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Supersymmetry and attractors
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We find a general principle which allows one to compute the area of the horizon ofN52 extremal black
holes as an extremum of the central charge. One considers the ADM mass equal to the central charge a
function of electric and magnetic charges and moduli and extremizes this function in the moduli space~a
minimum corresponds to a fixed point of attraction!. The extremal value of the square of the central charge
provides the area of the horizon, which depends only on electric and magnetic charges. The doubling o
unbroken supersymmetry at the fixed point of attraction forN52 black holes near the horizon is derived via
conformal flatness of the Bertotti-Robinson-type geometry. These results provide an explicit model-
independent expression for the macroscopic Bekenstein-Hawking entropy ofN52 black holes which is mani-
festly duality invariant. The presence of hypermultiplets in the solution does not affect the area formula.
Various examples of the general formula are displayed. We outline the attractor mechanism inN54,8 super-
symmetries and the relation to theN52 case. The entropy-area formula in five dimensions, recently discussed
in the literature, is also seen to be obtained by extremizing the 5d central charge.@S0556-2821~96!03714-9#

PACS number~s!: 04.65.1e, 04.70.Dy, 11.25.Mj, 11.20.Pb
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I. INTRODUCTION

Supersymmetry seems to be related to dynamical syst
with fixed points describing the equilibrium and stability1

The particular property of the long-term behavior of dynam
cal flows in dissipative systems is the following: In a
proaching the attractors the orbits lose practically
memory of their initial conditions, even though the dynam
is strictly deterministic.

The first example known to us of such attractor behav
in the supersymmetric system was discovered in the con
of N52 extremal black holes@1,2#. The corresponding mo
tion describes the behavior of the moduli fields as they
proach the core of the black hole. They evolve according
a damped geodesic equation@see Eq.~20! in @1## until they
run into the fixed point near the black hole horizon. T
moduli at fixed points were shown to be given as ratios
charges in the pure magnetic case@1#. Recently Strominger
has further shown that this phenomenon extends to the
neric case when both electric and magnetic charges
present@2#. The inverse distance to the horizon plays the r
of the evolution parameter in the corresponding attractor.
the time moduli reach the horizon they lose completely
information about the initial conditions, i.e., about their va
ues far away from the black hole, which correspond to
values of various coupling constants; see Fig. 1.

*Electronic address: ferraras@cernvm.cern.ch
†Electronic address: kallosh@physics.stanford.edu
1A point x fix where the phase velocityv(xfix) is vanishing is

named afixed point and represents the system in equilibrium
v(xfix);0. The fixed point is said to be anattractor of some mo-
tion x(t) if lim t→`x(t);xfix(t).
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The main result of this paper is the derivation of the uni-
versal property of the stable fixed point of the supersymmet
ric attractors: the fixed point is defined by the newprinciple
of a minimal central charge2 and the area of the horizon is
proportional to the square of the central charge, computed a
the point where it is extremized in moduli space. InN52,
d54 theories, which is the main object of our study in this
paper, the extremization has to be performed in the modu
space of the special geometry and is illustrated in Fig. 1. Thi
results in the following formula for the Bekenstein-Hawking
entropyS, which is proportional to the quarter of the area of
the horizon:

S5
A

4
5puZfixu2, d54. ~1!

This result allows generalization for higher dimensions;
for example, in five-dimensional space-time one has

S5
A

4
;uZfixu3/2, d55. ~2!

There exists a beautiful phenomenon in black hole phys
ics: According to the no-hair theorem, there is a limited num-
ber of parameters3 which describe space and physical fields
far away from the black hole. In application to the recently
studied black holes in string theory, these parameters includ

,

2We are assuming that the extremum is a minimum, as it can b
explicitly verified in some models. However, for the time being we
cannot exclude situations with different extrema or even where th
equationDiZ50 has no solutions.
3This number can be quite large; e.g., forN58 supersymmetry

one can have 56 charges and 70 moduli.
1514 © 1996 The American Physical Society
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FIG. 1. Evolution of the dilaton from various initial conditions at infinity to a common fixed point atr50.
n

the mass, the electric and magnetic charges, and the asy
totic values of the scalar fields.

It appears that for supersymmetric black holes one c
prove a new, stronger version of the no-hair theorem: Bla
holes lose all their scalar hair near the horizon. Black ho
solutions near the horizon are characterized only by tho
discrete parameters which correspond to conserved cha
associated with gauge symmetries, but not by the values
the scalar fields at infinity which may change continuousl

A simple example of this attractor mechanism is given b
the dilatonic black holes of the heterotic string theory@3,4#;
see Sec. IV for details. The modulus of the central charge
question which is equal to the Arnowitt-Deser-Misne
~ADM ! mass is given by the formula

MADM5uZu5
1

2
~e2f0upu1ef0uqu!. ~3!

In application to this case the general theory, developed
this paper, gives the following recipe to get the area.

~i! Find the extremum of the modulus of the centr
charge as a function of a dilatone2f05g2 at fixed charges;

]

]g
uZu~g,p,q!5

1

2

]

]g S 1g upu1guqu D52
1

g2
upu1uqu50.

~4!

~ii ! Get the fixed value of the moduli:

gfix
2 5Upq U. ~5!

~iii ! Insert the fixed value into the central charge formu
~3!, and get the fixed value of the central charge: The squ
of it is proportional to the area of the horizon and defines t
Bekenstein-Hawking entropy
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S5
A

4
5puZfixu25pupqu. ~6!

This indeed coincides with the result obtained before by
completely different methods@4,5#.

In general supersymmetricN52 black holes have an
ADM massM depending on charges (p,q) as well as on
moduli z through the holomorphic symplectic sections
„XL(z),FL(z)…; see the Appendix. The moduli present the
values of the scalar fields of the theory far away from the
black hole. The general formula for the mass of the state with
one-half of unbroken supersymmetry ofN52 supergravity
interacting with vector multiplets as well as with hypermul-
tiplets is @6–9#

M25uZu2, ~7!

where the central charge is@6#

Z~z,z̄,q,p!5eK~z, z̄ !/2@XL~z!qL2FL~z!pL#

5~LLqL2MLp
L!, ~8!

so that

MADM
2 5uZu25MADM

2 ~z,z̄,p,q!. ~9!

The area, however, is only charge dependent:

A5A~p,q!. ~10!

This happens since the values of the moduli near the horizo
are driven to the fixed point defined by the ratios of the
charges. This mechanism was explained before in@1# and@2#
on the basis of the conformal gauge formulation ofN52
theory @7#.

This attractor mechanism is by no means an exclusive
property of onlyN52 theory in four dimensions. Our analy-
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1516 54SERGIO FERRARA AND RENATA KALLOSH
sis suggests that it may be a quite universal phenomeno
any supersymmetric theory. The main purpose of this pa
is to investigate the attractor mechanism in the symple
covariant form ofN52 theory, to analyze the attractors
N54 andN58 theory, and to reinterpret them in terms
N52 theory.

In this paper we will use the ‘‘coordinate-free’’ formula
tion of the special geometry@8,6,9# which will allow us to
present a symplectic-invariant description of the system.
will be able to show that the unbroken supersymmetry
quires the fixed point of attraction to be defined by the so
tion of the duality symmetric equation

DiZ5~] i1
1
2Ki !Z~z,z̄,p,q!50, ~11!

which implies~see the Appendix!

]

]zi
uZu50 ~12!

at

Z5Zfix5Z„LL~p,q!,ML~p,q!,p,q…. ~13!

The equation] i uZu50 exhibits theminimal area principle
in the sense that the area is defined by the extremum o
central charge in the moduli space of the special geome
see Fig. 2 illustrating this point. Upon substitution of the
extremal values of the moduli into the square of the cen
charge we get the Bekenstein-Hawking entropy:

S5
A

4
5puZfixu2. ~14!

The area of the black hole horizon has also an interpreta
as the mass of the Bertotti-Robinson universe@10# describing
the near-horizon geometry:

A/4p5MBR
2 . ~15!

This mass, as different from the ADM mass, depends o
on charges since the moduli near the horizon are in t
fixed point equilibrium positions,

MBR
2 5uZfixu25MBR

2 ~p,q!. ~16!

FIG. 2. Extremum of the central charge in moduli space.
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Note that in the Einstein-Maxwell system without scala
fields the ADM mass of the extreme supersymmetric bla
hole simply coincides with the Bertotti-Robinson one, bo
being functions of charges:

MADM
2 ~p,q!5MBR

2 ~p,q!. ~17!

We will describe below a near-horizon black hole o
N52 supergravity interacting with vector multiplets and hy
permultiplets. The basic difference from the pureN52 su-
pergravity solutions comes from the following. The metr
near the horizon is of the Bertotti-Robinson-type, as befo
However, the requirement of unbroken supersymmetry a
duality symmetry forces the moduli to become functions
the ratios of charges, i.e., take the fixed point values. We w
describe these configurations, show that they provide the r
toration of full unbrokenN52 supersymmetry near the ho
rizon. We will call themN52 attractors; see Sec. II. In Sec
III we will analyze some ofN54 andN58 attractors and
provide their interpretation from the point of view ofN52
theory. In Sec. IV examples ofN54 andN58 attractors
will be presented using in each case the parameters~‘‘attrac-
tor variables’’! which allow one to demonstrate explicitly the
dependence of the ADM mass on charges as well as
moduli and the independence of the area on moduli. In t
last section we make some remarks on the possible deve
ments of ideas of this paper in the context of looking for th
general links between the microscopic and macrosco
physics in supersymmetric theories. The Appendix conta
a short summary of the special geometry.

II. N52 ATTRACTOR

The special role of the Bertotti-Robinson metric in th
context of the solitons in supergravity was explained by Gi
bons @11#. He suggested to consider the Bertotti-Robinso
~BR! metric as an alternative, maximally supersymmetri
vacuum state. The extreme Reissner-Nordstro¨m metric spa-
tially interpolates between this vacuum and the trivial fl
one, as one expects from a soliton.

Near the horizon allN52 extremal black holes with one-
half of unbroken supersymmetry restore the completeN52
unbroken supersymmetry. This phenomenon of the doubl
of the supersymmetry near the horizon was discovered in
Einstein-Maxwell system in@11#. It was explained in@12#
that the manifestation of this doubling of unbroken supe
symmetry is the appearance of a covariantly constant o
shell superfield ofN52 supergravity. In the presence of
dilaton this mechanism was studied in@13#. In the context of
exact four-dimensional black holes, string theory, and co
formal theory on the world sheet the BR space-time w
studied in@14#. In a more general setting the idea of vacuu
interpolation in supergravity via superp-branes was devel-
oped in@15#.

We will show here using the most general supersymm
ric system ofN52 supergravity interacting with vector mul-
tiplets and hypermultiplets how this doubling of supersym
metry occurs and what is the role of attractors in this pictu
The supersymmetry transformations for the gravitino, for t
gaugino, and for the hyperino are given in the manifes
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54 1517SUPERSYMMETRY AND ATTRACTORS
symplectic covariant formalism4 @8,9# in the absence of fer
mions and in the absence of gauging as follows:

dcAm5DmeA1eABTmn
2 gneB,

dl iA5 igm]mz
ieA1

i

2
Fmn
i2gmneBeAB, ~18!

dza5 iUuBb]mq
ugmeAeABCab ,

wherel iA, cAm are the chiral gaugino and gravitino field
za is a hyperino,eA and eA are the chiral and antichira
supersymmetry parameters, respectively, andeAB is the
SO~2! Ricci tensor. The moduli-dependent duality invaria
combinations of field strengthTmn

2 , Fmn
i2 are defined by Eqs

~31!; UuBb is the quaternionic vielbein@16#.
Our goal is to find solutions with unbrokenN52 super-

symmetry. The first one is a standard flat vacuum: The m
ric is flat, there are no vector fields, and all scalar fields in
vector multiplets as well as in the hypermultiplets take a
trary constant values:

ds25dxmdxnhmn , Tmn
2 5Fmn

i250,

zi5z0
i , qu5q0

u . ~19!

This solves the Killing conditionsdcAm5dl iA5dza50
with constant unconstrained values of the supersymmetry
rametereA . The unbroken supersymmetry manifests itsel
the fact that each nonvanishing scalar field represents
first component of a covariantly constantN52 superfield for
the vector and/or hypermultiplet, but the supergravity su
field vanishes.

The second solution with unbroken supersymmetry
much more sophisticated. First, let us solve the equation
the gaugino and hyperino by using only a part of the pr
ous ansatz:

Fmn
i250, ]mz

i50, ]mq
u50. ~20!

The Killing equation for the gravitino is not gauge invaria
We may therefore consider the variation of the gravitino fi
strength the way it was done in@12,13#. Our ansatz for the
metric will be to use the geometry with the vanishing sca
curvature and Weyl tensor and covariantly constant gr
photon field strengthTmn

2 :

R50, Cmnld50, Dl~Tmn
2 !50. ~21!

It was explained in@12,13# that such a configuration corre
sponds to a covariantly constant superfield ofN52 super-
gravityWab(x,u), whose first component is given by a tw
component graviphoton field strengthTab . The doubling of
supersymmetries near the horizon happens by the follow
reason. The algebraic condition for the choice of broken
sus unbroken supersymmetry is given in terms of the c
bination of the Weyl tensor plus or minus a covariant deri
tive of the graviphoton field strength, depending on the s
of the charge. However, near the horizon both the Weyl

4The notation is given in@9#.
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vature as well as the vector part vanish. Therefore both s
persymmetries are restored and we simply have a covarian
constant superfieldWab(x,u). The new feature of the ge-
neric configurations which include vector multiplets and hy
permultiplets is that in addition to a covariantly constant su
perfield of supergravity,Wab(x,u), we have covariantly
constant superfields, whose first component is given by th
scalars of the corresponding multiplets. However, now, dif
ferently from the trivial flat vacuum, which admits any val-
ues of the scalars, we have to satisfy the consistency con
tions for our solution, which requires that the Ricci tensor b
defined by the product of graviphoton field strengths,

Raba8b8
BR

5TabT̄a8b8, ~22!

and that the vector multiplet vector field strength vanishes:

Fmn
i250. ~23!

Before analyzing these two consistency conditions in term
of symplectic structures of the theory, let us describe th
black hole metric near the horizon.

The explicit form of the metric is taken as a limit near the
horizon r5uxW u→0 of the black hole metric:

ds252e2Udt21e22UdxW2, ~24!

where

De2U50. ~25!

We choose

e22U5
A

4puxW u2
5
MBR

2

r 2
, ~26!

where the Bertotti-Robinson mass is defined by the blac
hole area of the horizon:

MBR
2 5

A

4p
. ~27!

We may show that this metric, which is the Bertotti-
Robinson metric

dsBR
2 52

uxW u2

MBR
2 dt21

MBR
2

uxW u2
dxW2, ~28!

is conformally flat in the properly chosen coordinate system
In spherically symmetric coordinate system

dsBR
2 52

r 2

MBR
2 dt21

MBR
2

r 2
~dr21r 2dV!. ~29!

After the change of variablesr5MBR
2 /r and uxW u5MBR

2 /uyW u
the metric becomes obviously conformally flat:

dsBR
2 52

MBR
2

r2
dt21

MBR
2

r2
~dr21r2dV!

5
MBR

2

uyW u2
~2dt21dyW 2!, ~30!
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which is in agreement with the vanishing of the Weyl tens
Now we are ready to describe our solution in terms

symplectic structures, as defined in@9#. The symplectic
structure of the equations of motion comes by defining
Sp(2nV12) symplectic~antiselfdual! vector field strength
(F2L,GL

2).
Two symplectic invariant combinations of the symplec

field strength vectors are

T25MLF2L2LLGL
2 ,

F2 i5Gi j̄ ~D j̄ M̄LF2L2D j̄ L̄
LGL

2!. ~31!

The central charge as well as the covariant derivative of
central charge are defined as:

Z52
1

2ES2T2, ~32!

Zi[DiZ52
1

2ES2F1 j̄ Gi j̄ . ~33!

The central charge and its derivative are functions of mod
and electric and magnetic charges. The objects defined
Eqs. ~31! have the physical meaning of being the~moduli-
dependent! vector combinations which appear in the gra
itino and gaugino supersymmetry transformations, resp
tively. In the generic point of the moduli space there are t
symplectic invariants homogeneous of degree 2 in elec
and magnetic charges@9#:

I 15uZu21uDiZu2,

I 25uZu22uDiZu2. ~34!

Note that

I 15I 1~p,q,z,z̄!52
1

2
PtM~N!P,

I 25I 2~p,q,z,z̄!52
1

2
PtM~F!P. ~35!

Here P5(p,q) and M(N) is the real symplectic
2n1232n12 matrix:

S A B

C DD , ~36!

where

A5ImN1ReNImN21 ReN, B52ReNImN21,

C52ImN21ReN, D5ImN21. ~37!

The vector kinetic matrixN is defined in the Appendix. The
same type of matrix appears in Eqs.~35! with
N→F5FLS . Both N,F are Kähler invariant functions,
which means that they depend only on ratios of sections,
only on tL, fL ; see the Appendix.

The unbroken supersymmetry of the near-horizon bl
hole requires the consistency condition~23!, which is also a
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statement about the fixed point for the scalarszi(r ) as func-
tions of the distance from the horizonr :

]

]r
@zi~r !#50⇒DiZ50. ~38!

Thus the fixed point is defined due to supersymmetry by the
vanishing of the covariant derivative of the central charge.
At this point the critical values of moduli become functions
of charges, and two symplectic invariants become equal to
each other:

I 1fix5I 2 fix5~ uZu2!DiZ50[uZ fixu2. ~39!

The way to explicitly compute the above is by solving in a
gauge-invariant fashion Eq.~38!:

D ī Z̄5D ī L̄
LqL2NLSD ī L̄

ī pL50. ~40!

By contracting withDiL
SGi ī and using the property

DiL
SGi ī D ī L̄

L52 1
2 Im~N21!SL2L̄SLL, ~41!

we get

2ZL̄S5 ipS2Im~N21!SLqL1Im~N21!SGReNGDp
D.

~42!

Here we used the fact thatZ5LLqL2MLp
L. This finally

gives

2i Z̄LS5pS1 i ~ ImN21ReNp1ImN21q!S ~43!

and

2i Z̄MS5qS1 i ~ ImNp1ReNImN21ReNp

2 ReNImN21q!S , ~44!

so that

pL5 i ~ Z̄LL2ZL̄L!, qL5 i ~ Z̄ML2ZM̄L!. ~45!

From the above equations it is evident that (p,q) deter-
mine the sections up to a~Kähler! gauge transformation
~which can be fixed settingL05eK/2). Vice versa, the fixed
point tL can only depend on ratios of charges since the equa
tions are homogeneous inp,q.

The first invariant provides an elegant expression of
uZ fixu2 which only involves the charges and the vector kinetic
matrix at the fixed pointNfix5N(tfixL , t̄ fix

L , fLfix , f̄Lfix):

~ I 1!fix5~ uZu21uDiZu2!fix52
1

2
PtM~Nfix!P5~ uZfixu2!.

~46!

Indeed Eq.~46! can be explicitly verified by using Eq.~47!.
For magnetic solutions the area formula was derived in@1#.
This formula presents the area as the function of the zero
component of the magnetic charge and of the Ka¨hler poten-
tial at the fixed point:5

5In this paper we have a normalization of charges which is differ-
ent from @1# due to the use of the conventions of@9# and not@7#.
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A5p~p0!2e2K. ~47!

In the symplectic invariant formalism we may check that t
area formula~47! which is valid for the magnetic solution
~or for generic solutions but in a specific gauge only! indeed
can be brought to the symplectic invariant form@1#

A5p~p0!2e2K54p~ uZu21uDiZu2!fix

54p~ uZfixu2!522ppLImFLSp
S. ~48!

One can also check the first consistency condition of
broken supersymmetry~22!, which relates the Ricci tensor to
the graviphoton. Using the definition of the central charge
the fixed point we are led to the formula for the area of t
horizon ~which is defined via the mass of the Bertott
Robinson geometry! in the form

MBR
2 5

A

4p
5~ uZu2!DiZ50 , S5

A

4
5pMBR

2 . ~49!

The new area formula~49! has various advantages follow
ing from manifest symplectic symmetry. It also implies th
principle of the minimal mass of the Bertotti-Robinson un
verse, which is given by the extremum in the moduli spa
of the special geometry:

] iMBR50. ~50!

III. N54,8⇔N52

Pure N54 supergravity consists ofN52 supergravity
and oneN52 vector multiplet. This can be regarded as
SU~2!3SU~4! invariant truncation ofN58. The N54
theory exists in two formulations, the SO~4! and SU~4!. They
are related by duality@6#, but for our purpose it is importan
to observe that the first corresponds to a prepoten
F(X)52 iX0X1, while the second has no prepotential a
corresponds to a symplectic change of the basis:

X̂05X0, F̂05F0 , X̂152F1 , F̂15X1. ~51!

The charges in these two theories are as follows.
~1! SO~4!:

p0 , p15p0Ret, q050, q15p0Im t. ~52!

The central charge at the fixed point isuZfixu2

5p0
2 Ret5p0p1 and is given by the product of the two mag

netic charges.
~2! SU~4!

p0 , p150, q05p0Im t, q15p0Ret. ~53!

In these equationst5X1/X0. The central charge at the
fixed point isuZfixu25p0

2Ret5p0q1 and is given by the prod-
uct of electric and magnetic charge. This is expected for
dilatonic black hole; see the next section.

In what follows we would like to outline some result
concerning the attractive behavior ofN52 theory and
N58 theory by taking a consistentN52 reduction of
N58. In this way one can easily obtainN52 models with a
variety of vector multiplets and hypermultiplets. The partic
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decomposition ofN58 to N52 gives 15 vector multiplets,
nv515, and 10 hyper multiplets,nh510. Therefore any
model will have those numbers as upper bounds for vect
and hypermultiplets. To get a consistent truncation one mu
choose a subgroupH of SU~8! such that the two residual
supersymmetries areH singlets. TheH-invariant states will
then give a consistentN52 theory. In particular, the scalar
field manifold will be a subspace ofE7/ SU~8! of the form
S(nv)3Q(nh), where S(nv) and Q(nh) are special and
quaternionic manifolds of complex and quaternionic dimen
sionsnv andnh , respectively.

A convenient way for obtaining such theories is by con
sidering the untwisted moduli ofT6 /ZN orbifolds with
H5ZN, SU~3!. In this way, by considering type IIA and
IIB theories on such orbifolds, one obtains pairs of mode
related by ac map @17#:

~nv
A ,nh

A! ~nv
B5nh

A21, nh
B5nv

A11!, ~54!

where nv
A5h11

0 , nh
A5h12

0 11. Here h11
0 , h12

0 are Hodge
numbers of the untwisted moduli. This implies thatnv can be
at most 9~becausenh

max510). The bound is saturated for the
T6 /Z3 orbifold for which

nv59, nh51 or nv50, nh510 ~55!

in types IIA and IIB, respectively. Since the hypermultiplets
do not matter at the level ofN52 this theory appears to be
the richest example. In the two cases,

~1! S(nv59)5
SU(3,3)

SU(3)3 SU(3)3U(1)
,

## _Q(nh51)5
SU(2,1)

SU(2)3U(1)
,

~2! Q(nh510)5
E6

SU(2)3SU(6)
.

TheN58 area formula@22# is a square root of a quartic-
invariant constructed out of 56ZAB central charges; under
N52 reductions SU~8! ⇒SU(2)3SU(6) we get

ZAB⇒~1,1!1~2,6!1~1,15!,

so that the SU~2!-invariant part is (Z,Zi). Z is the N52
central charge and allZi5DiZ vanish at the fixed point. In
this way we necessarily get

A;uZu2,

as expected. Indeed, working out a couple of models a
examples, which are a consistent truncation ofN58, SU~8!
supergravity, we reproduced the result given by th
E7-invariant formula@22#. In the first example we expect to
recover theN58 formula as a function of ten electric and
ten magnetic charges. We will derive this formula from a
special geometry in the case where two electric and tw
magnetic charges exists. Also we will set to zero the electr
and magnetic charges of the other six U~1! gauge fields. This
corresponds to a submanifold SU~1,1!/U~1! 30(2,2)/
@0(2)30(2)# in SU~3,3!/@SU~3!3SU~3!3 U~1!#.
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The appropriate parametrization for a symplectic sect
in a covariant O~2,2! basis@6# is

~XL,FL5SXL!, XL5hLSXS ,

wherehLS5(11,22) is a Lorentz metric of O~2,2!:

XLXL50, K52 lni ~S2S̄!2 lnXLX̄L .

We choose the gauge X051, XL5tL and
pL5p0( ReX

L), qL5p0(ReFL); moreover, we choose
t1,t3 imaginary andt2 real. The fixed point value of the
central charge becomesuZfixu252p0

2ImS@12(Ret2)2#. This
finally can be reduced to

A;Au~p0
22p2

2!~q3
22q1

2!u5Aum0m2e1e3u, ~56!

where we setm05p02p2 , m25p21p0 , e15q32q1 , and
e35q31q1 This gives the area formula for the solution
found in @18,21,22# and described in appropriate~attractor!
variables in the next section.

IV. EXAMPLES OF N54,8 ATTRACTORS

As already mentioned in the Introduction, we will prese
here the well-known black hole solutions ofN54,8 theories
for the convenience of the reader but we will do it using t
adequate variables so that the mass depends on mo
whereas the area obviously does not. To the best of our
derstanding, this form has not appeared before, neither
theN54 nor for theN58 case. We will call these variable
‘‘attractor variables.’’

N54 dilaton dyonic black holes@3,4# near the horizon
give an example of a stable attractor. We follow here t
description of the black holes near the horizon in@13#. All
notations~up to theA2 factors! are those of@4#. The action
we will use is the part of the SO~4! version of the
N54, d54 supergravity action without an axion:

I5
1

16pE d4xA2gF2R12 ]mf]mf

2
1

2
~e22fFmnFmn1e2fG̃mnG̃mn!G , ~57!

where the SO~4! field G̃mn is related to the SU~4! field
Gmn as

G̃mn5
i

2

1

A2g
e22femnldGld . ~58!

This means that each time we have an electric SO~4! field, it
corresponds to the magnetic SU~4! one and vise versa. Fo
extreme supersymmetric dilatonic black holes, the fields
built out of two functionsH1 andH2 @4#:

ds25e2Udt22e22UdxW2,

A5cdt, B̃5xdt,

F5dc`dt, G̃5dx`dt,
ion

s

nt

he
duli
un-
for
s

he

r
are

e22U5H1H2 , e2f5H2 /H1 ,

c56H1
21 , x56H2

21 , ~59!

where the condition on the functionsH1 ,H2 is that they be
harmonic,

] i] iH150, ] i] iH250. ~60!

We use isotropic coordinatesr 25xW2 and we define, different
from @13# and @4#,

H15e2f01
uqu
r
, H25e1f01

upu
r
. ~61!

The metric becomes

gtt
215gii5e2U5S e2f01

uqu
r D S e1f01

upu
r D

511
e2f0upu1ef0uqu

r
1

upqu
r 2

. ~62!

The dilaton is

e22f5
e2f01uqu/r
e1f01upu/r

. ~63!

This explains everything: The mass defined by the 1/r term
in this expression whenr→` depends on charges and
moduli, whereas the area, defined by the 1/r 2 term when
r→0, depends only on the chargesp andq. The massM and
the dilaton chargeS are related to the U~1! electric q and
magneticp charges as

M5
1

2
~e2f0upu1ef0uqu!, S5

1

2
~e2f0upu2ef0uqu!.

~64!

Thus the black hole solution is characterized by three inde-
pendent parameters: two chargesp,q and the value of the
dilaton at infinity,e2f0. In particular, the mass of the black
hole depends on all three parameters. We will now find that
the black hole solution near the horizon is described com-
pletely by the two charges: The value of the dilaton at infin-
ity becomes irrelevant. No matter what was the value of the
dilaton e2f0 at infinity, near the horizon it is driven to the
fixed point given by

~e22f!fix5
uqu
upu

.

Consider the extremepqÞ0 dilatonic black holes near the
horizon, in the limitr→0, i.e., in the limit 1/r[r→`. The
metric in Eqs.~59! becomes

ds25
r 2

upqu
dt22

upqu
r 2

dr22upqudV2. ~65!

This metric is precisely the BR metric. The dilaton for these
solutions behaves as
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e22f5
uqu
upu S 11

e2f0upu2 ef0uqu
upqur

1O~1/r2! D , ~66!

and so we see that the term linear in 1/r is proportional to the
dilaton chargeS. The electric and magnetic fields are give
by

F5
1

q
dr`dt, G̃5

1

p
dr`dt ~67!

or, equivalently, in terms of dual fields,

F̃5qsinudu`df, G5psinudu`df. ~68!

The dilaton has a vanishing derivative atr→`, which is a
fixed point. The value of the dilaton given in Eq.~66! shows
that close to the fixed point the dilaton has a positive deri
tive or a negative derivative depending on the sign of
dilaton chargeS. An example of a basin of attraction for th
dilaton is given in Fig. 1. Independently of initial condition
for the dilaton at infinity all trajectories are attracted to
fixed point (e22f) fix54 nearr50.

The example of theN58 attractor is given using the trun
cated action ofN58 supergravity. The form of this solution
is a slight modification of the one obtained in@18–22#. The
modification makes the area independence of moduli ma
fest:

S5
1

16pGE d4xA2gSR2
1

2
@~]h!21~]s!21~]r!2#

3eh@es1r~F1!
21es2r~F2!

21e2s2r~F3!
2

1e2s1r~F4!
2# D , ~69!

ds252e2Udt21e22Udx2, e4U5c1c3x2x4 ,

e22h5
c1c3

x2x4
, e22s5

c1x4

x2c3
, e22r5

c1x2

c3x4
,

F156dc1`dt, F̃256dx1`dt,

F356dc3`dt, F̃456dx4`dt, ~70!

where

c15S e~h01s01r0!/21
uqu1
r D 21

,

x25S e~2h02s01r0!/21
upu2
r 2

D 21

, ~71!

c35S e~h02s02r0!/21
uqu3
r 3

D 21

,

x45S e~2h01s02r0/2!1
upu4
r 4

D 21

, ~72!

and magnetic potentials correspond to F̃2/4

5eh6(s2r)F2/4* . Here an asterisk denotes the Hodge du
n

va-
the
e
s
a

-

ni-

al.

We may keep in mind the standard definition of the modu
in terms of the constant values ofS,T,U fields at infinity:

e2h05ImS, e2s05ImT, e2r05ImU. ~73!

The metric becomes

gtt
215gii5e2U5~c1c3x2x4!

1/2. ~74!

At infinity r→` it is

gtt
215gii→11

1

2r
~e~2h02s02r0!/2uq1u1e~h01s02r0!/2up2u

1e~2h01s01r0!/2uq3u1e~h02s01r0!/2up4u!1•••.

~75!

This shows that the mass depends heavily on the values
moduli, in addition to dependence on charges. However, n
the horizonr→0 we get a nice and simple dependence on
on charges:

gtt
215gii→

uq1p2q3p4u1/2

r 2
1 •••, ~76!

which defines the properties of the area formula. The fix
point values of moduli at the attractorr→0 are

~e22h!fix5U p2p4q1q3
U, ~e22s!fix5U p2q3q1p4

U,
~e22r!fix5U p4q3q1p2

U. ~77!

The previousN54 case is the special case of this solutio
with trivial T,U:

uq1u5uq3u, up2u5up4u. ~78!

V. DISCUSSION

In this paper we have found a complete description
N52, d54 attractors which serve to define the entropy-ar
central charge formula of the most general extremal bla
holes in N52 supergravity interacting with the arbitrary
number of vector multiplets and hypermultiplets.

To support our point of view that the extremization of th
central charge in moduli space is the generic phenomenon
any supersymmetric theory describing nonrotating bla
holes with the nonvanishing area of the horizon we discu
the extension of the above analysis, in five dimensions~5D!,
when 5D black holes are considered. Details will be give
elsewhere.

In N51 case~which reduces toN52 of d54) the un-
derlying geometry of vector multiplets is real@23# ~called
‘‘very special geometry’’ in Ref.@24#!. It is defined in terms
of symmetric constantsdABC which multiply the geometrical
term

vABC5E AA`FB`FC, A,B,C50, . . . ,nv , ~79!
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to build thedABCv
ABC term in the effective action. The cen

tral charge is@26#

Z~z,q!5tA~z!qA , ~80!

wheretA is subject to the constraint

dABCt
A~z!tB~z!tC~z!51. ~81!

Herezi denote real coordinate of thenv dimensional mani-
fold with the metric

Gi j523] i t
AdAB~ t !] j t

B, ~82!

wheredAB„t(z)…[dABCt
C(z) (dA[dABt

B, dA] i t
A50). Un-

broken supersymmetry for the BR metric requires, as
d54,

] iZ„t~z!,q…50. ~83!

The BR mass is thenZ(q)5Z„t(z),q…u] iZ50 . The area is

proportional toZ3/2(q) and therefore it is possible to give
general expression atd55 for N51 extremal black hole
entropy:

S5
A

4
;@Z~q!#3/2, ~84!

where Z(q) is given below. This formula for particula
choices ofdABC can be also applied to theN52 (N54 of
d54) d55 black holes of type II strings, compactified o
K33S1 , recently discussed in the literature@29,20#. The
point is that there is a sector in common with the hetero
string compactified onK33S1 @25# which hasN51 super-
symmetry atd55. The sector contains three vectors, the d
of Bmn , Bm6 , gm6 , and in the heterotic case gives two ma
ter vectors and the graviphoton. By denoting
es , e1 , e2 their charges and using the vector parametri
tion of Z as in Ref.@26# it is straightforward to show that6

Zu] iZ50;~ese1e2!
1/3, ~85!

and therefore

A;Z3/2u] iZ50;AQHQF
2, ~86!

whereQH5es , QR6QL5e1 ,e2 , andQF
2[QR

22QL
25e1e2

in the notation of Ref.@29#.
The formula above is a particular case of a general

mula forZ valid for anyN51, d55 theory which we report
here:

Zfix5A@dAB~q!#21qAqB, A;$@dAB~q!#21qAqB%3/4,
~87!

where@dAB(q)#215@dAB„t(z)…u] iZ50#
21. Equation~87! ap-

plies in particular to eleven dimensional supergravity co
pactified on Calabi-Yau threefold.

6We conjecture in analogy with Ref.@22# that the cubic expression
in Eq. ~85! is related to the cubic E~6! invariant of thed55,
N54 theory (N58 of d54).
-

in
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It would be interesting to find the general class of 5
black holes with 1/2 of unbrokenN51, d55 (N52 of
d54) supersymmetry with the area of the horizon realiz
the formula~87!.

It was emphasized over the years by Susskind@27# that
the Bekenstein-Hawking entropy of a ground state of a s
tem is a logarithm of a number of microstates of stri
theory. Therefore it cannot vary continuously and should
pend on charges since the charges are discrete and not
tinuous parameters. This idea become particularly appea
from the time that the entropy of U~1! 2 dilatonic black holes
was shown to be proportional to the product of char
PQ in U~1! 2 theory @4# and toAP1Q2P3Q4 in U~1! 4 case
@18#. This idea was studied and further developed in@28,19#.

The important property of the entropy of supersymme
black holes was proved in@4#: According to the supersym
metric nonrenormalization theorem the entropy does
change when quantum corrections are taken into accoun~in
theories where there are no supersymmetry anomalies!. The
basic reason for the supersymmetric nonrenormaliza
theorem comes from the fact that the unbroken supersym
try of the bosonic configuration is associated with the fer
onic isometries in the superspace. Using Berezin’s inte
tion rules over anticommuting variables one can show
absence of quantum corrections to the effective Euclid
on-shell action related to the entropy.

Quite recently a dramatic progress was achieved in un
standing the microstates of the string theory, which has
lowed a comparison of the macroscopic and the microsc
calculation of the entropy@29–32#. This again at the momen
goes from one striking example to another. The most rec
review of the known dyonic extremal black holes with no
vanishing area can be found in@20#.

We believe that the general property of extremization
the central charge in moduli space which was found in
paper in the context of four-dimensionalN52 supergravity
and static extremal black holes may be generalized for hig
supersymmetries, higher dimensions~like we have shown it
in d55 case!, and rotating stationary black holes. It ma
become a universal principle, which will control the value
the area of the horizon and the Bekenstein-Hawking entr
of the extreme black holes and other extreme objects w
nonvanishing area of the horizon. This principle may fina
make it possible to not merely accumulate various exam
of amazing things happening with supersymmetric solito
but serve as a link between macroscopic and microsc
systems including black holes, strings,p-branes, and
d-branes.
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APPENDIX: SUMMARY OF THE SPECIAL GEOMETRY

Symplectic sections are defined as

~LL,ML!, L50,1, . . .n, ~A1!

where (L,M ) obey the symplectic constraint

i ~ L̄LML2LLM̄L!51. ~A2!

LL(z,z̄) andML(z,z̄) depend onz,z̄, which are the coordi-
nates of ‘‘moduli space.’’ Special geometry relations are

ML5NLSL
S,

D ī M̄L5NLSD ī L̄
S. ~A3!

LL and ML are covariantly holomorphic~with respect to
Kähler connection!, e.g.,

D k̄L
l5~] k̄2 1

2K k̄ !LL50. ~A4!

This equation can be solved by setting

LL5eK/2XL, ML5eK/2FL ~] k̄X
L5] k̄FL50!.

~A5!

The Kähler potential is

K52 lni ~X̄LFL2XLF̄L!, ~A6!

and the Ka¨hler metricGi ī 5] i] ī K with the inverse metric
Gi ī

215Gi ī .
It is obvious that the ratios

tL5
LL

L0
5
XL

X0 ~A7!

are holomorphic in the coordinates and gauge invariant:

] k̄ t
L~z,z̄!50, tL5tL~z!. ~A8!

Consider now the quadratic matrix

ei
a~z!5] i t

a~z!, a51, . . . ,n, t051. ~A9!

If ei
a is invertible, we can choose a frame where
ei
a~z!5d i

a , ta5zid i
a ; ~A10!

i.e., the sectionstL can be identified with the moduli coor-
dinates (tL are called special coordinates!. In this frame one
can further show thatFL is integrable, i.e.,FL5]LF, and
thatF(X)5(X0)2f (t) and

1

X0 ]LF5S ]

]ta
f ~ t !, f 0~ t !52 f ~ t !2ta]af ~ t ! D .

Since uL0u5eK/2uX0u, by a Kähler transformation
XL→XLe2 f (t) we can setX051 and getuL0u5eK/2 as in the
conformal gauge of@7#. If ei

a is not invertible, no prepoten-
tial exists in the chosen symplectic basis. This is what ha
pens in some examples of Sec. III.

Note thatXL(z) are subject to holomorphic redefinitions
~sections of a holomorphic line bundle!:

XL~z!→XL~z!e2 f ~z!, ~A11!

so that

LL~z!→LL~z!e@ f̄ ~z!2 f ~z!#/2. ~A12!

This occurs becauseLL5eK/2XL and K→K1 f1 f̄ under
Kähler transformations, so that

Z~q,p,z!→Z~q,p,z!e@ f̄ ~z!2 f ~z!/2#. ~A13!

We will show in what follows thatDiZ50 implies
] i uZu50.

Generically Z̄ is covariantly holomorphic:

DiZ̄5(] i2
1
2 Ki)Z̄50, which leads to] i Z̄5 1

2 KiZ̄; how-

ever, DiZ5(] i1
1
2 Ki)ZÞ0. Only at the fixed point do

we have to satisfy the constraintDiZ50, which im-
plies DiZZ̄50, Di(ZZ̄)50. It follows that DiZZ̄1ZDiZ̄

5(] i1
1
2 Ki)ZZ̄1Z(] i2

1
2 Ki)Z̄5] iZZ̄1Z] i Z̄5] i uZu2

52uZu] i uZu50.
uZu is both symplectic and Ka¨hler gauge invariant; this is

why the connection drops andDiZ50 (D ī Z50) entails
] i uZu50.
,
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