∆j)αα̇ is
known as the improvement term.

Let us check the supersymmetry transformation of (B.4), which acts as the lowest
component of the supermultiplet:

θδjθ̄ ≡ θηαsαθ̄ + θη̄α̇s̄
α̇θ̄

=
(
−i
√

2ησθ̄ · ∂A∗ +
√

2θ̄η̄F ∗
)
θψ + ψ̄θ̄

(
i
√

2θση̄ · ∂A+
√

2θηF
)
, (B.7)

θδ(∆j)θ̄ ≡ θηα(∆s)αθ̄ + θη̄α̇(∆s̄)α̇θ̄

=
i

2
A∗θσ · ←→∂ θ̄(

√
2ηψ) +

i

2
(
√

2η̄ψ̄)θσ · ←→∂ θ̄A. (B.8)

The improved supercurrents are

−1
2

tr σ̄m (sα + c(∆s)α) and − 1
2

tr σ̄m
(
s̄α̇ + c(∆s̄)α̇

)
. (B.9)

It is easy to check
θ (δj + cδ(∆j)) θ̄

∣∣
η=θ, η̄=θ̄

= 0, (B.10)

if and only if k = 3 and therefore c = −2 from (B.6). This is nothing but the con-
dition that the supercurrents (B.9) implement the superconformal constraints, that
is, the irreducibility of their spin when the coupling constant in the superpotential
is dimensionless.

Let us further transform (B.7) and (B.8) to generate the stress-energy tensor
and we check the consistency with the supersymmetry algebra as well:

θδδjθ̄ = (ψ̄θ̄)(θδδψ) + 2(δψ̄θ̄)(θδψ) + (δδψ̄θ̄)(θψ), (B.11)

θδδ(∆j)θ̄ =
i

2
A∗θ
←→
∂ · σθ̄(δδA) + iδA∗θ

←→
∂ · θ̄δA+

i

2
(δδA∗)θ

←→
∂ · σθ̄A. (B.12)

The fermionic part of (B.11) is

(ψ̄θ̄)(θδδψ) + (δδψ̄θ̄)(θψ) = −2i(θη)(θ̄η̄)ψ̄σ̄ · ←→∂ ψ + 2i(θ̄σ̄θ) ·
(
(ψ̄η̄)
←→
∂ (ψη)

)
−2i(η̄σ̄θ) · ∂ (

(ψ̄θ̄)(ηψ)
)

+ 2i(θ̄σ̄η) · ∂ (
(ψ̄η̄)(θψ)

)
.

(B.13)

The bosonic part of (B.11) is

2(δψ̄θ̄)(θδψ) = 4(ηθ)(η̄θ̄)(F ∗F − ∂A∗ · ∂A)− 4(θσθ̄) · ∂A∗(ηση̄) · ∂A
+ 8(ηθ)(θ̄σ̄mnη̄)∂mA

∗∂nA− 2i(η̄η̄)F ∗(θσθ̄) · ∂A+ 2i(ηη)(θσθ̄) · ∂A∗F. (B.14)

The fermionic part of (B.12) is

iδA∗θ
←→
∂ · θ̄δA = 2i(θσθ̄) · (η̄ψ̄←→∂ ηψ). (B.15)
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The bosonic part of (B.12) is

i

2
A∗θ
←→
∂ · σθ̄(δδA) +

i

2
(δδA∗)θ

←→
∂ · σθ̄A

= −(θσθ̄ ·A∗←→∂ )(∂A · ηση̄) + (ηση̄ · ∂A∗)(
←→
∂ A · θσθ̄)

+ i(ηη)θσθ̄ ·A∗←→∂ F + i(η̄η̄)(θσθ̄) · F ∗←→∂ A . (B.16)

The consistency of the supersymmetry algebra demands that the ηη term and
the η̄η̄ term be absent in θδδJθ̄. Let us check that this is in fact the case. From
(B.14) and (B.16), we see that the η̄η̄ term is

−2i(η̄η̄)F ∗(θσθ̄) · ∂A+ ci(η̄η̄)(θσθ̄) · F ∗←→∂ A. (B.17)

Using equation of motion for auxiliary fields F, F ∗ and that W (A) is a degree k
monomial in A, this is equal to

2i(η̄η̄)
(
1− c

2
+
c

2
(k − 1)

)
θσθ̄ · ∂A, (B.18)

which vanishes when c is chosen as (B.6).
The remainder of θδδJθ̄ closes into the stress-energy tensor. Using equations of

motion, we have checked

θδδJθ̄ = −2(c− 1)T. (B.19)

Here

T ≡ ησmη̄θσnθ̄Tmn

= −(ηση̄) · ∂A∗(θσθ̄) · ∂A− (ηση̄) · ∂A(θσθ̄) · ∂A∗

− i
2

(
θσθ̄ · η̄ψ̄←→∂ ηψ + ηση̄ · θ̄ψ̄←→∂ θψ

)
+ 2ηθη̄θ̄L. (B.20)
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