
J. Phys. A: Math. Gen., Vol. 9, No. 9, 1976. Printed in Great Britain. @ 1Y76 

Supersymmetry and spin systems 

H Nicolai 
Institut fur Theoretische Physik, Universitlt Karlsruhe, 75 Karlsruhe 1, Germany 

Received 21 April 1976 

Abstract. It is shown that supersymmetry may be applied to spin systems. A simple algebra 
is proposed and various examples are discussed. It is argued that certain correlation 
functions must vanish on account of supersymmetry. 

1. Introduction 

Supersymmetry has been a subject of investigation among elementary particle theorists 
for some time (Wess and Zumino 1974, Ferrara et a1 1974, Wess 1974 and references 
therein); however, until now, no use seems to have been made of it in the realm of 
statistical mechanics. It is our intention to close this gap?. 

The basic ingredient of supersymmetry is the use of anticommutators as well as 
commutators in the algebra of symmetry generators; in relativistic quantum field 
theory this has so far proved to be the only way to circumvent certain ‘no-go theorems’ 
concerning the non-trivial fusion of internal symmetries and Poincari invariance 
(Coleman and Mandula 1967). The algebra of sypersymmetry is not an ordinary 
Lie algebra$; only by the use of totally anticommuting parameters (elements of a 
Grassmann algebra) can it be integrated to a group of symmetry transformations. 

Supersymmetry has been realized in the framework of Lagrangian field theory 
where it leads to remarkable and unprecedented consequences. (i) The conserved 
charges are spioorial rather than scalar (this might provide a profound reason for the 
masslessness of the neutrino). (ii) Supersymmetric theories are far less divergent than 
any other known field theory (such as quantum electrodynamics). It is to be expected 
that an application of supersymmetry to statistical mechanics will have similar far- 
reaching consequences. 

Our approach will differ somewhat from the one described: the algebra that we 
propose is non-relativistic as one may not expect the relativistic algebra to be of much 
value for the description of a non-relativistic lattice-in fact, our algebra will be simpler 
than its relativistic counterpart. Also we define supersymmetry in the Hamiltonian 
formalism, which is probably more familiar to statistical physicists, before we turn to the 
Lagrangian formalism which seems to be more popular among field theorists. 
Another difference is the occurrence of pure spin-spin interactions in our non- 
relativistic approach. 

For simplicity we shall only discuss the one-dimensional chain lattice and merely 
indicate the generalization to an arbitrary-dimensional lattice as the generalization will 

t The following review is necessarily somewhat impressionistic. 
$ It is sometimes called a ‘pseudo-Lie algebra’. 
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be obvious in all cases. Furthermore, we shall always assume periodic boundary 
conditions. 

For later convenience we fix our notation: j ,  k, 1, . . . E { 1, . . . , N }  set of indices; ai, 
a )  are annihilation and creation operators of Bose excitations at j ;  I& are annihila- 
tion and creation operators of Fermi excitations at j ;  6, [', . . . are totally anticommut- 
ing parameters. 

We then have the following commutation and anticommutation relations: 

[aj, ak] = [a) ,  a t ]  = 0; [a], a X I  = a j k  

{$j? $k } = {(i;j, 6 k  = 0 ; {$j? (i;k = a j k  

[ai, $ k ] = [ a ? ,  $ k l , ] = [ a j ,  (i;kl=[a?, ( i ; k l = o  

U, 5') = 0; (5, + j } =  I&} = 0 

[L ajI = U, a ) ]  = 0. 
Furthermore 

We shall use anticommuting Fermi operators consistently throughout this paper; 
nonetheless we occasionally give the results in usual notation using Pauli matrices. 

The connection between the two descriptions is explained in the appendix. 

2. Basic algebra and a very simple model 

The basic algebra is 

Q, Q', are the generators of supersymmetry transformations and H will be taken as the 
Hamiltonian of the system (it is understood that the operators act on some Hilbert space 
2). It should be noted that (2.2) is a consequence of (2.1) and expresses the invariance 
of H under supersymmetry transformations. Using anticommuting parameters 5, l', 
(2.1) and (2.2) become 

(2.3) 

(2.4) 

[K?, S'Ol= [Q'c Q'FI = 0; 

[4'Q + Q'C HI = O t .  

g=exp(i[Q+iQ+f+itH), t E ! R  (2.5) 

ClQ, Q ' f l =  ScH 

A group element g may be written as 

and from this using the Hausdorf formula and (2.3), one obtains 

gg' = exp[i([Q + O'f+ tH)] exp[i(l'Q + Q'C+ t'W] 
= exp[i{(l + 5')Q + Qt(f+ c) + [t  + t' - &f' - 4''f)]H)]. (2.6) 

If one used commuting instead of anticommuting parameters it would be impossible to 
obtain a closed expression for gg' in terms of Q, Qt , H due to the unknown value of 

t { Q , < } = { Q ' , < } = O .  
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[a, a'] Therefore the use of anticommuting parameters is essential. If A is any 
operator the (canonically) trarcformed operator is 

A t  = e - i ( ~ ~ + ~ t l ~ A  eif,[Q+O+l) (2.7) 

and the infinitesimal? transformation SA = A'- A is given by 

The simplest realization of (2.1), (2.2) is provided by 

N 

j = 1  
H:= 1 (ui*q + &.$j). (2.10) 

Proof. 

N N 

j = 1  ]=1 
= 1 (-$j+,&j+) + ai.?) = c (UTUj + &j$j). (2.11) 

The variation of ai, a:, $], 6 is given by 

This set of infinitesimal transformations exhibits a characteristic feature of supersym- 
metry transformations: Fermi operators are transformed into Bose operators and vice 
versa. Or, loosely speaking, odd and even operators are transformed into one another. 

t A topology on Grassmann algebras can be defined (Berezin 1966). 
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Remark 1 .  The generalization to a d-dimensional lattice is evident. Instead of (2.9) 
one could take 

(2.9’) 

where j E G is now a multi-index assuming Nd values and fi  runs through the d unit 
vectors of the lattice. 

Remark 2. Polarization of the ai may be included by giving them an additional index 
a €{1,. . . , p } :  

N N -  
Qa:= af&j+/ QL= C $j+iaj,,. (2.9”) 

One may then postulate for example that Q, transforms as a vector and thereby add a 
geometrical symmetry. 

The Hamiltonian (2.10) describes a non-interacting system of N harmonic oscil- 
lators and N spins. The state-space X is spanned by all vectors of the form 

j = 1  j = 1  

In17 (+I)@ . * @InN, f l N ) = : / { n j } ?  {aj))? 

where ni = 0, 1,2, . . . , a, = 0 , l  and the energy of a given state is 

(2.13) 

(2.14) 

The eigenvalues of Q+Qt may be found easily$ (IE,A)=any eigenstate of H, 
A = degeneracy parameter): 

I ( ( Q + Q ~ ) ~ E , A ) ( ~ ~ = ( E , A I ( Q + Q ~ ) ~ ~ E , A ) = ( E , A I H ( E , A ) = E .  (2.15) 

Therefore 

(2.16) 
(0 + Qt)lE, A-) = - G E ,  A-) 

where any additional degeneracy is parametrized by 10) by A + , A - .  Note that an 
Ising-like interaction may be constructed by taking gH+ g’H2 as the invariant Hamilto- 
nian which, however, contains unphysical long-range interactions. 

3. Supersymmetric spin system without Bose operators 

To obtain a non-trivial interaction one has to go beyond the definition (2.9) and 
incorporate expressions which are trilinear in the operators. As Bose operators can be 
omitted, we consider only the case of an interacting system of spins which are aligned on 
a chain. To make the notation more transparent we assume that the chain has 2N 

t $10) = 1 l), cl.11) = (0); #IO) = $1 1) = 0. 10) corresponds’ to ‘spin down’, 11) to ‘spin up’. 
$ Q and Qt are not Hermitian separately and therefore do not correspond to observables. 
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spinst. We then define: 

The anticommutators are$: 

1501 

(3.1) 

+ &*j~/2j+2j+l&2j+ 1 + i z j -  142j- 1 +2j$2j - &j-  1~12j- 1 +2j+ 1 $2j+1> 

and thus we have again a realization of the algebra (2.1) and (2.2). The variations are 
given by 

(3.3) 

To obtain H in conventional notation (see appendix), we make the following substitu- 
tions: 

+ 
$j + uj', $j+gj  7 j =  1 , .  . . ,2N.  (3.4) 

After subtraction of one constant and multiplication by a coupling constant 4g, we get 
from (3.3): 

- - 
f I.e.: $j+2N E $1, $j+2N E $,. 
t They are most conveniently evaluated using 

{ABC, DEF) = - {A,  D}BECF+A{B, D}ECF-D{E, A}BCF+DA{B, E}CF+AB{C, D}EF 

-ABD{C, E}F+ DE{A, F}BC- DEA{B, F}C+ DEAB{C, F}. 
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where boundary terms were neglected as they do not contribute when we let N + CO. 

This Hamiltonian is non-diagonal and contains Ising-like interactions (figure 1). 

-----A- 7 -0-o-o-o- 
u2, - 1 '2J 4 , + 1  ' 2 J + 2  

Figrye 1. Spin-chain and some of the couplings contained in H. 

Remark. Once more the generalization to arbitrary dimension is obvious. One has to 
put, for example, 

(3.1') 

We now illustrate how supersymmetry of the Hamiltonian (3.3) forces certain correla- 
tion functions to vanish. If A is any operator we write (Feynman 1972): 

where p = e-BH T r A  e-BH - TrpA -- 
Tr e-*H Tr P 

(A):= 

The following lemma is easily proved using cyclicity of Tr. 

(3.6) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

By choosing A = +j+k, +,+,&, etc, one constructs further identities connecting various 
correlation functions of higher order; to obtain a restriction on (A, . . . A"), Ai E 
{+j, 6, j = 1, . . . , 2 N }  one has to consider the variation of the (n - 1)-fold product 
A: . . . Using the substitution (for 1 < j , j +  1 < N  (Lieb era1 1961)): 

(3.12) 

one derives from (3.1 1) the following identities: 

(3.13) 

As all identities hold independently of N they remain unaffected when one takes 
A'+ CO, i.e. the thermodynamic limit. 

f Taking complex conjugates, one gets a similar identity. 

(exp[$irr(oz,+ 3 1 ) ]a~~+la2 , -~)  = (exp[-&'ir(atj+ 3 1)]a2j+lazj-1) + +  = 0. - -  
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4. The Lagrangian approach 

In this section we shall utilize the Lagrangian approach to realize the algebra (2.1), (2.2) 
and thereby gain more insight into its meaning; this approach has the advantage that it 
yields all possible representations of the basic algebra. We introduce the concept of a 
superfield 4(t, 8, e), where 8, 8 are totally anticommuting quantities ( r  E W): 

+(t, e, 8) = ~ ( t ) + e + ( t ) + ( C I ( t ) 8 + e ~ ~ ( t ) ;  A = A * , F = F * .  (4.1) 

Repesenting H through the substitution 

d 
dt 

[H,  41 = -i-4 (4.2) 

we extract from (2.6) a representation of Q, Qt in terms of differential operators?: 

Under an infinitesimal transformation 

64 = i[lQ + Qtc 41 = [+ + l8F + @+ @F 

+ $ieZA - tie&- ii@A +tie@$ 

(4.3) 

(4.4) 

from which we read off the transformation rules of the components 

6A = & b + l j l  

64 = ( F  -$A)[ 

64 = C((F + iiA ) 

S F  = $i@$ -I,@), 
(4.5) 

The F component transforms like a total derivative and may therefore be used to 
construct an invariant action integral j?: F(t) dt as is usually done in supersymmetric 
theories$. Other invariants may be constructed if one uses covariant derivatives. These 
are$ 

We are now able to reconstruct the simple model of § 2 for 1 = 0 ((2.9), (2.10)). From 

0 4  = + + 8(F + $iA ) - $it)&$ 
(4.7) D4 = &+e(F-$iA)+$ie@ 

D~DC#JIF = F2 +$A2 +ti& -$i(CI$ 

one obtains 

(4.8) 

which, by partial integration, is equivalent to 

D ~ D ~ I F  = F2 + :A + i&. 

Another invariant is obtained from 

C#J2)F = 2AF- 244. 

(4.9) 

(4.10) 

t For properties of operators like ala0 etc, see Berezin (1966). 
t For example, Wess and Zumino (19741, Ferrara el a1 (1974), Wess (1974) and further references quoted 
therein. 
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Adding together (4.10) and (4.9) we get a Lagrangian 

2= 2F2 +;A2+ 2i44 +2(AF- &). 

The equations of motion lead to the elimination of Ft: 
3 = ;A2 + 2i& -;A2- 2&. 

(4.1 1) 

(4.12) 

The corresponding Hamiltonian is 

H = $A2 +$A2 + 264  (4.13) 

and the equivalence with (2.10) follows immediately upon replacing JI+ (1/42)4 and 
A, A by their corresponding creation and annihilation operators. The equivalence is 
established completely if one introduces a lattice index j and a superfield 4i(t, 8, &) at 
each lattice point. Then (4.13) reads 

(4.13') 

For arbitrary 1 the correct transformation rules are obtained with Ai +Ai+,. Interac- 
tions not discussed in 8 2 may be obtained from 4j&t#qIF. They contain anharmonic 
terms and interactions between spin and harmonic oscillator. It is, however, impossible 
to construct a pure spin-spin interaction from (4.1). 

5. Supersymmetric spin system in the Lagrangian approach 

We introduce an anticommuting superfield X(t ,  & e > :  
X(t ,  e, e> =x( t )+ea( t )+eb( t )+ee4( r )S .  

Dx=o: x(t, e, #)=x+ea+$ee;i  
DX = 0: x'(t, e, 8) = % + t7b -$e@' 

The constrained superfields are 

and they transform as 

ax = la, Sa = -ixz; 6% = fb, Sb = i&. (5.3) 

We notice that a and b terms also yield invariant action integrals§. To reconstruct the 
model of 0 3 we give each superfield X a lattice index j = 1 , .  . . , 2 N  and choose 
Xj =XI"; fi =xi*, bi = a?. The kinetic invariant is (in almost complete analogy with 
(4.9)) : 

x?*l I 4  =a*a.+ti~j~i-$iX.i . 'a*a.+ix.- . .  I I 1x1 - I I 1x1 (5.4) 

The other invariants are constructed from XSr,X,l, etc; note that X,X& = 0 if any two 
of the indices occurring in a product are the same because the superfields anticommute. 

t F is therefore called an auxiliary variable. 
t: Here a, b are not annihilation and creation operators. 
I The other invariant is of course the C$ term of (5.1). 
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To obtain the model of 0 3 we have to slightly readjust our notation: we write 

x~~ = +2j + ea2i + +ieii42i 

x2]+1= &j+l + h % & j i l  j =  1, .  . . , NT. 
(5.5) 

As the interaction we take 

(5.6) 

Written out this is 

which is exactly the Lagrangian analogue of (3.2)$. 

6.  Conclusion 

Having demonstrated that supersymmetry can be defined for entirely non-relativistic 
systems and having illustrated its utility in this context we should like to point out that 
although it will hardly be possible to improve on the simplicity of equations (2.1) and 
(2.21, it may well be possible to find more refined realizations of it, perhaps yielding- 
amongst others-Heisenberg-type (anisotropic) interactions. Work along these lines is 
in progress. 
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Appendix 

We collect here the formulae connecting Pauli operators and Fermi operators (Lieb eta1 
196 1) 

j - 1  

1=1 
+j = expj bir  1 (a: + 1))aj- 

(A. 1) 

where aT:=af *ia?. Then {IG;., @k} = {$. &} = 0; {#j, &} = 8jk implies and is implied by 
[a;, at] = 0 for j # k and {al:, a,:} = {uj , af} = 0; {ai,  a;} = 1. % 
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