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1 Introduction

It was first observed by Zamolodchikov [1] that the composite operator det(T ) = TzzTz̄z̄ −
T 2
zz̄, often referred to as TT , in a two-dimensional field theory is very special. Consider a

family of Lagrangians obtained by solving the differential equation

∂

∂t
L(t) = − det

(

T (t)
)

, (1.1)

where T (t) is the stress-energy tensor of the theory L(t), and not of the original theory

L(0). The parameter t has mass dimension −2. If L(0) is conformal, it is natural to assign

dimension (−1,−1) to t. The flow equation (1.1) defines a curve in the space of theories

with two remarkable properties.

1. The deformation preserves integrability: if one begins with a theory L(0) which is

integrable, in the sense that the theory has infinitely many local integrals of motion,

then the deformed theory L(t) at finite t is also integrable.
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2. The deformation is “solvable.” By this, we mean that one can make precise state-

ments about properties of the deformed theory L(t) in terms of the un-deformed

theory L(0). If the theory is put on a cylinder of radius R, the energy levels of

the deformed theory are related to those of the un-deformed theory by a differential

equation of inviscid Burgers type.

The two properties above are independent. If we begin with a theory L(0) which is not

integrable — say, a single boson subject to a generic potential — one can still write down

differential equations describing the spectrum of L(t) in terms of the data of L(0), even

though neither theory is integrable [2, 3]. The ability to make exact statements about the

spectrum of the deformed theory is particularly remarkable because det(T ) is an irrelevant

operator. The deformed theory is still very mysterious though there are strong indications

it is not a conventional local quantum field theory with local operators [4].

Suppose one now begins with an undeformed Lagrangian which can be written in a

manifestly supersymmetric way as an integral over superspace. If one deforms the physical

Lagrangian with a finite TT deformation as in (1.1), the resulting Lagrangian no longer

respects the symmetries made manifest by the superspace construction. This does not

mean that the quantum theory defined by the finite TT deformation is not supersym-

metric. Indeed there are good reasons to believe that the theory is supersymmetric, but

with non-canonical supersymmetry transformations. The argument goes as follows:1 su-

persymmetry in the undeformed theory implies a Bose-Fermi degeneracy between states

with non-zero energy. The TT deformation has the property that it precisely preserves this

degeneracy [5, 6]. Therefore, at least this implication of supersymmetry should persist in

the deformed theory.

However, the control supersymmetry provides over quantum aspects of a theory is most

easily seen in a formulation where supersymmetry is manifest. The purpose of this paper is

to describe a modification of the TT deformation which preserves manifest supersymmetry.

Our proposed generalization is written as a flow equation for the superspace Lagrangian,

which is therefore automatically supersymmetric. We will see that the object replacing

det(T (t)) on the right side of (1.1) is constructed from a superfield which contains the

supercurrent and stress tensor. We will colloquially refer to this deformation, which will be

defined in section 2.3, as “supercurrent-squared.” After integrating over superspace, this

supercurrent-squared deformation reduces to the usual TT deformation, plus additional

couplings needed to preserve supersymmetry.

The layout of this paper is as follows: in section 2, we define the supercurrent-squared

deformation for two-dimensional theories with (1, 1) supersymmetry. We discuss its re-

lationship with another supercurrent multiplet known as the S-multiplet, and prove that

this deformation is “solvable” in the sense of giving a differential equation for the finite-

volume spectrum. In section 3, we write down the partial differential equation for the

supercurrent-squared deformed Lagrangian in (1, 1) theories, beginning from either a free

undeformed theory or one with an arbitrary superpotential. In section 4, we present the

supercurrent-squared deformation for (0, 1) theories. We write down the differential equa-

1This argument was kindly described to us by David Kutasov.
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tion for the deformed Lagrangian for a class of undeformed theories, and discuss the rela-

tionship between the (1, 1) and (0, 1) deformations. Details of the calculations are found

in appendices A and B.

There have been several proposals for generalizations of the TT deformation to quan-

tum field theories in higher dimensions. In [7], Taylor describes an operator TD which is

quadratic in the stress tensor and shares many properties of TT , but which can be defined

in arbitrary D space-time dimensions. This deformation operator has leading dimension

2D. Unlike TT in D = 2, this operator does not have an unambiguous quantum definition

in D > 2. Interestingly, adding this deformation to the free Maxwell Lagrangian in D

space-time dimensions gives a leading-order term

TD = F σ
µ FνσF

µρF ν
ρ +

(

−1

2
+
D

16
−
(

1− D
4

)2

D − 1

)

(FαβF
αβ)2, (1.2)

which matches the F 4 terms of the super-DBI action in D = 4 but not in other dimensions.

Another interesting deformation of large N CFTs by an operator built out of both

the stress tensor and matter fields is presented in [8]. In this proposal, the deformation

operator again has leading dimension 2D. An appendix of [9] discusses obstructions to

generalizing the interpretation of TT as random geometry to higher dimensions, conclud-

ing that the deformation is no longer topological in D > 2. In [3], the authors discuss

both the generalization to |detT |1/α, with α = D − 1, as well as an alternate proposal

which is also quadratic in the stress tensor and reduces to the Burgers’ equation. Lastly,

an intriguing connection between the TT deformation and Jackiw-Teitelboim gravity is

discussed in [10, 11], where the authors speculate that a higher-dimensional version of this

procedure might explain the Mweak ∼ √
MPlEvac coincidence.

However, our work suggests a different generalization of TT to higher dimensions, mo-

tivated both by string theory and by the beautiful connection between the TT deformation

of free scalars in D = 2 and the Dirac action explained in [2, 3]: deform the superspace

Lagrangian by an operator built from bilinears in the fields of the supercurrent multiplet.

For instance, in a 4D N = 1 theory with a Ferrara-Zumino multiplet [12], construct the

fields Jαα̇ and X in the supercurrent multiplet and then deform the superspace Lagrangian

by a linear combination of Jαα̇J αα̇ and XX.

This proposal is quite general, since a supersymmetric theory in any number of space-

time dimensions has conserved supercurrents associated with its supercharges, and one can

always form a combination of bilinears in these superfields like the one described for the

FZ multiplet here. We conjecture that a deformation quadratic in supercurrents might

be “solvable,” in the sense discussed above, at least for models with a sufficient degree of

supersymmetry.

String theory branes provide some motivation for this conjecture for theories with

extended supersymmetry. The Dirac-Born-Infeld (DBI) action describes the slowly varying

dynamics of a single Dp-brane of string theory. Ignoring the string dilaton and assuming

a flat space-time metric, the DBI action takes the form,

SDBI = −Tp
∫

dp+1σ

√

− det (ηµν + ∂µφ∂νφ+ αFµν). (1.3)
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There are two dimensionful parameters Tp and α; Fµν is an abelian field strength. Usually

the appearance of the Dirac action is tied to spontaneously broken Poincaré invariance.

However, the DBI action can also be motivated differently in models with maximal su-

persymmetry by asking: what irrelevant deformations of the low-energy brane theory are

compatible with maximal supersymmetry? While there is no complete proof that the DBI

action is the unique answer to that question, in an approximation where acceleration terms

are neglected, there is considerable evidence that this should be the case.

Certainly the leading irrelevant operators in the expansion of (1.3) are determined in

models with the maximal sixteen supercharges [13–22]. For models with less supersymme-

try, Cecotti and Ferrara pointed out long ago that when one expands the four-dimensional

N = 1 super-DBI action to first order in field strengths, the leading term is simply the

square of the supercurrent multiplet [23]. This suggests that deforming with supercurrent-

squared, or a close cousin of this operator, might lead to the Dirac or DBI actions in higher

dimensions. The deformation can then also be studied for the case of interacting theories.

It is important to note that the TT deformation of the free Maxwell theory in D = 2

surprisingly does not lead to the Born-Infeld action [24]. However, the authors of [24]

discuss an interesting different connection between two-dimensional TT deformations and

the Born-Infeld theory in D = 4, which might well be related to our conjecture involving

the supercurrent-squared operator.

Note added. While this paper was in the final stages of editing, an interesting paper

appeared with overlapping observations [25].

2 TT and Supersymmetry

In this section we propose a solvable deformation that is compatible with supersymmetry.

As we will discuss, the remarkable property of the T T̄ deformation follows from continu-

ity equations. In the supersymmetric case, we describe analogous relations based on the

conservation laws in superspace.

2.1 Bi-spinor conventions

To fix conventions, we consider two-dimensional field theories in Lorentzian signature with

coordinates (x0, x1). It will be convenient to change coordinates to light-cone variables

using bi-spinor notation. That is, we define

x±± =
1√
2

(

x0 ± x1
)

, (2.1)

and write the corresponding derivatives as ∂±± = 1√
2
(∂0 ± ∂1). In these conventions, we

have ∂±±x±± = 1 and ∂±±x∓∓ = 0.

Spinors in two dimensions carry a single index which is raised or lowered as follows:

ψ+ = −ψ−, ψ− = ψ+. (2.2)
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The advantage of writing all vector indices as pairs of spinor indices is that it allows us

to more easily compare terms in equations which involve a combination of spinor, vec-

tor, spinor-vector, and tensor quantities. For instance, in this notation the supercurrent

has components S+++, S−−−, S+−−, and S−++, which we can immediately identify as

a spinor-vector because it has three indices. Likewise, the stress-energy tensor carries

two vector indices so its components will have four bispinor indices; they are written as

T++++, T−−−−, T++−− = T−−++.

When we consider (1, 1) supersymmetric theories, we will introduce anticommuting

coordinates θ±. The corresponding supercovariant derivatives are defined in our conven-

tions as

D± =
∂

∂θ±
+ θ±∂±±, (2.3)

which satisfy D±D± = ∂±± and {D+, D−} = 0. There are also two supercharges Q±
given by

Q± =
∂

∂θ±
− θ±∂±±, (2.4)

which satisfy Q±Q± = −∂±±.

2.2 Review of TT

Let us review some basics of the TT deformation with no supersymmetry involved. An

integrable field theory contains an infinite set of local integrals of motion generated by

conserved currents. Among those currents, we are mostly interested in the stress energy

tensor, (T±±±±, T±±∓∓), which satisfies the continuity equations

∂−−T++++ + ∂++T++−− = 0

∂++T−−−− + ∂−−T−−++ = 0. (2.5)

Given this set of continuity equations, the authors of [26] suggest considering spinless

composite operators by first constructing bilinear operators, T++++(x)T−−−−(x′) and
T++−−(x)T−−++(x

′), and taking the limit x→ x′. Although such limit is usually singular,

the combination

T++++(x)T−−−−(x
′)− T++−−(x)T−−++(x

′) (2.6)

can be shown to contain no non-derivative divergences in its OPE. It is then natural to

define a local operator T T̄ (x) by

T T̄ (x) + . . . = T++++(x)T−−−−(x
′)− T++−−(x)T−−++(x

′) (2.7)

where . . . contains derivative terms that are not necessarily regular. A T T̄ deformed theory

with action S(t) is a two dimensional integrable field theory deformed by the local operator

T T̄ (x) that satisfies the flow equation

∂

∂t
S(t) = −

∫

d2x T T̄ (x). (2.8)
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The undeformed theory is the initial condition at t = 0. It should be emphasized that T T̄

in (2.8) is constructed from the stress energy tensor of the deformed action S(t), thus it

depends on the coupling t implicitly and the flow equation becomes a non-linear differential

equation. The significance of this deformation is it preserves the integrability. Further-

more, when the spatial direction is compactified on a circle of circumference R, the energy

spectrum of the deformed theory is determined by the inviscid Burgers’ equation,

∂

∂t
En(t, R) = En(t, R)

∂

∂R
En(t, R) +

P 2
n

R
. (2.9)

Here En(t, R) is the energy level and P (R) is the momentum of that state.

As a simple example, consider a free massless scalar φ in two dimensions with action

given by

S(0) =

∫

d2x ∂++φ∂−−φ (2.10)

Here d2x means the measure dx1dx2. Solving the differential equation (2.8), the T T̄ de-

formed action turns out to be

S(t) =

∫

d2x
1

2t

(

−1 +
√

1 + 4t∂++φ∂−−φ
)

. (2.11)

It was first noted in [2] that this is the Nambu-Goto action in static gauge.

2.3 Supercurrent-squared

Because the usual TT deformation discussed in section (2.2) is built from the Noether

current for spatial translations, we will generalize this construction by writing a manifestly

supersymmetric Noether current associated with translations in superspace. For concrete-

ness, we will work in the (1, 1) theory, but a similar calculation in (0, 1) will be described

in section 4.

Consider a supersymmetric Lagrangian which is written as an integral over (1, 1) su-

perspace as L =
∫

d2θA. We allow A to depend on a superfield Φ and a particular set of

Φ derivatives listed below:

A = A (Φ, D+Φ, D−Φ, ∂++Φ, ∂−−Φ, D+D−Φ) . (2.12)

The supercovariant derivatives D± are defined in (2.3). The superspace equation of motion

associated with this Lagrangian is

δA
δΦ

= D+

(

δA
δD+Φ

)

+D−

(

δA
δD−Φ

)

+ ∂++

(

δA
δ∂++Φ

)

+ ∂−−

(

δA
δ∂−−Φ

)

−D+D−

(

δA
δD+D−Φ

)

. (2.13)

As in the derivation of the usual stress tensor T , we now consider a spatial translation of the

form δx±± = a±± for some constant a±±. The variation δA of the superspace Lagrangian

– 6 –
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is given by

δA = D+

(

δΦ
δA

δD+Φ

)

+D−

(

δΦ
δA

δD−Φ

)

+ ∂++

(

δΦ
δA

δ∂++Φ

)

+ ∂−−

(

δΦ
δA

δ∂−−Φ

)

+
1

2

(

D+

(

δA
δD+D−Φ

D−δΦ

)

+D−

(

δΦD+
δA

δD+D−Φ

))

− 1

2

(

D−

(

δA
δD+D−Φ

D+δΦ

)

+D+

(

δΦD−
δA

δD+D−Φ

))

− δΦ

(

−δA
δΦ

+D+
δA

δD+Φ
+D−

δA
δD−Φ

+ ∂++
δA

δ∂++Φ
+ ∂−−

δA
δ∂−−Φ

−D+D−
δA

δD+D−Φ

)

. (2.14)

Here we have chosen to symmetrize the term involvingD+D− δA
δD+D−Φ using {D+, D−} = 0.

The last two lines of (2.14) are the superspace equation of motion; we now specialize

to the case of on-shell variations, for which this last term vanishes. Further, the left side

of (2.14) is δA = a++∂++A+a−−∂−−A, which is a total derivative. We use ∂±± = D±D±
to express (2.14) in the form

0 = a++D+

[

∂++Φ
δA

δD+Φ
+D+

(

∂++Φ
δA

δ∂++Φ

)

+
1

2

δA
δD+D−Φ

D− (∂++Φ)

− 1

2
∂++ΦD−

(

δA
δD+D−Φ

)

−D+A
]

+ a++D−

[

∂++Φ
δA

δD−Φ
+D−

(

∂++Φ
δA

δ∂−−Φ

)

− 1

2

δA
δD+D−Φ

D+ (∂++Φ)

+
1

2
∂++ΦD+

(

δA
δD+D−Φ

)]

+ a−−D+

[

∂−−Φ
δA

δD+Φ
+D+

(

∂−−Φ
δA

δ∂++Φ

)

+
1

2

δA
δD+D−Φ

D− (∂−−Φ)

− 1

2
∂−−ΦD−

(

δA
δD+D−Φ

)]

+ a−−D−

[

∂−−Φ
δA

δD−Φ
+D−

(

∂−−Φ
δA

δ∂−−Φ

)

− 1

2

δA
δD+D−Φ

D+ (∂−−Φ)

+
1

2
∂−−ΦD+

(

δA
δD+D−Φ

)

−D−A
]

.

(2.15)

This equation gives a conservation law for a superfield T which we define by

T++− = ∂++Φ
δA

δD+Φ
+D+

(

∂++Φ
δA

δ∂++Φ

)

+
1

2

δA
δD+D−Φ

D− (∂++Φ)

− 1

2
∂++ΦD−

(

δA
δD+D−Φ

)

−D+A,

– 7 –
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T+++ = ∂++Φ
δA

δD−Φ
+D−

(

∂++Φ
δA

δ∂−−Φ

)

− 1

2

δA
δD+D−Φ

D+ (∂++Φ)

+
1

2
∂++ΦD+

(

δA
δD+D−Φ

)

,

T−−− = ∂−−Φ
δA

δD+Φ
+D+

(

∂−−Φ
δA

δ∂++Φ

)

+
1

2

δA
δD+D−Φ

D− (∂−−Φ) (2.16)

− 1

2
∂−−ΦD−

(

δA
δD+D−Φ

)

,

T−−+ = ∂−−Φ
δA

δD−Φ
+D−

(

∂−−Φ
δA

δ∂−−Φ

)

− 1

2

δA
δD+D−Φ

D+ (∂−−Φ)

+
1

2
∂−−ΦD+

(

δA
δD+D−Φ

)

−D−A.

In terms of T , then, equation (2.15) implies the superspace conservation laws:

D+T++− +D−T+++ = 0, D+T−−− +D−T−−+ = 0. (2.17)

We are now in a position to propose the supercurrent-squared deformation. Consider a

one-parameter family of superspace Lagrangians labeled by t, which satisfy the ordinary

differential equation

∂

∂t
A(t) = T (t)

+++T
(t)
−−− − T (t)

−−+T
(t)
++−, (2.18)

where T (t) is the supercurrent superfield (2.16) computed from the superspace Lagrangian

A(t). This uniquely defines the supercurrent-squared deformation of an initial Lagrangian

A(0) at finite deformation parameter t.

2.4 Reduction to components for a free theory

To illutrate the relationship between the flow equation (2.18) and the usual TT operator,

let us explicitly compute the components of the supercurrent-squared deformation for a

free (1, 1) superspace Lagrangian

A = D+ΦD−Φ, (2.19)

where Φ is a superfield with component expansion

Φ = φ+ iθ+ψ+ + iθ−ψ− + θ+θ−f. (2.20)

The entries of T , defined by (2.16), for the free theory are

T++− = ∂++ΦD−Φ−D+ (D+ΦD−Φ) ,

T+++ = −∂++ΦD+Φ,

T−−− = ∂−−ΦD−Φ,

T−−+ = −∂−−ΦD+Φ−D− (D+ΦD−Φ) .

(2.21)

– 8 –
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In components, (2.21) is

T++− =− iψ+f + θ+ (−f∂++φ+ ψ+∂++ψ−) + θ−
(

−f2 − ψ+∂−−ψ+

)

+ iθ+θ−
(

− ∂++φ∂−−ψ+ − ∂++ψ+∂−−φ− f∂++ψ− + ψ−∂++f

+ ∂++ (ψ+∂−−φ− ψ−f)
)

,

T+++ =− iψ+∂++φ− θ+
(

ψ+∂++ψ+ + (∂++φ)
2
)

− θ− (f∂++φ+ ψ+∂++ψ−)

− iθ+θ− (2∂++φ∂++ψ− + ψ+∂++f − f∂++ψ+) ,

T−−− = iψ−∂−−φ+ θ+ (ψ−∂−−ψ+ − f∂−−φ) + θ−
(

ψ−∂−−ψ− + (∂−−φ)
2
)

+ iθ+θ− (ψ−∂−−f − f∂−−ψ− − 2∂−−φ∂−−ψ+) , (2.22)

T−−+ =− iψ−f + θ+
(

f2 + ψ−∂++ψ−
)

+ θ− (−f∂−−φ− ψ−∂−−ψ+)

+ iθ+θ−
(

− ∂−−φ∂++ψ− + f∂−−ψ+ − ∂−−ψ−∂++φ− ψ+∂−−f

+ ∂−− (ψ+f + ψ−∂++φ)
)

.

To compare with the bosonic TT deformation, we identify the components of the usual

stress tensor T for the theory of a free boson φ and fermions ψ± which one obtains by

performing the integrals over θ±. In our conventions, these take the form:

T++++ = (∂++φ)
2 + ψ+∂++ψ+,

T−−−− = (∂−−φ)
2 + ψ−∂−−ψ−.

(2.23)

We will also drop terms involving the auxiliary field f , since in the bosonic part of the

supercurrent-squared deformation, these terms vanish after integrating out f using its

equation of motion. Then the bilinears appearing in our flow equation (2.18) are

T+++T−−− = ψ+ψ−∂++φ∂−−φ+ iθ+ (ψ+ψ−∂++φ∂−−ψ+ − T++++ψ−∂−−φ)

+ iθ− (ψ+∂++φT−−−− + ψ+ψ−∂++ψ−∂−−φ)− θ+θ−
(

T++++T−−−−

+ 2∂++φ∂−−φ (ψ+∂−−ψ+ + ψ−∂++ψ−)− ψ−∂++ψ−ψ+∂−−ψ+

)

,

T++−T−−+ = −2θ+θ− (ψ+∂−−ψ+ψ−∂++ψ−) .

(2.24)

The superspace integral of the deformation T+++T−−− + T++−T−−+ picks out the top

component, which is

∫

d2θ (T+++T−−− + T++−T−−+) =

− T++++T−−−− − 2∂++φ∂−−φ (ψ+∂−−ψ+ + ψ−∂++ψ−)− ψ−∂++ψ−ψ+∂−−ψ+.

(2.25)

We see that (2.25) contains the usual TT deformation, given in our bi-spinor notation by

−T++++T−−−−, along with extra terms which are all proportional to the fermion equations

of motion, ∂±±ψ∓ = 0. These added terms vanish on-shell and, as we will argue in

section (2.6), do not spoil solvability: the energy levels of the deformed theory can still be

expressed in terms of those in the undeformed theory, as in the purely bosonic TT case.
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2.5 Relationship with the S-multiplet

The (1, 1) superfield T contains the conserved stress-energy tensor Tµν and the supercurrent

Sµα. Such current multiplets have received much attention in the literature; the first

construction for four-dimensional theories was the FZ multiplet [12], which was later shown

to be a special case of the more general S-multiplet [27].

For the two-dimensional theories we consider here, it is known that the S-multiplet

is the most general multiplet containing the stress tensor and supercurrent, subject to

assumptions that the multiplet be indecomposable and contain no other operators with

spin greater than one. Since our supercurrent superfield T satisfies these properties, it

must be equivalent to the S-multiplet. As we will show, the four superfields contained in

T are identical to the four superfields of the S-multiplet, up to terms which vanish on-shell

and therefore do not affect the conservation equations for the currents.

The S-multiplet is a reducible but indecomposable set of two superfields S and χ

satisfying the constraints

D∓S±±± = D±χ±,

D−χ+ = D+χ−.
(2.26)

In components, the S-multiplet for (1, 1) theories contains the usual stress tensor Tµν , the

supercurrent Sµα, and a vector Zµ which is associated with a scalar central charge:

S+++ = S+++ + θ+T++++ + θ−Z++ − θ+θ−∂++S−++,

S−−− = S−−− + θ+Z−− + θ−T−−−− + θ+θ−∂−−S+−−,

χ+ = S−++ + θ+Z++ + θ−T++−− − θ+θ−∂++S+−−,

χ− = S+−− + θ+T++−− + θ−Z−− + θ+θ−∂−−S−++.

(2.27)

In terms of these component fields, the constraints (2.26) give conservation equations for

the currents:

∂++T−−−− + ∂−−T++−− = 0 = ∂++T−−++ + ∂−−T++++,

∂++S+−− + ∂−−S+++ = 0 = ∂++S−−− + ∂−−S−++,

∂++Z−− + ∂−−Z++ = 0.

(2.28)

We claim that the components (2.22) of our superspace supercurrent are the same

as those in the two superfields S and χ appearing in the (1, 1) S-multiplet (2.27), up to

signs and terms which vanish on-shell. In particular, after discarding terms which are

proportional to the equations of motion, we find the identifications:

S±±± = ∓T±±±, χ+ = T++−, χ− = T−−+. (2.29)

We will check this explicitly for the free theory, A = D+ΦD−Φ, for which we computed

the components of T in section (2.4). Writing only those terms that survive when the

component equations of motion f = 0, ∂++ψ− = 0 = ∂−−ψ+, and ∂++∂−−φ = 0 are all
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satisfied, (2.22) becomes

T++−
on-shell
= 0,

T+++
on-shell
= −iψ+∂++φ− θ+

(

ψ+∂++ψ+ + (∂++φ)
2
)

,

T−−−
on-shell
= iψ−∂−−φ+ θ−

(

ψ−∂−−ψ− + (∂−−φ)
2
)

,

T−−+
on-shell
= 0.

(2.30)

For the free (1, 1) superfield considered here, the supercurrent is given in our conventions by

S+++ = ψ+∂++φ,

S−−− = ψ−∂−−φ,

S+−− = 0 = S−++,

(2.31)

while the stress tensor components are as in (4.12). To find expressions for the scalar

central charge current Z±±, we use the supersymmetry algebra implied by the S-multiplet

constraints, which gives

{Q±, S±±±} = T±±±±,

{Q±, S±∓∓} = T±±∓∓,

{Q±, S∓±±} = Z±±,

{Q±, S∓∓∓} = Z∓∓.

(2.32)

Note that the S-multiplet constraints only hold when the conservation equations for the

currents hold, so the relations (2.32) should be viewed as an on-shell algebra. Acting with

the supercharges Q± on the stress tensor and supercurrent components, one finds that

Z−− ∼ ψ−∂−−ψ+ and Z++ ∼ ψ+∂++ψ−, both of which vanish when the fermion equations

of motion are satisfied.

Thus, after imposing the equations of motion, we can write our supercurrent superfield

components as

T++− = χ+ = 0, T−−+ = 0 = χ−,

T+++ = −S+++ − θ+T++++ = −S+++, T−−− = S−−− + θ−T−−−− = S−−−. (2.33)

Since terms which vanish on-shell do not affect conservation equations, one can view T as

an improvement transformation of the S-multiplet. The constraint equation D∓S±±± −
D±χ± = 0 is expressed by our conservation equations D+T++− + D−T+++ = 0 and

D+T−−− +D−T+−− = 0.

2.6 Why are superspace deformations solvable?

In this section we prove the theory deformed by (2.18) is solvable just like the usual T T̄

deformation. Let’s begin with the conservation law in superspace (2.17). It is straight-

forward to solve these constraints in components by using the conservation of the stress
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energy tensor:

T+++ = H+++ − θ+T++++ − θ−W++ + θ+θ−G+++,

T−−− = H−−− + θ−T−−−− + θ+W−− − θ+θ−G−−−,

T−−+ = H−−+ − θ+T−−++ − θ−W−− + θ+θ−G−−+,

T++− = H++− + θ−T++−− + θ+W++ − θ+θ−G++−.

(2.34)

Here (H±±±, H∓∓±) denote the lowest components of T while (G±±±, G∓∓±) are its high-
est components. The conservation law in (2.17) implies constraints on G and H:

G∓∓± = ∂±±H∓∓∓,

G±±± = ∂±±H∓±±.
(2.35)

In terms of these components, the deformation in (2.18) becomes

∂

∂t
L(t) =−

∫

d2θ (T+++T−−− + T++−T−−+)

=− (T++++T−−−− − T++−−T−−++) (2.36)

+ (H+++G−−− −G+++H−−− −H++−G−−+ +G++−H−−+) .

The first bracket of the right hand side is the usual T T̄ deformation. To understand how

the second bracket changes the energy level, we consider the two-point correlation function.

C =
〈

H+++(x)G−−−(x
′)
〉

−
〈

G+++(x)H−−−(x
′)
〉

(2.37)

−
〈

H++−(x)G−−+(x
′)
〉

+
〈

G++−(x)H−−+(x
′)
〉

.

Up to contact terms that vanish at separated points, we can replace G by using the con-

servation equation (2.35):

C =
〈

H+++(x)∂
′
−−H−−+(x

′)
〉

−
〈

∂++H++−(x)H−−−(x
′)
〉

(2.38)

−
〈

H++−(x)∂
′
++H−−−(x

′)
〉

+
〈

∂−−H+++(x)H−−+(x
′)
〉

.

Here ∂′ means the derivative with respect to the coordinate x′. Now we can use translational

invariance to move the derivative from x′ to x. Then the first term cancels the fourth term

and the third term cancels the second one because both H and G are fermionic, hence C
vanishes at separated points. This implies the extra term can have no effect on the energy

level. The presence of the extra term is only to make the action supersymmetric. The

theory remains solvable, like the usual T T̄ deformation, with the same relation between

deformed and undeformed energy levels.

3 Theories with (1, 1) supersymmetry

In this section, we consider the supercurrent-squared deformation of a theory involving a

single (1, 1) superfield Φ, both in the free case and with a superpotential.
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3.1 Free (1,1) superfield

First consider an undeformed superspace Lagrangian A(0) = D+ΦD−Φ. We make the

following ansatz for the deformed Lagrangian at finite t:

A(t) = F
(

t∂++Φ∂−−Φ, t (D+D−Φ)
2
)

D+ΦD−Φ. (3.1)

Here F may only depend on the two dimensionless combinations which we define by

x = t ∂++Φ∂−−Φ, y = t (D+D−Φ)
2 . (3.2)

In order to reduce to the free theory as t→ 0, we must also impose the boundary condition

F (0, 0) = 1.

After computing the components of the supercurrent-squared deformation and simpli-

fying, the flow equation (2.18) yields

∂

∂t
F =

(

(D+D−Φ)
2 − ∂++Φ∂−−Φ

)

F 2

− 2F (∂++Φ∂−−Φ)
(

∂++Φ∂−−Φ+ (D+D−Φ)
2
) ∂F

∂x
.

(3.3)

In terms of the dimensionless variables x and y, equation (3.3) becomes

∂F

∂x
x+

∂F

∂y
y = (y − x)F 2 − 2F

∂F

∂x
x(x+ y). (3.4)

Supplemented with the boundary condition F (0, 0) = 1, the partial differential equa-

tion (3.3) uniquely determines the deformed Lagrangian at finite t.

As a check, we would like to verify that the bosonic structure of the solution to (3.3)

reduces to the known results for the TT -deformed theory of a free boson. We will argue

that, in fact, it suffices to set y = 0 in (3.3) and note that the result agrees with the flow

equation obtained in the purely bosonic case [2].

Indeed, let us write the components of the superfield Φ as Φ = φ+ iθ+ψ+ + iθ−ψ− +

θ+θ−f . To probe the bosonic structure, it suffices to set ψ± = 0, perform the superspace

integration, and then integrate out the auxiliary field f using its equation of motion. Thus

consider an arbitrary superspace integral of the form

L(t) =

∫

d2θF (t)(x, y)D+ΦD−Φ. (3.5)

The lowest component of the superfield y = tD+ΦD−Φ is −f , and the higher components

will not contribute to the bosonic part because they come multiplying D+ΦD−Φ, which is

already proportional to θ+θ− after setting the fermions to zero.

Thus the purely bosonic piece of the physical Lagrangian associated with a superspace

Lagrangian A(t) = F (t)(x, y)D+ΦD−Φ is

L(t) = F (t)
(

t∂++φ∂−−φ, tf
2
) (

f2 + 4∂++φ∂−−φ
)

. (3.6)
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The equation of motion for the auxiliary field f is

2tf
∂F

∂y

(

f2 + 4∂++φ∂−−φ
)

+ 2fF = 0, (3.7)

which admits the solution f = 0. The Lagrangian for the bosonic field φ is then

L(t) = 4F (t) (t∂++φ∂−−φ, 0) ∂++φ∂−−φ. (3.8)

Therefore, to determine the terms in the Lagrangian which involve only φ, we may solve

the simpler partial differential equation

∂F

∂x
x = −xF 2 − 2Fx2

∂F

∂x
, (3.9)

which holds upon setting y = 0 in (3.4). But this is precisely the equation discussed in

section 2.2, whose solution is equation (2.11):

L(t) =

√

1 + 4t∂++φ∂−−φ− 1

2t
. (3.10)

We see that the supercurrent-squared deformation of the free superfield is indeed a gen-

eralization of the TT deformation of a free boson, in the sense that it yields the same

modification to the purely bosonic terms in the action but also includes additional terms

which affect only the fermions.

3.2 Interacting (1,1) superfield

Next, we consider the case with a superpotential: that is, we begin from the undeformed

superspace Lagrangian

A(0) = D+ΦD−Φ+ h(Φ), (3.11)

where h(Φ) is an arbitrary function (it need not give rise to a theory with infinitely many

integrals of motion). After performing the superspace integral, the physical Lagrangian is

L(0) =

∫

d2θA(0) = ∂++φ∂−−φ+ ψ+∂−−ψ+ + ψ−∂++ψ− + f2 + h′(φ)f. (3.12)

Integrating out the auxiliary field using its equation of motion f = −1
2h

′(φ), we see that

the physical potential V is given by V = −1
4h

′(φ)2.

We might expect that both the kinetic and potential terms are modified by a finite

supercurrent-squared deformation, which would lead us to make the ansatz

A(t) = F (x, y)D+ΦD−Φ+G(t,Φ), (3.13)

where G is a new function to be determined, and x = t∂++Φ∂−−Φ, y = t (D+D−Φ)
2 as

above. However, the deformation does not induce any change in the potential h, so in fact
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we may put G = h for all t. To see this, we can write down the supercurrent-squared

deformation associated with the ansatz (3.13), which gives

∂

∂t
F (x, y)D+ΦD−Φ+

∂

∂t
G(t,Φ) = (3.14)

1

t

(

(y − x)F 2 − 2Fx(x+ y)
∂F

∂x
+
(

G′)2 + 2G′√y
(

x
∂F

∂x
− F

)

− 2
√
yxG′∂F

∂y

)

D+ΦD−Φ.

The details of the calculation leading to (3.14) are discussed in appendix A. We see that

deformation is proportional to D+ΦD−Φ, so it does not source any change in the potential

h(Φ); thus we may take G(h,Φ) = h(Φ) in our ansatz. This leaves us with a single partial

differential equation for F , namely

x
∂F

∂x
+ y

∂F

∂y
= (y − x)F 2 − 2Fx(x+ y)

∂F

∂x
+
(

h′
)2

+ 2h′
√
y

(

x
∂F

∂x
− F

)

− 2
√
yxh′

∂F

∂y
.

(3.15)

In the second line, we have used the constraint that F can depend only on the dimensionless

combinations x = t∂++Φ∂−−Φ and y = t (D+D−Φ)
2.

As in the free case, we would like to study the purely bosonic terms in the physical

Lagrangian resulting from (3.15) and compare them to known results. Here the auxiliary

will play a more important role since f = 0 is no longer a solution.

We can expand both the Lagrangian L =
∫

d2θ (F (x, y)D+ΦD−Φ+ h(Φ)) and the

auxiliary field f as power series in t:

L =
∞
∑

j=0

tjL(j), f =
∞
∑

j=0

tjf (j), (3.16)

and then integrate out the auxiliary order-by-order in t. Doing so to order t3, we arrive at

L = −1

4
h′(φ)2 +

x

t
+ t

(

1

16
h′(φ)4 −

(x

t

)2
)

+ t2
(

−1

4

(x

t

)2
h′(φ)2 − 1

64
h′(φ)6 + 2

(x

t

)3
)

+ t3
(

(x

t

)3
h′(φ)2 +

1

256
h′(φ)8 − 5

(x

t

)4
)

+O(t4),

(3.17)

after setting the fermions to zero. Up to conventions, this matches the Taylor expansion

of the known result [2, 3] for the TT deformation of a boson with a generic potential V ,

which is given in our conventions as

L(t) = − 1

2t

1− 2tV

1− tV
+

1

2t

√

t (4V + ∂++φ∂−−φ)
1− tV

+
(1− 2tV )2

(1− tV )2
. (3.18)

Again the physical potential V is related to h via V = −1
4h

′(φ)2. We have checked explicitly

that the bosonic part of the series solution to the PDE (3.15) matches the Taylor expansion

of (3.18) up to O(t7).
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4 Theories with (0, 1) supersymmetry

In this section we study the deformation of a theory with chiral (0, 1) supersymmetry; a

(0, 1) scalar superfield Φ consists of a scalar and a real fermion, Φ = φ + iθ+ψ+. The

Lagrangian in superspace is a function of D+Φ, ∂++Φ, ∂−−Φ, as well as Φ itself.

4.1 Free (0,1) superfield

The free theory is defined by the Lagrangian,

L =

∫

dθ+ D+Φ∂−−Φ,

= ∂++φ∂−−φ+ ψ+∂−−ψ+.

(4.1)

Following the approach of section 2.3, we first look for conservation laws for a given super-

space Lagrangian A. They take the form,

∂−−S+++ +D+T++−− = 0,

∂−−S−−+ +D+T−−−− = 0,
(4.2)

where S±±+ and T±±−− are superfields given by:

S+++ =
δA

δ∂−−Φ
∂++Φ,

S−−+ =
δA

δ∂−−Φ
∂−−Φ−A,

T++−− =
δA

δD+Φ
∂++Φ+D+

(

δA
δ∂++Φ

∂++Φ

)

−D+A,

T−−−− =
δA

δD+Φ
∂−−Φ+D+

(

δA
δ∂++Φ

∂−−Φ

)

.

(4.3)

We define the supercurrent-squared deformation as follows:

∂

∂t
A(t) = S+++T−−−− − S−−+T++−−. (4.4)

To understand what the deformation (4.4) does to a (0, 1) theory, consider an unde-

formed Lagrangian in superspace

A(0) = g(Φ)D+Φ∂−−Φ, (4.5)

where g(Φ) is an arbitrary differentiable function of the superfield. A free theory corre-

sponds to a constant g(Φ). To find the deformed theory A(t), we first make a general ansatz

for the deformed Lagrangian

A(t) = f(t∂++Φ∂−−Φ)D+Φ∂−−Φ, (4.6)

where f(x) is some differentiable function. Using the expression for the supercurrents given

in (4.3) and imposing the initial condition f(x → 0) = g(Φ), we find the function f(x)

satisfies the same differential equation found in (3.9). Its solution is given by

f(x) =

√

1 + 4xg(Φ)− 1

2x
. (4.7)
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4.2 Reduction of (1,1) to (0,1)

Any theory with (1, 1) global supersymmetry can also be viewed as a theory with (0, 1)

global supersymmetry. Up to possible field redefinitions, we should therefore be able to

relate the (1, 1) theory deformed by the supercurrent-squared deformation defined in (2.16)

to the (0, 1) of (4.4), which we would have used if we had simply restricted to (0, 1)

supersymmetry.

To be more precise, consider a (1, 1) theory whose physical Lagrangian L is given by

the integral of a superspace Lagrangian A(1,1) over (1, 1) superspace. We can also view this

as a (0, 1) theory,

L =

∫

d2θA(1,1) =

∫

dθ+A(0,1). (4.8)

The flow equation defining the supercurrent-squared deformation of A(1,1) is ∂tA(1,1) =

T+++T−−−−T−−+T++−. By performing the integral over θ−, this induces a flow for A(0,1)

due to (4.8), namely

∂

∂t
A(0,1) =

∫

dθ+ (T+++T−−− − T−−+T++−) . (4.9)

For instance, let us consider the deformation of the free theory A(1,1) = D+Φ
(1,1)D−Φ(1,1).

This can be written as an integral over (0, 1) superspace as
∫

d2θ D+Φ
(1,1)D−Φ

(1,1) =

∫

dθ+
(

− iψ+∂−−φ− iψ−f − θ+
(

f2 + ∂++φ∂−−φ

+ ψ+∂−−ψ+ + ψ−∂++ψ−
)

)

= −
∫

dθ+
(

D+Φ
(0,1)∂−−Φ

(0,1) +Ψ−D+Ψ−
)

.

(4.10)

Here we have written the integrand on the right side of (4.10) as a superspace Lagrangian

A(0,1)
(

Φ(0,1),Ψ−
)

for a superfield Φ(0,1) = φ + iθ+ψ+ of the form discussed above, along

with an extra Fermi superfield Ψ− = iψ− + θ+f :

A(0,1)
(

Φ(0,1),Ψ−
)

= D+Φ
(0,1)∂−−Φ

(0,1) +Ψ−D+Ψ−. (4.11)

For comparison, we compute the supercurrent-squared deformation to leading order in

t; that is, we compute the tangent vector ∂A(1,1)

∂t |t=0 to the free theory along the flow and

compare it to that of the free (0, 1) theory with an extra fermion.

The components of the supercurrent superfield associated with the free theory, after

integrating out the auxiliary using f = 0, are given in equation (2.24). Using these and

performing the integral over θ−, the reduced flow equation (4.9) at t = 0 becomes

∂

∂t
A(0,1)|t=0 = i (ψ+∂++φT−−−− + ψ+ψ−∂++ψ−∂−−φ) + θ+

(

T++++T−−−−

+ 2∂++φ∂−−φ (ψ+∂−−ψ+ + ψ−∂++ψ−) + ψ−∂++ψ−ψ+∂−−ψ+

)

,

(4.12)

where we have used T±±±± = (∂±±φ)
2 + ψ±∂±±ψ±.
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We know that the solution to (4.12) must represent a solvable deformation of the

original (0, 1) theory because it descends from a solvable deformation in the parent (1, 1)

theory. On the other hand, one can construct the flow equation (4.4) directly in the (0, 1)

theory. This must also yield a solvable deformation since it is built out of currents which

satisfy a superspace conservation equation of the form used in the proof of section (2.6).

One might suspect that these two deformations should be the same, up to field redefinitions

which do not affect the spectrum.

To check this, let us compare the leading-order deformations for these two cases in

components. After including the contributions ∂±±Ψ− δA
δD±Ψ−

to T±±−− due to the fermion

Ψ−, the currents (4.3) for this theory are

S+++ = D+Φ∂++Φ

= iψ+∂++φ+ θ+
(

ψ+∂++ψ+ + (∂++φ)
2
)

,

S−−+ = −Ψ−D+Ψ−

= −iψ−f − θ+
(

f2 + ψ−∂++ψ−
)

,

T++−− = ∂−−Φ∂++Φ+Ψ−∂++Ψ− −D+ (D+Φ∂−−Φ+Ψ−D+Ψ−)

= −ψ+∂−−ψ+ − f2 + iθ+ (∂++φ∂−−ψ+ − ψ+∂++∂−−φ) ,

T−−−− = (∂−−Φ)
2 −Ψ−∂−−Ψ−

= (∂−−φ)
2 + ψ−∂−−ψ− + iθ+ (−f∂−−ψ− + ψ−∂−−f + 2∂−−φ∂−−ψ+) .

(4.13)

The bilinears appearing in the (0, 1) deformation are

S+++T−−−− = iψ+∂++φT−−−− + θ+
(

T++++T−−−−

+ ψ+∂++φ (ψ−∂−−f − f∂−−ψ− + 2∂−−φ∂−−ψ+)
)

,

S−−+T++−− = iψ−f
(

ψ+∂−−ψ+ + f2
)

+ θ+
( (

f2 + ψ−∂++ψ−
) (

f2 + ψ+∂−−ψ+

)

+ ψ−f (ψ+∂++∂−−φ− ∂++φ∂−−ψ+)
)

,

(4.14)

and thus the (0, 1) flow equation at t = 0 is given by

∂

∂t
A(0,1)|t=0 =S+++T−−−− − S−−+T++−−

= iψ+∂++φT−−−− − iψ−f
(

ψ+∂−−ψ+ + f2
)

(4.15)

+ θ+
(

T++++T−−−− + ψ+∂++φ (ψ−∂−−f − f∂−−ψ− + 2∂−−φ∂−−ψ+)

−
(

f2+ ψ−∂++ψ−
)(

f2+ ψ+∂−−ψ+

)

− ψ−f (ψ+∂++∂−−φ− ∂++φ∂−−ψ+)
)

.

The deformations (4.12) and (4.15) agree up to terms proportional to the equations of

motion f = 0 and ∂++ψ− = 0. At this order in t, such terms can be removed by making

a field redefinition involving f and ψ−. If this can be repeated order-by-order in t, as we

suspect should be the case, then the two flows are genuinely equivalent and give rise to

deformed theories with the same energies.
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A Details of the (1, 1) PDE calculation

In this appendix, we show some steps of the calculation which leads to the partial differen-

tial equation (3.15) defining the supercurrent-squared deformation of a free theory with a

potential. By setting h = 0, this calculation also reproduces the PDE (3.3) which describes

deformations of the free theory.

We would like to consider what happens when we deform the superspace Lagrangian

A(0) = D+ΦD−Φ+ h(Φ), according to the flow equation (2.18),

∂

∂t
A(t) = T (t)

+++T
(t)
−−− − T (t)

−−+T
(t)
++−.

It will help to introduce some shorthand: we define A = D+ΦD−Φ so that A(0) = A,

and let x = t∂++Φ∂−−Φ and y = t (D+D−Φ)
2 as before. Also define the dimensionful

combinations

X = ∂++Φ∂−−Φ =
x

t
, Y = (D+D−Φ)

2 =
y

t
. (A.1)

Our ansatz for the superspace Lagrangian at finite t will be A(t) = F (x, y)A+ h(Φ).

With this ansatz, some of the terms in (2.16) will not contribute to the right side

of (2.18). For instance, the terms δA
δD+D−ΦD±∂±Φ will be proportional to D+ΦD−Φ = A.

However, every term in the superspace supercurrent is proportional to D+Φ, D−Φ, or

D+ΦD−Φ. Therefore, when we construct a bilinear in T , any term containing D+ΦD−Φ
will not contribute because it can only appear multiplying another term which contains at

least one of D±Φ, which vanishes because (D±Φ)
2 = 0.

For our special ansatz, we will re-write the components of T keeping only terms which

contribute to bilinears,

T++− ∼ ∂++Φ
δA

δD+Φ
+ ∂++ΦD+

(

δA
δ∂++Φ

)

− 1

2
∂++ΦD−

(

δA
δD+D−Φ

)

−D+A,

T+++ ∼ ∂++Φ
δA

δD−Φ
+ ∂++ΦD−

(

δA
δ∂−−Φ

)

+
1

2
∂++ΦD+

(

δA
δD+D−Φ

)

,

T−−− ∼ ∂−−Φ
δA

δD+Φ
+ ∂−−ΦD+

(

δA
δ∂++Φ

)

− 1

2
∂−−ΦD−

(

δA
δD+D−Φ

)

,

T−−+ ∼ ∂−−Φ
δA

δD−Φ
+ ∂−−ΦD−

(

δA
δ∂−−Φ

)

+
1

2
∂−−ΦD+

(

δA
δD+D−Φ

)

−D−A.

(A.2)
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The terms are

D+A ∼ FD+A+ h′(Φ)D+Φ,

D−A ∼ FD−A+ h′(Φ)D−Φ,

∂++Φ
δA

δD+Φ
∼ F∂++ΦD−Φ,

∂++Φ
δA

δD−Φ
∼ −F∂++ΦD+Φ,

∂−−Φ
δA

δD+Φ
∼ F∂−−ΦD−Φ,

∂−−Φ
δA

δD−Φ
∼ −F∂−−ΦD+Φ,

∂++ΦD+

(

δA
δ∂++Φ

)

∼ X
∂F

∂X
D+A,

∂++ΦD−

(

δA
δ∂−−Φ

)

∼ (∂++Φ)
2 ∂F

∂X
D−A,

∂−−ΦD+

(

δA
δ∂++Φ

)

∼ (∂−−Φ)
2 ∂F

∂X
D+A,

∂−−ΦD−

(

δA
δ∂−−Φ

)

∼ X
∂F

∂X
D−A,

1

2
∂++ΦD+

(

δA
δD+D−Φ

)

∼
√
Y ∂++Φ

∂F

∂Y
·D+A,

1

2
∂−−ΦD+

(

δA
δD+D−Φ

)

∼
√
Y ∂−−Φ

∂F

∂Y
·D+A,

−1

2
∂++ΦD−

(

δA
δD+D−Φ

)

∼ −
√
Y ∂++Φ

∂F

∂Y
·D−A,

−1

2
∂−−ΦD−

(

δA
δD+D−Φ

)

∼ −
√
Y ∂−−Φ

∂F

∂Y
·D−A,

where ∼ means “equal modulo terms which are proportional to D+ΦD−Φ,” since any

products involving these terms will contain two nilpotent factors and thus vanish.

The first piece of supercurrent-squared is

T++|+T−−|− =

(

−F∂++ΦD+Φ+ (∂++Φ)
2 ∂F

∂X
D−A+

√
Y ∂++Φ

∂F

∂Y
·D+A

)

×
(

F∂−−ΦD−Φ+ (∂−−Φ)
2 ∂F

∂X
D+A−

√
Y ∂−−Φ

∂F

∂Y
D−A

)

,

=− F 2XA− FX
∂F

∂X
∂−−ΦD+ΦD+A+ FX

∂F

∂X
∂++ΦD−AD−Φ

+X2

(

∂F

∂X

)2

D−AD+A+ F
∂F

∂Y

√
Y XD+AD−Φ

+ FX
√
Y
∂F

∂Y
D+ΦD−A− Y X

(

∂F

∂Y

)2

D+AD−A.

(A.3)
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The second piece is

T++|−T−−|+ =

(

F∂++ΦD−Φ+

(

X
∂F

∂X
− F

)

D+A−G′D+Φ−
√
Y ∂++Φ

∂F

∂Y
D−A

)

×
(

−F∂−−ΦD+Φ+

(

X
∂F

∂X
− F

)

D−A−G′D−Φ+
√
Y ∂−−Φ

∂F

∂Y
·D+A

)

,

=F 2XA+ F

(

X
∂F

∂X
− F

)

∂++ΦD−ΦD−A+ FX
√
Y
∂F

∂Y
D−ΦD+A

+ FX
√
Y
∂F

∂Y
D−AD+Φ− F

(

X
∂F

∂X
− F

)

∂−−ΦD+AD+Φ

+

(

X
∂F

∂X
− F

)2

D+AD−A− Y X

(

∂F

∂Y

)2

D−AD+A

−G′
(

X
∂F

∂X
− F

)

D+ΦD−A+
(

G′)2D+ΦD−Φ−G′√Y ∂−−Φ
∂F

∂Y
D+ΦD+A

−G′
(

X
∂F

∂X
− F

)

D+AD−Φ+G′√Y ∂++Φ
∂F

∂Y
D−AD−Φ.

(A.4)

Using the definitions A = D+ΦD−Φ, X = ∂++Φ∂−−Φ, and
√
Y = D+D−Φ, we see that

the products appearing in the above bilinears can be simplified as follows:

D+ΦD+A = D+ΦD+ (D+ΦD−Φ) = D+ΦD+D+ΦD−Φ = A∂++Φ,

D+ΦD−A = D+ΦD− (D+ΦD−Φ) = D+ΦD−D+ΦD−Φ = −A
√
Y ,

D−ΦD+A = D−ΦD+ (D+ΦD−Φ) = −D−ΦD+ΦD+D−Φ = A
√
Y ,

D−ΦD−A = D−ΦD− (D+ΦD−Φ) = −D−ΦD+ΦD−D−Φ = A∂−−Φ,

D+AD−A =
(

∂++ΦD−Φ−D+Φ
√
Y
)(

−
√
Y D−Φ− ∂−−ΦD+Φ

)

= (X + Y )A.

(A.5)

So after simplifying,

T++|+T−−|− = −F 2XA− 2FX2 ∂F

∂X
A−X2

(

∂F

∂X

)2

A(X + Y )− 2F
∂F

∂Y
Y XA,

T++|−T−−|+ = F 2XA+ 2FX

(

X
∂F

∂X
− F

)

A+ 2FXY
∂F

∂Y
A+

(

X
∂F

∂X
− F

)2

(X + Y )A

+

(

(

h′
)2

+ 2h′
√
Y

(

X
∂F

∂X
− F

)

− 2
√
Y Xh′

∂F

∂Y

)

A. (A.6)

In particular, we see that every term appearing in (A.6) is proportional to A = D+ΦD−Φ.
This means that the deformation only generates a change in the first term of our ansatz

A(t) = FD+ΦD−Φ+h(Φ), but it does not source any change in the potential. This justifies

our choice of ansatz which leaves the potential as h(Φ) rather than allowing a more general

function G(t,Φ) with G(0,Φ) = h(Φ).
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Adding the contributions gives,

T++|+T−−|− + T++|−T−−|+ =

[

(Y −X)F 2 − 2FX(X + Y )
∂F

∂X
+ 2h′

√
Y

(

X
∂F

∂X
− F

)

− 2
√
Y Xh′

∂F

∂Y
+
(

h′
)2
]

A. (A.7)

Setting this deformation equal to ∂
∂tA(t), and multiplying both sides by t to convert dimen-

sionlful variables X and Y into their dimensionless counterparts x and y, gives our final

result (3.15),

x
∂

∂x
F + y

∂

∂y
F =(y − x)F 2 − 2Fx(x+ y)

∂F

∂x
+
(

h′
)2

+ 2h′
√
y

(

x
∂F

∂x
− F

)

− 2
√
yxh′

∂F

∂y
. (A.8)

We were unable to find a closed-form solution to (3.15) in the general case. However, we

can find the solution in a few special cases. If y = 0, (A.8) reduces to

xF ′(x) = −x
(

F (x)2 + 2F (x)F ′(x)x
)

, (A.9)

which is solved by the Dirac-type ansatz F (x) =
√
1+4x−1
2x . If x = 0, equation (A.8) is

solved by F (y) = 1
1−y . If y = −x, the second term on the right side of (A.8) drops out and

the solution is F (x) = 1
1+2x .

B Details of the (0, 1) PDE calculation

We would like to write down a partial differential equation, similar to (3.3) in the (1, 1) case,

which determines the Lagrangian deformed by the (0, 1) supercurrent-squared at finite t.

Define the three combinations of fields

x = t∂++Φ∂−−Φ, y = t (D+Ψ−)
2 , z = tD+ΦD+∂−−Φ, (B.1)

and their dimensionful counterparts X = x
t , Y = y

t , Z = z
t . Our ansatz for the Lagrangian

at finite t is

A(t) = F (x, y, z) (D+Φ∂−−Φ+Ψ−D+Ψ−) + F2,−(x, y, z) (Ψ−D+Φ) . (B.2)

Since the function F2,− is fermionic, it actually contains several different functions since

we may combine the fields Φ,Ψ− and derivatives in a few independent ways to obtain a

fermionic function. We will expand F2,− as follows:

F2,− = G(x, y, z)D+Ψ−D+∂−−Φ+H(x, y, z)∂++Φ∂−−Ψ− + J(x, y, z)∂−−Φ∂++Ψ−.
(B.3)

Altogether our ansatz for the deformed Lagrangian is,

A(t) = F (D+Φ∂−−Φ+Ψ−D+Ψ−)

+ (GD+Ψ−D+∂−−Φ+H∂++Φ∂−−Ψ− + J∂−−Φ∂++Ψ−) (Ψ−D+Φ) . (B.4)
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This is a (0, 1) superspace Lagrangian with the functional dependence

A = A (Φ,Ψ−, D+Φ, D+Ψ−, ∂±±Φ, ∂±±Ψ−, D+∂−−Φ) . (B.5)

Following the procedure of section (2.3), we can consider a transformation x±± → x±± +

a±± and extract the components of conserved currents. In this case, they are

T++++ = ∂++Φ
δA

δ∂−−Φ
+ ∂++Ψ−

δA
δ∂++Ψ−

− ∂++ΦD+

(

δA
δD+∂−−Φ

)

,

T++−− = ∂−−Φ
δA

δ∂−−Φ
+ ∂−−Ψ−

δA
δ∂−−Ψ−

− ∂−−ΦD+

(

δA
δD+∂−−Φ

)

−A,

S++− = ∂++Φ
δA

δD+Φ
+D+

(

∂++Φ
δA

δ∂++Φ
−A

)

+ ∂++Ψ−
δA

δD+Ψ−

+ (∂−−∂++Φ)
δA

δD+∂−−Φ
,

S−−− = ∂−−Φ
δA

δD+Φ
+D+

(

∂−−Φ
δA

δ∂++Φ

)

+ ∂−−Ψ−
δA

δD+Ψ−
+ ∂2−−Φ

δA
δD+∂−−Φ

.

We compute each of these contributions. As before, we will drop terms which are propor-

tional to Ψ−D+Φ, since every term in S and T is proportional to either Ψ− or to D+Φ,

so any terms involving both of these nilpotent factors will not contribute to bilinears. We

will also introduce the shorthand A = D+Φ∂−−Φ and B = Ψ−D+Ψ−.
Doing this, we see that:

∂++Φ
δA

δ∂
−−

Φ
∼ FD+Φ∂++Φ+

∂F

∂x
(∂++Φ)

2
(A+B) ,

∂
−−

Φ
δA

δ∂
−−

Φ
∼ FA+ x

∂F

∂x
(A+B) ,

∂++Φ
δA

δD+Φ
∼ ∂++Φ

∂F

∂z
(D+∂−−

Φ) (A+B) + Fx

− ∂++Φ(GD+Ψ−
D+∂−−

Φ+H∂++Φ∂−−
Ψ

−
+J∂

−−
Φ∂++Ψ−

)Ψ
−
,

∂
−−

Φ
δA

δD+Φ
∼ ∂

−−
Φ
∂F

∂z
(D+∂−−

Φ) + F (∂
−−

Φ)
2

− ∂
−−

Φ(GD+Ψ−
D+∂−−

Φ+H∂++Φ∂−−
Ψ

−
+J∂

−−
Φ∂++Ψ−

)Ψ
−
,

∂++Ψ−

δA
δ∂++Ψ−

∼ 0,

∂
−−

Ψ
−

δA
δ∂

−−
Ψ

−

∼ 0,

D+

(

∂++Φ
δA

δ∂++Φ

)

∼ D+

(

x
∂F

∂x
(A+B)

)

+

(

x
∂G

∂x
D+Ψ−

D+∂−−
Φ+ x

∂H

∂x
∂++Φ∂−−

Ψ
−

+ x
∂J

∂x
∂
−−

Φ∂++Ψ−

)

·
(

D+Ψ−
D+Φ−Ψ

−
∂++Φ

)

,

D+

(

∂
−−

Φ
δA

δ∂++Φ

)

∼ D+

(

(∂
−−

Φ)
2 ∂F

∂x
(A+B)

)

+

(

∂G

∂x
(∂

−−
Φ)

2
D+∂−−

Φ

+
∂H

∂x
∂
−−

Φ∂
−−

Ψ
−
+
∂J

∂x
(∂

−−
Φ)

3
∂++Ψ−

)

(

D+Ψ−
D+Φ−Ψ

−
∂++Φ

)

,

– 23 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
1

∂++ΦD+

(

δA
δD+∂−−

Φ

)

∼ ∂++Φ
∂F

∂z

(

∂++ΦΨ−
D+Ψ−

−D+Φ(D+Ψ−
)
2
)

,

∂
−−

ΦD+

(

δA
δD+∂−−

Φ

)

∼ ∂
−−

Φ
∂F

∂z

(

∂++ΦΨ−
D+Ψ−

−D+Φ(D+Ψ−
)
2
)

,

∂++Ψ−

δA
δD+Ψ−

∼ ∂++Ψ−

(

∂F

∂y
(A+B) + FΨ

−

)

,

∂
−−

Ψ
−

δA
δD+Ψ−

∼ ∂
−−

Ψ
−

(

∂F

∂y
(A+B) + FΨ

−

)

,

∂
−−
∂++Φ

δA
δD+∂−−

Φ
∼ ∂

−−
∂++Φ

(

∂F

∂z
D+Φ(A+B)

)

∼ 0,

∂2
−−

Φ
δA

δD+∂−−
Φ

∼ ∂2
−−

Φ

(

∂F

∂z
D+Φ(A+B)

)

∼ 0,

D+A ∼
(

∂F

∂x
D+x+

∂F

∂y
D+y +

∂F

∂z
D+z

)

(A+B) + F (D+A+D+B)

+ (GD+Ψ−
D+∂−−

Φ+H∂++Φ∂−−
Ψ

−
+ J∂

−−
Φ∂++Ψ−

)

× (D+Ψ−
D+Φ−Ψ

−
∂++Φ) . (B.6)

We will argue that the coupled differential equations for F,G,H, and J resulting from (B.6)

are consistent. This will be the case if they do not source any additional combinations of

fields that do not appear in the ansatz (B.4).

The only thing that could spoil consistency is a D+x term, since

D+x = (D+∂++Φ) ∂−−Φ+ ∂++ΦD+∂−−Φ. (B.7)

We have already allowed for dependence on D+∂−−Φ in our Lagrangian, but terms pro-

portional to D+∂++Φ are forbidden. We will show that, in the S · T deformation resulting

from (B.6), all D+x terms drop out.

Tracking only the D+x terms in bilinears, the supercurrent components are

S++− ∼ xD+

(

∂F

∂x

)

(A+B) + . . . ,

T++−− ∼ x
∂F

∂x
(A+B)− FB − ∂−−Φ

∂F

∂z
D+ (D+ΦΨ−D+Ψ−) ,

S−−− ∼ (∂−−φ)
2D+

(

∂F

∂x

)

(A+B) + . . . ,

T++++ ∼ FD+Φ∂++Φ+
∂F

∂x
(∂++Φ)

2 (A+B)− ∂++Φ
∂F

∂z
D+ (D+ΦΨ−D+Ψ−) ,

(B.8)

where . . . indicates terms that are not proportional to D+x or D+

(

∂F
∂x

)

.

The relevant contributions in the deformation are

T++++S−−− − T++−−S++−

∼ (∂−−Φ)
2D+

(

∂F

∂x

)

(A+B) ·
(

FD+Φ∂++Φ+
∂F

∂x
(∂++Φ)

2 (A+B)

)

− xD+

(

∂F

∂x

)

(A+B) ·
(

x
∂F

∂x
(A+B)− FB

)

+ . . . ,

= (∂−−Φ)
2D+

(

∂F

∂x

)

(FBD+Φ∂++Φ)− xD+

(

∂F

∂x

)

(−FAB) + . . . , (B.9)
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where we have used the fermionic nature of A and B so A2 = B2 = (A+B)2 = 0. However

in the last line, we recognize that (∂−−Φ)
2D+Φ∂++Φ = xA, since x = ∂++Φ∂−−Φ and

A = D+Φ∂−−Φ, so

T++++S−−− − T++−−S++− ∼ xD+

(

∂F

∂x

)

FBA+ xD+

(

∂F

∂x

)

FAB = 0, (B.10)

and thus the problematic D+

(

∂F
∂x

)

terms do not contribute.
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