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1 Introduction and summary

In gauge theories in different dimensions, one can introduce defects of codimension 2 in a

number of ways. One standard way is the following. Let (r, ϕ) be the polar coordinates

for the two dimensions transverse to the defect, with r = 0 the position of the defect. One

requires the gauge field A to behave near the defect like

A ∼ ηdϕ, (1.1)

where η is a Lie algebra valued constant called vorticity. According to their dimensionality,

they are called surface operators in 4d [1], vortex loops in 3d and vortex defects in 2d.

Compared to Wilson loops [2] or ’t Hooft loops [3] in four dimensions, these operators

are relatively new and have much more to be explored, and yet they are expected to play

equally important roles as order parameters in gauge theories [4, 5].

Another standard way to define a defect is to introduce dynamical variables or fields

localized on it and let them interact with the fields in the bulk. For 4d supersymmetric

gauge theories, another definition has been proposed based on embedding the theory into

a larger theory and “Higgsing” by a position-dependent scalar vev [6]. Moreover, there are

examples where the defects based on different definitions are believed to be equivalent [7, 8].

Studying the relations among different definitions of defects will therefore be a key for their

better understanding.

BPS defects in supersymmetric theories are especially interesting, since their protected

sector can often be determined precisely. In particular, for systems with Lagrangian de-

scriptions, SUSY localization allows us to evaluate the protected observables by explicit

path integration. For example, exact path integrals have been worked out for the coupled

1d-3d systems on S3 in [9], and for the (0d-)2d-4d systems on S4 in [10–12], see also [13, 14].

On the other hand, we have not yet reached a fully satisfactory understanding for the de-

fects defined by the boundary condition (1.1), though exact vortex loop observables in

Abelian 3d gauge theories on S3 and S2 × S1 were worked out in [15, 16], and a proposal

for surface operator vev on S4 were given in [17]. A major difficulty here is in finding the

right definition of the path integral measure for the gauge fields as well as charged matter

fields under the singular boundary condition.

The aim of this paper is to propose a fully precise definition of the defects of the

type (1.1) in the path integral formalism. As the simplest setting to study this problem,

we take 2d N = (2, 2) supersymmetric gauge theories of vector and chiral multiplets, and

focus on vortex defects preserving half of the supersymmetry. Throughout the paper we

work in Euclidean signature. In the standard N = (2, 2) terminology, the defects are either

in the twisted chiral or anti-twisted chiral rings. Based on our definition we study various

aspects of 2d vortex defects, which include their relation to other type of defects or the

transformation property under mirror symmetry.

Boundary conditions on charged matter. Defining path integration under the

boundary condition (1.1) requires a re-examination of boundary conditions of all other

fields with gauge charge. For systems with Abelian gauge symmetry, the problem sim-

plifies considerably because all the fields in vector multiplet are neutral. In this case the
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fluctuations of gauge field and its superpartners around the singular classical value (1.1)

should be regular, so the only difficulty lies in how to define path integral over charged mat-

ter fields. We will study Abelian systems in most of this paper, and discuss generalization

to non-Abelian theories briefly in section 8.

A common approach to defining the path integral explicitly is via the expansion of fields

into the eigenfunctions of the relevant Laplace or Dirac operator. For the matter chiral

multiplet {φ, ψ±, F} in N = (2, 2) theories, the SUSY preserved by the defect introduces

additional structures. For example, take a vortex defect to be twisted chiral. Then the

unbroken SUSY around the defect divides the chiral multiplet into two subsets, {φ, ψ+} and

{ψ−, F}, of components obeying the same boundary condition. Also, the Hilbert spaces

H,H′ of their wave functions are mapped to each other by Dz, Dz̄, where z ≡ reiϕ is the

local complex coordinate around the defect.

φ, ψ+ ∈ H
Dz←−−−−−−−−−−−−→
Dz̄

H′ 3 ψ−, F. (1.2)

The general eigenfunctions of DzDz̄, Dz̄Dz on the vortex defect background exhibit a

vorticity-dependent non-integer power-law behavior near the defect. Based on this, we

argue that the supersymmetry is preserved only if one allows the wave functions of either

H′ or H to have a mild divergence (∼ rγ , γ > −1) at the defect. These are our definition

of the normal and flipped boundary conditions on charged chiral multiplets.

This proposal can be immediately applied to the evaluation of defect correlators on

squashed sphere, with a twisted chiral defect VηN placed at the north pole and an anti-

twisted chiral defect VηS at the south pole. The SUSY localization [18, 19] allows one to

reduce the path integral to an integral and sum over the constant vevs of scalars in the

vector multiplet. For a U(1) gauge theory the defect correlator takes the form

〈VηNVηS〉 =
∑

s∈ 1
2

(ηN−ηS+Z)

∫
da

2π
e−t(−s+ηN+ia)e−t̄(s+ηS+ia) × Z1-loop. (1.3)

Here t ≡ r+ iθ is the FI-theta coupling and a, s are the scalar vevs, the latter taking quan-

tized values because it is related to the integrated magnetic flux on the sphere (excluding

the defect contributions). Let us define the ceiling function dxe (floor function bxc) as the

smallest (largest) integer not smaller (larger) than x. The contribution to the one-loop

determinant Z1-loop from a single chiral multiplet of electric charge 1, vector R-charge 2q is

Z1-loop =
Γ(κN(ηN)− ηN + s+ q − ia)

Γ(−κS(ηS) + ηS + s+ 1− q + ia)
, (1.4)

with κN(η) = dηe or bηc depending on the choice of normal or flipped boundary condition

at the north pole, and κS is defined in a similar way. This is the basic building block to

express defect correlators of general (Abelian) GLSMs on the squashed sphere. Note the

invariance of the formula under integer shifts of η’s which reflects the invariance of the

matter path integral measure under large gauge transformations. It depends on η discon-

tinuously because some modes start violating, or conversely start obeying, the boundary

conditions as η’s are varied.
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Also, by a careful treatment of UV divergence one can show that the vortex defects

have non-trivial dimension and axial R-charge. They are determined by the electric charges

of matter chiral multiplets and their boundary conditions.

Relations among different defects. An interesting question is how the vortex de-

fects (1.1) are related to other kinds of defects, for example those defined by 0d-2d systems.

It turns out that the analysis of path integrals on smeared defect configurations gives us

very useful information.

By gauge theories on smeared vortex defect configurations, we mean path integration

over the gauge and matter fields around the backgrounds not precisely of the form (1.1),

but with the singularity replaced by a smooth vorticity distribution. On one hand, turning

on any smooth classical configuration for a dynamical gauge field corresponds to a trivial

shift of path integration variables, which would have no effect on the value of the integrals.

On the other hand, the form of a wave function for a charged matter field does depend

non-trivially on the detail of smearing.

We study the behavior of matter path integrals in the smeared vortex defect back-

ground with a highly peaked vorticity distribution by defining the measure in terms of the

eigenmodes of the Laplace or the Dirac operator. We find that a certain number of matter

wave functions end up having a delta functional support and give rise to a system of 0d

fields. They form 0d chiral or Fermi multiplets under the SUSY preserved by the defect.

Moreover, the remaining wave functions supported in 2d bulk are shown to form the Hilbert

space for a chiral multiplet satisfying either the normal or the flipped boundary condition

depending on the sign of the vorticity multiplied by the charge. For a chiral multiplet of

unit electric charge, the effect of smearing can be schematically expressed as follows.

D(2d chiral)V smeared
η

=


D(2d chiral)

V flipped
η

×
bηc−1∏
a=0

d(0d chiral)a (η > 0)

D(2d chiral)V normal
η

×
b−ηc−1∏
α=0

d(0d Fermi)α (η < 0)

(1.5)

Our initial choice of Lagrangian for the 2d system uniquely determines the 0d action with

which to integrate over the 0d variables.

The triviality of the “smeared gauge vortex defect” allows us to turn (1.5) into a more

useful relation between vortex defects and 0d-2d systems. As an example, consider a U(1)

GLSM with chiral multiplets of U(1) charge ei and twisted mass Mi in flat space. The

relation (1.5) then implies the equivalence

Vη =
∏
i

(eiΣ +Mi)
κi(eiη), (1.6)

where κi(x) = dxe or bxc depending on the boundary condition on the i-th multiplet at the

defect, and Σ is the twisted chiral field in the bulk U(1) vector multiplet evaluated at the

defect. The i-th factor in the product on the r.h.s. arises from |κi(eiη)| copies of 0d chiral

or Fermi multiplets realizing the unbroken supersymmetry algebra Q2 ∝ eiΣ + Mi; the
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integral over each chiral or Fermi multiplet gives a factor (eiΣ + Mi)
∓1 up to equivalence

in Q-cohomology. We will see in a number of examples that an Omega-deformed version

of (1.6) is satisfied by the vortex defects within correlators on the squashed sphere.

Independently of the above, the invariance of matter path integrals under large gauge

transformations implies

Vη+1 = e−tr(µ)µ
∑
i ei · Vη, (1.7)

where tr(µ) is the renormalized FI-theta parameter at the renormalization scale µ. By com-

bining (1.6) and (1.7) one recovers the familiar twisted chiral ring relation for Σ in GLSMs,∏
i

(
eiΣ +Mi

µ

)ei
= e−tr(µ). (1.8)

Similar argument works also for vortex defects within correlators on the squashed sphere,

but the ring relation is Omega-deformed. We point out that it can be better interpreted as a

holomorphic differential equation (Picard-Fuchs equation) satisfied by the sphere partition

function.

Mirror symmetry for vortex defects. The Abelian GLSMs discussed above are known

to have a mirror description in terms of LG models of twisted chiral multiplets [20]. For

example, the U(1) GLSM with chiral multiplets Φi of charge ei and mass Mi is mirror to

the LG model with twisted chiral fields (Σ, Yi) and the superpotential

W̃ =
∑
i

{
(eiΣ +Mi)Yi + µe−Yi

}
− tr(µ)Σ. (1.9)

As was shown in [21], the comparison of exact correlators on the squashed sphere provides

a non-trivial check of the mirror equivalence. By applying this argument to vortex defects

we identify the corresponding operator in the mirror theory

Vη ⇐⇒ Ṽη ≡ eη(
∑
i eiYi−tr) · e−

∑
i κi(eiη)Yi . (1.10)

Here κi is defined in the same way as in (1.6). For vortex defects for dynamical U(1) vector

multiplet, the first factor in the definition of Ṽη is trivial due to the F-term condition. The

above formula works also for the cases where the vector multiplet is non-dynamical; as

an example, for the Zk+2 orbifold of the N = 2 minimal model at level k we check that

the correlators of twist fields can be reproduced rather precisely by those of appropriately

chosen vortex defects.

Vortex defect at conical singularities. Supersymmetric correlators can be evaluated

for vortex defects inserted on conical singularities. SUSY gauge theories on spaces with

conical singularities have been attracting attention even without any operator insertions

mainly because of its application to Rényi entropy [22–28]. Another (more technical)

motivation to introduce conical singularity is that the vortex defects at ZK-fixed point

with vorticity η = r/K (r ∈ Z) can be studied by a simple orbifold projection. In [29] this

idea was used to derive a formula for vortex defect correlators on the sphere. However,

by comparing it with the analysis of the matter wave function we find that some of the
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argument in [29] need to be reconsidered, and the formula there needs to be corrected

accordingly.

We study the BPS vortex defects at general conical singularities (ϕ ∼ ϕ + 2π/K)

through their correlators on the sphere. The one-loop determinant for a charged chiral

multiplet of RA-charge 2q takes the same form as (1.4), but the integer-valued function

κN,S now depends also on K and q as

κN(ηN) ≡
⌈
ηN − q

(
1− 1

K

) ⌉
, (normal b.c. at NP)

κN(ηN) ≡
⌊
ηN − (q − 1)

(
1− 1

K

) ⌋
. (flipped b.c. at NP) (1.11)

This paper is organized as follows. In section 2 we present the definitions of vari-

ous point-like defects and also summarize the construction of 2d SUSY gauge theories.

Section 3 develops the exact formula for the path integral over charged matter fields on

the squashed sphere with vortex defects with or without smearing deformation, and make

comparisons. In section 4 we study the charged chiral multiplet on a smeared U(1) vortex

defect background, from which we derive relations between vortex defects and 0d-2d sys-

tems. Section 5 is an application of our result to some sample Abelian GLSMs. Section 6

derives the transformation property of vortex defects under mirror symmetry. The vortex

defects at conical singularity are discussed in section 7. Section 8 discusses the general-

ization to non-Abelian theories and summarizes the basic building blocks for expressing

exact defect correlators on sphere. We conclude in section 9 with discussions on future

directions.

Some useful materials are recorded in the appendices. Appendix A explains some

properties of charged matter wave functions around a smeared defect in flat space, which

are used in section 4. Appendix B is a brief review of mirror symmetry and Gromov-Witten

invariant for the quintic Calabi-Yau. In appendix C we present another interpretation of the

integer κ(η) ≡ κN(η) based on the analysis of the BPS vortex solution in the Higgs phase.

2 SUSY gauge theories and vortex defects in 2d

Here we review some properties of supersymmetric 2d curved backgrounds and the con-

struction of N = (2, 2) SUSY theories on such backgrounds. Some detailed formulae are

presented for the squashed sphere background, which will be used for the evaluation of

defect correlators in section 3 and later. We will be primarily interested in the gauged

linear sigma models (GLSMs) of vector and chiral multiplets, for we are studying the BPS

vortex defects in this class of theories. We also discuss the Landau-Ginzburg (LG) theories

of twisted chiral multiplets as they give the mirror description of the Abelian GLSMs. We

then introduce several inequivalent definitions of BPS defects in flat space. One is the

vortex defect defined via the singular gauge field configuration (1.1) supplemented with a

choice of boundary conditions on chiral multiplets. Another is defined via introduction of

localized degrees of freedom on the defects. Yet another is defined by smearing the vortex

singularity (1.1).
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2.1 Construction of SUSY theories

We begin by summarizing spinor notations. We use the 2 × 2 matrices εαβ and (γa)αβ ,

ε =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
, γ3 =

(
1 0
0 −1

)
. (2.1)

We also use γab ≡ 1
2(γaγb − γbγa). The two components of a Dirac spinor ψ for the

eigenvalues γ3 = ±1 will be denoted by ψ+, ψ−. For spinor bilinears, the contracted

indices will be suppressed as follows,

ξψ ≡ ξαεαβψβ , ξγaψ ≡ ξαεαβ(γa)βγψ
γ , etc. (2.2)

Supersymmetric backgrounds. We are going to consider SUSY theories on various

2d supersymmetric, flat or curved, backgrounds. The backgrounds of our interest are

characterized by the vielbein eam, spin connection ωabm , a vector field Vm and a scalar field

H. They are chosen in such a way that the Killing spinor equations

Dmξ ≡
(
∂m +

1

4
ωabmγ

ab − iVm
)
ξ =

iH

2
γmξ ,

Dmξ̄ ≡
(
∂m +

1

4
ωabmγ

ab + iVm

)
ξ̄ =

iH

2
γmξ̄ (2.3)

have solutions. This is a simplified version in which we kept only a part of the fields in

N = (2, 2) supergravity multiplet which are relevant for our purpose. See [30] for the fully

general Killing spinor equation. The Killing spinors ξ, ξ̄ are assigned the vector R-charge

RV = +1,−1, so that Vm is identified with the gauge field for the R-symmetry.

An obvious example of SUSY background is the flat space with ωabm = Vm = H = 0,

for which any constant spinors are solutions to (2.3). Another important example which

we will study throughout the paper is the squashed sphere. Using the standard polar

coordinates θ, ϕ, the vielbein and the spin connection are given by

e1 = f(θ)dθ, e2 = ` sin θdϕ, ω12 = − `

f(θ)
cos θdϕ, (2.4)

and the other background fields are chosen as

H =
1

f
, V =

1

2

(
`

f
− 1

)
dϕ . (2.5)

The choice f(θ) ≡
√
`2 cos2 θ + ˜̀2 sin2 θ corresponds to an ellipsoid with axis-lengths `, `, ˜̀.

In particular, f(θ) ≡ ` = ˜̀ gives the round sphere of radius ` with the background fields

H = 1/`, V = 0. This family of backgrounds has the same solution to the Killing spinor

equation (2.3) irrespective of the choice of f(θ). For the analysis of localized path integrals

in later sections, we choose the following explicit solutions.

ξ = e−
iϕ
2

(
i sin θ

2

cos θ2

)
, ξ̄ = e

iϕ
2

(
cos θ2
i sin θ

2

)
. (2.6)

The regularity of the metric requires f(θ) = ` at the north pole θ = 0 and the south pole

θ = π. Otherwise we have conical singularities with the deficit angle 2π(1− `/f) there.
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field ξ ξ̄ Am ρ± iσ λ λ̄ D φ φ̄ ψ ψ̄ F F̄

RV 1 −1 0 0 1 −1 0 2q −2q 2q − 1 1− 2q 2q − 2 2− 2q

Table 1. The vector R-charges of fields in a GLSM.

GLSMs. Let us turn to the construction of SUSY theories. We begin by the gauge theory

of vector and chiral multiplets called GLSMs. The vector multiplet consists of a gauge field

Am, scalars ρ, σ, Dirac spinors λ, λ̄ and an auxiliary scalar D, transforming under SUSY

Q as

QAm = 1
2(ξγmλ̄+ ξ̄γmλ),

Qρ = 1
2(ξγ3λ̄+ ξ̄γ3λ),

Qσ = i
2(ξλ̄− ξ̄λ),

Qλ = 1
2γ

mnξFmn − γ3mDm(ξρ)− iγmDm(ξσ)− γ3ξ[ρ, σ] + ξD,

Qλ̄ = 1
2γ

mnξ̄Fmn − γ3mDm(ξ̄ρ) + iγmDm(ξ̄σ) + γ3ξ̄[ρ, σ]− ξ̄D,
QD = 1

2Dm(ξγmλ̄− ξ̄γmλ)− i
2 [ρ, ξγ3λ̄− ξ̄γ3λ] + 1

2 [σ, ξλ̄+ ξ̄λ] . (2.7)

A chiral multiplet consists of a complex scalar φ, Dirac spinor ψ and an auxiliary field F

in a complex representation of the gauge group, and their conjugates φ̄, ψ̄, F̄ constitute an

anti-chiral multiplet. They transform under SUSY as

Qφ = ξψ,

Qφ̄ = ξ̄ψ̄,

Qψ = −γmξ̄Dmφ+ iγ3ξ̄ρφ− ξ̄σφ− q · φγmDmξ̄ + ξF,

Qψ̄ = −γmξDmφ̄− iγ3ξφ̄ρ− ξφ̄σ − q · φ̄γmDmξ − ξ̄F̄ ,
QF = −ξ̄(γmDmψ − iγ3ρψ − σψ − iλ̄φ)− q ·Dmξ̄γ

mψ,

QF̄ = +ξ(γmDmψ̄ + iγ3ψ̄ρ− ψ̄σ + iφ̄λ) + q ·Dmξγ
mψ̄. (2.8)

Here q is a half of the vector R-charge of φ, i.e. RV[φ] = 2q. We summarize the vector

R-charges of fields in a GLSM in table 1.

For the action, we take the integral of (1/2π) times the following Lagrangians. First,

the supersymmetric kinetic Lagrangians for vector and chiral multiplets are given by

Lvec = Tr
[(
F12 −Hρ

)2
+
(
D +Hσ

)2
+DmρD

mρ+DmσD
mσ − [ρ, σ]2

−λ̄
(
γmDmλ− iγ3[ρ, λ]− [σ, λ]

)]
,

Lmat = Dmφ̄D
mφ+ φ̄

{
ρ2 + σ2 + 2iqHσ + 1

2qR− q
2H2 + iD

}
φ+ F̄F

−ψ̄
(
γmDm − iγ3ρ− σ − iqH

)
ψ + iψ̄λ̄φ− iφ̄λψ . (2.9)

One can also introduce interactions in the form of the F-terms of gauge invariant chiral

multiplets. These Lagrangians are actually all SUSY exact. As is well known, for super-

symmetric observables defined by path integrals, one can shift the integrand by SUSY-exact

– 8 –
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field Y Ȳ χ χ̄ G Ḡ

RV 0 0 +1 −1 0 0

Table 2. The vector R-charges of fields in a LG model.

quantities without changing the value of the integrals. Supersymmetric observables there-

fore do not depend on the couplings appearing in SUSY-exact Lagrangians. For Abelian

vector multiplets, we also have the FI-theta term,

LFI = −irD + iθF12, (2.10)

which is SUSY-invariant but not exact.

LG models. Let us next summarize the construction of LG models. A twisted chiral

multiplet consists of a complex scalar Y , fermions χ+, χ̄− and an auxiliary complex scalar

G. Their conjugates Ȳ , χ̄+, χ−, Ḡ form an anti-twisted chiral multiplet. They transform

under SUSY as follows,

QY = iξP−χ̄− iξ̄P+χ,

QȲ = iξP+χ̄− iξ̄P−χ,
Qχ = +P+(ξG− iγmξDmY ) + P−(ξḠ− iγmξDmȲ ),

Qχ̄ = −P−(ξ̄G− iγmξ̄DmY )− P+(ξ̄Ḡ− iγmξ̄DmȲ ),

QG = ξγmDmP−χ̄− ξ̄γmDmP+χ,

QḠ = ξγmDmP+χ̄− ξ̄γmDmP−χ, (2.11)

where P± ≡ 1
2(1 ± γ3). We summarize the vector R-charges of fields in a LG model in

table 2. It is known that one can form a twisted chiral multiplet from an Abelian vector

multiplets by identifying the scalar fields as

YΣ = Σ ≡ σ − iρ, GΣ = D + iF12 +HΣ. (2.12)

The free kinetic Lagrangian

Lm̃at = DmȲ DmY − χ̄γmDmχ+ ḠG (2.13)

is SUSY-exact. A SUSY invariant but non-exact interaction can be introduced by choosing

a holomorphic function of the twisted chiral fields W̃ (Yi) of RA = 2, called the twisted

superpotential.

L
W̃

=
i

2

∑
i

{
Gi
∂W̃

∂Yi
+ Ḡi

∂W̃

∂Ȳi

}
− iH

2
(W̃ + W̃ )

+
1

2

∑
i,j

{
∂2W̃

∂Yi∂Yj
χi+χ̄j− +

∂2W̃

∂Ȳi∂Ȳj
χ̄i+χj−

}
. (2.14)

– 9 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
3

2.2 BPS vortex defects

Here we present definitions of BPS vortex defects in N = (2, 2) SUSY theories on the flat

plane. We use the coordinates x1, x2 or z = x1 + ix2 = reiϕ, and the defects are put at the

origin unless otherwise stated. There are four supercharges corresponding to the constant

components of ξ±, ξ̄±, which we denote by Q±, Q̄±.

Gauge versus flavor vortex defects. Gauge vortex defects are operators in gauge

theories around which the dynamical gauge field A is required to take the singular form,

A ' ηdϕ or A ' η

2i

(
dz

z
− dz̄

z̄

)
. (2.15)

The vorticity η is a Lie algebra valued constant. For non-Abelian theories, η is assumed to

be in Cartan subalgebra.

We will see in U(1) examples that gauge vortex defects in fact depend on η in a piece-

wise constant manner, and that they are equivalent to genuine local operators constructed

from the scalars in the vector multiplet. This is analogous to the familiar fact that for a 2d

CFT with a discrete symmetry, an operator corresponding to a twisted sector is mutually

non-local with the original fields, but becomes a genuine local operator when we orbifold

the CFT because the operators that transform under the symmetry get projected out.

For theories with global symmetry, one can turn on, for its Abelian subgroup, a flat

background gauge field A(f) with the above vortex-type singularity. We call this a flavor

vortex defect. For example, the configuration of flavor vortex defects with vorticity ηi at

z = zi is obtained by turning on the following A(f) in the background:

A(f) =
∑
i

ηi
2i

(
dz

z − zi
− dz̄

z̄ − z̄i

)
= ig−1dg, g =

∏
i

(
z − zi
z̄ − z̄i

)− ηi
2

. (2.16)

Note that, although A(f) looks pure gauge, g is generically not a single-valued function.

Consider now the case with U(1) flavor symmetry, and let φ be a field with a unit flavor

charge. The field φ transforms as φ→ gφ under the gauge transformation that eliminates

A(f), so that φ in the new gauge becomes generically non-periodic around each defect. For

example, the monodromy of φ around a defect of vorticity η at the origin is

φ(ze2πi) = e−2πiηφ(z). (2.17)

This means that, unlike gauge vortex defects, a flavor vortex defect with non-integer η does

not define a genuine local operator; it is the end point of a topological line operator [31].

Vortex defects without dynamical vector multiplets have applications to orbifold the-

ories, i.e., theories with discrete gauge symmetries. Namely, the vortex operator with

η = r/K (r,K ∈ Z+) is a realization of the twist field that belongs to the r-th twisted

sector of the ZK orbifold theory.

The above simple discussion also implies an important property of the defects: under

the assumption of charge quantization, the vorticity η is a periodic variable as far as the

behavior of charged matter fields around the defect is concerned. This is because the

defects with suitably quantized η can be gauged away without introducing multivaluedness

to the charged matter fields.
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BPS condition. The SUSY transformation of the gauginos λ, λ̄ on the vortex defect

configuration (2.15) is generically non-zero, except when the auxiliary field D is appropri-

ately turned on at the same time. Half of the N = (2, 2) SUSY is preserved in the following

two cases.

D = +iF12 = +2πiηδ2(x) : Q−, Q̄+ are preserved.

D = −iF12 = −2πiηδ2(x) : Q+, Q̄− are preserved. (2.18)

In the former (latter) case the defect is a twisted chiral (resp. anti-twisted chiral) operator.

The SUSY corresponding to the Killing spinor (2.6) on the squashed sphere of sec-

tion 2.1 is a combination of Q− and Q̄+ at the north pole, while it is a combination of

Q+ and Q̄− at the south pole. Inserting a twisted chiral defect at the north pole and an

anti-twisted chiral defect at the south pole does not break the supersymmetry, so their

correlators can be evaluated exactly.

Boundary condition on fields at the defect. The vortex defects also affect the mea-

sure of path integration for charged matter fields. A standard way to define the path

integral over matter fields is to decompose the fields into the eigenfunctions of the Laplace

or Dirac operators on the relevant gauge field configuration. The behavior of general matter

wave functions will therefore be modified by the defects.

Take the 2d plane with a single defect of vorticity η at the origin, and consider a

(bosonic or fermionic) matter field of charge w around it. (For a non-Abelian theory, w is

a weight vector of some representation of the gauge group, so that w · η is the standard

inner product in the weight space.) The field is then expanded in the eigenfunctions of an

appropriate differential operator. Using the rotational invariance of the defect, one may

assume general eigenfunctions to take the separated form Ψ = Ψ̂m(r)eimϕ (m ∈ Z). One

can then show that, on the defect background with vorticity η, the radial part of the general

solution to the differential equation takes the following form near the defect:

Ψ̂m(r) ∼

{
c+r

m−w·η + c−r
−(m−w·η) (m 6= w · η)

c0 + c1 ln r (m = w · η)
. (2.19)

Note the appearance of non-integer powers of r. This behavior will be confirmed explicitly

for the vortex defect correlators on the squashed sphere in section 3 where the spectrum

becomes discrete. This implies that a solution finite at the defect may well turn into a di-

verging function after being differentiated several times. Therefore, requiring all the wave

functions to be finite at the defect does not necessarily lead to a definition of supersym-

metric defects, because SUSY transformation involves derivatives.

Let us take the vortex defect at the origin to be twisted chiral and denote the preserved

SUSY by QA ≡ εQ− + ε̄Q̄+, namely we set ξ− = ε, ξ̄+ = ε̄ and ξ+ = ξ̄− = 0. This is

the combination used for defining A-twisted topological theories. The fields in a charged

chiral multiplet transform under it as

QAφ = −εψ+, QAψ
− = εF − 2ε̄Dz̄φ,

QAψ
+ = −ε̄Σφ, QAF = −ε̄

{
2Dz̄ψ

+ − Σψ− − iλ̄−φ
}

(2.20)
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with Σ ≡ σ − iρ. For the boundary condition to be consistent with the unbroken SUSY,

we must require φ, ψ+ to satisfy the same boundary condition, and ψ−, F to satisfy the

same boundary condition as Dz̄φ. We thus arrive at two Hilbert spaces and a map

Dz̄ : H → H′.

(
H ≡ space of wave functions of φ and ψ+

H′ ≡ space of wave functions of ψ− and F

)
Applying the same argument to the anti-chiral multiplet, one finds that φ̄ and ψ̄− belong

to H̄ (the conjugate of H) while ψ̄+ and F̄ belong to H̄′. Furthermore, recall that the

standard Dirac Lagrangian for the fermions

− ψ̄γmDmψ = −2ψ̄+Dz̄ψ
+ + 2ψ̄−Dzψ

−. (2.21)

For the Hermiticity of the Dirac operator one needs to require

DzH′ ⊂ H, Dz̄H ⊂ H′. (2.22)

The basis of H and H′ can therefore be chosen as the complete set of eigenfunctions of the

operators DzDz̄ and Dz̄Dz, respectively.

The above relation between H and H′ constrains the allowed boundary condition in

the following way. Suppose one requires φ, ψ+ ∈ H to be finite at the defect. Then their

image under Dz̄ may diverge mildly as rγ (γ > −1) at the defect. Therefore one must allow

ψ−, F ∈ H′ to diverge in the same way. Note this does not cause problems with square

normalizability. In addition, since DzH′ ⊂ H we must require Dzψ
−, DzF be finite at the

defect. Thus we found a set of SUSY-preserving boundary conditions (on components)

summarized as

φ, ψ+, Dzψ
−, DzF are finite at the defect (ψ−, F may diverge mildly) (2.23)

which we call the normal boundary condition (on the multiplet). By exchanging the role

of H and H′ one obtains another consistent set of supersymmetric boundary conditions

Dz̄φ, Dz̄ψ
+, ψ−, F are finite at the defect (φ, ψ+ may diverge mildly) (2.24)

which we call the flipped boundary condition. The choice of normal or flipped boundary

condition can be made for each irreducible set of matter chiral multiplets. The choice of

matter boundary conditions should be regarded as discrete labels characterizing the defect.

For a non-Abelian gauge theory, the fluctuations of (dynamical) vector multiplet fields

around the vortex defect background given in (2.15) and (2.18) can be treated in a way

similar to the way the charged matter fields were treated. Let us again put a twisted chiral

defect at the origin, and look at the action of unbroken SUSY QA on the vector multiplet

fields. Using Σ ≡ σ − iρ, G ≡ D + iF12 and Σ̄ ≡ σ + iρ, Ḡ ≡ D − iF12, one finds

QAAz = +1
2 ε̄λ

+, QAλ
+ = −2iεDzΣ,

QAAz̄ = −1
2ελ̄
−, QAλ̄

− = +2iε̄Dz̄Σ,

QAΣ̄ = −i(ελ̄+ + ε̄λ−), QAλ
− = ε

{
i
2 [Σ, Σ̄] + Ḡ

}
,

QAḠ = 1
2 [Σ, ε̄λ− − ελ̄+], QAλ̄

+ = ε̄
{
i
2 [Σ, Σ̄]− Ḡ

}
, (2.25)
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defect type matter – normal b.c. matter – flipped b.c. vector multiplet

twisted chiral φ, ψ+, Dz{ψ−, F} Dz̄{φ, ψ+}, ψ−, F Dz̄{A′z, λ+}, Dz{A′z̄, λ̄−},
φ̄, ψ̄−, Dz̄{ψ̄+, F̄} Dz{φ̄, ψ̄−}, ψ̄+, F̄ σ, ρ,D′, λ−, λ̄+

anti-twisted chiral φ, ψ−, Dz̄{ψ+, F} Dz{φ, ψ−}, ψ+, F Dz{A′z̄, λ−}, Dz̄{A′z, λ̄+},
φ̄, ψ̄+, Dz{ψ̄−, F̄} Dz̄{φ̄, ψ̄+}, ψ̄−, F̄ σ, ρ,D′, λ+, λ̄−

Table 3. The fields required to be finite at the vortex defects preserving different supersymmetries.

and QAΣ = QAG = 0. Let primed fields A′z, A
′
z̄, D

′ denote the fluctuations from the given

vortex defect configuration. We obtain the groups of fields obeying the same boundary

conditions

A′z, λ
+ ∈ H, A′z̄, λ̄

− ∈ H̄, σ, ρ,D′, λ−, λ̄+ ∈ H′ = H̄′, (2.26)

and the differential operators relating them

Dz̄ : H → H′ → H̄, Dz : H̄ → H′ → H. (2.27)

Due to the insertion of the defect, the gauge symmetry at the defect is broken to a subgroup

of elements which commute with η. For example, if η is a generic element of the Cartan

subalgebra, the parameter of gauge transformation has to be a Lie algebra valued function

whose ladder operator part vanishes at the defect. Since (2.25) implies Q2
A = εε̄Gauge(Σ),

it follows that Σ and all other elements of H′ have to obey this boundary condition. So we

impose:

Dz̄{A′z, λ+}, Dz{A′z̄, λ̄−}, {σ, ρ,D′, λ−, λ̄+} are finite at the defect. (2.28)

This is the only consistent boundary condition for vector multiplets.

So far we have been studying the boundary conditions on fields near a twisted chiral

vortex defect. For the boundary conditions near an anti-twisted chiral defect, the super-

symmetric boundary conditions can be classified in the same way. For example, the normal

boundary condition on matter requires φ, ψ−, Dz̄ψ
+ and Dz̄F to be finite at the defect.

For completeness we list the fields required to be finite around different vortex defects in

table 3.

2.3 Smeared vortex defect configurations

Another natural approach to studying vortex defects is to define them as a limit of smooth

gauge field configurations. This was originally done in [15] and applied to the flavor vortex

defects in 2d in [32].

On the flat space with coordinates x1, x2 or z = x1 + ix2, a smeared BPS vortex defect

configuration for a U(1) gauge field is defined as

D = ±2πi% , Fzz̄ = πi% , (2.29)
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where the vorticity density % is an arbitrary real function, and the sign +(−) is for the

vortex defect configuration corresponding to a twisted chiral(anti-twisted chiral) operator.1

A smeared flavor vortex defect can be introduced by turning on a background vector

multiplet configuration of the above form for an Abelian flavor symmetry of the theory.

One should be able to define a local operator , or more precisely the end of a topological

line operator [31], in the limit %(x)→ η · δ2(x).

For a sufficiently well-behaved %(x), the charged matter fields should all behave reg-

ularly at the defect. In particular, there is no such issue as the matter wave functions

exhibiting a non-integer power law behavior or divergence. The observables associated to

the smeared defects will therefore depend on η in a smooth manner. Also, the gauge field

configuration (2.29) is no longer pure gauge, so there is no reason that the observables are

periodic in η.

2.4 0d-2d coupled systems

Another way to define a codimension-two defect is to introduce a set of dynamical variables

localized on the defect and couple it to the 2d bulk fields, as in [11]. For the 0d degrees of

freedom to realize the properties similar to those of vortex defects, they need to transform

under (a subgroup of) the gauge symmetry in the bulk. In this paper we will mostly focus

on the 0d variables coupled to the bulk U(1) gauge theory.

0d-2d couplings in flat space. The localized degrees of freedom also transform under

unbroken SUSY. Let us here take the defect to be twisted chiral and denote the parameters

of the unbroken SUSY by ξ− = ε and ξ̄+ = ε̄. The supercharge is QA = εQ− + ε̄Q̄+ as in

section 2.2, and it satisfies

Q2
A = εε̄Gauge(Σ), (2.30)

where Σ here is the value of the 2d field σ − iρ at the defect. The bulk chiral and vector

multiplet fields transform as in (2.20) and (2.25), which in particular show how the 2d

N = (2, 2) multiplets decompose into multiplets of the smaller SUSY QA. We consider

two kinds of 0d supermultiplets, called chiral and Fermi multiplets.2 We use bold symbols

for these localized degrees of freedom.

Let us now consider a defect at the origin x1 = x2 = 0 of the flat plane. A 0d

chiral multiplet on the defect is a pair of a boson u and a fermion ζ transforming in a

representation of the bulk gauge group. Its conjugate anti-chiral multiplet is denoted by

(ū, ζ̄). These variables transform under QA as

QAu = εζ, QAζ = ε̄Σu,

QAū = ε̄ζ̄, QAζ̄ = −εūΣ. (2.31)

It is easy to see that (u, ζ) and (ū, ζ̄) transform in the same way as the 2d chiral multiplet

fields (φ,−ψ+) and (φ̄, ψ̄−) at the defect. Likewise, a Fermi multiplet consists of a fermion

1Compared with [32], we have % = −ρ[32], Aµ = −v[32]
µ , D = iD[32]. Compared with the `→∞ limit of

section 3.3 at the north pole, we have % = (2πr)−1∂rS.
2These multiplets are the dimensional reductions of two-dimensional N = (0, 2) supermultiplets. We

thus use the terminology familiar in that context.
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η and a boson h, and its conjugate anti-Fermi multiplet consists of η̄, h̄. They are simply

chiral and anti-chiral multiplets with flipped statistics.3 They transform under QA as

QAη = εh, QAh = ε̄Ση,

QAη̄ = ε̄h̄, QAh̄ = −εη̄Σ. (2.32)

They correspond to the other half of the 2d chiral multiplet fields, (ψ−, F ) and (−ψ̄+, F̄ ).

So far we have only discussed short multiplets. A general long multiplet (C,ϑ, ϑ̄,M)

coupled to the bulk vector multiplet transforms as

QAC = εϑ̄+ ε̄ϑ, QAϑ = −εM +
1

2
εΣC,

QAϑ̄ = ε̄M +
1

2
ε̄ΣC, QAM =

1

2
εΣϑ̄− 1

2
ε̄Σϑ. (2.33)

An example of this is the 2d anti-twisted chiral multiplet (Σ̄,−iλ−,−iλ̄+, iḠ) at the defect,

which is in the adjoint representation. See (2.25).

BPS defects are defined by the integrals over the localized degrees of freedom with a

supersymmetric weight e−S0d . For the study of supersymmetric (QA-invariant) observables,

it only matters to choose the action S0d up to QA-exact terms. The above discussions on

0d supermultiplets shows that the only QA-invariants are the M ,h and h̄-components of

gauge-invariant supermultiplets. Moreover, they are all QA-exact: for example,

M = QA

(
εϑ̄− ε̄ϑ

2εε̄

)
. (2.34)

Different S0d are therefore all equivalent in the sense of QA-cohomology, so the defects are

classified only by the number of 0d multiplets introduced on it. The choice of S0d does

matter, however, if one is interested in observables that are not protected by SUSY.

Let us now study some explicit choices of S0d. First, for the Fermi multiplet (η,h)

and (η̄, h̄), the most natural choice would be the M -component of the long multiplet with

the lowest component η̄η,

S
(F)
0d =

(
− η̄η

)
M

= h̄h− η̄Ση. (2.35)

For the chiral multiplet, a similar construction leads to(
ūu
)
M

= ūΣu+ ζ̄ζ. (2.36)

A better choice for which the quadratic term in u, ū is positive definite would be4

S
(C)
0d =

(
ūΣ̄u

)
M

=
1

2
ū{Σ̄,Σ}u+ iūḠu+ ζ̄Σ̄ζ − iūλ−ζ − iζ̄λ̄+u. (2.37)

3More generally, the supersymmetry transformations of a Fermi multiplet can involve a holomorphic

function of chiral multiplet scalars. This is the case for the Fermi multiplet that arises as a restriction of

a bulk chiral multiplet as can be seen from (2.20). For the Fermi multiplets that originate from localized

modes in section 4, such terms are absent.
4For the Fermi and chiral 0d multiplets obtained by restricting a bulk chiral multiplet, the sum of (2.35)

and (2.37) coincides with the bulk Lagrangian (2.9) restricted to a point up to the extra contributions

mentioned in footnote 3.

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
3

The integral over the 0d Fermi or chiral multiplets with the weights (2.35) or (2.36) gives

detΣ or (detΣ)−1, respectively. For the choice of the weight (2.37), the result of the

integration is the ratio of determinants,∫
d[u, ū, ζ, ζ̄]e−(ūΣ̄u)M =

detΣ̄

det(1
2{Σ, Σ̄}+ iḠ+ λ−Σ̄−1λ̄+)

, (2.38)

but it should differ from (detΣ)−1 only by QA-exact terms.

Let us also discuss the couplings between 0d-2d variables via h and h̄-type interactions.

Let (φ, ψ, F ) be a 2d chiral multiplet, and (φ,−ψ+) its components on the defect which

form a 0d chiral multiplet. Let (η,h) be a 0d Fermi multiplet on the defect in the conjugate

representation of the gauge symmetry relative to (φ, ψ, F ). Then one has the h and h̄-type

invariants (
ηφ
)
h

= hφ− ηψ+,
(
φ̄η̄
)
h̄

= φ̄h̄+ ψ̄−η̄. (2.39)

Integration over the 0d variables imposes the Dirichlet-like boundary condition on the bulk

field components (φ, ψ+; φ̄, ψ̄−). A similar boundary condition can also be imposed on the

other half of 2d chiral multiplet components (ψ−, F ; ψ̄+, F̄ ) by using a suitable 0d chiral

multiplet.

Omega-deformation of the 0d SUSY. In section 3.3 we perform localization calcu-

lations on the squashed sphere (2.4) with 0d multiplets introduced at the north and south

poles. There we will need the omega-deformed version of the 0d supersymmetry.

Let us consider the SUSY on the squashed sphere in section 2.1 with the replacement

of Killing spinors ξ → εξ, ξ̄ → ε̄ξ̄. The corresponding supercharge, which we could denote

as εQξ + ε̄Qξ̄, can be shown to satisfy

(εQξ + ε̄Qξ̄)
2 = εε̄

[
Gauge(Σ̂) +

i

`

(
J3 +

1

2
RV

)]
, Σ̂ ≡ σ − i cos θρ− i

`
Aϕ (2.40)

on all fields on the squashed sphere. Here J3 = −i∂ϕ is the generator of its isometry

fixing the two poles. The 0d multiplets on the north pole transform under this supercharge

restricted to θ = 0, which we denote as QA,Ω. Its algebra is nearly the same as (2.30) but

is deformed by the terms of order O(1/`). Let us introduce J ≡ J3 + 1
2RV and write

Q2
A,Ω = εε̄

[
Gauge(Σ̂) +

i

`
J

] ∣∣∣∣
north pole

. (2.41)

Near the south pole, the SUSY on the squashed sphere approaches iεQ+ + iε̄Q̄−, which

is the SUSY of anti-topological A-twisted theories. Its algebra is the same as (2.41) above

with Σ̂ replaced by σ + iρ− i`−1Aϕ evaluated on the south pole.

For each 0d multiplet at the north or the south pole one needs to specify a repre-

sentation of the bulk gauge group as well as the J quantum number. With this under-

stood, the transformation rule of 0d multiplets is the same as (2.31), (2.32), (2.33) with

– 16 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
3

Gauge(Σ) replaced by Gauge(Σ̂) + i`−1J. For example, the 0d chiral and anti-chiral mul-

tiplets (u, ζ), (ū, ζ̄) with J = J,−J transform as follows.

QA,Ωu = εζ, QA,Ωζ = ε̄Σ̂u+ i
ε̄

`
Ju,

QA,Ωū = ε̄ζ̄, QA,Ωζ̄ = −εūΣ̂− iε
`
ūJ. (2.42)

The components (φ,−ψ+) of a bulk chiral multiplet with RV = 2q restricted to the north

pole provide an example of a 0d chiral multiplet with J = q. 5 Similarly, the components of

the anti-twisted chiral multiplet (Σ̄,−iλ−,−iλ̄+, iḠ) restricted to the north pole transform

as an adjoint 0d long multiplet with J = 0.

The supersymmetric action for the 0d multiplets S0d can be constructed in the

same way as in the previous paragraph for flat space with the replacement Gauge(Σ) →
Gauge(Σ̂) + i`−1J mentioned above. Among different choices, we will be most interested

in the physical actions for the 0d multiplets that arise as localized modes of a bulk chiral

multiplet studied in section 3.3. For the 0d Fermi and chiral multiplets of RV = 2q and

J3 = n arising in this way, the actions obtained from the curved version of (2.9) are

S
(F)
0d,Ω = h̄h− η̄Σ̂η − i

`
(q + n)η̄η, (2.43)

S
(C)
0d,Ω =

1

2
ū

{
Σ̄ +

i(q − n− 1)

`
, Σ̂ +

i(q + n)

`

}
u+ iūḠu

+ζ̄

(
Σ̄ +

i(q − n− 1)

`

)
ζ − iūλ−ζ − iζ̄λ̄+u. (2.44)

3 Vortex defect correlators on the squashed sphere

In this section we study the correlation function of vortex defects on the squashed sphere

introduced in section 2.1,

ds2 = f(θ)2dθ2 + `2 sin2 θdϕ2, H =
1

f(θ)
, V =

1

2

(
`

f(θ)
− 1

)
dϕ, (3.1)

which has Killing spinors (2.6). We first review the computational techniques that are

necessary for evaluating partition function, and then extend it for the computation of the

defect correlators.

An important building block for evaluating exact supersymmetric observables is the

one-loop determinant, which is the Gaussian integral over the fluctuation of fields around

given supersymmetric background. The SUSY localization ensures that this Gaussian

approximation is actually exact; see [33] for a review. For simplicity, we focus on the U(1)

SQED for which the contribution from the vector multiplet to the determinant is trivial.

In the following we take the system of a U(1) vector multiplet coupled to a single chiral

multiplet (φ, ψ, F ) of electric charge e = 1, vector R-charge 2q.

5It is also natural to consider a pair (φ, ξψ) which transforms very much like (u, ζ) above everywhere on

the squashed sphere. We will call them cohomological variables and use them in later sections.
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3.1 Computation of the partition function (review)

According to the standard localization argument, non-zero contributions to SUSY path

integrals arise only from the infinitesimal neighborhood of Q-invariant field configurations

called saddle points. Here Q is the specific SUSY on the squashed sphere corresponding

to the choice of Killing spinor (2.6). On saddle points, the bosonic fields can be shown to

take the form

σ =
a

`
, D = − a

f`
, A = s · (cos θ ∓ 1)dϕ, ρ = −s

`
, φ = F = 0, (3.2)

with constants a ∈ R and s ∈ 1
2Z, and fermions set to zero. The value of s is quantized

because it is proportional to the magnetic flux through the sphere. The ∓ sign indicates

that we work in different gauges on the northern and the southern hemispheres so that

there is no Dirac string singularity. This will also help us distinguish the singularities due

to vortex defects from the Dirac string in later discussions. The partition function can thus

be written as

Z =
∑
s∈ 1

2
Z

∫
da

2π
e−2ira+2isθZ1-loop =

∑
s∈ 1

2
Z

∫
da

2π
z−s+iaz̄s+iaZ1-loop. (3.3)

where z ≡ e−t = e−r−iθ. The one-loop determinant Z1-loop arises from the integral over

the fluctuations of fields around each saddle point labelled by (a, s). For Abelian theories

the only contribution to Z1-loop is from the charged chiral multiplet fields.

By using the cohomological variables defined by

X ≡ φ, QX ≡ ξψ, Ξ ≡ ξ̄ψ, QΞ = F − ξ̄γmξ̄Dmφ+ iξ̄γ3ξ̄ρφ, (3.4)

one can show that Z1-loop is given by the ratio of determinants of Q2 (see [29] for more

detail),

Z1-loop =
detH′(Q

2)

detH(Q2)
, (3.5)

acting on the Hilbert spaces H,H′ of wave functions of X and Ξ, respectively. The elements

of H are therefore scalars with electric charge e = 1 and the R-charge RV = 2q, while the

elements of H′ are scalars with e = 1,RV = 2q − 2. The operator Q2 acts on such charged

scalar fields in general as

Q2 = −ξ̄γmξ∂m +

(
i

2f
ξ̄ξ − ivmVm

)
RV + (ξ̄ξσ + iξ̄γmξAm + iξ̄γ3ξρ) e

=
1

`

{
∂ϕ +

i

2
RV + (a± is) e

}
. (3.6)

The (+/−) sign here means Q2 takes different form on the north/south patches. Note

also that (3.2) implies that the wave function Ψ of a charged scalar on the two patches are

related as

ΨS = ΨN e
2isϕ, (Q2)S = e2isϕ(Q2)Ne

−2isϕ. (3.7)

– 18 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
3

The way the bose-fermi pairs (X,QX) and (Ξ,QΞ) belong to the Hilbert spaces H and H′

is similar to what we observed in section 2.2. This structure becomes important in what

follows.

The ratio of determinants can be further simplified by noticing that there is a mutually

conjugate pair of differential operators J± with R-charges ∓2,

J+ ≡ `(ξ̄γmξ̄Dm − iξ̄γ3ξ̄ρ), J− ≡ `(ξγmξDm − iξγ3ξρ), (3.8)

both commuting with Q2. The operator J+ maps the elements of H to H′ while J− is

a map in the opposite direction, both preserving the eigenvalue of Q2. Therefore, when

taking the ratio of determinants of Q2 in (3.5), one can restrict to the kernels of J±. Their

explicit form on the two patches is

(north) J± = e±iϕ
{
± `
f
∂θ + i cot θ∂ϕ +

1

2

(
`

f
− 1

)
cot θRV + s tan

θ

2

}
,

(south) J± = e±iϕ
{
± `
f
∂θ + i cot θ∂ϕ +

1

2

(
`

f
− 1

)
cot θRV + s cot

θ

2

}
. (3.9)

The differential operators J± with the abovementioned nice properties can be found by

inspection, or one can also read them from the fact that the curved space version of the

Lagrangian for the chiral multiplet in (2.9) can be expressed as Lmat = QVmat with

Vmat = Ξ̄ QΞ +
1

`
(Ξ̄J+X − X̄J−Ξ) + QX̄

(
Q2 − 2σ − i(2q − 1)

f

)
X. (3.10)

The determinants of Q2 restricted to the kernels of J± can be obtained by finding

out all the eigenvalues explicitly. Suppose that a scalar wave function Ψ ∈ H takes the

separated form,

Ψ = Ψ̂(θ)eimNϕ (north patch), Ψ = Ψ̂(θ)eimSϕ (south patch), (3.11)

with the two integers mN,mS related as mS = mN + 2s. It is an eigenfunction of Q2 with

Q2 =
i

`
(mN + q − ia+ s) =

i

`
(mS + q − ia− s). (3.12)

If Ψ ∈ kerJ+, then one can show that Ψ̂(θ) satisfies a certain first-order differential equa-

tion, and behaves near θ = 0, π as

Ψ̂(θ) ∼ sinmN θ (θ ∼ 0), Ψ̂(θ) ∼ sinmS θ (θ ∼ π). (3.13)

The regularity at the poles requires that mN,mS ≥ 0. Therefore

det(Q2)|kerJ+ =
∏
n≥0

i

`
(n+ q − ia+ |s|). (3.14)

Similarly, if a wave function Ψ ∈ H′ takes the separated form (3.11), it has the eigenvalue

Q2 =
i

`
(mN + q − 1− ia+ s) =

i

`
(mS + q − 1− ia− s). (3.15)
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If Ψ ∈ kerJ−, then Ψ̂(θ) can be shown to behave near the poles as

Ψ̂(θ) ∼ sin−mN θ (θ ∼ 0), Ψ̂(θ) ∼ sin−mS θ (θ ∼ π). (3.16)

Therefore the determinant restricted on kerJ− ⊂ H′ is given by

det(Q2)|kerJ− =
∏
n≥0

i

`
(−n+ q − 1− ia− |s|). (3.17)

The infinite products of eigenvalues thus obtained are usually rewritten in terms of

gamma function assuming zeta function regularization. The final result for the one-loop

determinant is [18, 19]

Z1-loop =
Γ(s+ q − ia)

Γ(s+ 1− q + ia)
. (3.18)

Note that the absolute value signs in (3.14) and (3.17) have disappeared.

More honest renormalization allows us to see why the replacement |s| → s gives the

correct formula, and also to understand how it is related to the renormalization of the

FI-theta coupling. Let us here review a renormalization procedure given in [34] based on

the Pauli-Villars regularization and supergravity counterterms. We introduce a set of ghost

chiral multiplets {Φ1,Φ2, · · · }, which have the same charges e = 1,RV = 2q as the original

chiral multiplet Φ = (φ, ψ, F ) but with the same or opposite statistics depending on the

label εj = +1 or −1. To make these ghosts massive, we also introduce a background vector

multiplet and turn on a constant value Λ for its σ component, −Λ/f for the D component.

It is coupled to the ghost chiral fields so that Φj has twisted mass αjΛ. We choose Λ, αj
to be positive, and also require that εj , αj satisfy∑

j

εj = −1,
∑
j

εjαj = 0. (3.19)

The one-loop determinant including the ghosts is given by a convergent infinite product,

which can be safely rewritten in terms of gamma functions.

Zreg
1-loop =

∏
n∈Z≥0

 −i` (n+ 1− q + ia+ |s|)
i
`(n+ q − ia+ |s|)

∏
j

(
−i
` (n+ 1− q + ia+ |s|+ iαj`Λ)
i
`(n+ q − ia+ |s| − iαj`Λ)

)εj
=

Γ(|s|+ q − ia)

Γ(|s|+ 1− q + ia)

∏
j

[
Γ(|s|+ q − ia− iαj`Λ)

Γ(|s|+ 1− q + ia+ iαj`Λ)

]εj
. (3.20)

At this point one can replace |s| in the last expression by s without changing its value

thanks to (3.19) and quantization of the flux s. Next we take the limit Λ→∞ using

ln Γ(Λ + x) = Λ ln Λ +

(
x− 1

2

)
ln Λ− Λ +

1

2
ln(2π) + · · · . (3.21)

Zreg
1-loop then becomes

Zreg
1-loop =

Γ(s+ q − ia)

Γ(s+ 1− q + ia)
· exp

(
−2i`Λ

∑
j

εjαj lnαj

)
×(`Λ̃)1−2q(−i`Λ̃)−s+ia(i`Λ̃)s+ia

(
1 +O(Λ−1)

)
, Λ̃ ≡ Λ

∏
j

α
−εj
j . (3.22)
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The dependence on Λ is removed by adding to the Lagrangian a supergravity counterterm

Lct constructed from the twisted superpotential

W̃ct =
H
2

log
Λ̃

iµ
−
∑
j

εj(αjΛ + Σ +H) log
αjΛ + Σ +H

µe
(3.23)

by applying the formula (2.14). Here H is the lowest component of the twisted chiral multi-

plet constructed from the gravity multiplet, and is equated to −iH in the supersymmetric

background under consideration.6 For ease of presentation we set the renormalization scale

µ to 1/`. Then one can show that the renormalized one-loop determinant

lim
Λ→+∞

e−
1

2π

∫
LctZreg

1-loop (3.24)

is precisely (3.18) [34]. The bare FI-theta parameter t0 ≡ r0 + iθ0 is related to the renor-

malized one tr as

t0(Λ) = ln(`Λ̃)− iπ

2
+ tr. (3.25)

Note that the counterterms are not unique and suffer from ambiguities from finite coun-

terterms. Effectively, we chose (3.18) as the renormalization condition.

3.2 Introduction of vortex defects

Let us next introduce vortex defects with vorticities ηN and ηS at the north and the south

poles. We require that

A ∼ ηNdϕ (at θ ∼ 0), A ∼ ηSdϕ (at θ ∼ π). (3.26)

In order to preserve the SUSY on the squashed sphere (2.6), one also needs to turn on the

auxiliary field D so that the defect at the north (south) pole is twisted chiral (resp. anti-

twisted chiral). The saddle point configuration (3.2) for vector multiplet fields is modified

as follows.

σ =
a

`
, D = − a

f`
+ 2πiηNδ

2
(NP) + 2πiηSδ

2
(SP),

ρ = −s
`
, A =

{
s(cos θ − 1)dϕ+ ηNdϕ (north)

s(cos θ + 1)dϕ+ ηSdϕ (south)
. (3.27)

Note that the quantization condition on s gets modified to

s ∈ 1

2
(ηN − ηS + Z) (3.28)

due to the magnetic flux carried by the defect. The correlator of vortex defects thus takes

the following form,

〈VηNVηS〉 =
∑

s∈ 1
2

(ηN−ηS+Z)

∫
da

2π
z−s+ηN+iaz̄s+ηS+ia · Z1-loop. (3.29)

6We equate (aj , bj , cj , B,H,H, σ = σ1 +iσ2, D, W̃ , t = r−iθ) in [34] with (−αj , 1, 1, 2s,−iH,−iH,−Σ =

−σ + iρ,−iD, W̃/4π, tr = r + iθ) in this paper.
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We would like to compute Z1-loop on the vortex defect background in the same way

as before by reformulating it in terms of the operators Q2 and J±. This time, Q2 on the

north and the south patches are given by

Q2 =
1

`

{
∂ϕ +

i

2
RV + a± is− iηN/S

}
, (3.30)

and J± become vorticity-dependent.

(north) J± = e±iϕ
{
± `
f
∂θ + cot θ(i∂ϕ + ηN) +

1

2

(
`

f
− 1

)
cot θRV + s tan

θ

2

}
,

(south) J± = e±iϕ
{
± `
f
∂θ + cot θ(i∂ϕ + ηS) +

1

2

(
`

f
− 1

)
cot θRV + s cot

θ

2

}
. (3.31)

In this modified setting we again use the symbols H and H′ to denote the spaces of nor-

malizable wave functions that J± map in opposite directions. We require that

J+H ⊂ H′, J−H′ ⊂ H, (3.32)

so that the Lagrangian (3.10), and in particular its second term, make sense. Though

we did not pay special attention when deriving (3.18) in the previous subsection, this

property is crucial for the pairing of the modes which are not in kerJ±. On vortex defect

backgrounds, (3.32) is guaranteed only if an appropriate set of boundary conditions is

imposed on matter wave functions.

Given the relation (3.32) between the Hilbert spaces H and H′, it is natural to choose

the complete sets of eigenfunctions of J−J+ and J+J− as their basis. Assuming the

separated form (3.11) for the wave functions, one can reduce the eigenvalue equation to a

second-order ODE in θ. By analyzing the characteristic exponents of the ODE, one finds

the general solution to the eigenvalue equation behave near the north pole as

Ψ̂(θ) ∼ c+(sin θ)(mN−ηN) + c−(sin θ)−(mN−ηN) (mN 6= ηN),

Ψ̂(θ) ∼ c0 + c1 ln(sin θ) (mN = ηN) (3.33)

with constants c±, c0, c1. The behavior near the south pole is the same with the obvious

replacements (mN, ηN)→ (mS, ηS). The wave functions thus exhibit non-integer power-law

behaviors. By the same argument as in section 2.2, finite values of the wave functions at the

defects are not compatible with (3.32). As consistent sets of boundary conditions, we again

consider the normal and the flipped boundary conditions. In terms of the cohomological

variables X ∈ H and Ξ ∈ H′ they are expressed as follows:

normal: X and J−Ξ are finite. (Ξ may diverge mildly.)

flipped: J+X and Ξ are finite. (X may diverge mildly.) (3.34)

For either choice of boundary conditions, the operators J−J+ and J+J− become Hermitian

on H and H′ respectively, and their spectrum is discrete due to the compactness of the
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sphere. Note also that, under the assumption that the wave functions are at most mildly

divergent, the substitution of saddle-point configuration (3.27) into J± gives

(north) J+ ' +2`Dz̄, J− ' −2`Dz,

(south) J+ ' −2`Dw, J− ' +2`Dw̄. (3.35)

where z ≡ 2`eiϕ tan θ
2 , w ≡ 2`e−iϕ cot θ2 are local complex coordinates near the poles.

The one-loop determinant on the defect background can be obtained in the same way

as before, by multiplying the eigenvalues of Q2 for all the zeromodes of J±. As an example,

let us choose the normal boundary condition at both defects and evaluate the determinant

explicitly. First, suppose a wave function Ψ ∈ kerJ+ ⊂ H takes the separated form (3.11).

Then by inspection one finds that Ψ̂(θ) behaves near the poles as

Ψ̂(θ) ∼ sinmN−ηN θ (θ ∼ 0), Ψ̂(θ) ∼ sinmS−ηS θ (θ ∼ π). (3.36)

Since Ψ has to be finite near the poles, the integers mN,mS satisfy

mN − ηN ≥ 0, mS − ηS ≥ 0 (mS − ηS = mN − ηN + 2s). (3.37)

The determinant of Q2 (3.30) restricted to kerJ+ ⊂ H is thus given by

det(Q2)|kerJ+ =
∏

mN≥ηN

i

`
(mN − ηN + q − ia+ s) (s ≥ 0),

det(Q2)|kerJ+ =
∏

mS≥ηS

i

`
(mS − ηS + q − ia− s) (s ≤ 0). (3.38)

Similarly, consider a zeromode wave function Ψ ∈ kerJ− ⊂ H′ of the separated form (3.11).

The behavior of Ψ̂(θ) near the poles are given by

Ψ̂(θ) ∼ sin−mN+ηN θ (θ ∼ 0), Ψ̂(θ) ∼ sin−mS+ηS θ (θ ∼ π). (3.39)

Allowing mild divergence at the poles, the determinant of Q2 restricted to kerJ− ⊂ H′ is

given by

det(Q2)|kerJ− =
∏

mS<1+ηS

i

`
(mS − ηS + q − 1− ia− s) (s ≥ 0),

det(Q2)|kerJ− =
∏

mN<1+ηN

i

`
(mN − ηN + q − 1− ia+ s) (s ≤ 0). (3.40)

The total one-loop determinant on the vortex defect background is given by the ratio

of (3.40) and (3.38). Up to renormalization of UV divergences it is given by

Z1-loop =
Γ(dηNe − ηN + s+ q − ia)

Γ(−dηSe+ ηS + s+ 1− q + ia)
. (3.41)

If we regularize the infinite product explicitly by Pauli-Villars, it becomes

Zreg
1-loop =

Γ(dηNe − ηN + s+ q − ia)

Γ(−dηSe+ ηS + s+ 1− q + ia)
exp

(
−2i`Λ

∑
j

εjαj lnαj

)
×(`Λ̃)1−2q(−i`Λ̃)ηN−dηNe−s+ia(i`Λ̃)ηS−dηSe+s+ia, Λ̃ ≡ Λ

∏
j

α
−εj
j . (3.42)
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Several important facts can be read from the regularized expression. First, some of the

Λ-dependence gets absorbed by the renormalization (3.25) of the FI-theta parameter, or

equivalently canceled by the defect contributions to the counterterm Lct. Second, the

remaining Λ-dependence (η-dependent part) needs to be absorbed by the wave function

renormalization of the defect operators in the following way7

V r
ηN

= Λ̃dηNe · VηN , V r
ηS

= Λ̃dηSe · VηS . (3.43)

This implies that Vη acquires an anomalous dimension.

The evaluation of Z1-loop on the defect background for other choices of boundary con-

ditions proceeds in the same way. For example, if the flipped boundary condition is chosen

at the two poles, the one-loop determinant is given by

Z1-loop =
Γ(bηNc − ηN + s+ q − ia)

Γ(−bηSc+ ηS + s+ 1− q + ia)
, (3.44)

namely the ceiling functions are replaced by the floor functions. Similar replacement of

ceiling functions by floor functions is understood in other formulae such as (3.43). Note

that the choice of boundary condition on charged chiral multiplets should be regarded as

part of the definition of the defect. It is therefore possible that a chiral multiplet obeys

the normal boundary condition at VηN and the flipped boundary condition at VηS . The

one-loop determinant depends on the choices of boundary conditions in an obvious manner.

Vortex defects for flavor symmetry (or without dynamical gauge fields). The

formulae we have developed so far are applicable also to the vortex defects for flavor

U(1) symmetry, which can be introduced by turning on a flat gauge field A(f) = ηdϕ for

the flavor symmetry in the background. It can be gauged away at the cost of making

the charged matter fields all multi-valued (or introducing a branch cut between the two

poles). This procedure also makes sense in an orbifold theory, where the gauge symmetry

is discrete. Thus our results have applications to the study of twist operators in orbifold

theories. As an example, we will demonstrate in section 6 the mirror symmetry of the

Landau-Ginzburg model realization of the minimal model, where the twist operators in

the orbifold are mapped to the original chiral operators.

One subtle difference in the behaviors of gauge and flavor vortex defects is their renor-

malization property. A part of the cutoff dependence, which was previously absorbed into

the renormalization of FI-theta couplings for the correlators of gauge vortex defects, now

turns into an extra wave function renormalization for the flavor vortex defects. Thus the

renormalization property of the flavor vortex defects, coupled to a single chiral matter of

unit flavor charge obeying the normal boundary condition, is given by

(V (f)
ηN

)r = Λ̃dηNe−ηN · V (f)
ηN
, (V (f)

ηS
)r = Λ̃dηSe−ηS · V (f)

ηS
. (3.45)

For the choice of flipped boundary condition, ceiling functions are replaced by floor func-

tions. Mass dimensions of flavor vortex defects and defects without dynamical vector

multiplets can be read off from (3.45).

7At this point the renormalization of the operators Vη has ambiguities of finite renormalization. We

fixed it so that the relations among different defects (discussed in section 4) become the simplest.
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Mass deformation by a superpotential. In N = (2, 2) SUSY gauge theories, the chi-

ral multiplets Φ, Φ̃ of opposite charges satisfying RV[Φ] + RV[Φ̃] = 2 can be simultaneously

made massive by the superpotential

W ∝ Φ̃Φ. (3.46)

Since F-terms on the squashed sphere are SUSY exact, the massive pair of chiral multiplets

should not contribute to the sphere partition function at all. In the presence of vortex

defects, however, the decoupling of these fields is subtle.

Let us couple the chiral multiplets Φ, Φ̃ of electric charges (1,−1) and RV-charges

(2q, 2 − 2q) to a U(1) vector multiplet. The localized path integral in the presence of the

vortex defects takes the form

〈VηNVηS〉 =
∑

s∈ 1
2

(ηN−ηS+Z)

∫
da

2π
z−s+ηN+iaz̄s+ηS+ia × Z1-loop. (3.47)

The one-loop determinant depends on the boundary condition. If Φ obeys the normal

boundary condition and Φ̃ obeys the flipped boundary condition at the two poles, the

determinant becomes

Z1-loop =
Γ(dηNe − ηN + s+ q − ia)

Γ(−dηSe+ ηS + s+ 1− q + ia)

Γ(b−ηNc+ ηN − s+ 1− q + ia)

Γ(−b−ηSc − ηS − s+ q − ia)

= (−1)2s+ηS−dηSe−ηN+dηNe, (3.48)

which implies that all the matter degrees of freedom are lifted, with the only remnant being

a shift of the theta angle by π.

If Φ and Φ̃ both obey the normal boundary condition at the two poles,8 it is given by

Z1-loop =
Γ(dηNe − ηN + s+ q − ia)

Γ(−dηSe+ ηS + s+ 1− q + ia)

Γ(d−ηNe+ ηN − s+ 1− q + ia)

Γ(−d−ηSe − ηS − s+ q − ia)
(3.49)

= (−1)2s+ηS−dηSe−ηN+dηNe+1(ηN − bηNc − q − s+ ia)(ηS − bηSc − q + s+ ia),

where we assumed that ηN, ηS /∈ Z. This would imply that, after the pair of massive chiral

multiplets is integrated out, there remains a fermionic degree of freedom localized on each

defect with non-integer vorticity.

The difference can be understood by looking at the mass term written in terms of

cohomological variables,

Lmass = φF̃ + Fφ̃− ψψ̃ + c.c. ' Q(XΞ̃ + ΞX̃) + c.c.. (3.50)

Here ' means the equality up to total derivatives. Now let us denote by H and H′ the

Hilbert spaces of the wave functions for X and Ξ, and by H̃ and H̃′ the analogous spaces

for X̃ and Ξ̃. The charge assignment to the multiplets Φ, Φ̃ is such that

H̃ = H̄′, H̃′ = H̄ (3.51)

8For a potential quantum inconsistency of this assumption, see section 9.
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in the absence of the defects. This equality holds also in the presence of the defects only if

the boundary condition on Φ̃ is flipped relative to that of Φ. In the above example (3.49)

where Φ, Φ̃ both obey the normal boundary condition at both defects, one finds

dimH̄′ = dimH̃+ 1, dimH̃′ = dimH̄+ 1. (3.52)

The mismatch precisely corresponds to the modes having a mild divergence at either defect.

These modes are responsible for the uncanceled fermionic eigenvalues in (3.49).

3.3 Comparison with smearing

Here we study the supersymmetric path integral over the fluctuations around the smeared

defect configuration, of which the flat space version was introduced in section 2.3. We would

like to check that the result is trivially equal to partition function, and also study how the

smearing changes the Hilbert spaces of wave functions H,H′ of the previous subsection.

As before, we focus on the U(1) gauge theory with a single chiral multiplet (φ, ψ, F ) of

electric charge 1 and vector R-charge 2q.

Correlator of smeared vortex defects. The smeared defect configuration with vor-

ticity ηN, ηS at the two poles is defined by the following modification of (3.27),

σ =
a

`
, D = − a

`f(θ)
+ i

S′(θ)

`f(θ) sin θ
, ρ = −s+ S(θ)

`
,

Aθ = 0, Aϕ =

{
s(cos θ − 1) + ηN + S(θ) cos θ (north)

s(cos θ + 1) + ηS + S(θ) cos θ (south)
, (3.53)

which solves the saddle point condition for arbitrary S(θ).9 The function S(θ) here specifies

the smearing: for now we only require S(0) = −ηN, S(π) = ηS and proceed. The classical

FI-theta action evaluated on this background takes the same value as that on the saddle

point (3.27). Also, the quantization condition on the s above,

2s− ηN + ηS ∈ Z, (3.54)

is the same as (3.28).

As in previous subsections, we evaluate Z1-loop by moving to the cohomological vari-

ables and studying the spectrum of Q2 on kerJ±. It turns out that Q2 is the same as (3.30),

but J± now depend also on S(θ) as

(north) J± = e±iϕ
{
± `
f
∂θ + cot θ(i∂ϕ + ηN) +

1

2

(
`

f
− 1

)
cot θRV + s tan

θ

2
+
S(θ)

sin θ

}
,

(south) J± = e±iϕ
{
± `
f
∂θ + cot θ(i∂ϕ + ηS) +

1

2

(
`

f
− 1

)
cot θRV + s cot

θ

2
+
S(θ)

sin θ

}
.

(3.55)

9This form can be found by allowing D to have an imaginary part while requiring other fields to be real.

It is also possible to turn on Imσ and solve the SUSY conditions, but the interpretation is not clear. We

turn it off for simplicity.
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Due to the effect of smearing, the behaviors of these operators near the poles are the same

as those in the absence of the defects (3.9). Therefore, the smearing eliminates the issue

of wave functions with non-integer power law behaviors.

Let Ψ be a scalar wave function in the separated form (3.11). If Ψ ∈ kerJ+ the local

behaviors near the poles are

Ψ̂(θ) ∼ sinmN θ (θ ∼ 0), Ψ̂(θ) ∼ sinmS θ (θ ∼ π), (3.56)

As a consequence we find

det(Q2)|kerJ+ =
∏
mN≥0

i

`
(mN − ηN + q − ia+ s) (2s− ηN + ηS ≥ 0),

det(Q2)|kerJ+ =
∏
mS≥0

i

`
(mS − ηS + q − ia− s) (2s− ηN + ηS ≤ 0). (3.57)

Similarly, if Ψ ∈ kerJ− the local behaviors are

Ψ̂(θ) ∼ sin−mN θ (θ ∼ 0), Ψ̂(θ) ∼ sin−mS θ (θ ∼ π). (3.58)

The determinant is then

det(Q2)|kerJ− =
∏
mS≤0

i

`
(mS − ηS + q − 1− ia− s) (2s− ηN + ηS ≥ 0),

det(Q2)|kerJ− =
∏
mN≤0

i

`
(mN − ηN + q − 1− ia+ s) (2s− ηN + ηS ≤ 0). (3.59)

The renormalized one-loop determinant Zsmeared
1-loop , defined by the same expression (3.24)

but now for the smeared defect background, is given for either sign of 2s− ηN + ηS as

Zsmeared
1-loop = (`µ)1+ηN+ηS+2ia−2q Γ(s− ηN − ia+ q)

Γ(s+ ηS + ia− q + 1)
. (3.60)

To avoid clutter we will set µ to 1/` in the following.10 Note that it depends only on ηN, ηS

and not on the detail of the smearing function S(θ). Also, the determinant is analytic but

non-periodic in η’s in contrast to the earlier results (3.41) and (3.44).

One may want to define the correlation function of “the smeared gauge vortex de-

fects” by

〈V smeared
ηN

V smeared
ηS

〉 =
∑

s∈ 1
2

(ηN−ηS+Z)

∫
da

2π
z−s+ηN+iaz̄s+ηS+ia · Zsmeared

1-loop . (3.62)

10For the smeared flavor defect, one can read off the mass dimension [(V
(f,smeared)
ηN/S

)r] = −ηN/S of each

operator from the `-dependence of the normalized correlator

〈(V (f,smeared)
ηN )r(V (f,smeared)

ηS )r〉normalized = Zsmeared
1-loop /Z1-loop ∝ (`µ)ηN+ηS . (3.61)

Expression (3.60) is obtained by evaluating the supergravity counterterm [34] in the smeared defect back-

ground.
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As discussed in section 2.3 we expect it to be trivial, i.e., equal to the partition function.

Indeed, by rewriting it using

ã ≡ a− i

2
(ηN + ηS), s̃ ≡ s+

1

2
(ηS − ηN), (3.63)

one finds (3.62) looks almost identical to (3.3). However, there is an important difference

that the integration contour for ã is shifted relative to that for a. Shifting the contour

across the poles of the integrand changes the value of the integral, so the triviality of the

smeared vortex defects for general ηN, ηS is in fact subtle. Suffice it to say for now that,

for general ηN, ηS, there should be a choice of the a-integration contour in (3.62) such that

the defect correlator coincides with the partition function. In section 5 we will discuss the

issue of contour shifts in more detail in slightly different problems.

Localized modes and frozen bulk modes. We now take a specific form of the function

S(θ). Let gε(u) be a smooth function such that gε(0) = 0 and gε(u) ' 1 for u � ε > 0,

and set

S(θ) = −ηN

{
1− gε

(
θ

π

)}
+ ηS

{
1− gε

(
1− θ

π

)}
. (3.64)

For small ε, the modification of the saddle-point configuration by S(θ) takes place only in

the ε-neighborhood of the two poles. How does this smearing affect the Hilbert spaces H,H′

which were previously defined by the (normal or flipped) boundary conditions? There are

two possible effects:

• Some wave functions which did not satisfy the boundary condition at either pole

become regular due to the smearing. Such wave functions necessarily have profiles

peaked around that pole, so we call them the localized modes. For illustration we

plot a sample localized mode for Ψ ∈ kerJ+ on the round sphere with a smooth

choice of gε in figure 1.

• Some wave functions which satisfied the boundary conditions become singular at

either pole due to the smearing. We call such modes the frozen bulk modes.

Before studying the change in the Hilbert spaces due to smearing, we would like to

introduce one convenient trick that simplifies our discussion, which we call t-deformation.

See [35] for a motivation. The t-deformation is simply the similarity transformation of J±,

J+ → etU(θ)J+e−tU(θ), J− → e−tU(θ)J−etU(θ) (3.65)

with t ∈ R and U(θ) a monotonic function satisfying U(0) > U(π). The relations

(J±)† = J∓ and [Q2, J±] = 0 are preserved under this transformation. Moreover, in

the limit t → ∞ all the J+ (J−)-zeromodes are automatically vanishingly small at the

south (resp. the north) pole, so we only need to examine their behavior at the other pole.

With this deformation of J±, we have a rather simple interpretation of the one-loop deter-

minants (3.41), (3.44), (3.60). Namely the gamma function in the numerator accounts for

the contribution of J+-zeromodes supported on the north hemisphere, and the one in the
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ϵ=0.01

ϵ=0.03

ϵ=0.05

0.0 0.2 0.4 0.6 0.8 1.0

θ

π

1

2

3

4

Ψ

(θ)

Figure 1. An example of a localized mode Ψ = Ψ̂(θ)eimN/Sϕ ∈ kerJ+ on the round sphere for

mN = 1, mS = 2, ηN = 2.2, ηS = 3.7. The θ-dependent part Ψ̂ of the separated wave function is

plotted with the choice gε = β ◦ αε, where αε is the Möbius transformation that maps the triple

{0, ε, 1} to
{

0, 1
2 , 1
}

, and β is a smooth function β(u) =

[
1 + exp

(
1

u
− 1

1− u

)]−1

.

denominator arises from J−-zeromodes supported on the south hemisphere. This simplifies

the spectrum analysis significantly.

With the help of this deformation, let us study the effect of smearing on the wave

functions of the charged chiral multiplet in kerJ±. We concentrate on the effect of smearing

at the north pole since the other pole can be studied in the same way. In the limit t→∞,

only J+-zeromodes are supported around the north pole. Before the smearing, the J+-

zeromodes satisfying the boundary condition takes the form X = Ψ̂(θ)eimNϕ on the north

hemisphere, with

mN ≥ κN(ηN), κN(ηN) =

{
dηNe (normal b.c. at the north pole)

bηNc (flipped b.c. at the north pole)
. (3.66)

After the smearing, the normalizable J+-zeromodes have mN ≥ 0. Therefore,

• If ηN > 0, the smearing brings in localized J+-zeromodes with 0 ≤ mN < κN(ηN).

• If ηN < 0, the smearing freezes the bulk J+-zeromodes with κN(ηN) ≤ mN < 0.

This effect can be easily read off from the ratio of Z1-loop before and after the smearing;

for example,

Zsmeared
1-loop

Z1-loop
=

Γ(−ηN + s+ q − ia)

Γ(ηS + s+ 1− q + ia)

/
Γ(κN(ηN)− ηN + s+ q − ia)

Γ(−κS(ηS) + ηS + s+ 1− q + ia)
. (3.67)

In the opposite limit t → −∞ of t-deformation, only J−-zeromode are supported

around the north patch. The wave functions take the form Ξ = Ψ̂(θ)eimNϕ there, and
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the boundary condition at the north pole requires mN ≤ κN(ηN). After the smearing, the

normalizability requires mN ≤ 0. Therefore

• If ηN > 0, the smearing freezes the bulk J−-zeromodes with 0 < mN ≤ κN(ηN).

• If ηN < 0, the smearing brings in localized J−-zeromodes with κN(ηN) < mN ≤ 0.

This effect can again be read off from the ratio of Z1-loop (3.67), but one needs to rewrite

them using gamma function identities so that their denominator is interpreted as the

contribution of J−-zeromodes supported on the north patch.

Zsmeared
1-loop

Z1-loop
= (−1)κN(ηN)+κS(ηS)

× Γ(−ηS − s+ q − ia)

Γ(ηN − s+ 1− q + ia)

/
Γ(κS(ηS)− ηS − s+ q − ia)

Γ(−κN(ηN) + ηN − s+ 1− q + ia)
. (3.68)

The sign factor on the r.h.s. plays an important role later.

0d multiplets describing the smearing effect. Now let us identify the 0d multiplets

on the defect at the north pole which reproduce the effects described in the previous

paragraph. As explained in section 2.4, those 0d multiplets represent the simple SUSY

algebra

Q2 =

[(
σ − i cos θρ− i

`
Aϕ

)
e +

i

`

(
J3 +

1

2
RV

)]
north pole

=
i

`

{
(−ia+ s− ηN)e + J3 +

1

2
RV

}
on the saddle point. (3.69)

In the first line, the terms with 1/` are due to Omega deformation. The operator J3 is the

angular momentum, which acts simply as −i∂ϕ on scalar wave functions.

Let us take ηN > 0. First, in the limit t → ∞ of t-deformation, the smearing at the

north pole gives rise to some localized J+-zeromodes, which turns into 0d chiral multiplets

{un, ζn}
κN(ηN)−1
n=0 with the charges

e = 1, RV = 2q, J3 = n = 0, 1, · · · , κN(ηN)− 1. (3.70)

Integrating over them with an appropriate weight S0d such as the one in (2.43) gives

∫
d[un, ζn, ūn, ζ̄n]e−S0d =

κN(ηN)−1∏
n=0

(
−i`

−ia+ s− ηN + n+ q

)
, (3.71)

which explains a part of the change of Z1-loop (3.67) due to smearing. In the opposite limit

t → −∞, the smearing freezes the modes of Ξ in kerJ− with J3 = 1 , · · · , κN(ηN), each

of which gives rise to a Fermi multiplet. To freeze them we need the 0d chiral multiplets

{ũn, ζ̃n}
κN(ηN)
n=1 with the charges

e = −1, J3 +
1

2
RV = −n− q + 1, n = 1, 2, · · · , κN(ηN). (3.72)
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Note that the charges of ũn, ζ̃n are precisely the opposite of those (3.70) of un, ζn. In

addition, the sign factor in (3.68) implies that the integral measure over the 0d multiplets

gets multiplied by (−1)κN(ηN). The integral over ũn, ζ̃n which freezes the J−-zeromodes of

Ξ and its superpartner QΞ is given by,

(−1)κN(ηN)

∫
d[ũn, ζ̃n, ¯̃un,

¯̃
ζn] exp

(
−
κN(ηN)∑
n=1

[
ζ̃n J

+nΞ + ũn J
+n(QΞ) + c.c.

]
north pole

)
.

(3.73)

If one chose a different weight for ũn, ζ̃n such as (2.43) which does not involve 0d-2d

couplings, the integral would not freeze the bulk modes but one would instead obtain

precisely the same result as (3.71). This implies that the two systems of 0d multiplets

{un, ζn} and {ũn, ζ̃n} are equivalent in Q-cohomology although they are introduced to

explain different effects of the smearing.

In the same way, for ηN < 0 we obtain two different 0d systems depending on the limit

t→ ±∞. One is the system of −κN(ηN) units of Fermi multiplets with charges

e = −1, J3 +
1

2
RV = 1− q , 2− q , · · · , −κN(ηN)− q. (3.74)

The other is the same number of Fermi multiplets with the charges opposite to (3.74), and

additional sign factor (−1)κN(ηN) multiplied onto the measure. Again, these two 0d systems

are equivalent in the sense of Q-cohomology.

4 Relations between defect operators

In the last section we have seen that the difference between the singular and smeared

vortex defect backgrounds is accounted for by a suitable set of 0d variables on the defect.

Here we analyze this relation in more detail. We also combine this relation with the

triviality of smeared gauge vortex defects to derive an equivalence relation between vortex

defects and 0d-2d systems. We choose to use physically relevant actions and avoid Q-exact

deformations or cohomological arguments, so that the arguments and the results presented

here could potentially be applied to non-SUSY settings. We will study the defects in flat

space; once we understand them, the generalization to those in curved backgrounds is

dictated by the symmetries of supergravity.

For simplicity, we assume η /∈ Z throughout this section. We continue to focus on a

single chiral multiplet (φ, ψ, F ) of electric charge e = 1 and vector R-charge 2q, coupled to

a U(1) vector multiplet.

4.1 Relations between wave functions

Consider a smeared U(1) vortex defect background centered at the origin of the flat space.

We use the polar coordinate (r, ϕ), and set the vector multiplet fields Aµ, D as follows,

Ar = 0, Aϕ(r) = η · g(r/ε), D =
i

r
∂rAϕ. (4.1)
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The smearing function g(u) in this section satisfies g(u) ∼ 0 for u � 1 and g(u) ∼ 1

for u � 1. For this smeared vortex defect background, the vorticity density (2.29) is

% = (2πrε)−1η · g′(r/ε). As in the previous section, we couple a chiral multiplet with

unit electric charge to this vector multiplet. Both the vector and chiral multiplets are

dynamical, but the path integral measure for the chiral multiplet is defined by the mode

expansion on the above vortex defect background.

To avoid clutter, in the following we will suppress the fluctuations of vector multiplet

fields around the background (2.29) except σ and ρ which we write explicitly. The matter

Lagrangian in (2.9) gives the action

S =

∫
d2x

2π

[
φ̄(−4DzDz̄ + Σ̄Σ)φ+ iψ̄

(
−iΣ̄ 2iDz

2iDz̄ −iΣ

)
ψ

]
. (4.2)

The Laplacian and D combined to give −4DzDz̄, and we set Σ = σ − iρ, Σ̄ = σ + iρ.

We will expand φ and ψ+ in the eigenmodes of −4DzDz̄, while ψ− and F will be

expanded in the eigenmodes of −4Dz̄Dz. Since iDz and iDz̄ are conjugate to each other,

the eigenvalues are all non-negative. In flat space, these modes are either delta function

normalizable or normalizable. As we will see, normalizable modes are all supported on

the ε-neighborhood of the defect, very much like the localized zeromodes of J± on the

squashed sphere which we studied in section 3.3. For a non-zero eigenvalue λ > 0 of

−4DzDz̄, the differential equation for the radial part Ψ̂m of the separated wave function

Ψ = Ψ̂m(r)eimϕ (m ∈ Z) reduces to the Bessel equation for r � ε. Ψ̂m(r) behaves asymp-

totically as a linear combination of r−1/2 exp(±iλ1/2r) for r � max{ε, λ−1/2}. Thus a

non-zero mode of −4DzDz̄ is necessarily a delta function normalizable mode and does not

correspond to a localized mode.

A normalizable zeromode of −4DzDz̄ is annihilated by Dz̄. The radial wave function

Ψ̂m must satisfy

(r∂r −m+Aϕ)Ψ̂m = 0 =⇒ Ψ̂m(r) = exp

[
−
∫ r ds

s
(Aϕ(s)−m)

]
. (4.3)

The behaviors for large and small values of r are

Ψ̂m(r) ∼

{
r+m for r � ε ,

r+m−η for r � ε .
(4.4)

For Ψ to be smooth at r = 0 we need m ≥ 0, and for it to be normalizable we need

m − η < −1. Therefore, for η > 1 and non-integer, there are normalizable zeromodes

labeled by m = 0, · · · , bηc − 1. We denote them by {φ(0)
a }bηc−1

a=0 . Since there were no

zeromodes on the singular vortex defect background before smearing, these normalizable

zeromodes have arisen as a consequence of the smearing.

A small remark is in order regarding the limit of sending η to a positive integer from

above. In this limit, one of the bηc normalizable zeromodes becomes non-normalizable since

it behaves as Ψ̂m(r) ∼ 1/r at large r. The non-normalizability of this mode is due to the
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infinite volume of flat space. It seems more appropriate to regard it as “marginally” nor-

malizable; for example one can make the index theorem hold on R2 with this prescription.

See [36].

Similar argument applies also to the mode Ψ = Ψ̂m(r)eimϕ annihilated by Dz. It is

smooth and normalizable if and only if η+1 ≤ m ≤ 0. We denote such normalizable modes

Ψ by φ̃
(0)
α with α ≡ −m = 0, 1, . . . ,−dηe − 1. There exists at least one such mode if and

only if η ≤ −1.

Let us next study non-zero modes in detail. We are interested in the limit ε → 0

with a non-zero eigenvalue kept finite. If Ψ is a delta function normalizable eigenmode of

−4DzDz̄ with eigenvalue λ > 0,

− 4DzDz̄Ψ = λΨ , (4.5)

then

Ψ̃ := λ−1/2 · 2iDz̄Ψ (4.6)

is a delta function normalizable eigenmode of −4Dz̄Dz with eigenvalue λ. We will mostly

focus on Ψ. For the eigenfunction of separated form Ψ = Ψ̂m(r)eimϕ the eigenvalue equa-

tion (4.5) reads (
∂2
r +

1

r
∂r +

∂rAϕ
r
− (m−Aϕ)2

r2
+ λ

)
Ψ̂m = 0 . (4.7)

Since Aϕ approaches a constant η for r � ε, the solution there is a linear combination

of two Bessel functions J±|m−η|(λ
1/2r). For a given λ > 0, we assume ε was chosen small

enough so that ε � λ−1/2 holds. Then the form of Ψ̂m is determined from the regularity

at r = 0 as

Ψ̂m =

{
(non-zero)× r|m| for 0 ≤ r � ε ,

α+J+|m−η|(λ
1/2r) + α−J−|m−η|(λ

1/2r) for r � ε
(4.8)

with some (ε-dependent) constants α±. To compare this with the wave function obeying

the normal or the flipped boundary condition, we need to find which of the two terms

dominates in the bulk region r � ε. This amounts to comparing the coefficients α± as

functions of ε in the limit of small ε.

In appendix A we show that

α+

α−
∼


ε−2|m−η|+non-positive (m < 0)

ε−2|m−η|+2 (0 ≤ m < η)

ε−2|m−η|−2 (max{0, η} < m)

. (4.9)

This implies that the first term with coefficient α+ is always dominant except when η > 0

and m = bηc. For this exceptional case, the corresponding wave function behaves like

Ψ ∼ rbηc−ηeibηcϕ for ε � r � λ−1/2; it diverges mildly but Dz̄Ψ is finite. According

to (2.24), this is the mode in H satisfying the flipped boundary condition. Note that on

the smeared vortex defect background this mode receives a correction in the small region

r � ε so that it is continued to a smooth solution.11

11For a vanishing eigenvalue, the local solution allowed by the flipped boundary condition near the origin

is non-normalizable at infinity. Thus there is no frozen mode in flat space.
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The above result implies that, depending on whether η > 0 or η < 0, the set of

eigenfunctions of DzDz̄ with non-zero eigenvalues on the smeared background reproduces

those satisfying the flipped or the normal boundary condition in the limit ε → 0. The

correspondence is one to one and, in particular, no modes are frozen by the smearing.

Including the results on the zero modes, one can express the relations between the Hilbert

spaces as

lim
ε→0
Hsmeared =

{
Hflipped ⊕ Cbηc if η > 0 ,

Hnormal if η < 0 .
(4.10)

The power of C represents localized zeromodes {φ(0)
a }bηc−1

a=0 .

For wave functions in H′ the analysis above goes through if we replace (m, η) →
(−m,−η) on the right hand side of (4.8). We find the relation

lim
ε→0
H′smeared =

{
H′flipped if η > 0 ,

H′normal ⊕ Cb−ηc if η < 0 .
(4.11)

It is possible to cancel the effects of the localized modes by inserting extra 0d multiplets

with the opposite statistics. We may regard this construction as a way to regularize the

vortex singularities defined in section 2.2 by the smearing and 0d multiplets.

4.2 0d multiplets from localized modes

Once we have a complete set of basis wave functions, the path integral can be formulated as

an infinite dimensional integral over the coefficients in the mode expansion of the fields. For

the smeared vortex defect background with small ε, the modes φ
(0)
a and φ̃

(0)
α are strongly

localized near the defect, so they couple with the vector multiplet fields only at the defect.

In the limit ε→ 0 the coefficients of these modes become the 0d multiplets on the defect.

The remaining variables describe the bulk dynamics of matter fields obeying the normal

or the flipped boundary condition.

Let us write down the action for the 0d multiplets explicitly. First, the coefficients

(ua, ζa) of φ
(0)
a in the expansions of φ and ψ+ form a 0d chiral multiplet for each a.

The conjugate fields give 0d anti-chiral multiplets. Their physical action is obtained by

substituting the corresponding localized eigenmodes into the 2d physical action (2.9):

S
(C)
0d = ūaΣ̄Σua + ζ̄aΣ̄ζa . (4.12)

If we include other fields in the vector multiplet or put the system at the north pole of the

squashed sphere, the 0d action that follows from the bulk action has more couplings. It is

given explicitly in (2.44), where the eigenvalue J of J = 1
2RV + J3 is identified with q + a.

Similarly, the coefficients (ηα,hα) of φ̃
(0)
α in ψ+ and F form a Fermi multiplet, and

their conjugates (η̄α, h̄α) form an anti-Fermi multiplet. The action is

S
(F)
0d = h̄αhα − η̄αΣηα . (4.13)

The path integral over each Fermi multiplet yields an insertion of Σ at the origin. For the

Fermi multiplet at the north pole of the sphere, the complete action is (2.43). If we started

with the 2d matter with RV[φ] = 2q, the J-quantum number of (ηα,hα) is q − 1− α.
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4.3 The relations

From the detailed comparison of matter path integrals on smeared and singular vortex

defect configurations, we found that they are different by a certain number of 0d multiplets

with actions (4.12) and (4.13). Our result can be summarized as the following operator

relation (up to renormalization):

“smeared gauge vortex defect” =


V flipped
η ×

∫ bηc−1∏
a=0

d[ua, ūa, ζa, ζ̄a]e
−S(C)

0d for η > 0 ,

V normal
η ×

∫ b−ηc−1∏
α=0

d[ηα, η̄α,hα, h̄α]e−S
(F)
0d for η < 0 .

(4.14)

We note that renormalization can be applied and works out as expected. On the left hand

side of (4.14) we obtain the “smeared gauge vortex defect” renormalized by Pauli-Villars

and counterterms. On the right hand side we get Pauli-Villars ghosts for each localized

mode labeled by a or α. In the large Λ > 0 limit a 0d ghost multiplet contributes (αjΛ)±1

to the leading order. Taking their product, the effect is simply to replace V
normal/flipped
η by

V
r,normal/flipped
η = Λ̃κ(η) · V normal/flipped

η .

Since the left hand side of (4.14) is trivial, i.e., equal to the identity operator, it

is useful to rewrite the relations by inverting the contributions of the 0d multiplets. The

superdeterminants inserted by the 0d path integrals can be inverted by flipping the statistics

while keeping the same actions, up to standard sign corrections.

V r,flipped
η =

∫ bηc−1∏
a=0

d[ηa, η̄a,ha, h̄a]e
−S(C)

0d for η > 0 , (4.15)

V r,normal
η =

∫ b−ηc−1∏
α=0

d[uα, ūα, ζα, ζ̄α]e−S
(F)
0d for η < 0 . (4.16)

By integrating out the 0d multiplets one obtains the relation between vortex defects

and local functionals of vector multiplet fields. Up to Q-cohomology equivalence, the

integral over a single Fermi or chiral multiplet gives Σ±1 in flat space, or (Σ̂ + i
`J)±1 at the

north pole of the sphere. Let us write out the relation explicitly. For the flat space we have

V r,flipped
η = Σbηc (η > 0), V r,normal

η = Σdηe (η < 0). (4.17)

For the defect at the north pole of the sphere we have

V r,flipped
η =

bηc−1∏
a=0

(
Σ̂ +

i

`
(q + a)

)
= (−i`)−bηc Γ(q + bηc − i`Σ̂)

Γ(q − i`Σ̂)
, (η > 0)

V r,normal
η =

b−ηc−1∏
α=0

(
Σ̂ +

i

`
(q − 1− α)

)−1

= (−i`)−dηe Γ(q + dηe − i`Σ̂)

Γ(q − i`Σ̂)
. (η < 0) (4.18)
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5 Defect correlators in Abelian GLSMs

Here we apply the formula developed in the previous sections to study the defect correlators

on the squashed sphere for some GLSMs with U(1) gauge group. Let (ei, 2qi,Mi) be

the electric charge, R-charge and twisted mass of the i-th chiral multiplet, and denote

mi ≡ `Mi + iqi. Under our renormalization prescriptions, the renormalized vortex defect

correlators are given by

〈V r
ηN
V r
ηS
〉=

∑
s∈ 1

2
(ηN−ηS+Z)

∫
R

da

2π
e−itr(a+is)−ηNtr−it̄r(a−is)−ηS t̄r (5.1)

·
∏
i

(−i`)−κi,N(eiηN) (i`)−κi,S(eiηS) Γ(κi,N(eiηN)− eiηN + eis− imi − ieia)

Γ(−κi,S(eiηS) + eiηS + eis+ 1 + imi + ieia)
.

The integer-valued function κi,N(x) equals dxe or bxc depending on whether the i-th matter

satisfies the normal or the flipped boundary condition at the north pole, and the definition

of κi,S is similar.

The first thing we notice is that, under the assumption of charge integrality ei ∈ Z,

the one-loop determinant (ratio of products of gamma functions) has unit periodicity in

ηN and ηS. This implies that the defect operators satisfy shift relations

V r
ηN+1 = e−tr (−i`)−

∑
i ei V r

ηN
, V r

ηS+1 = e−t̄r (i`)−
∑
i ei V r

ηS
. (5.2)

This is a consequence of the invariance of matter path integral measures under large gauge

transformations. We expect that this shift relation holds generally, not only inside super-

symmetric correlators.

We will see below that, as a function of vorticities, the correlator is locally constant

and varies discontinuously only when eiηN or eiηS crosses an integer value for some i. In

particular VηN is trivial within the range of ηN such that κi,N(eiηN) = 0 for all i. Another

aim of this section is to check the relation (4.18) between vortex defects and local operators

made of Σ inside SUSY correlators. For (twisted chiral) vortex defects in GLSMs in flat

space, we expect

V r
η =

∏
i

(eiΣ +Mi)
κi(eiη)

=
∏
eiη>0

(eiΣ +Mi)
beiηc

∏
eiη<0

(eiΣ +Mi)
deiηe, (5.3)

for a vortex defect which requires flipped (or normal) boundary conditions on all the chiral

multiplets such that eiη > 0 (or eiη < 0, respectively). Similarly, at the north pole of the

squashed sphere we expect

V r
η =

∏
i

(−i`)−κi(eiη) Γ(−imi + κi(eiη)− i`Σ̂)

Γ(−imi − i`Σ̂)
(5.4)

for the defect characterized by the same boundary condition as above.
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A natural question is whether these relations hold for any other choice of boundary

conditions on matter fields. At this point we notice that by combining the relation (5.3)

in flat space with the shift relation (5.2) one finds

e−tr(µ) · µ
∑
i ei =

∏
i

(eiΣ +Mi)
ei , (5.5)

where we inserted the renormalization scale µ to match the dimension of the two sides.

This is nothing but the twisted chiral ring relation for Σ which follows from the effective

twisted superpotential

W̃eff(Σ) = −tr(µ)Σ−
∑
i

(eiΣ +Mi)

{
ln
eiΣ +Mi

µ
− 1

}
. (5.6)

The ring relation suggests that the first line of the formula (5.3) holds for more general

choices of boundary conditions than those specified above. In the following we will derive,

by a simple manipulation of the integration contour, that the corresponding equation on

the squashed sphere (5.4) holds for somewhat different choice of boundary conditions and

range of η. We will also see below that the ring relation is quantized (in the sense that

tr and Σ should be treated as non-commuting variables) and interpreted as a differential

operator that annihilates the sphere partition function.12

Let us now turn to the formula (5.1) and study the location of poles in the complex

a-plane. The i-th chiral matter contributes a factor Γ(−kN)/Γ(1 + kS), where

kN ≡ ieia+ imi − eis+ eiηN − κi,N(eiηN),

kS ≡ ieia+ imi + eis+ eiηS − κi,S(eiηS). (5.7)

Since kN − kS ∈ Z due to flux quantization, this factor diverges when kN, kS are both

non-negative integers. So the poles arising from the i-th matter are labelled by some

kN, kS ∈ Z≥0.

a = − i

2ei

(
κi,N(eiηN)− eiηN + κi,S(eiηS)− eiηS − 2imi + kN + kS

)
. (5.8)

If the i-th matter satisfies the normal boundary condition at both poles, then with the

additional assumption qi > 0 one can show all these poles are in the lower half plane if

ei > 0, or all in the upper half-plane if ei < 0. If we choose the flipped boundary condition

at either pole, we need to put more stringent condition on qi to ensure all the poles lie on

one side of the real axis.

Below we study the η-dependence of the defect correlators in three well-known exam-

ples. The vortex defects become increasingly more non-trivial in later examples.

12It has been known for some while that the sphere partition function and the related partition functions

are annihilated by differential operators. See [37] for a reference that studied such differential operators

in ways similar to ours. The reduction of differential operators to ring relations in the classical limit (i.e.,

`→∞) was originally studied by Givental. See, for example, [38].

– 37 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
3

Figure 2. The insertion of vortex defects shifts the poles of the integrand in the negative imaginary

direction by δ. The triviality of defect correlators in this theory can be shown by shifting the contour

of a-integration below the real axis by δ. The shifts of contour in the other direction are also shown.

Example 1. Let us consider the U(1) gauge theory with N chiral multiplets of charge

+1, which is the GLSM for CPN−1. We insert the defects VηN and VηS on the two poles, and

put the normal boundary condition on all the chiral multiplets. Their correlation function

is given by

〈V r
ηN
V r
ηS
〉 = (−i`)−NdηNe(i`)−NdηSe (5.9)

·
∑

s∈ 1
2

(ηN−ηS+Z)

∫
da

2π
zia−s+ηN
r z̄ia+s+ηS

r

N∏
i=1

Γ(dηNe − ηN + s− ia− imi)

Γ(−dηSe+ ηS + s+ 1 + ia+ imi)
.

As shown in the figure 2, the poles of the integrand are shifted in the negative imaginary

direction by δ = 1
2(dηNe − ηN + dηSe − ηS) because of the defects.

The integrand can be simplified by replacing the variables a, s by

a′ ≡ a+
i

2
(dηNe − ηN + dηSe − ηS), s′ ≡ s+

1

2
(dηNe − ηN − dηSe+ ηS). (5.10)

At the same time, we shift the contour of the original a-integration below the real axis by

δ so that the integration contour for a′ is along the real axis. The contour does not cross

any of the poles during the shift provided Im(mi) = qi > 0. The defect correlator then

becomes

〈V r
ηN
V r
ηS
〉 = (−i`)−NdηNee−trdηNe · (i`)−NdηSee−t̄rdηSe〈1〉. (5.11)

So the vortex defects are proportional to identity operators for any ηN, ηS. Actually this

could have been expected from (5.3) and (5.5).

Let us explore other ways of shifting the integration contour. For simplicity we turn

off the vorticity at the south pole, so that the poles of the integrand are at

a = −mj −
i

2
(dηNe − ηN + kN + kS), j ∈ {1, · · · , N}, kN, kS ∈ Z≥0. (5.12)
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Rewriting (5.9) in terms of s′ ≡ s− 1
2ηN and a′ = a− i

2ηN we find

〈V r
ηN
〉 = (−i`)−NdηNe

∑
s′∈ 1

2
Z

∫
da′

2π
e−itr(a′+is′)−it̄r(a′−is′)

N∏
i=1

Γ(dηNe+ s′ − ia′ − imi)

Γ(s′ + 1 + ia′ + imi)
. (5.13)

In order that the contour of a′-integration be along the real line, the contour of the original

a-integration has to be shifted to R + i
2ηN. This does not pass any of the poles (5.12) as

long as

2qj + dηNe > 0. (5.14)

If we assume qj > 0, we need to restrict to ηN > −1. For η ∈ (−1, 0] this is the same

shift of contour as the previous one, but for positive η the shift is in the opposite direction.

Some examples of the shifted contours are shown in the figure 2. A comparison of (5.13)

with the partition function leads to the relation

V r
ηN

= (−i`)−NdηNe
N∏
i=1

Γ(dηNe − i`Σ− imi)

Γ(−i`Σ− imi)
. (5.15)

This is the same as the relation (5.4), but ηN > −1 includes outside of the range where it

was originally proposed. Writing more explicitly, we have

ηN ∈ (−1, 0] V r
ηN

= 1,

ηN ∈ (0, 1] (−i`)NV r
ηN

=

N∏
j=1

(−i`Σ− imj),

ηN ∈ (1, 2] (−i`)2NV r
ηN

=

N∏
j=1

(−i`Σ− imj)(−i`Σ− imj + 1), · · · (5.16)

By comparing the second line with (5.11) one finds a relation corresponding to (5.5)

in flat space,
N∏
j=1

(−i`Σ− imj) = e−tr . (5.17)

The comparison of the third of (5.16) with (5.11) gives another relation,

N∏
j=1

(−i`Σ− imj)(1− i`Σ− imj) = e−2tr . (5.18)

This is not the simple square of the previous relation, but reduce to it in the limit `→∞
with mj/` fixed. The failure of the simple ring relation on the squashed sphere can be

interpreted as an effect of Omega deformation: namely the SUSY near the north pole

of the sphere is that of the topological A-twisted theory in an Omega background with

ε = 1/`.
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The above failure can be fixed by regarding Σ as a differential operator,

− i`Σ =
∂

∂tr
= −zr

∂

∂zr
, (zr ≡ e−tr) (5.19)

and regarding the relation (5.17) as the differential equation satisfied by the sphere partition

function (here we omit the suffix r),{ N∏
j=1

(−z∂z − imj)− z
}
ZS2 = 0. (5.20)

The differential operator corresponding to the third line of (5.16) then acts consistently,{ N∏
j=1

(1− z∂z − imj)(−z∂z − imj)

}
ZS2 =

N∏
j=1

(1− z∂z − imj) · zZS2

= z ·
N∏
j=1

(−z∂z − imj)ZS2 = z2ZS2 , (5.21)

where we used (5.20) repeatedly. The translation of the operator relation into a differential

equation might look somewhat ad hoc. However, the above differential equation is actually

satisfied by the holomorphic blocks that appear in the Higgs branch localization formula for

the sphere partition function. It is known that ZS2 for this model factorizes into a sum of

product of a holomorphic and an anti-holomorphic blocks if the a-integral is rewritten as a

sum over pole residues. The holomorphic blocks are given by the following N independent

solutions to (5.20).

Fi(z) =
∑
n≥0

(−1)Nnzn+ρ∏N
j=1 Γ(n+ ρ+ 1 + imj)

∣∣∣∣
ρ=−imi

. (i = 1, · · · , N) (5.22)

These agree precisely with the vortex partition functions at N distinct Higgs branch vacua.

Example 2. Let us next couple N chirals with charge +1 (electrons) and Ñ chirals with

charge −1 (positrons). For positive FI parameter r, the theory is the GLSM for the total

space of the vector bundle O(−1)⊕Ñ over CPN−1. The N electrons have the mass and

R-charge mi = `Mi + iqi, while the Ñ positrons have m̃i = `M̃i + iq̃i. The R-charges qi, q̃i
are assumed all positive. We put a vortex defect on the north pole and require the normal

boundary condition on all the chiral multiplets.

The defect expectation value is given by

〈V r
ηN
〉 = (−i`)−NdηNe−Ñd−ηNe

∑
s∈ 1

2
(ηN+Z)

∫
da

2π
zia−s+ηN
r z̄ia+s

r

×
N∏
i=1

Γ(dηNe − ηN + s− ia− imi)

Γ(s+ 1 + ia+ imi)

Ñ∏
i=1

Γ(d−ηNe+ ηN − s+ ia− im̃i)

Γ(−s+ 1− ia+ im̃i)
. (5.23)

This time the integrand has sequences of poles both in the lower and upper half planes.

For non-integer vorticity, the effect of ηN is to move the poles in the lower half-plane
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Figure 3. The insertion of vortex defects moves down the poles in the lower half-plane by δ =
1
2 (dηNe − ηN), and moves up the poles in the upper half-plane by 1

2 − δ. We shift the integration

contour by i
2ηN, the direction depending on the sign of ηN.

downwards by δ = 1
2(dηNe − ηN) and those in the upper half-plane upwards by 1

2 − δ, as

shown in figure 3.

The vortex defect is a non-trivial operator in this case for any non-zero ηN, as one

cannot eliminate the ηN-dependence of the integrand by any change of variables (s, a). We

study this by rewriting (5.23) in terms of s′ = s − 1
2ηN, a′ = a − i

2ηN and shifting the

a-integration contour by i
2ηN. Note that the allowed shift of contour is bounded from both

sides since there are poles in both the lower and the upper half-planes.

The contour does not pass any poles as long as

2qj + dηNe > 0, 2q̃j + d−ηNe > 0. (5.24)

The allowed values of ηN is thus restricted to −1 < ηN < 1. For ηN = 0 the defect is trivial,

and for other values of ηN one finds the relations

ηN ∈ (−1, 0) (−i`)ÑV r
ηN

=

Ñ∏
j=1

(i`Σ− im̃j),

ηN ∈ (0, 1) (−i`)NV r
ηN

=
N∏
j=1

(−i`Σ− imj). (5.25)

Again these agree with (5.4), but the agreement is for the choice of ηN and boundary

conditions which were not covered by the original proposal. Finally, combining this with

the shift relation (5.2) one recovers (5.5)

N∏
j=1

(−i`Σ− imj) = e−tr
Ñ∏
j=1

(i`Σ− im̃j). (5.26)
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Example 3. Let us next consider the GLSM which flows to a conformally invariant NLSM

on quintic Calabi-Yau, that is the U(1) gauge theory with 5 chiral multiplets {Xi}5i=1 with

charges e = 1, RV = 2q and a chiral multiplet P with e = −5,RV = 2−10q. The theory has

a superpotential W = PG(Xi) with G a generic quintic polynomial of Xi, and therefore

has no continuous flavor symmetry. The free parameter q corresponds to the shift of R-

charge by the electric charge, so physical observables are supposed to be independent of q

as long as the R-charges of all chiral multiplets are positive. As in the previous case, we

introduce a vortex defect VηN only at the north pole and derive the relation between VηN

and polynomials of Σ.

The specific form of the superpotential is chosen so that one has P = G(X) = 0 at low

energy in the geometric phase (r > 0). In order that we have this lifting in the presence of

the defect, it is most natural to flip the boundary condition of P , though the other choices

of boundary conditions are also allowed.

The poles of the integrand which are closest to the real axis are at

a = − i
2

(dηNe − ηN + 2q) ∈ LHP, a =
i

10
(b−5ηNc+ 5ηN + 2− 10q) ∈ UHP. (5.27)

We are going to shift the contour of a-integration later by iηN/2. The contour does not

cross any poles as long as

dηNe+ 2q > 0, b−5ηNc+ 2− 10q > 0. (5.28)

For a small positive q, one can vary ηN within −1 < ηN < 1/5.

The expectation value of the defect can then be written as

〈V r
ηN
〉 = (−i`)−5dηNe−b−5ηNc

∑
s∈ 1

2
Z

∫
R

da

2π
e−itr(a+is)−it̄r(a−is)

×
[

Γ(dηNe+ s+ q − ia)

Γ(s+ 1− q + ia)

]5 Γ(b−5ηNc − 5s+ 1− 5q + 5ia)

Γ(−5s+ 5q − 5ia)
. (5.29)

From this one can identify VηN with the local polynomial of Σ,

V r
ηN

= (−i`)d5ηNe−5dηNe
[

Γ(dηNe −Θ)

Γ(−Θ)

]5 Γ(b−5ηNc+ 1 + 5Θ)

Γ(1 + 5Θ)
, Θ ≡ i`Σ− q. (5.30)

More explicitly, one finds

5ηN ∈ ( 0, 1] (−i`)4V r
ηN

= −Θ4/5,

5ηN ∈ (−1, 0] V r
ηN

= 1,

5ηN ∈ (−2,−1] (−i`)V r
ηN

= 1 + 5Θ,

5ηN ∈ (−3,−2] (−i`)2V r
ηN

= (1 + 5Θ)(2 + 5Θ),

5ηN ∈ (−4,−3] (−i`)3V r
ηN

= (1 + 5Θ)(2 + 5Θ)(3 + 5Θ),

5ηN ∈ (−5,−4] (−i`)4V r
ηN

= (1 + 5Θ)(2 + 5Θ)(3 + 5Θ)(4 + 5Θ). (5.31)
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Combining this with the shift relation (5.2) one obtains a formal relation

Θ4 = −55e−t
(

Θ +
4

5

)(
Θ +

3

5

)(
Θ +

2

5

)(
Θ +

1

5

)
(5.32)

that holds inside the sum and the integral.

Although the FI-theta parameter t is not renormalized in the sense of (3.25), there

is a finite renormalization so that the singularity in the Kähler moduli space at which a

non-compact Coulomb branch emerges is shifted from the origin to [39, 40]

t = −
∑

Φ=X1,··· ,5,P

eΦ log(eΦ) = 5 ln 5 + iπ mod 2πi . (5.33)

This can be understood from the effective twisted superpotential (5.6). Taking this into

account we define the worldsheet instanton expansion parameter z ≡ −55e−t so that the

singularity is at z = 1, and translate Θ into a differential operator accordingly.

Θ = −∂t − q = zq(z∂z)z
−q. (5.34)

One then finds that the relation (5.32) turns into a fourth-order differential equation sat-

isfied by the sphere partition function,{
(z∂z)

4 − z
(
z∂z +

4

5

)(
z∂z +

3

5

)(
z∂z +

2

5

)(
z∂z +

1

5

)}
z−qZS2 = 0. (5.35)

This is the familiar Picard-Fuchs differential equation for period integrals of the mirror

quintic. We summarize some basic facts about the mirror symmetry of quintic Calabi-Yau

in appendix B.

6 Mirror symmetry for vortex defects

6.1 Hori-Vafa mirror symmetry

It is known that the Abelian N = (2, 2) GLSMs discussed in the previous section are dual

to LG theories of twisted chiral multiplets. This duality is called mirror symmetry [20].

Here we identify the local operators in the LG model which are the mirror dual of the

vortex defects.

Let us begin by recalling mirror symmetry in the simplest setting. Take a U(1) SQED

with a single chiral multiplet of charge 1. Its mirror is a LG model of two twisted chiral

multiplets Σ and Y , with the twisted superpotential

W̃ = Σ(Y − tr(µ)) + µe−Y . (6.1)

As in previous sections, tr(µ) here is the renormalized FI coupling at scale µ, and the

multiplet of Σ is made of the vector multiplet fields of the original SQED. The imaginary

part of Y is of period 2π, and it is T-dual to the phase of the charged scalar in the original

theory.
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The action of mirror symmetry on vortex defects was studied in [32] for the system of

a chiral multiplet coupled to a background U(1) vector multiplet on flat plane. There it

was shown that the mirror operator is an exponential of the twisted chiral field Y . Let us

reproduce this result using a different argument. Consider a defect with vorticity density

%(x). SUSY requires that the background gauge field and the auxiliary field are given as

F12 = 2π%, D = 2πi%. (6.2)

See (2.29) and (2.18). When % = η · δ2(x), the defect defines a local operator (or the end

point of a topological line) and is twisted chiral. The twisted F-term (2.14) in the mirror

LG theory has a %-dependent contribution

L ∼ iRe(Y − tr)D − iIm(Y − tr)F12 = 2π%(tr − Y ), (6.3)

which can be regarded as an insertion of exp[
∫
d2x%(x)(Y − tr)], which becomes eη(Y−tr) in

the local limit. Note that the vorticity turned into the momentum of Y . For generic η the

mirror operator does not meet the quantization law of momentum, which implies that the

phase of the original chiral multiplet scalar has a non-integer winding number around the

defect. As explained in a paragraph in page 24, vortex defects without dynamical vector

multiplets can be used to describe twist fields in orbifold theories because of this property.

In the above and in [32] the defect was defined with smearing regularization. As a

result the corresponding mirror operator depends analytically on η. For vortex defects

defined by boundary conditions and without smearing, this gets modified and the mirror

operator depends discontinuously on η.

Correlators on the squashed sphere. We would like to find the mirror of vortex

defects via comparison of exact correlators on the squashed sphere. For this purpose, we

need to recall first the localization formula for the general N = (2, 2) LG models of twisted

chiral multiplets on the squashed sphere [21].

The saddle point condition for a general twisted chiral multiplet reads

DmY = DmȲ = 0 , G = 0 except at NP, Ḡ = 0 except at SP. (6.4)

The saddle point configuration for the vector multiplet (3.27) corresponds to

Σ =
1

`
(a+ is), Σ̄ =

1

`
(a− is), GΣ = 4πiηNδ

2
(NP), ḠΣ = 4πiηSδ

2
(SP), (6.5)

which satisfies the above condition. For partition functions of general LG models, one only

takes account of the saddle points with G = Ḡ = 0 everywhere. Moreover, the one-loop

determinant is independent of the choice of saddle points, so the path integral reduces to

an ordinary integral over constant modes of the twisted chiral fields

Z ∼
∫

[dY dȲ ]ei`W̃ (Y )+i`W̃ (Ȳ ). (6.6)

The localization works in the same way if there are insertions of a twisted chiral operator

O(Y ) at the north pole and/or an anti twisted chiral operator Ō(Ȳ ) at the south pole.
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Their correlators are given by the same formula (6.6) with additional factors O(Y )Ō(Ȳ )

in the integrand.

As was shown in [21], the sphere partition functions for general Abelian GLSMs can

be brought into the above form (6.6). As the simplest example, let us take the U(1) SQED

with a single charged chiral multiplet.

ZSQED =
∑
s∈ 1

2
Z

∫
R

da

2π
e−itr(a+is)−it̄r(a−is) Γ(s+ q − ia)

Γ(s+ 1− q + ia)
. (6.7)

Using the formula

Γ(q + s− ia)

Γ(1− q + s+ ia)
=

1

π

∫
R
dReY

∫ π

−π
dImY e−q(Y+Ȳ )+i(a+is)Y+i(a−is)Ȳ+e−Ȳ −e−Y , (6.8)

which holds for any q, a ∈ R and s ∈ 1
2Z, the partition function can be rewritten as

ZSQED =
∑
s∈ 1

2
Z

∫
R

da

2π

∫
d2Y

π
e−q(Y+Ȳ )ei`W̃ (Σ,Y )+i`W̃ (Σ̄,Ȳ ). (6.9)

Here 1
` (a+ is) ≡ Σ and the twisted superpotential is given by

W̃ = Σ(Y − tr) +
i

`
e−Y , W̃ = Σ̄(Ȳ − t̄r)−

i

`
e−Ȳ , (6.10)

which agrees with (6.1).

Note that for complex q, the factor e−iIm(q)(Y+Ȳ ) can be absorbed into W̃ and W̃ by

regarding Im(q) as the twisted mass for the chiral multiplet in the original system. On the

other hand one can show that the factor e−Re(q)(Y+Ȳ ) plays the role of a measure factor in

related models [20].

Let us next introduce the vortex defects VηN , VηS in the same SQED and identify

the local operators ṼηN , ṼηS in the mirror LG model they correspond to. The auxiliary

super partners of Σ and Σ̄ take non-zero values localized at the poles (6.5), leading to

a modification of the formula (6.6). We determine the mirror operators by the following

ansatz:

〈VηNVηS〉 =
∑

s∈ 1
2

(ηN−ηS+Z)

∫
da

2π

∫
d2Y

π
e−q(Y+Ȳ )ei`W̃+i`W̃ eηN(Y−tr)+ηS(Ȳ−t̄r)ṼηN(Y )ṼηS(Ȳ ).

(6.11)

Note that the factors eηN(Y−tr), eηS(Ȳ−t̄r) in the integrand arose from the first term in (2.14),

and they correspond to the effect of vortex defects explained in (6.3). By rewriting the

defect correlator using (6.8) one finds

〈VηNVηS〉 =
∑

s∈ 1
2

(ηN−ηS+Z)

∫
R

da

2π
e−itr(a+is)−ηNtr−it̄r(a−is)−ηS t̄r

Γ(κN(ηN)− ηN + s+ q − ia)

Γ(−κS(ηS) + ηS + s+1−q+ia)

=
∑

s∈ 1
2

(ηN−ηS+Z)

∫
R

da

2π

∫
d2Y

π
e−q(Y+Ȳ )ei`W̃+i`W̃+(ηN−dηNe)Y+(ηS−dηSe)Ȳ−ηNtr−ηS t̄r . (6.12)
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From this one can identify

ṼηN(Y ) = e−κN(ηN)Y , ṼηS(Ȳ ) = e−κS(ηS)Ȳ . (6.13)

One can generalize the above result to U(1) SQEDs with several charged chiral multi-

plets. As in (5.1), let (ei, qi,Mi) be the electric charge, R-charge and the mass of the i-th

chiral multiplet. Then the twisted superpotential for the mirror LG theory on the squashed

sphere is given by

W̃ =
∑
i

{(
eiΣ +Mi

)
Yi +

i

`
e−Yi

}
− trΣ,

W̃ =
∑
i

{(
eiΣ̄ +Mi

)
Ȳi −

i

`
e−Ȳi

}
− t̄rΣ̄. (6.14)

The defect correlator (5.1) can be rewritten as

〈VηNVηS〉 =
∑

s∈ 1
2

(ηN−ηS+Z)

∫
da

2π

∏
i

d2Yi
π

e−
∑
i qi(Yi+Ȳi)ei`W̃+i`W̃

×eηN(
∑
i eiYi−tr)+ηS(

∑
i eiȲi−t̄r)ṼηN ṼηS , (6.15)

where

ṼηN =
∏
i

e−κi,N(eiηN)Yi , ṼηS =
∏
i

e−κi,S(eiηS) Ȳi . (6.16)

The functions κi,N and κi,S are determined according to the boundary condition on the i-th

chiral multiplet at the north and south poles. Note that, when defining the mirror of the

vortex defects, we separated the part which arise from the classical delta-functional values

of D,F12 (that is, eηN(
∑
i eiYi−tr) or eηS(

∑
i eiȲi−t̄r) in the above) from the rest (ṼηN and

ṼηS). The contributions from the smeared defect [32] are in the first part, whose logarithm

∝ ∂ΣW̃ is trivial in the twisted chiral ring. For flavor vortex defects, the operators in the

mirror are given by the product of these two pieces. However, for the gauge vortex defects

one can drop, if desired, the first part because the twisted superpotential is linear in Σ and

therefore the first piece can be formally absorbed into the redefinition of a and s. Thus

the mirror of the gauge vortex operators are given by (6.16).

One can check that the mirror vortex operators satisfy the shift relation,

ṼηN+n = (e−
∑
i eiYi)n ṼηN = e−ntr ṼηN , (6.17)

where the twisted F-term condition is used at the second equality. Note that this holds

irrespective of the choice of boundary conditions. Similar equality holds also for ṼηS . It is

interesting to note that, though the twisted chiral ring relation in the GLSM side (5.18)

had subtlety when taking products, here the ring relation can be multiplied simply. This

is not a contradiction: here the twisted chiral ring is described by the fields Σ and Yi,

whereas the one for the GLSM can be obtained from it by integrating out Yi.
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6.2 N = 2 minimal model and its orbifold

As a simple application of the above results, let us consider N = 2 minimal model of level

k ∈ Z+, which is the theory of a single chiral multiplet Φ of R-charge 2q = 2/h (h ≡ k+ 2)

with superpotential

W = g0 · Φh, (6.18)

where g0 is a coupling constant. This theory is known to give a CFT with the central

charge c = 3(h−2)/h. Also, it has a discrete flavor symmetry which phase-rotates Φ while

keeping the superpotential invariant.

The minimal model of level k is known to be mirror to its Zh orbifold [41]. So let us

take the orbifold of the above theory of Φ. We are interested in the p-th twisted sector,

where Φ is quasi-periodic: Φ(ϕ + 2π) = e2πip/hΦ(ϕ). Alternatively, one can work in the

frame where Φ is periodic but there is a non-zero background gauge field, Aϕ = −p/h
mod Z with p = 1, 2, · · · , h − 1. We thus consider a pair of vortex defects VηN , VηS with

ηN = ηS = −p/h. We require the chiral multiplet Φ to satisfy the normal boundary

condition at both defects, so that the operators have positive dimensions

[VηN ] = [VηS ] =
p

h
> 0 (6.19)

as read off from (3.45). Their renormalized correlation function on the squashed sphere of

size ` reads

〈
V r
ηN
V r
ηS

〉
= `−

2p
h

1

h

Γ
(

1+p
h

)
Γ
(

1− 1+p
h

) = `−
2p
h

Γ
(

1+p
h

)2

hπ
sin

(1 + p)π

h
. (6.20)

The factor 1/h arises because the correlator is given by the average of h twisted sector

contributions. Using the formula (6.8) one can also rewrite13

1

h

Γ
(

1+p
h

)
Γ
(

1− 1+p
h

) =
1

πh2

∫
R
dReY

∫ πh

−πh
dImY e−

1+p
h

(Y+Ȳ )+eȲ −e−Y

=
1

π

∫
d2Z ZpZ̄peZ̄

h−Zh . (6.21)

This shows that the vortex defect correlators in the orbifold theory reproduce the correlator

of basic monomial operators in the mirror minimal model rather precisely.

A defect with η = −p/h and the normal boundary condition imposed on Φ, as con-

sidered above, can be given a regularization of the short distance singularity by smearing.

To demonstrate this, let us work in flat space. We enlarge the discrete symmetry Zh to

continuous U(1) and promote the coupling constant g0 to the bottom component g of a

non-dynamical chiral multiplet. With respect to the U(1), Φ has charge +1 and g has

charge −h. This is the symmetry used in the previous paragraph to remove the quasiperi-

odicity of Φ. Therefore, in the new gauge where Φ is periodic, the coupling becomes

13Essentially the same expressions were obtained in equation (5.27) of [42] for the tt∗ correlation functions.
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position-dependent: g = g0 · e+ipϕ. We replace Aϕ = −p/h by the usual smeared defect

configuration (4.1). We also need to modify g to a smooth background field. It has to ap-

proach g0 · e+ipϕ away from the defect. To preserve SUSY, it also needs to be annihilated

by Dz̄ = eiϕ

2 (∂r + i
r (∂ϕ + ihAϕ)). The function g0 · e+ipϕ is indeed annihilated by Dz̄ for

r � ε. It then follows that for r � ε, g ∼ rpe+ipϕ = zp. This is regular because p > 0. We

also know from section 4.1 that the bulk modes for Φ obey the normal boundary condition

because η < 0, and that there are no localized modes because −1 < η. Thus we have

succeeded in regularizing the defect with the normal boundary condition.

What about the flipped boundary condition? A defect defined by the flipped boundary

condition would, according to the flipped version of (3.45), have a negative dimension and

should be unphysical. We can also see that such a defect cannot be regularized by smearing

as follows. To obtain a flipped boundary condition without localized modes, we need that

0 < η < 1. Thus we take η = 1− p/h. In the gauge where Aϕ = η = 1− p/h, the coupling

constant depends on ϕ as g = g0e
i(p−h)ϕ for r � ε. Solving Dz̄g = 0, we find that g ∼ zp−h

for r � ε. This is singular, so smearing fails to provide a UV regularization of the defect.

7 Vortex defects at conical singularities

Here we study the vortex defect Vη inserted at a ZK-orbifold fixed point or, more generally,

at a conical singularity. We first notice that, for suitable choice of η and K, the vortex

defects at conical singularities are related to orbifold twisted sectors. The correlator of

such defects can be evaluated from partition functions by a simple orbifold projection, and

one does not need a careful examination of boundary conditions of matter wave functions.

In [29] a formula for defect correlators was proposed based on this approach. However,

there is a subtlety in extrapolating the result in η and K: contrarily to the assumption

made in [29], a detailed analysis of matter wave functions shows that the defect correlators

depend non-trivially on η as well as (generically non-integer) K.

7.1 Orbifold projection

Let us begin by considering the ZK orbifold identification of a charged scalar φ on the

complex plane,

φ(ze
2πi
K ) = e−

2πip
K φ(z). (p,K ∈ Z). (7.1)

The field φ is in the p-th twisted sector of the ZK orbifold. This can be understood as

the effect of a U(1) vortex defect with η = p/K inserted at the orbifold fixed point. By

taking a similar ZK orbifold of the squashed sphere, one can introduce vortex defects of

opposite vorticity at the north and the south poles of the (topological) sphere with conical

singularities. The SUSY on the squashed sphere can be preserved by combining this ZK
rotation with a suitable vector R- and local Lorentz rotations, so that the Killing spinors

are invariant. To find out the condition for SUSY-preserving orbifold, we move to a frame

in which the spin connection has no Dirac string singularity at the north pole,

ds2 = f(θ)2dθ2 + `2 sin2 θdϕ2, ω12 =

(
1− `

f
cos θ

)
dϕ. (7.2)
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The Killing spinors in this frame take the form

ξ =

(
ξ+

ξ−

)
=

(
ie−iϕ sin θ

2

cos θ2

)
, ξ̄ =

(
ξ̄+

ξ̄−

)
=

(
cos θ2

ieiϕ sin θ
2

)
. (7.3)

Their components transform under the ZK rotation as follows,

ξ+

(
θ, ϕ+

2π

K

)
= ξ+(θ, ϕ)e−

2πi
K , ξ̄+

(
θ, ϕ+

2π

K

)
= ξ̄+(θ, ϕ),

ξ−
(
θ, ϕ+

2π

K

)
= ξ−(θ, ϕ), ξ̄−

(
θ, ϕ+

2π

K

)
= ξ̄−(θ, ϕ)e

2πi
K . (7.4)

The ZK orbifold action is required to preserve their form. If we define the spin J3 in such

a way that the spinor components with γ3 = ±1 have J3 = ±1/2, the orbifold projection

requires the field X of spin J3, R-charge RV and electric charge e to satisfy

X

(
θ, ϕ+

2π

K

)
= exp

2πi

K

{
(K − 1)

(
J3 +

1

2
RV

)
− pe

}
X(θ, ϕ). (7.5)

Having this ZK identification twisted by the symmetries J3,RV and e is equivalent to

turning on the corresponding gauge fields as follows,

ω12 = (K − 1)dϕ, V = −1

2
(K − 1)dϕ, A ' pdϕ (7.6)

and requiring the simple ZK orbifold invariance. The latter definition of ZK orbifold can

be easily analytically continued to general real positive K.

Let us now use the standard orbifold technique to compute the correlator of the vortex

defects with ηN = ηS = p/K inserted at the two ZK fixed points. For the evaluation of

Z1-loop, we only need to compute the determinants of Q2 on the sphere without defects but

restricted to the ZK-invariant subspace of kerJ+ and kerJ−. The determinant det(Q2)

restricted to kerJ+ ⊂ H is given by

det(Q2)|kerJ+ =
∏

mN≥0, mN=q(K−1)−p mod K

i

`
(mN + q − ia+ s), (s ≥ 0)

det(Q2)|kerJ+ =
∏

mS≥0, mS=q(K−1)−p mod K

i

`
(mS + q − ia− s), (s ≤ 0) (7.7)

whereas det(Q2) restricted to kerJ− ⊂ H′ is

det(Q2)|kerJ− =
∏

mS≤0, mS=(q−1)(K−1)−p mod K

i

`
(mS + q − 1− ia− s), (s ≥ 0)

det(Q2)|kerJ− =
∏

mN≤0, mN=(q−1)(K−1)−p mod K

i

`
(mN + q − 1− ia+ s). (s ≤ 0) (7.8)

We rewrite these formulae using the rescaled variables ã = a/K, s̃ = s/K and η = p/K.

Note that s here is the magnetic flux on the sphere before orbifold, so it is s̃ which obeys

– 49 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
3

the usual flux quantization law. One then obtains

det(Q2)|ker(J+) =
∏

n≥dη−q(1− 1
K

)e

iK

`
(n+ q − η − iã+ |s̃|),

det(Q2)|ker(J−) =
∏

n≥−bη−(q−1)(1− 1
K

)c

−iK
`

(n+ 1− q + η + iã+ |s̃|). (7.9)

Using the simple fact that bx+ 1− 1
K c = dxe for x ∈ 1

KZ, one can write the final formula

for Z1-loop in two different ways.

Z1-loop =
Γ
(⌈
η − q

(
1− 1

K

) ⌉
+ q − η − iã+ s̃

)
Γ
(
−
⌈
η − q

(
1− 1

K

) ⌉
+ 1− q + η + iã+ s̃

)
=

Γ
(⌊
η − (q − 1)

(
1− 1

K

) ⌋
+ q − η − iã+ s̃

)
Γ
(
−
⌊
η − (q − 1)

(
1− 1

K

) ⌋
+ 1− q + η + iã+ s̃

) . (7.10)

7.2 Normal and flipped boundary conditions for conical singularities

The two expressions in (7.10) can be naturally generalized in two different ways for non-

integer K > 0. Consider a squashed sphere with conical singularities parametrized by

K > 0 at the north and south poles, and also introduce vorticities ηN, ηS on these poles.

The matter one-loop determinant on this background is

Z1-loop =
Γ(κN(ηN) + q − ηN − ia+ s)

Γ(−κS(ηS) + 1− q + ηS + ia+ s)
, (7.11)

where κN (κS) depends on ηN (ηS) as well as q,K as follows.

κN(ηN) ≡
⌈
ηN − q

(
1− 1

K

) ⌉
(normal b.c. at NP)

κN(ηN) ≡
⌊
ηN − (q − 1)

(
1− 1

K

) ⌋
(flipped b.c. at NP) (7.12)

The above formula can be derived for general K > 0 by studying the normalizable zero-

modes of J± as in section 3 on the squashed sphere with conical singularities14

ds2 = f2(θ)dθ2 + `2 sin2 θdϕ2, f(0) = f(π) = K`, ϕ ∼ ϕ+ 2π. (7.13)

The zeromodes X ∈ kerJ+ behave near the north and south poles as

(north) X ∼ eimNϕ · (sin θ)K(mN−ηN)+q(K−1),

(south) X ∼ eimSϕ · (sin θ)K(mS−ηS)+q(K−1). (7.14)

Therefore, depending on the choice of boundary conditions mN,S have to satisfy

(normal) mN,S ≥
⌈
ηN,S − q

(
1− 1

K

) ⌉
,

(flipped) mN,S ≥
⌊
ηN,S − (q − 1)

(
1− 1

K

) ⌋
. (7.15)

14Compared with (7.2), we redefined quantities as ϕnew = Kϕold, sin θnew = K−1 sin θold, fnewdθnew =

folddθold.
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The other zeromodes Ξ ∈ ker J− can be studied in the same way, which leads to the

formula (7.11). Note the non-trivial K-dependence of the defect correlator, which is some-

what contrary to the known squashing independence of the partition function [21]. The

K-dependence remains even after sending η → 0 in the above formula.

7.3 Resolution of the conical singularities and the localized modes

Let us introduce a small parameter ε > 0 and consider resolving the conical singularities

in (7.13) as

ds2 = f2
ε (θ)dθ2 + `2 sin2 θdϕ2, (7.16)

where the function fε(θ) (0 ≤ θ ≤ π) behaves as

fε(θ) ∼

{
` for sin θ � ε,

K` for ε� sin θ � 1.
(7.17)

At the same time, we smooth the gauge field singularity as in (3.53) and (3.64), with f

replaced by fε. The resolution of the metric singularity was studied in [43] in the case K−1

is an integer.

The one-loop determinant in the resolved background is given by (3.60), i.e.,

Z1-loop =
Γ(q − ηN − ia+ s)

Γ(1− q + ηS + ia+ s)
, (7.18)

because the background we are considering is a special case of the set-up in section 3.3. This

observation is consistent with the results of [43]. In particular, the one-loop determinant

as well as and the whole partition function are independent of the parameter K > 0.

We expect that the difference between (7.18) and (7.11) is accounted for, as in sec-

tion 3.3, by the localized modes and the missing frozen bulk modes. Here we focus on the

localized modes.

A mode Ψ = Ψ̂eimNϕ (mN ∈ Z)) annihilated by J+ behaves near the north pole as

Ψ̂ ∼

{
θmN for θ � ε,

θK(mN−η)+(K−1)q for ε� θ � 1.
(7.19)

Regularity requires that mN ≥ 0, and the mode is localized near the north pole when

K(mN − η) + (K − 1)q < −1. When ηN − (q − 1)(1 −K−1) > 0, the number of values of

such mN is bηN− (q− 1)(1−K−1)c, which coincides with κN(ηN) for the flipped boundary

condition. From the experience in section 4.1, we expect that the non-localized bulk modes

obey the flipped boundary condition at the north pole.

Similarly, a mode Ψ = Ψ̂eimSϕ annihilated by J− behaves near the south pole as

Ψ̂ ∼

{
(π − θ)−mS for π − θ � ε,

(π − θ)K(ηS−mS)+(1−K)(q−1) for ε� π − θ � 1.
(7.20)

A regular mode localized near the south pole has mS ≤ 0 and K(ηS−mS)+(1−K)(q−1) <

−1. When ηS − q(1−K−1) < 0, the number of values of such mS is −dηS − q(1−K−1)e,
which coincides with κS(ηS) for the normal boundary condition. We expect that the non-

localized bulk modes obey the normal boundary condition at the south pole.
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8 Vortex defects in non-Abelian theories

Here we briefly discuss vortex defects in non-Abelian theories. The vorticity parameter

η is taken to be in Cartan subalgebra, and is further subject to identification by Weyl

reflections. We would like to study the SUSY path integrals on the squashed sphere in the

presence of defects with vorticity ηN, ηS at the two poles.

General supersymmetric saddle point configurations are given by

σ =
a

`
, D = − a

f`
+ 2πiηNδ

2
(NP) + 2πiηSδ

2
(SP),

ρ = −s
`
, A =

{
s(cos θ − 1)dϕ+ ηNdϕ (north)

s(cos θ + 1)dϕ+ ηSdϕ (south)
, (8.1)

with Cartan subalgebra-valued parameters a, s, ηN, ηS. Weyl-reflecting any of these param-

eters gives rise to a new saddle point, but the simultaneous reflection of all of them is

a gauge transformation. The localized path integral therefore involves summing over s,

integrating over a as well as summing over Weyl images of ηN, ηS. Note also that the flux

quantization requires that 2s+ ηS− ηN have integer inner product with any weight vectors

of the gauge group.

The fluctuation of fields around saddle point configurations gives rise to one-loop de-

terminants. For a chiral multiplet with RV = 2q in representation Λ, the determinant is

given by a product over the weight vectors w,

Zq,Λ =
∏
w∈Λ

Γ(q + w · (s− ηN − ia) + κN(w · ηN))

Γ(1− q + w · (s+ ηS + ia)− κS(w · ηS))
. (8.2)

Here κN, κS are ceiling or floor functions depending on the choice of boundary condition

at the poles.

For non-Abelian theories, vector multiplet also gives rise to a non-trivial determinant.

It can be most easily evaluated by introducing cohomological variables similar to (3.4). We

reorganize the fields (Am, ρ, σ, λ, λ̄,D) into five Grassmann-even and four Grassmann-odd

variables,

X+ ≡ ξ̄γmξ̄Am + ξ̄γ3ξ̄ρ, QX+ = −1

2
ξ̄λ̄,

X0 ≡ ξ̄γmξAm + ξ̄γ3ξρ, QX0 = +
1

2
ξ̄λ− 1

2
ξλ̄,

X− ≡ ξγmξAm + ξγ3ξρ, QX− = +
1

2
ξλ,

Ξ ≡ 1

2
ξ̄λ+

1

2
ξλ̄, QΞ = D +

1

f
σ + iξ̄γ3ξ

(
F12 −

ρ

f

)
,

Σ̂ ≡ ξ̄ξσ + iξ̄γ3ξρ+ iξ̄γmξAm, (QΣ̂ = 0) (8.3)

which are all Lorentz scalars. In addition, for the gauge fixing we need to introduce the

ghosts c, c̄, B and the BRST symmetry. The BRST charge QB acts on all the physical
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fields in the standard way, namely as Gauge(c). For the ghost fields, we define the action

of Q and QB on the saddle point labeled by s, a as

QBc = cc, Qc = 〈Σ̂〉 − Σ̂,

QBc̄ = B, Qc̄ = 0,

QBB = 0, QB = −ξ̄γmξ∂mc̄+ [〈Σ̂〉, c̄], (〈Σ̂〉 ≡ a/`) (8.4)

so that the total supercharge Q̂ ≡ Q + QB squares to

Q̂2 =
1

`

{
∂ϕ +

i

2
RV + Gauge(â)

}
, â ≡

{
a+ is− iηN (north patch)

a− is− iηS (south patch)
(8.5)

on all the fields. This is clearly similar to the property (3.30) of Q for charged matter fields

coupled to background vector multiplet, so the rest of the computation of determinant is

the same as before.

After moving to the cohomological variables, one can regard the vector multiplet as

made of three Grassmann-even scalars X+,−,0, three Grassmann-odd scalars Ξ, c̄, c and

their Q̂-superpartners. The one-loop determinant for vector multiplet is thus equal to that

for an adjoint chiral multiplet with q = 1. For ηN = ηS = 0, the determinant is given by a

product over the roots α ∈ ∆ or positive roots α ∈ ∆+,

Zvec =
∏
α∈∆

Γ(1 + α · (s− ia))

Γ(α · (s+ ia))
= (−1)4ρ·s

∏
α∈∆+

|α · (s+ ia)|2. (8.6)

Here ρ is the Weyl vector.

To evaluate the determinant Zvec on defect backgrounds, one first needs to determine

the boundary condition on the cohomological variables (8.3) near the defects. The fields

X+,−,0 behave near the north pole θ = 0 as (with z ≡ θeiϕ)

X+ ' +
1

`
Az̄ ' iηN

2`z̄
+ (fluctuation),

X− ' −1

`
Az ' iηN

2`z
+ (fluctuation),

X0 ' −1

`
Aϕ − ρ '

s− ηN

`
+ (fluctuation). (8.7)

Recalling the boundary condition for the fields in vector multiplet discussed in section 2.2,

one finds that the fluctuation of X± is allowed to diverge mildly as θγ (γ > −1), whereas

that of X0 has to be finite at the defect. Similarly, the fields Ξ, c, c̄ can be shown to

obey the same boundary condition as for the parameter of gauge transformation, so they

have to be finite at the defect. These are identified with the behavior of an adjoint chiral

multiplet (with q = 1) satisfying the flipped boundary condition. The determinant Zvec is

thus given by

Zvec =
∏
α∈∆

Γ(1 + α·(s− ηN − ia) + bα·ηNc)
Γ(α·(s+ ηS + ia)− bα·ηSc)

= (−1)2ρ·(2s+ηS−ηN) · F (ηN, s− ia)F (ηS, s+ ia) , (8.8)
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where

F (η, s) ≡
∏
α∈∆+

(−1)dα·ηe ·
∏

α∈∆+, α·η∈Z
α·s. (8.9)

The roots satisfying α · ηN ∈ Z forms the root system for the Lie algebra LN which is

preserved by the defect at the north pole. In particular, for ηN = ηS the determinant Zvec

reduces to the one without defects (8.6) for the unbroken gauge symmetry LN = LS. Note

also that F (η, s) is odd under the Weyl group acting simultaneously on both arguments:

F (π(η), π(s)) = (−1)|π|F (η, s).
(
π ∈W

)
(8.10)

As an illustrative example, consider U(N) gauge group, in which case a, s, ηN, ηS are

N ×N diagonal matrices. Let us assume for simplicity that the diagonal elements of ηN,S

all satisfy 0 ≤ ηaN,S < 1. The one-loop determinant for vector multiplet then takes the form

Zvec = (−1)(N−1)Tr(2s+ηS−ηN) · F (ηN, s− ia)F (ηS, s+ ia). (8.11)

The first sign factor can be absorbed by redefining the θ-angle, and the function F is

given by

F (η, s) ≡ (−1)σ(η) ·
∏

a<b, ηa=ηb

(sa − sb).

σ(η) ≡ number of pairs (a, b) such that ηa > ηb. (8.12)

As a special case, if the matrix η is proportional to identity, then F becomes the usual

Vandermonde determinant. Another special case is when η has no degenerate eigenvalues,

for which F equals the parity of the permutation which brings {ηa} to the ascending order.

Vortex defect correlators in some U(N) SQCDs have been studied using this formula in [29].

It would be nice to perform non-trivial checks of these results.

9 Discussion

In this paper we discussed the definition and correlators of vortex defects in two dimensions.

Our analysis focused mostly on Abelian theories, where we found that the vortex defects are

equivalent to local functionals of twisted chiral fields. It is not fully clear whether the vortex

defects in non-Abelian theories lead to new observables or have interesting applications.

In contrast, in 4d or higher, the codimension two vortex defects are essentially new;

for example the introduction of surface operators in 4d Omega background leads to an

interesting generalization of instanton partition functions. The defects in 4d were studied

in [11] by realizing them as coupled (0d-)2d-4d systems. See also [8]. It would be nice to

study them using the approach taken in this paper.

As we mentioned at the end of section 4.1, the vortex defects defined by the normal

and the flipped boundary conditions can be related to smeared defect configurations for

some values of vorticity η. There is, however, a restriction on the combination of the type

of boundary condition and the sign of η for such a relation to hold. For a single chiral

multiplet of charge +1, the flipped boundary condition with η > 0 and the normal boundary
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condition with η < 0 are related to smeared vortex defects in this way. In this paper we

also obtained a couple of results which seem to suggest the importance of whether a given

vortex defect can be smeared or not. An example is the pair of chiral multiplets of opposite

U(1) charge discussed in page 25: the lifting by superpotential is complete only when the

choice of matter boundary condition is such that the defect can be smeared for some η. As

another example, we saw in section 6.2 that only the vortex defects that can be smeared

leads to consistent twist fields in the orbifolded minimal model. The consistent smearing

in this case involves an extra condition that the coupling constant can be promoted to a

smooth configuration of a non-dynamical chiral multiplet.

It would be interesting to see if our results for vortex defects without dynamical vector

multiplets can be used to compute the orbifold Gromov-Witten invariants, which have been

studied only relatively recently [44]. Such a connection can be motivated by the fact that

the mathematical formulas for the invariants proposed in [45] involve the ceiling and the

floor functions (also known as the round-up and the round-down). It would be nice to

develop field theoretical techniques for computing the Gromov-Witten invariants for both

toric and non-toric orbifolds, which may lead to physical understanding of the so-called

crepant resolution conjecture [46].
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A The ε → 0 limit of the bulk modes

Here we study the behavior of the general non-zeromode wave function satisfying (4.7). A

related analysis was done in [15], where the vorticity was restricted to −1/2 < η < 1/2;

here we consider the more general case η ∈ R − Z. Let us begin by rewriting it using

u ≡ r/ε and µ ≡ ελ1/2.[
(u∂u)2 + ηu∂ug − (m− η · g)2 + µ2u2

]
Ψ̂(u) = 0 . (A.1)

For u � 1 the solution can be expressed as in (4.8) using two Bessel functions. The

main aim here is to show that the coefficients α± satisfy the relations (4.9), which we

reproduce here

(4.9) :
α+

α−
∼


ε−2|m−η|+non-positive (m < 0)

ε−2|m−η|+2 (0 ≤ m < η)

ε−2|m−η|−2 (max{0, η} < m)

.

– 55 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
3

Crude analysis. In the limit of small ε with λ kept fixed, µ is very small. This motivates

us to consider dropping the last term in the l.h.s. of (A.1). Let us denote the regular solution

of the resulting equation by h(u) to distinguish it from Ψ̂. Up to overall normalization it

behaves as

h(u) =

{
u|m| for 0 ≤ u� 1 ,

b+u
+|m−η| + b−u

−|m−η| for 1� u .
(A.2)

Since (A.1) becomes independent of µ once the last term is dropped, the coefficients b±
are also independent of it. A comparison of (4.8) and (A.2) gives

α+

α−
∼ µ−2|m−η| · b+

b−
. (A.3)

For generic η and m, we will soon see that b+ is non-zero, and hence, including the case

b− = 0, we have |α+| � |α−|.
Let us find when b+ vanishes. For b+ = 0 one can show that h satisfies a first order

equation (∂x −m+ ηg)h = 0, where x ≡ log u, as follows.

0 = −
∫ ∞
−∞

dxh∗(∂x +m− ηg)(∂x −m+ ηg)h =

∫ ∞
−∞

dx|(∂x −m+ ηg)h|2. (A.4)

In the first equality we used the differential equation for h written in x, and then integrated

by parts using that h or ∂xh decays in either direction x → ±∞. The solution coincides

with (A.2) with b+ = 0 if and only if 0 ≤ m < η.

Function h(u) provides an approximation of Ψ̂(u) for u � µ−1 because the term we

dropped is small. This combined with (A.3) does not, however, imply that |α−| � |α+|
for 0 ≤ m < η because we need to take into account the effect of the term we dropped. If

we write

Ψ̂(u) ' b̃+u+|m−η| + b̃−u
−|m−η| for 1� u� µ−1, (A.5)

then the coefficients b̃±, as we will see, satisfy

b̃+

b̃−
∼


µnon-positive (m < 0)

µ2 (0 ≤ m < η)

µ−2 (max{0, η} < m)

. (A.6)

The relation (4.9) follows immediately once we accept this. The second line of this relation

implies the following. For 0 ≤ m < η, the second term of (A.5) is indeed dominant at

u ∼ 1, but as one increases u generically the first term starts dominating much earlier than

u becomes of order µ−1. The only exception is when m = bηc and the decay of the second

term is very slow, or in other words it is diverging mildly towards the defect.

Smearing by a step function. For the special choice g(u) ≡ Θ(u− 1) one can find out

the ratio of α± explicitly, by putting

Ψ̂(u) =

{
J|m|(µu) (0 ≤ u ≤ 1)

α+J|m−η|(µu) + α−J−|m−η|(µu) (1 ≤ u)
(A.7)
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and by solving the junction condition at u = 1,

Ψ̂(1+) = Ψ̂(1−), ∂uΨ̂(1+) = ∂uΨ̂(1−)− ηΨ̂(1−). (A.8)

Here 1+, 1− means approaching u = 1 from above or below. One finds

b̃+

b̃−
∼

α+J+|m−η|(µ)

α−J−|m−η|(µ)
∼


1 (m < 0)

µ2 (0 ≤ m < η)

µ−2 (max{0, η} < m)

. (A.9)

This is a special case of (A.6).

Perturbative analysis for general smearing. Finally, let us derive (4.9) for the gen-

eral choice of g(u). We begin by constructing a perturbative solution to (A.1). Here we

use x = log u and introduce

Φ̂ ≡ (∂x −m+ ηg)Ψ̂. (A.10)

The differential equation can then be cast into coupled first order equations, for which one

can easily construct the solution in the form of a path-ordered exponential. The solution

for given initial values Ψ̂(x0), Φ̂(x0) is(
Ψ̂(x)

Φ̂(x)

)
= P exp

∫ x

x0

dy

(
m− ηg(y) 1

−µ2e2y −m+ ηg(y)

)(
Ψ̂(x0)

Φ̂(x0)

)
. (A.11)

One can rewrite this further as a series organized by the number of appearances of off-

diagonal matrix elements. The resulting formal series expression for Ψ̂(x) reads

Ψ̂(x) =U(x, x0)Ψ̂(x0) +

∫
dx1U(x, x1)U−1(x1, x0)Φ̂(x0)

+

∫
dx1dx2U(x, x1)U−1(x1, x2)(−µ2e2x2)U(x2, x0)Ψ̂(x0)

+

∫
dx1dx2dx3U(x, x1)U−1(x1, x2)(−µ2e2x2)U(x2, x3)U−1(x3, x0)Φ̂(x0) + · · · ,

with U(x1, x2) ≡ exp

∫ x1

x2

dy(m− ηg(y)) . (A.12)

The integration variables here are understood to satisfy x ≥ x1 ≥ x2 ≥ · · · ≥ x0.

Let us focus on the first two terms in this series. For an x0 negatively large, the

solution is given in terms of Bessel functions and can be expanded in µ as

Ψ̂(x0) = e|m|x0

(
1− µ2e2x0

4(|m|+ 1)
+O(µ4)

)
,

Φ̂(x0) =


−2me|m|x0 +O(µ2) (m < 0)

−µ
2e(|m|+2)x0

2(m+ 1)
+O(µ4) (m ≥ 0)

. (A.13)

Substituting this into (A.11) as the initial condition, we obtain an expression for Ψ̂(x) as

an expansion in µ.
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We wish to compare it with the µ-expansion of the second line of (4.8), i.e.,

Ψ̂(x) = α+J+|m−η|(µ e
x) + α−J−|m−η|(µ e

x) . (A.14)

We emphasize that the coefficients α± depend on µ. As functions of x we have

U(x, x0) = (non-zero) · e(m−η)x,∫ x

x0

dx1U(x, x1)U−1(x1, x0) = (const) · e(m−η)x + (non-zero) · e−(m−η)x . (A.15)

Here (const) is a not necessarily non-zero constant, while (non-zero) is a non-zero constant.

We thus find

Ψ̂(x) =


(const) · e(m−η)x + (non-zero) · e−(m−η)x +O(µ2) (m < 0)

(non-zero) · e(m−η)x + (non-zero) · µ2 e−(m−η)x

+(const) · µ2 e(m−η)x +O(µ4)
(m ≥ 0)

, (A.16)

where all the constants are independent of µ. For m ≥ 0, by comparing this with (A.14) we

obtain (A.6). For m < 0, if the coefficient of e(m−η)x is non-zero we find that b̃+/b̃− ∼ 1.

If the coefficient vanishes b̃+/b̃− must be O(µpositive) to be consistent with the inequality

|α+| � |α−| found by the crude analysis. Thus we obtain (A.6), which implies (4.9).

B A review of mirror symmetry

Here we summarize some basic facts about sigma models on Calabi-Yau manifolds, their

moduli spaces and the simplest mirror pair of quintic hypersurfaces. For more details

see [47] and [48].

Local special Kähler manifolds and prepotential. The moduli spaces of complex

structures MC and complexified Kähler structures MK of a Calabi-Yau three-fold M

are both local special Kähler manifolds, and they have complex dimensions h2,1(M) and

h1,1(M), respectively. A local special Kähler manifold of dimension n is a Kähler manifold

with the Kähler potential

K = − log i(X̄IFI −XIF̄I), (I = 0, 1, · · · , n) (B.1)

where XI ,FI are local functions of the holomorphic coordinates {zi}ni=1. Rescaling them

by a common holomorphic function of zi amounts to a Kähler transformation, so they are

regarded as a kind of homogeneous coordinates. A set of holomorphic coordinates can

be defined, for example, by zi ≡ Xi/X0. Moreover, special geometry requires that FI , if

expressed as functions of XJ , satisfy ∂FI/∂XJ = ∂FJ/∂XI . This implies there is a local

holomorphic function F(X) of scaling weight 2 satisfying FI = ∂F/∂XI . Such an F is

called the prepotential.

ForMC, one can identify XI ,FI with the period integrals of the holomorphic 3-form Ω

XI =

∫
AI

Ω, FI =

∫
BI

Ω, K = − log i

∫
Ω ∧ Ω̄, (B.2)
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over the symplectic basis of 3-cycles AI , BI satisfying

〈AI , BJ〉 = δIJ , 〈AI , AJ〉 = 〈BI , BJ〉 = 0. (B.3)

For MK, XI ,FI are identified with the complexified volumes of even-dimensional

cycles,

X0 = 1, X i =

∫
Ci
J, Fi =

1

2

∫
Ĉi

J ? J, F0 = −1

6

∫
M̂
J ? J ? J, (B.4)

where J = B+ iω is the complexified Kähler form and Ci are the basis 2-cycles and Ĉi are

the dual basis 4-cycles satisfying #(Ci ∩ Ĉj) = δij . Note the product ? is that of quantum

cohomology and differs from the classical wedge product of differential forms by instanton

corrections. The Kähler potential can be written as

K = − log

[
−i
∫
M

exp?(J) ∧ exp?(−J̄)

]
. (B.5)

If we use τ i ≡ Xi/X0 as the coordinates, FI are related to the prepotential F(X) =

(X0)2F (τ i) as

FI = X0 ∂F

∂τ i
, F0 = X0

(
2F − τ i ∂F

∂τ i

)
. (B.6)

The prepotential F (τ) is known to consist of the polynomial part and the instanton part,

F (τ) =
1

3!

∑
`,m,n

κ`mnτ
`τmτn +

1

2

∑
`,m

a`mτ
`τm +

∑
`

b`τ
` − ic

16π3
+ Finst(τ), (B.7)

where κ`mn, a`m, b`, c are topological invariants of M , in particular

κ`mn = #(Ĉ` ∩ Ĉm ∩ Ĉn), c = χ(M)ζ(3). (B.8)

The instanton part Finst is the sum over contributions of worldsheet instantons wrapping

various 2-cycles η =
∑

i ηiC
i ∈ H2(M,Z),

Finst(τ) =
1

(2πi)3

∑
η 6=0

Nη Li3
(
e2πi

∑
i ηiτ

i)
, Lik(x) ≡

∑
n≥1

xn

nk
. (B.9)

The coefficients Nη are called Gromov-Witten invariants. Using these properties of the

prepotential one can show that the Kähler potential takes the form

e−K = − i
6
κ`mn(τ − τ̄)`(τ − τ̄)m(τ − τ̄)n +

c

4π3

+2i(Finst − F̄inst)− i(τ − τ̄)`
(
∂Finst

∂τ `
+
∂F̄inst

∂τ̄ `

)
. (B.10)

Sphere partition function for quintic. For the GLSM for quintic Calabi-Yau, the

sphere partition function reads

ZS2 =
∑
s∈ 1

2
Z

∫
R

da

2π
e−it(a+is)−it̄(a−is)

[
Γ(s+ q − ia)

Γ(s+ 1− q + ia)

]5 Γ(1− 5s− 5q + 5ia)

Γ(−5s+ 5q − 5ia)
. (B.11)
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The FI parameter r = Re(t) controls the size of the CP4 and therefore the size of the

Calabi-Yau. For large positive r the model is said to be in the geometric phase, and for

large negative r it is in the orbifold phase. In correspondence with this, one can close the

a-integration contour of (B.11) in the lower or upper half planes and write the integral as

different residue-sums. In order to ensure that the poles from matter fields with positive

(negative) charges are all below (resp. above) the real axis, we require

0 < q, 0 < 2− 10q, (B.12)

where q is half the R-charge of the five chiral multiplets of charge +1.

Let us study the residue integral in the geometric phase in detail. The poles of the

determinant of the five chiral fields with charge +1 are labeled by a pair of non-negative

integers k, k̄. The values of a, s are determined from them by the relations

k = ia− s− q, k̄ = ia+ s− q. (B.13)

Rewriting (B.11) as a sum of the residue integrals with respect to ε ≡ ia − q − 1
2(k + k̄)

around the origin, one obtains the following form

ZS2 = −e−q(t+t̄)
∮

0

dε

2πi

5

ε4
Γ(1 + 5ε)

Γ(1− 5ε)

Γ(1− ε)5

Γ(1 + ε)5
w(z, ε)w(z̄, ε), z ≡ −55e−t, (B.14)

where w(z, ε) is defined by

w(z, ε) ≡
∑
j≥0

εjwj(z) ≡
∑
k≥0

zk+ε

∏5k
j=1(j + 5ε)

55k
∏k
j=1(j + ε)5

. (B.15)

It is clear that the sphere partition function can be written as a bilinear of {w0, · · · , w3}.
Also, since the Picard-Fuchs differential (5.35) acts on the above w(z, ε) as{(

z
d

dz

)4

− z
(
z
d

dz
+

4

5

)(
z
d

dz
+

3

5

)(
z
d

dz
+

2

5

)(
z
d

dz
+

1

5

)}
w(z, ε) = zεε4, (B.16)

the functions {w0, · · · , w3} are the four independent solutions of the PF equation, and ZS2

also satisfies the PF equation.

The GLSM is known to be singular at t = 5 ln 5 + iπ or z = 1 due to the non-compact

Coulomb branch. This implies that the PF system also has a singularity at z = 1. we will

later confirm this on the mirror side.

Using the formula for the polygamma functions

ψ(n)(1) = (−1)n+1n! ζ(n+ 1),

(
ψ(n)(x) ≡ dn+1

dxn+1
ln Γ(x)

)
(B.17)

one easily finds

ZS2 = −5−10q(zz̄)q
∮

0

dε

2πi

(
5

ε4
− 400ζ(3)

ε

)
w(z, ε)w(z̄, ε). (B.18)
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Neglecting instanton corrections and substituting w(z, ε) ' e−εt, one finds

ZS2 ' 5−10qe−q(t+t̄)
(

5

6
(t+ t̄)3 + 400ζ(3) + · · ·

)
, (B.19)

which agrees with the perturbative part of (B.10) under the identification −t = 2πiτ .

Indeed it was found in [48] that the log of sphere partition function agrees with the Kähler

potential of the moduli space of Kähler structures.

Mirror quintic and Picard-Fuchs equation. The mirror of the quintic, denoted by

M̃ , is defined by the hypersurface

X5
1 +X5

2 +X5
3 +X5

4 +X5
5 − 5ψX1X2X3X4X5 = 0 (B.20)

in the orbifold CP4/Γ, where Γ ≡ (Z5)3 is the group of discrete phase rotations of Xi,

(X1, · · · , X5) 7→ (ωa1X1, · · · , ωa5X5)
(
ω ≡ e

2πi
5 , ai ∈ Z,

∑
i

ai = 0 mod 5
)

(B.21)

modulo identifications (a1, · · · , a5) ∼ (a1 + 1, · · · , a5 + 1). The complex structure of M̃

is parametrized by ψ, but the hypersurface equation with the modulus ψ and ωψ are

equivalent as they are related by X1 → ωX1. Therefore, a good coordinate on the moduli

space is ψ5. Note also that the mirror quintic becomes singular when ψ5 = 1.

The periods are the integrals of the holomorphic 3-form Ω over the basis 3-cycles of

M̃ . For the hypersurface (B.20), one can express Ω using the inhomogeneous coordinates

xi ≡ Xi/X5 as

Ω =
dx1 ∧ dx2 ∧ dx3

∂p/∂x4
, p(xi) ≡ x5

1 + x5
2 + x5

3 + x5
4 + 1− 5ψx1x2x3x4, (B.22)

where x4 should be eliminated by solving p(xi) = 0. Alternatively, one may express Ω as an

integral of a 4-form in P4/Γ along a small loop that goes around the hypersurface (B.20).

For later convenience, let us generalize the hypersurface equation (B.20) as follows,

P̂ (X) ≡ b1X5
1 + b2X

5
2 + b3X

5
3 + b4X

5
4 + b5X

5
5 + b6X1X2X3X4X5, (B.23)

and define the 4-form by

Ω̂ ≡
{
X1dX2dX3dX4dX5 +X2dX3dX4dX5dX1 + (3 more terms)

}/
P̂ (X). (B.24)

The periods (generalized by the parameters b1, · · · , b6) can now be expressed as certain

four-dimensional integrals of Ω̂.

These generalized periods are annihilated by the differential operators,

∂b1∂b2∂b3∂b4∂b5 − ∂5
b6 ,

6∑
i=1

bi∂bi + 1, bi∂bi − b5∂b5 (i = 1, · · · , 4). (B.25)

The first two simply annihilate 1/P̂ (X). The third one generates the rescaling of bi and

b5 which can be absorbed by the rescaling of Xi and X5, so it annihilates the periods. It
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follows from the last two differential equations that the periods all have to be 1/b6 times

some functions of

z ≡ −55b1b2b3b4b5/(b6)5 = ψ−5. (B.26)

The first equation can then be rewritten into the Picard-Fuchs form.

0 = b1b2b3b4b5b6

{
∂b1∂b2∂b3∂b4∂b5 − ∂5

b6

} 1

b6
ω(z)

=

{
(z∂z)

5 − z(z∂z + 1)

(
z∂z +

4

5

)(
z∂z +

3

5

)(
z∂z +

2

5

)(
z∂z +

1

5

)}
ω(z)

= z∂z

{
(z∂z)

4 − z
(
z∂z +

4

5

)(
z∂z +

3

5

)(
z∂z +

2

5

)(
z∂z +

1

5

)}
ω(z). (B.27)

Thus we see that ψ5 = 1 (z = 1) is a singularity of the PF system.

C Interpretation of κ(η)

Here we point out that the exponent κ(η) (= κN(η) or κS(η)) appears in the solutions of

the BPS vortex equation in the Higgs phase in the presence of defects. To discuss this

point, we use the simplest SQED with a single chiral field Φ.

The phase of Φ and ImY are T-dual of each other under mirror symmetry. In particular

the term e−Y in the twisted superpotential is known to correspond to the BPS vortex

instanton with unit instanton number,

n ≡ 1

2π

∫
d2xF12 = 1. (C.1)

Classically, the vortex instantons are described by the solutions to the equations

F12 = e2(r − φ̄φ), Dz̄φ = 0, (C.2)

where we assume r > 0 and use z ≡ x1 + ix2. For n-vortex instanton solutions, the scalar φ

has the absolute value |φ| '
√
r at infinity, and its phase winds n times as one goes around

the large circle at infinity counterclockwise once.

It is thus natural to compare κ(η) with the winding number of the phase of φ in the

vortex defect background. Let us put the defect Vη at z = 0 and solve the equation (C.2)

around it. For simplicity we take the rotation-symmetric ansatz,

A = {n−H(ρ)}dϕ, φ =
√
rΦ(ρ)einϕ (z ≡ √ρeiϕ) (C.3)

with real functions H(ρ),Φ(ρ). See [20] for a related analysis, which we generalize here.

The BPS vortex equation then becomes

− 2H ′ = e2r(1− Φ2), 2ρΦ′ = HΦ. (C.4)

We are interested in the solution satisfying Φ(∞) = 1, H(∞) = 0 and H(0) = n− η. One

can eliminate Φ and find the asymptotic form of H for e2r|z|2 � 1,

ρH ′′ = HH ′ +
e2r

2
H, H = const ·

√
m|z|e−m|z| + · · · . (m ≡

√
2e2r) (C.5)
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It follows from this asymptotics and the equation (C.4) that the radial evolution of H and

Φ are both monotonic, and there are three possible cases.

(i) H ′ < 0, Φ′ > 0 =⇒ n > η, Φ ∼ |z|n−η vanishes at the origin.

(ii) H ′ ≡ 0, Φ′ ≡ 0 =⇒ n = η, Φ is constant.

(iii) H ′ > 0, Φ′ < 0 =⇒ n < η, Φ ∼ |z|n−η diverges at the origin. (C.6)

What is the minimum allowed value for the winding number n? For the chiral multiplet

obeying the normal boundary condition at the defect, the allowed behavior for the scalar

is (i) or (ii), so that n ≥ dηe = κ(η). For the chiral multiplet obeying the flipped boundary

condition, the behavior (iii) is also allowed as long as n− η > −1, so that n ≥ bηc = κ(η).

Thus κ(η) agrees with the minimum winding number for the BPS vortex solutions on the

defect background.

We also note that |κ(η)| is the number of localized modes when the defect with the

normal or the flipped boundary condition arises as a limit of the smeared defect.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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