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Abstract: We present a comprehensive analysis of supersymmetry anomalies in the free

and massless Wess-Zumino (WZ) model in perturbation theory. At the classical level the

model possesses N = 1 superconformal symmetry, which is partially broken by quantum

anomalies. The form of the anomalies and the part of the symmetry they break depend

on the multiplet of conserved currents used. It was previously shown that the R-symmetry

anomaly of the conformal current multiplet induces an anomaly in Q-supersymmetry, which

appears first in 4-point functions. Here we confirm this result by an explicit 1-loop com-

putation using a supersymmetric Pauli-Villars regulator.

The conformal current multiplet does not exist in the regulated theory because the

regulator breaks conformal invariance, R-symmetry and S-supersymmetry explicitly. The

minimal massive multiplet is the Ferrara-Zumino (FZ) one and the supersymmetry pre-

served by the regulator is a specific field dependent combination of Q- and S- supersym-

metry of the conformal multiplet. While this supersymmetry is non anomalous, conformal

invariance, R-symmetry and the original Q- and S-supersymmetries are explicitly broken

by finite contact terms, both in the regulated and renormalized theories.

A conformal current multiplet does exist for the renormalized theory and may be

obtained from the FZ multiplet by a set of finite local counterterms that eliminate the

explicit symmetry breaking, thus restoring superconformal invariance up to anomalies.

However, this necessarily renders both Q- and S-supersymmetries anomalous, as is manifest

starting at 4-point functions of conformal multiplet currents. The paper contains a detailed

discussion of a number of issues and subtleties related to Ward identities that may be useful

in a wider context.
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1 Introduction and summary of results

Anomalies are a cornerstone of modern QFT. Anomalies of rigid (sometimes also called

global) symmetries are a feature of the theory. They provide important observables of the

theory (for example, the conformal anomaly coefficients in CFTs); consistency conditions

for duality relations and more generally may be used as a tool to understand the dynamics

of the theory. On the other hand, anomalies of local symmetries lead to inconsistencies,

such as lack of unitarity and renormalizability, and they should be canceled.

The purpose of this paper is to discuss rigid supersymmetry anomalies for the four di-

mensional massless Wess-Zumino model in perturbation theory. This paper is a companion

of [1] and we aim to present a comprehensive discussion of the perturbative 1-loop compu-

tation. Since this is a rather technical topic we will present a summary of the methods and

results in this section. We begin however with a recap of some of the main properties of

anomalies illustrated with the standard chiral anomaly, as this will help to put into context

the result on the supersymmetry anomaly.

Anomalies present a breaking of a symmetry at the quantum level. They appear either

because of a 0/0 structure, where a zero due to a symmetry is compensated by a UV infinity,

leaving a finite remainder (for example, chiral anomaly or type A conformal anomalies), or

because counterterms needed to cancel infinities break some of the symmetries (for example,

type B conformal anomalies). In perturbation theory they appear as finite contact terms

that violate Ward identities associated to corresponding symmetries.1 Anomalies also

appear as lack of symmetry conservation in the presence of background fields. These are

two sides of the same coin.

Introducing sources that couple to gauge invariant operators, one may encode the

correlation functions in the partition function. The rigid symmetry now translates into in-

variance of the partition function under corresponding local transformations that act on the

sources, and the presence of the anomaly leads to lack of gauge invariance at one loop order.

To illustrate the discussion, let us consider the case of a free massless fermion in four dimen-

sions. The theory is invariant under rigid vector and axial U(1) transformations. Let J µV
and J µA be the vector and axial Noether currents and V µ and Aµ the corresponding sources.

The partition function Z [V,A] is classically invariant separately under δvV
µ = ∂µǫv and

δaA
µ = ∂µǫa, where ǫv, ǫa are the parameters of the vector and axial transformations, but at

one loop order one cannot maintain both invariances. Imposing that the vector invariance

holds, one finds that the conservation of the axial current is violated in correlation functions,

Z [V + dǫv, A] = Z [V,A], Z [V,A+ dǫa] = Z [V,A]e−i
∫
d4xǫaA, (1.1)

where A ∼ ǫµνρσ(Fµν(V )Fρσ(V ) + 1
3Fµν(A)Fρσ(A)) is the chiral anomaly and Fµν(V ) =

∂µVν − ∂νVµ, Fµν(A) = ∂µAν − ∂νAµ. This results in the Ward identities

∂µ〈J µA〉s = A, ∂µ〈J µV 〉s = 0, (1.2)

1Ward identities associated with an insertion of (anomalous) currents in correlation functions of elemen-

tary fields are in general non-anomalous. In the case of the free massless fermion theory reviewed below

this is manifestly the case, as these Ward identities saturate at tree-level. Anomalies arise in correlation

functions of symmetry currents with composite operators.
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where 〈·〉s denotes connected correlation functions in the presence of sources. Since the

anomaly is quadratic in the sources, (1.2) encodes the fact that triangle diagrams with one

or three axial currents are anomalous.

The anomaly can be shifted around by adding finite local terms in the action. For the

case of the massless fermion we could consider the partition function,

Z̃ [V,A] = Z [V,A] exp

(
iαc

∫
d4x ǫµνρσAµVνFρσ(V )

)
, (1.3)

where αc is a constant. By an appropriate choice of αc one may arrange for the axial-vector-

vector correlator to be conserved on the axial current but then the conservation of the vector

current would be anomalous, and the partition function (1.3) would be invariant under

neither vector nor axial transformations. The theories with or without the counterterm are

physically distinct, as they preserve different symmetries. The standard choice is to keep

the vector symmetry non-anomalous (in the original context [2, 3] the vector symmetry

was electromagnetism), but more generally depending on the physics context one may work

with either theory. In the context of the AdS/CFT correspondence, the finite counterterms

correspond to finite boundary terms that should be specified when defining the bulk theory.

Besides shifting the anomaly between symmetries by local counterterms, the anomaly

may be ‘hidden’ by introducing additional (background) fields. In the case of the axial

anomaly, for example, we may introduce an external scalar field Φ and modify the partition

function as

Z
′[V,A, Φ] = Z [V,A] exp

(
i

∫
d4xΦA

)
. (1.4)

Assigning transformations

δvΦ = 0, δaΦ = ǫa, (1.5)

the partition function Z ′ is now gauge invariant under both vector and axial transforma-

tions

Z
′[V + dǫv, A, Φ+ δvΦ] = Z

′[V,A, Φ], Z
′[V,A+ dǫa, Φ+ δaΦ] = Z

′[V,A, Φ]. (1.6)

This does not mean that the anomaly has disappeared; the triangle diagrams are not

affected by the new terms in (1.4).

One could also use the formulation with Φ to make the Ward identities look as if there

is no anomaly. To see this let us rewrite the coupling of Φ in (1.4) as

Z
′[V,A, Φ] = Z [V,A] exp

(
i

∫
d4xΦOA

)
, (1.7)

where OA = ∂µJ µA . In the classical theory OA is proportional to field equations (it is a null

operator) and when we regulate the theory, say with Pauli-Villars regularization, 〈OA〉s
becomes local (and equal to the anomaly, 〈OA〉 = A) as the regulator is removed. Working

out the Ward identity starting from (1.7) one finds,

∂µ〈J µA〉s − 〈OA〉s = 0. (1.8)
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In this form the Ward identity appears non-anomalous and one may be tempted to conclude

that the theory would be non-anomalous if we include the coupling to the null operator

OA. Of course, this is just an illusion: (1.8) is equal to (1.2). The only thing that happened

was that we moved the anomaly from the r.h.s. to the l.h.s. and gave it a different name.

Fields like Φ are called ‘compensators’ because they may be used to restore or com-

pensate for broken symmetries, or ‘gauge-away’ fields because one may set them to zero

using gauge transformations. Indeed one may use (1.5) to set Φ to zero (and thus also

establishing that Z ′ is equivalent to Z ). Invariance of the partition function under gauge

transformations does not by itself imply absence of anomalies, if gauge away fields are

present. One must first set to zero all gauge away fields and then check invariance of the

partition function. Similarly, one must set all compensators to zero prior to working out

the form of the Ward identities.

Anomalies in supersymmetry have been a recurrent topic of research since the discov-

ery of supersymmetric theories. A set of studies considered the effective action for ele-

mentary fields and examined whether it is invariant under supersymmetry including loop

effects, investigated the conservation of the supercurrent inside correlators of elementary

fields and/or solved the Wess-Zumino (WZ) consistency conditions relevant for this setup.

These works, summarised in the monograph [4], found no supersymmetry anomaly. As

mentioned above, however, one either needs to put the theory on a non-trivial background

or consider correlation functions of the supercurrent with other composite operators to

probe supersymmetry anomalies.

Our focus here is on four dimensional N = 1 SCFTs. In addition to conformal sym-

metry and standard supersymmetry (Q-supersymmetry), these theories also have a U(1)

R-symmetry and special conformal supersymmetry (S-supersymmetry). It was realised

early on that the trace anomaly, the R-current anomaly and S-anomaly sit in a supermul-

tiplet [5] and that one cannot maintain at the same time the conservation of the Q and

S supersymmetry [6–11]. This is the standard superconformal anomaly mentioned and is

distinct from the anomaly discussed here. Also distinct is the Konishi anomaly [12, 13],

which is a superspace version of the chiral anomaly in supersymmetric gauge theories.

A supersymmetry anomaly appears in theories with gravitational anomalies [14–16], as

one may anticipate based on the fact that the energy momentum tensor and the supercur-

rent are part of the same supermultiplet. Indeed this supersymmetry anomaly sits in the

same multiplet as the gravitational anomaly. A supersymmetry anomaly appears also in

super Yang-Mills (SYM) theory in the WZ gauge when there are gauge anomalies [17] (see

also [18–20]). This anomaly has a number of technical similarities with the anomaly we

discuss here and has been recently revisited in [21, 22]. In particular, like the R-symmetry

anomaly we discuss here, the gauge anomaly is not invariant under supersymmetry, and so

the WZ consistency conditions imply the existence of a supersymmetry anomaly, with the

same coefficient as that of the R-symmetry/gauge anomaly.

Many previous works discuss anomalies of dynamical supergravity coupled to matter,

and relevant work (mostly in superspace language) may be found in [23–27]. Particularly

relevant for us is the discussion in [28] where it was argued that quantum anomalies in

the matter require the old minimal set of auxiliary fields for N = 1 supergravity and the

discussion in [29] about compensators in supergravity.
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The anomaly we discuss here was discovered in the context of superconformal theories

that can be realised holographically [30].2 In holography, given a bulk action, one can

use holographic renormalisation [33, 34] to compute the Ward identities and anomalies

of the dual QFT. AdS/CFT relates N = 1 SCFTs in four dimensions to N = 2 gauged

supergravity in five dimensions. Starting from gauged supergravity in an asymptotically

locally AdS5 spacetime and turning on sources for all superconformal currents one can

compute the complete set of superconformal anomalies. The holographic anomalies for

bosonic currents were computed earlier in [35] (reproducing (and correcting) known field

theory results [36]), while [37] obtained the superconformal anomalies in the presence of

local supersymmetric scalar couplings. The holographic computation is available for holo-

graphic CFTs with central charges satisfying a = c as N → ∞ [33]. The anomaly for

general a, c was obtained in [38] by solving the WZ consistency conditions [39] under the

assumption that R-symmetry is only broken by the standard triangle anomaly.

In this paper we discuss the perturbative computation of the anomaly in the simplest

model in which it is realised: the free and massless Wess-Zumino model [40]. Since this

model is free, the 1-loop computation is exact. The supersymmetry anomaly appears

for first time in the 4-point function that involves two supercurrents and either two R-

symmetry currents or one R-symmetry current and one energy momentum tensor. In this

paper we will focus on the former.

The anomaly appears as a violation of Ward identities. The derivation of the Ward

identities is standard by now, but there are a number of subtleties which are perhaps

not widely known. Given a theory there are a number of different routes to obtain Ward

identities for correlation functions. In the path integral derivation (which is often discussed

in textbooks) one starts from insertions of operators in the path integral and makes a

change of variables that amount to a symmetry transformation. Making the parameter

of the transformation local and using Noether’s theorem leads to the Ward identities.

This formulation has the advantage that it directly constrains the correlators computed by

Feynman diagrams (more on this below). It has the disadvantage that the Ward identities

contain theory specific terms.

An alternative way to obtain the Ward identities is to introduce sources that couple to

the operators and then impose gauge invariance of the partition function. Defining n-point

functions as n functional derivatives of the partition function w.r.t. the sources, the Ward

identities take a universal form for all theories that realise the same symmetries. However,

the n-point functions defined in this way are not the same with the insertion of n operators

in the path integral. To emphasise the difference we use different notation for the two

types of correlator. Let J denote the source for an operator O. Then the two definitions

2Early attempts to compute the supertrace Ward identity can be found in [31, 32] but these missed

contributions to the anomaly involving the R-symmetry current and the Ricci tensor.
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of n-point functions are

〈O(x1) · · · O(xn)〉 =
δ

δJ(x1)
· · · δ

δJ(xn)
W [J ]

∣∣∣∣
J=0

, (1.9a)

< O(x1) · · · O(xn) > = − i

Z

∫
[d{Φ}]O(x1) · · · O(xn)eiS[{Φ}], (1.9b)

where {Φ} denotes collectively all elementary fields and W [J ] = −i log Z [J ]. The func-

tional derivatives defining the wide bracket correlators in (1.9a) are taken with the operators

kept fixed. In contrast, in the correlators defined in (1.9b) one takes the functional deriva-

tives in the path integral keeping fixed the operator at J = 0. The chain rule in this case

produces additional semi-local correlators involving δO(xi)/δJ(xj) — the so-called ‘seag-

ull terms’. We should emphasize that this dependence of the operator O on the source J

that arises through the classical coupling of the theory to background sources is local and

should not be confused with the generically non-local dependence of the 1-point function

〈O〉J that is obtained by performing the path integral in the presence of sources. The

seagull terms are theory dependent and their contribution drops out when all insertions

are at separated points. However, since our purpose is to discuss anomalies, which are local

contributions to the Ward identities, we cannot ignore the contribution of seagull terms.

As mentioned above, the Ward identities derived using path integral manipulations

involving < · > correlators contain theory specific terms. These terms combine with the

seagull terms to produce the universal Ward identities written in terms of 〈·〉 correlators.

More precisely, the universal Ward identities split into a number of path integral Ward iden-

tities. Apart from the universality of the Ward identities in terms of 〈·〉 correlators, there is

yet another reason to use this definition: the local counterterms required to renormalise 〈·〉
correlators are universal and depend only on the sources J of the composite operators O.

To renormalise the path integral correlators <·> one needs counterterms that involve ad-

ditional sources (besides J) for the model specific seagull operators δO(xi)/δJ(xj). Such

terms cancel out between the path integral correlators and correlators involving seagull

terms, resulting in the universal counterterms that depend only on the sources J . A re-

lated discussion appeared recently in [41]. For these reasons our discussion in the main

text will be phrased in terms of the correlators in (1.9a). However, we explain in detail the

issues discussed here in a series of appendices.

To derive the Ward identities for symmetry currents we need to couple the currents

to corresponding sources in a gauge invariant fashion. In simple cases3 linear couplings

suffice, but in general one has to include non-linear terms, and these in turn give rise to

the seagull contributions discussed above. One can work out all terms needed using the

Noether method, but luckily in our case the answer is already known. The sources comprise

an N = 1 conformal supergravity multiplet, so our starting point is the coupling of the

N = 1 massless WZ model to N = 1 conformal supergravity. It is then a straightforward (if

tedious) computation to work out the Ward identities that 〈Qµ(x)Q̄σ(y)J κ(z)J α(w)〉 sat-

isfy, where Qµ is the supercurrent and J κ the R-symmetry current. This correlator satisfies

three different Ward identities: one due the supercurrent conservation (Q-supersymmetry),

3I.e. when the currents are invariant under the symmetry.
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one from gamma-trace conservation (S-supersymmetry) and one from the conservation of

the R-current. These relate the 4-point function to lower-point correlators, which them-

selves satisfy their own Ward identities. The theory would be non-anomalous if the corre-

lators computed at one loop satisfy the superconformal Ward identities.

To do this computation we need to regulate the theory and an important issue is

the choice of regulator. Any consistent regulator would suffice but certain regulators are

more convenient than others. An ad hoc regularisation of Feynman diagrams may lead

to inconsistencies. A regulator is consistent if it can be implemented at the level of the

action, so one can formulate a regulated theory from which the Feynman rules follow and

the renormalised correlators are obtained after appropriate subtractions are made and the

regulator is removed.

A second important issue is the symmetries that the regulator preserves. If a regulator

breaks non-anomalous symmetries then this complicates the computation, as one would

need to compensate the explicit breaking by finite counterterms. On the other hand, it

is important to make sure that the computational scheme does not implicitly assume the

existence of a regulator that respects the symmetry one investigates, since if a regulator

exists that respects a symmetry then this symmetry is non-anomalous. In our context we

want to study supersymmetry anomalies, so to avoid such implicit assumptions we will do

the 1-loop computation using components rather than superspace graphs.

In [1] we sketched the 1-loop computation using momentum cut-off, following the

original computation of the chiral anomaly [2, 3] (see also Jackiw’s lectures in [42]). The

4-point 1-loop diagrams entering the Ward identities are superficially linearly divergent like

the triangle diagrams and they have a similar momentum routing ambiguity. However, the

complete Ward identity involves additional divergences that need to be subtracted with

counterterms and such a computation is challenging when carried out with momentum

cut-off, since it breaks Lorentz invariance.

In this paper we will use Pauli-Villars (PV) regularisation [43], which manifestly pre-

serves Lorentz invariance. PV regularisation is often presented as a prescription where

propagators are replaced by differences of propagators involving massive PV fields, or en-

tire diagrams are replaced by linear combinations of identical diagrams involving PV fields

such that the result has improved UV behaviour. For such prescriptions to be consistent,

the new Feynman rules should follow from a regulated action involving the massive PV

fields. In the presence of interactions there is a standard way to introduce Pauli-Villars

fields such that all correlation functions of elementary fields are regulated, see for exam-

ple [44]. In our case the theory is free and we are considering correlation functions of

symmetry currents, so this method does not apply automatically. Following in spirit the

discussion of PV regularisation of QED in [45], however, we found that all diagrams we

compute are regulated using as PV fields three massive N = 1 chiral multiplets, one with

standard statistics and two with ‘wrong’ statistics, with masses appropriately correlated.

Since the regulated action is supersymmetric, one may wonder whether this already

shows that there is no supersymmetry anomaly. To establish the absence of a supersymme-

try anomaly we still need to couple the symmetry currents to sources supersymmetrically.

Since the PV fields form massive supermultiplets, they break conformal symmetry, R-
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symmetry and S-supersymmetry and as such they cannot couple supersymmetrically to

conformal supergravity. Instead, one can consistently couple the regulated theory to old

minimal supergravity. The supersymmetry of old minimal supergravity can be identified

with a field dependent linear combination of the Q- and S-supersymmetry of conformal

supergravity. However, the algebra that involves this field dependent combination does

not close unless additional auxiliary fields are turned on. The auxiliary field required for

the closure of the old minimal supergravity algebra is a complex scalar, M . Once this ad-

ditional field is included the algebra closes, but differs from that of conformal supergravity.

While the algebra of conformal supergravity is a gauged version of the N = 1 supercon-

formal algebra, old minimal supergravity amounts to gauging the super-Poincaré algebra.

Having coupled the currents to sources in a gauge invariant fashion one may proceed to

obtain the regulated Ward identities, and then use them to find out which symmetries are

anomalous. As we will verify, old minimal supersymmetry is non anomalous.

It is instructive to rephrase this discussion in terms of current multiplets. Prior to

regularisation the theory can be coupled to conformal supergravity and the corresponding

symmetry currents form an N = 1 conformal current multiplet. The Ward identities

derived from conformal supergravity refer to this multiplet. The regularisation breaks

conformal symmetry and the theory can only couple to old minimal supergravity. The

resulting currents constitute the Ferrara-Zumino (FZ) multiplet, which contains all currents

of the conformal multiplet (some of which are now not conserved) and, in addition, the

complex scalar operator sourced by the auxiliary field M . The Ward identities derived

using old minimal supergravity refer to the FZ multiplet and (by construction) preserve

(old minimal) supersymmetry at the quantum level.

Once (supersymmetrically) renormalized, the quantum theory can again consistently

couple to conformal supergravity, but some of the original symmetries are now broken by

quantum anomalies. To determine the superconformal anomalies of this N = 1 SCFT

we need to relate the Ward identities for the conformal multiplet of the renormalized

theory with those for the FZ multiplet of the regulated (and renormalized) theory. The FZ

multiplet Ward identities for the regulated theory contain explicit symmetry breaking terms

relative to those of the conformal multiplet. Since the theory is classically superconformal,

these terms can at most give rise to contact terms as the regulator is removed. If they are

zero the corresponding Ward identity is non-anomalous, but otherwise there is an anomaly.

We find that the R-symmetry, S- and Q-supersymmetry Ward identities are all broken at

the level of FZ multiplet 3-point functions. Of course, the old minimal combination of Q-

and S-supersymmetry is by construction non-anomalous.

As mentioned earlier, one may shift the anomalies from one symmetry to another. We

show that one can find finite local counterterms involving the old minimal supergravity

fields that bring the anomalies to their superconformal form, including the standard chiral

anomaly for R-symmetry. Moreover, they render the scalar operator of the FZ multiplet

null, resulting in the conformal multiplet of currents. It should be stressed that the required

counterterms necessarily depend on the auxiliary field M of old minimal supergravity, since

the WZ consistency conditions preclude the existence of a local counterterm involving only

the conformal supergravity fields that cancels the Q-supersymmetry anomaly [38]. Once
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the local counterterms are added, both Q- and S-supersymmetry (and any field indepen-

dent linear combination of them) are anomalous, with the anomaly for Q-superymmetry

appearing first in the 〈Qµ(x)Q̄σ(y)J κ(z)J α(w)〉 correlator. The results reproduce exactly

the structure of anomalies obtained by solving the WZ consistency conditions for conformal

supergravity [38].

Note added. As this paper was finalised, we became aware of [46] which has some

overlap with this work. We thank the authors of [46] for sharing their draft with us and

for discussions.

This paper is organised as follows. In section 2 we review the Ward identities for

the conformal multiplet of currents and the structure of the corresponding superconformal

anomalies obtained by solving the WZ consistency conditions for conformal supergravity.

Moreover, we explicitly derive the form of these Ward identities for flat space correlation

functions of conformal multiplet currents. In section 3 we introduce the WZ model and

discuss its coupling to conformal supergravity. In section 4 we present the PV regulators,

the coupling of the regulated model to old minimal supergravity and the derivation of the

regulated (Ferrara-Zumino multiplet) Ward identities. Section 5 contains the 1-loop com-

putation and the anomalies, both for the Ferrara-Zumino multiplet and the renormalised

conformal current multiplet. We conclude in section 6 with the discussion of our results.

The paper contains a series of appendices, where we collect a number of technical results. In

appendix A we present our conventions and tabulate useful spinor identities. Appendix B

presents a detailed discussion of the path integral Ward identities. This appendix includes

a discussion of subtleties that is not available elsewhere (to our knowledge). Appendix C

discusses the relation between the two different types of brackets in (1.9a) and (1.9b) for

the correlators we compute in this paper. In appendix D we show that the PV regulator

properly regulates all correlators entering the Ward identities and in appendix E we collect

the results about symmetry breaking terms in the regulated Ward identities.

2 Conformal multiplet Ward identities and anomalies

The superconformal Ward identities can be formulated independently of any specific SCFT

in terms of the a and c anomaly coefficients, whose values depend on the specific theory. The

current multiplet of N = 1 superconformal theories consists of the stress tensor, T µa , the

R-current, J µ, and the supercurrent, Qµ, which is a Majorana spinor in our conventions.

These couple respectively to the vierbein, eaµ, the graviphoton, Aµ, and the gravitino, ψµ,

which comprise the field content of N = 1 conformal supergravity [47–50], which we briefly

review in section 3.2. The consistent (as opposed to the covariant [51]) current operators

are defined accordingly as

〈T µa 〉s ≡ e−1 δW

δeaµ
, 〈J µ〉s ≡ e−1 δW

δAµ
, 〈Qµ〉s ≡ e−1 δW

δψ̄µ
, (2.1)

where e ≡ det(eaµ), W [e,A, ψ] is the generating function of renormalized connected current

correlators, and the notation 〈·〉s denotes connected correlation functions in the presence of
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sources. In particular, further derivatives of these one-point functions result in higher-point

functions.

The current operators (2.1) are defined independently of whether there exists a La-

grangian description of the theory. If a Lagrangian description exists, W [e,A, ψ] is given by

W [e,A, ψ] = −i log Z [e,A, ψ], (2.2)

where Z [e,A, ψ] is obtained from the path integral

Z [e,A, ψ] =

∫
[d{Φ}]eiS[{Φ};e,A,ψ]

∣∣∣∣
ren

, (2.3)

over the microscopic fields {Φ}, after renormalization. In the model we will focus on in the

subsequent sections, {Φ} will consist of a number of N = 1 chiral multiplets, corresponding

to a massless Wess-Zumino (WZ) model and a set of massive Pauli-Villars regulator fields.

More accurately, the operators (2.1) comprise the so called conformal current multiplet.

This multiplet does not exist for massive theories such as the regulated WZ model, even if it

is classically conformal. As we will discuss in more detail later on, in order to accommodate

massive theories, the current multiplet must be suitably extended to include additional

(auxiliary) operators. However, the conformal current multiplet (2.1) exists for all SCFTs

after renormalization and this is the multiplet we discuss in this section.

2.1 Ward identities for 1-point functions with arbitrary sources

The superconformal Ward identities and anomalies for arbitrary N = 1 SCFTs in four di-

mensions were derived in [38], using the local symmetries of N = 1 conformal supergravity

and the associated WZ consistency conditions. For theories with equal anomaly coeffi-

cients, i.e. a = c, these coincide with the superconformal Ward identities derived earlier

holographically in [30]. In terms of the currents (2.1), the superconformal Ward identities

take the form

eaµ∇ν〈T νa 〉s +∇ν(ψ̄µ〈Qν〉s)− ψ̄ν
←−
Dµ〈Qν〉s − Fµν〈J ν〉s (2.4)

+Aµ
(∇ν〈J ν〉s + iψ̄νγ

5〈Qν〉s
)− ωµab

(
eν[a〈T νb] 〉s +

1

4
ψ̄νγab〈Qν〉s

)
= 0,

eaµ〈T µa 〉s +
1

2
ψ̄µ〈Qµ〉s = AW ,

eµ[a〈T µb] 〉s +
1

4
ψ̄µγab〈Qµ〉s = 0,

∇µ〈J µ〉s + iψ̄µγ
5〈Qµ〉s = AR,

Dµ〈Qµ〉s −
1

2
γaψµ〈T µa 〉s −

3i

4
γ5φµ〈J µ〉s = AQ,

γµ〈Qµ〉s −
3i

4
γ5ψµ〈J µ〉s = AS .

Here and in the following the spin connection is given by

ωµab(e, ψ) ≡ ωµab(e) +
1

4

(
ψ̄aγµψb + ψ̄µγaψb − ψ̄µγbψa

)
, (2.5)
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with ωµab(e) denoting the unique torsion-free part. Moreover, φµ is the gravitino field-

strength

φµ ≡
1

3
γν

(
Dνψµ −Dµψν −

i

2
γ5ǫνµ

ρσDρψσ

)
= −1

6

(
4δ[ρ
µ δ

σ]
ν + iγ5ǫµν

ρσ)
γνDρψσ. (2.6)

∇µ denotes the Levi-Civita connection, while Dµ stands for the spinor covariant derivative,

which acts on the gravitino and its fieldstrength as

Dµψν =

(
∂µ +

1

4
ωµ

ab(e, ψ)γab + iγ5Aµ

)
ψν − Γρµνψρ ≡

(
Dµ + iγ5Aµ

)
ψν ,

Dµφν =

(
∂µ +

1

4
ωµ

ab(e, ψ)γab − iγ5Aµ

)
φν − Γρµνφρ =

(
Dµ − iγ5Aµ

)
φν . (2.7)

Since the gravitino and the supercurrent have opposite R-charge, the covariant derivative

acts on the supercurrent as

Dµ〈Qν〉 =

(
∂µ +

1

4
ωµ

ab(e, ψ)γab − iγ5Aµ

)
〈Qν〉+ ΓνµρQρ ≡

(
Dµ − iγ5Aµ

)〈Qν〉. (2.8)

The superconformal anomalies on the r.h.s. of the Ward identities (2.4) are local func-

tions of the background conformal supergravity fields and take the form

AW =
c

16π2

(
W 2− 8

3
F 2

)
− a

16π2
E+O(ψ2), (2.9)

AR=
(5a−3c)

27π2
F̃F+

(c−a)

24π2
P,

AQ=−(5a−3c)i

9π2
F̃µνAµγ

5φν+
(a−c)
6π2

∇µ
(
AρR̃

ρσµν)
γ(νψσ)−

(a−c)
24π2

FµνR̃
µνρσγρψσ+O(ψ3),

AS =
(5a−3c)

6π2
F̃µν

(
Dµ−

2i

3
Aµγ

5
)
ψν+

ic

6π2
Fµν

(
γµ

[σδρ]
ν −δ[σ

µ δ
ρ]
ν

)
γ5Dρψσ

+
3(2a−c)

4π2
Pµνg

µ[νγρσ]Dρψσ+
(a−c)
8π2

(
Rµνρσγµν−

1

2
Rgµνg

µ[νγρσ]
)
Dρψσ+O(ψ3).

The antisymmetric tensor Fµν = 2∂[µAν] denotes the fieldstrength of the graviphoton, while

the dual fieldstrength, F̃µν , is given by

F̃µν ≡
1

2
ǫµν

ρσFρσ. (2.10)

These are the building blocks of the two independent quadratic curvature invariants

F 2 ≡ FµνFµν , F F̃ ≡ 1

2
ǫµνρσFµνFρσ. (2.11)

The geometric curvature invariants are built out of the Riemann tensor and its dual

R̃µνρσ ≡
1

2
ǫµν

κλRκλρσ, (2.12)

(which is not symmetric under exchange of the first and second pair of indices) as well as

the Schouten tensor, Pµν , which in four dimensions is given by

Pµν ≡
1

2

(
Rµν −

1

6
Rgµν

)
. (2.13)
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The independent quadratic curvature invariants are the square of the Weyl tensor, W 2,

the Euler density, E, and the Pontryagin density, P, defined respectively as

W 2 ≡WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2,

E = RµνρσR
µνρσ − 4RµνR

µν +R2,

P ≡ 1

2
ǫκλµνRκλρσRµν

ρσ = R̃µνρσRµνρσ. (2.14)

Finally, the anomaly coefficients a and c are normalized as in [36], so that for Nχ free

chiral multiplets and Nv free vector multiplets they take the form

a =
1

48
(Nχ + 9Nv), c =

1

24
(Nχ + 3Nv). (2.15)

In particular, for the WZ model we have

c = 2a =
1

24
. (2.16)

2.2 Ward identities for flat space correlation functions

Differentiating the superconformal Ward identities (2.4) with respect to the background

conformal supergravity fields leads to relations among higher-point correlations functions.

In particular, applying a sufficient number of derivatives with respect to suitable combi-

nations of background fields on the superconformal anomalies produces contact (i.e. ul-

tralocal) terms that survive once the supergravity fields are set to their Minkowski space

value. The fact that the superconformal anomalies (2.9) are non trivial solutions of the WZ

consistency conditions ensures that there exist no local counterterms that can eliminate

the corresponding contact terms in correlation functions. We are interested in the simplest

flat space correlation functions of current operators that receive a contribution from the

Q-supersymmetry anomaly, AQ. It is straightforward to see that the lowest order flat space

current correlation functions where AQ contributes are 〈QQ̄JJ 〉 and 〈QQ̄T J 〉. In this

paper, we focus on the 4-point function 〈QQ̄JJ 〉 and obtain a direct derivation of the

Q-supersymmetry anomaly via an 1-loop computation in the WZ model.

In order to compare the 1-loop calculation with the anomalous superconformal Ward

identities (2.4), we need to determine all constraints these imply for the 4-point function

〈QQ̄JJ 〉, by applying successive derivatives with respect to the relevant background super-

gravity fields. We will also derive the flat space constraints for a number of 2- and 3-point

functions that enter in the flat space Ward identities of the 4-point function 〈QQ̄JJ 〉,
since these are required in order to determine the Q-supersymmetry anomaly.

As we discuss in appendix C, beyond 1-point functions, correlation functions can be

defined either via path integral operator insertions, in which case they will be denoted

by < ·>, or through functional differentiation, in which case we will use the notation 〈·〉.
Feynman diagrams compute the former, while the latter definition is more general and can

be used even for non Lagrangian theories. This is why the discussion in this section is

formulated entirely in terms of correlation functions defined by functional differentiation.

The two definitions of correlation functions differ by so called ‘seagull terms’, which encode
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the dependence of the Noether currents on the background fields when a Lagrangian theory

is coupled to background supergravity. In particular, the seagull terms correspond to

insertions involving derivatives of the Noether currents with respect to the background

fields. Those needed for our analysis are determined in appendix C.

It will also be useful to note that the functional derivative of correlation functions with

respect to the gravitino is unambiguously defined through the identity

δψ〈O(x) · · ·〉s =
〈 ∫

d4y e Q̄µ(y)δψµ(y)O(x) · · ·
〉

s
=

〈 ∫
d4y e δψ̄µ(y)Qµ(y)O(x) · · ·

〉

s
,

(2.17)

which holds for any number of local insertions, both bosonic or fermionic. Notice that the

second equality follows from the Majorana property of the gravitino and of the supercurrent

(see appendix A for our spinor conventions). Finally, in order to keep the notation as

compact as possible, we introduce the covariant Dirac delta function

δ(x, y) ≡ e−1δ(4)(x− y), (2.18)

as well as the bidirectional derivative

δ(x, y)
↔
∂µ δ(x, z) ≡ δ(x, y)∂µδ(x, z)− δ(x, z)∂µδ(x, y). (2.19)

We will use the covariant delta function even in flat space, with the implicit understanding

that e−1 = 1 in that case. All derivatives are taken to be with respect to xµ, unless

otherwise indicated.

Q-supersymmetry. Starting from the Q-supersymmetry Ward identity in (2.4), apply-

ing a functional derivative with respect to ψσ(y) and subsequently setting the gravitino to

zero gives

Dµ〈Qµ(x)Q̄σ(y)〉s −
1

2
〈T σa (x)〉sγaδ(x, y)

+
i

8

(
〈J ν(x)〉s −

4(5a− 3c)

27π2
F̃µνAµ

)(
4δ[ρ
ν δ

σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ(Dρ + iγ5Aρ)δ(x, y)

=
(a− c)
12π2

∇µ
(
AρR̃

ρσµν +AρR̃
ρνµσ)

γνδ(x, y)− (a− c)
24π2

FµνR̃
µνρσγρδ(x, y). (2.20)

Notice that, although the gravitino has been set to zero, this identity holds for arbitrary

bosonic sources. In particular, by further differentiation with respect to the graviphoton,

Aκ(z), we obtain

Dµ〈Qµ(x)Q̄σ(y)J κ(z)〉s−iγ5δ(x,z)〈Qκ(x)Q̄σ(y)〉s−
1

2
〈T σ

a (x)J κ(z)〉sγaδ(x,y) (2.21)

+
i

8

(
〈J ν(x)J κ(z)〉s−

4(5a−3c)

27π2

(
F̃κν +ǫµντκAµ∇τ

)
δ(x,z)

)(
4δ[ρ

ν δ
σ]
λ +iγ5ǫνλ

ρσ
)

×γ5γλ(Dρ+iγ5Aρ)δ(x,y)+
1

8

(
〈J ν(x)〉s−

4(5a−3c)

27π2
F̃µνAµ

)(
4δ[κ

ν δ
σ]
λ +iγ5ǫνλ

κσ
)
γλδ(x,z)δ(x,y)

=
(a−c)
24π2

[
∇µ

(
δ(x,z)ǫκσ

αβR
αβµν +δ(x,z)ǫκν

αβR
αβµσ

)
+∇µδ(x,z)ǫ

κµ
αβR

αβνσ
]
γνδ(x,y),

which again holds for an arbitrary bosonic supergravity background.
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The 2- and 3-point function constraints (2.20) and (2.21) allow us to determine the

flat space Ward identities relevant for our analysis. Firstly, setting the bosonic sources

in (2.20) to their Minkowski space values results in the 2-point function Ward identity

∂µ〈Qµ(x)Q̄σ(y)〉 − 1

2
〈T σa (x)〉γaδ(x, y) +

i

8
〈J ν(x)〉(4δ[ρ

ν δ
σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x, y) = 0.

(2.22)

Similarly, setting the bosonic background fields in (2.21) to their Minkowski value gives

∂µ〈Qµ(x)Q̄σ(y)J κ(z)〉 − iγ5δ(x, z)〈Qκ(x)Q̄σ(y)〉 − 1

2
〈T σa (x)J κ(z)〉γaδ(x, y) (2.23)

+
i

8
〈J ν(x)J κ(z)〉(4δ[ρ

ν δ
σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x, y))

+
1

8
〈J ν(x)〉(4δ[κ

ν δ
σ]
λ + iγ5ǫνλ

κσ)
γλδ(x, z)δ(x, y) = 0.

As anticipated, there is no trace of the anomalies in the flat space Ward identities (2.22)

and (2.23). However, differentiating (2.21) once more with respect to the graviphoton,

Aα(w), and then setting all sources to their Minkowski space values results in the 4-point

function Ward identity

∂µ〈Qµ(x)Q̄σ(y)J κ(z)J α(w)〉 − iγ5δ(x,w)〈Qα(x)Q̄σ(y)J κ(z)〉 (2.24)

−iγ5δ(x, z)〈Qκ(x)Q̄σ(y)J α(w)〉 − 1

2
〈T σa (x)J κ(z)J α(w)〉γaδ(x, y)

+
i

8

(
〈J ν(x)J κ(z)J α(w)〉 − 4(5a− 3c)

27π2
ǫνκατδ(x, z)

↔
∂τ δ(x,w)

)

×(
4δ[ρ
ν δ

σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x, y) +

1

8

(
4δ[β
ν δ

σ]
λ + iγ5ǫνλ

βσ)
γλ

×
(
〈J ν(x)J α(w)〉δκβδ(x, z) + 〈J ν(x)J κ(z)〉δαβ δ(x,w)

)
δ(x, y) = 0,

which contains a contact term proportional to the linear combination 5a − 3c of the su-

perconformal anomaly coefficients. As we emphasized earlier, this contact term cannot be

removed by local counterterms without introducing an anomalous contribution to a differ-

ent correlation function. Another crucial observation is that the coefficient of this contact

term differs from the corresponding term in the 3-point function of consistent R-symmetry

currents (see (2.31) below), which descends from the axial anomaly.4 One of the main

goals of the present paper is to reproduce the 4-point function Ward identity (2.24) from

a 1-loop calculation in the WZ model.

S-supersymmetry. Another anomalous Ward identity for the 4-point function 〈QQ̄JJ 〉
follows from S-supersymmetry. Differentiating the S-supersymmetry Ward identity in (2.4)

4In fact, the coefficient of the contact term in (2.24) matches that arising in the 3-point function of

covariant R-symmetry currents [30].
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with respect to ψσ(y) we obtain

γµ〈Qµ(x)Q̄σ(y)〉s −
3i

4

(
〈J σ(x)〉s −

4(5a− 3c)

27π2
F̃µσAµ

)
γ5δ(x, y)

=

[
(5a− 3c)

6π2
F̃ ρσ +

ic

6π2
Fµν

(
γµ

[σδρ]
ν − δ[σ

µ δ
ρ]
ν

)
γ5 +

3(2a− c)
4π2

Pµνg
µ[νγρσ]

+
(a− c)

8π2

(
Rµνρσγµν −

1

2
Rgµνg

µ[νγρσ]
)]

(Dρ + iγ5Aρ)δ(x, y). (2.25)

As in (2.20) above, we have set the gravitino to zero in this expression, but have kept the

bosonic background fields arbitrary. Further differentiation with respect to Aκ(z) results

in the identity

γµ〈Qµ(x)Q̄σ(y)J κ(z)〉s−
3i

4

(
〈J σ(x)J κ(z)〉s−

4(5a−3c)

27π2

(
F̃κσ +ǫµστκAµ∇τ

)
δ(x,z)

)
γ5δ(x,y)

=
1

6π2

(
(5a−3c)ǫρστκ +ciγ5

(
γκ[ρgσ]τ −γτ [ρgσ]κ +2gτ [ρgσ]κ

))
∇τδ(x,z)(Dρ + iγ5Aρ)δ(x,y)

+

[
(5a−3c)

6π2
F̃κσ +

ic

6π2
Fµν

(
γµ

[σδκ]
ν −δ[σ

µ δ
κ]
ν

)
γ5 +

3(2a−c)
4π2

Pµνg
µ[νγκσ]

+
(a−c)

8π2

(
Rµνκσγµν−

1

2
Rgµνg

µ[νγκσ]

)]
iγ5δ(x,z)δ(x,y). (2.26)

The flat space Ward identities we are interested in can be read off these 2- and 3-point

function constraints. Setting the bosonic supergravity fields to their Minkowski values

in (2.25) we obtain

γµ〈Qµ(x)Q̄σ(y)〉 − 3i

4
γ5δ(x, y)〈J σ(x)〉 = 0, (2.27)

while (2.26) gives

γµ〈Qµ(x)Q̄σ(y)J κ(z)〉 − 3i

4
〈J σ(x)J κ(z)〉γ5δ(x, y)

=
1

6π2

(
(5a− 3c)ǫρστκ + c iγ5(

γκ[ρησ]τ − γτ [ρησ]κ + 2ητ [ρησ]κ))
∂τδ(x, z)∂ρδ(x, y). (2.28)

Notice that, in contrast to the Q-supersymmetry anomaly, the S-supersymmetry anomaly

does affect the flat space 3-point function 〈QQ̄J 〉. Finally, differentiating (2.26) one more

time with respect to Aα(w) leads to the Minkowski space identity

γµ〈Qµ(x)Q̄σ(y)J κ(z)J α(w)〉 (2.29)

− 3i

4

(
〈J σ(x)J κ(z)J α(w)〉 − 4(5a− 3c)

27π2
ǫσκατδ(x, z)

↔
∂τ δ(x,w)

)
γ5δ(x, y)

=
1

6π2

(
(5a− 3c)iγ5ǫαστκ − c(γκ[αησ]τ − γτ [αησ]κ + 2ητ [αησ]κ))

∂τδ(x, z)δ(x,w)δ(x, y)

+
1

6π2

(
(5a− 3c)iγ5ǫκστα − c(γα[κησ]τ − γτ [κησ]α + 2ητ [κησ]α))

∂τδ(x,w)δ(x, z)δ(x, y).
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R-symmetry. The last set of flat space Ward identities we need for our analysis follow

from R-symmetry. Firstly, functional differentiation of the R-symmetry Ward identity

in (2.4) with respect to Aν(y) gives the 2-point function identity

∇µ〈J µ(x)J ν(y)〉s + iψ̄µγ
5〈Qµ(x)J ν(y)〉s =

2(5a− 3c)

27π2
ǫκλτνFκλ∇τδ(x, y), (2.30)

where both the bosonic and fermionic background fields have been kept arbitrary. Differen-

tiating this expression one more time with respect to Aρ(z) and setting all sources to their

flat space value produces the standard Ward identity for the 3-point function of consistent

R-currents, namely

∂µ

(
〈J µ(x)J ν(y)J ρ(z)〉+

2(5a− 3c)

27π2
ǫµνρτδ(x, y)

↔
∂ τ δ(x, z)

)
= 0. (2.31)

If instead we differentiate the R-symmetry Ward identity in (2.4) with respect to the

gravitino, ψ̄ν(y), we obtain the 2-point function identity

∇µ〈J µ(x)Qν(y)〉s + δ(x, y)iγ5〈Qν(x)〉s + i〈Qν(y)Q̄µ(x)〉sγ5ψµ = 0, (2.32)

which again holds in the presence of arbitrary sources. Notice that the R-symmetry

anomaly does not contribute to this identity because it is independent of the gravitino.

Further differentiation with respect to ψρ(z) leads to the flat space identity

∂µ〈J µ(x)Qν(y)Q̄ρ(z)〉+ δ(x, y)iγ5〈Qν(x)Q̄ρ(z)〉+ i〈Qν(y)Q̄ρ(x)〉γ5δ(x, z) = 0, (2.33)

while differentiating (2.32) with respect to both ψρ(z) and Aσ(w) gives in flat space

∂µ〈J µ(x)Qν(y)Q̄ρ(z)J σ(w)〉
+ δ(x, y)iγ5〈Qν(x)Q̄ρ(z)J σ(w)〉+ i〈Qν(y)Q̄ρ(x)J σ(w)〉γ5δ(x, z) = 0. (2.34)

The Ward identities (2.24), (2.29) and (2.34) constitute three constraints for the flat space

4-point function 〈QQ̄JJ 〉. The main goal of the rest of this paper is to derive these Ward

identities — including the contact terms due to the superconformal anomalies — from a

1-loop calculation in the WZ model.

3 The free and massless Wess-Zumino model

In this section we consider the free and massless WZ model. We begin with a description

of the flat space theory and its classical symmetries, before discussing its coupling to

background conformal supergravity. It section 4 we will identify a suitable Pauli-Villars

regulator for the free and massless WZ model, which we use in section 5 and appendix D

for regulating the 1-loop diagrams.

An off-shell N = 1 chiral multiplet consists of a complex scalar, φ, a Grassmann-valued

Majorana spinor, χ, and an auxiliary complex scalar, F . The free and massless WZ model
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for a chiral multiplet in Minkowski space is described by the Lagrangian5

L̂WZ = − 1

2α2

(
∂µφ

∗∂µφ+ α2χ̄/∂χ− F ∗F
)
, (3.1)

where a hat ·̂ indicates quantities evaluated in a Minkowski background. It will be omitted

later on when referring to the corresponding quantities in the presence of background

supergravity fields.

Propagators. The momentum space propagators following from the Lagrangian (3.1)

are

φ(p)φ∗(p′) = φ∗(p′)φ(p) = (2π)4δ(p+ p′)Pφ(p),

χ(p)χ̄(p′) = −χ̄(p′)χ(p) = (2π)4δ(p+ p′)Pχ(p),

F (p)F ∗(p′) = F ∗(p′)F (p) = (2π)4δ(p+ p′)PF (p), (3.2)

where

Pφ(p) = −2iα2

p2
, Pχ(p) = − /p

p2
, PF (p) = 2iα2. (3.3)

3.1 Symmetries and the conformal multiplet of conserved currents

The free and massless Wess-Zumino model is classically invariant under the superconformal

group SU(2, 2|1) [52–55]. An infinitesimal SU(2, 2|1) transformation can be parameterized

as

δ̂ = aµPµ + ℓµνM
µν + bµKµ + λD + θ0R+ ε̄0Q+ η̄0S, (3.4)

where Pµ, Mµν , Kµ, D, R, Q and S are respectively the generators of spacetime transla-

tions, Lorentz, special conformal, scaling, R-symmetry, Q- and S-supersymmetry transfor-

mations. The action of these generators on the chiral multiplet fields is given in table 1.

The SU(2, 2|1) generators satisfy the algebra

[D,Pµ] = −Pµ, [D,Kµ] = Kµ, [Pµ,Kν ] = 2(ηµνD − 2Mµν),

[Mµν , Pρ] = ησ[µην]ρP
σ, [Mµν ,Kρ] = ησ[µην]ρK

σ,

[Mµν ,Mρσ] = ηλ[µην]ρM
λ
σ − ηλ[µην]σM

λ
ρ,

{Qα, Q̄β} =
1

2
(γµ)αβPµ, {Sα, S̄β} = −1

2
(γµ)αβKµ,

{Qα, S̄β} =
1

2
δαβD −

1

2
(γµν)αβMµν +

3i

4
(γ5)αβR,

[Pµ, S] = −γµQ, [Kµ, Q] = γµS, [Mµν , Q] = −1

4
γµνQ, [Mµν , S] = −1

4
γµνS,

[D,Q] = −1

2
Q, [D,S] =

1

2
S, [R,Q] = iγ5Q, [R,S] = −iγ5S. (3.5)

5The auxiliary field F should not be confused with the fieldstrength of the background graviphoton

in e.g. eq. (2.11). The arbitrary normalization constant α has been introduced in order to facilitate

comparison with different conventions in the literature. The propagators (3.3) are canonically normalized

for α = 1/
√

2.
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Pµ δaφ = aµ∂µφ, δaχL = aµ∂µχL, δaF = aµ∂µF

Kµ δbφ = bµ
(
(2xµxν − ηµνx2)∂νφ+ 2xµφ

)

δbχL = bµ
(
(2xµxν − ηµνx2)∂νχL + 3xµχL + xνγ

µνχL
)

δbF = bµ
(
(2xµxν − ηµνx2)∂νF + 4xµF

)

Mµν δℓφ = ℓµνx
[µ∂ν]φ, δℓχL = ℓµν

(
x[µ∂ν]χL + 1

4γ
µνχL

)
, δℓF = ℓµνx

[µ∂ν]F

R δθ0φ = iqRθ0φ, δθ0χL = i(qR + 1)θ0χL, δθ0F = i(qR + 2)θ0F

D δλφ = λ(xµ∂µ + 1)φ, δλχL = λ
(
xµ∂µ + 3

2

)
χL, δλF = λ(xµ∂µ + 2)F

Q δε0φ = αε̄0LχL, δε0χL = 1
2α(/∂φε0R + Fε0L), δε0F = αε̄0R/∂χL

S δη0φ = −αxµη̄0RγµχL, δη0χL = 1
2α(xµ/∂φγµη0L + xµFγµη0R + 2φη0L)

δη0F = −αxµη̄0Lγµ/∂χL

Table 1. SU(2, 2|1) action on a chiral multiplet of R-charge qR. Superconformal invariance requires

qR = − 2
3 .

Noether currents and the conformal multiplet. Noether’s theorem for SU(2, 2|1)

invariance results in only three independent current operators, corresponding to the con-

served currents associated with translations, R-symmetry and Q-supersymmetry transfor-

mations. They comprise the conformal current multiplet of the massless WZ model and

are given respectively by

T̂ µν =
1

α2
∂(µφ∗∂ν)φ+

1

2
χ̄γµ∂νχ−

1

8
∂ρ

(
χ̄γνγ

ρµχ+ χ̄γµγρνχ− χ̄γργµνχ
)

− 1

6α2

(
∂µ∂ν − ηµν ∂2)

(φ∗φ)− 1

2α2
ηµν

(
∂ρφ

∗∂ρφ+ α2χ̄/∂χ− F ∗F
)
,

Ĵ µ =
i

3α2

(
φ∗∂µφ− φ∂µφ∗ +

α2

2
χ̄γµγ5χ

)
,

Q̂µ =
1

2α
(/∂φγµχR + /∂φ∗γµχL) +

1

3α
γµν∂ν(φχR + φ∗χL). (3.6)

Notice that, although the stress tensor can be further simplified using the equations of

motion (see table III in [1]), only the off-shell form leads to the correct Ward identities.

The currents (3.6) satisfy the on-shell conservation laws

∂µT̂ µν = 0, ∂µĴ µ = 0, ∂µQ̂µ = 0. (3.7)

The conserved currents for the remaining SU(2, 2|1) symmetries are obtained by contract-

ing the stress tensor and the supercurrent with the corresponding Killing vector or spinor

(see (3.14) below) and result in three algebraic constraints on the currents (3.6). In par-

ticular, Lorentz, scale and S-supersymmetry invariance require that

T̂[µν] = 0, T̂ µµ = 0, γµQ̂µ = 0. (3.8)
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No further condition arises from special conformal transformations, since these are equiva-

lent to a translation, preceded and followed by a discrete inversion. The stress tensor and

the supercurrent in (3.6) include suitable improvement terms that do not affect the con-

servation equations (3.7), but ensure that the algebraic constraints (3.8) hold on-shell [5].

In appendix B we provide a path integral derivation of the ‘naive’ (i.e. classical) su-

perconformal Ward identities using the Noether procedure and the conservation laws (3.7)

and (3.8) for the massless WZ model. By construction, this procedure involves correlators

defined via path integral operator insertions. Identifying the seagull terms from the sym-

metry transformations of the current operators, the resulting Ward identities can be cast

in a more compact form in terms of correlators defined through functional differentiation.

This rather tedious procedure reproduces the classical version of the superconformal Ward

identities discussed in section 2. However, the derivation in appendix B is provided only

for completeness and is not needed for our analysis. The seagull terms that connect the

Ward identities in section 2 to the Feynman diagram computation of correlation functions

can be obtained more efficiently by coupling the theory to background supergravity, which

we discuss next.

3.2 Coupling to background conformal supergravity

Coupling a supersymmetric field theory to off-shell background supergravity allows for a

simpler and universal description of the global symmetries and their physical consequences,

without reference to a specific model. It also facilitates powerful computational techniques,

such as supersymmetric localization [56]. Coupling a theory to background supergravity

amounts to gauging the global symmetries by turning on appropriate gauge fields — the su-

pergravity fields — and suppressing their kinetic terms [57]. Crucially, the local symmetry

transformations of off-shell supergravity are independent of any matter multiplets present

and the algebra closes without invoking the equations of motion. Clearly, without this

property, eliminating the kinetic terms of the supergravity fields would not be consistent.

As we saw in section 2, the universality of the local symmetry transformations of off-shell

supergravity is also what enables the general derivation of the Ward identities and their

quantum anomalies, by solving the WZ consistency conditions.

Classically superconformal theories, such as the massless WZ model, can also be cou-

pled to conformal supergravity, which facilitates an alternative, more efficient formulation

of the Noether procedure. For example, the conserved currents that couple to background

supergravity are those satisfying the algebraic constraints (3.8), and so this formulation

of the Noether procedure leads directly to the improved currents. However, massive the-

ories cannot be consistently coupled to conformal supergravity and so it is not possible

to quantize a classically superconformal theory on a conformal supergravity background

while preserving superconformal symmetry, since any regulator necessarily introduces a

mass scale. A suitable background supergravity for massive theories is old minimal super-

gravity [58], which we will discuss in section 4. In the remaining of this section, we review

the coupling of the massless WZ model to background conformal supergravity, focusing on

the symmetries of the classical theory.
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Symmetries of conformal supergravity. As we reviewed in section 2, the field con-

tent of N = 1 conformal supergravity [47–50] consists of the vierbein, eaµ, the graviphoton,

Aµ, and the gravitino, ψµ. Its local symmetries are diffeomorphisms with infinitesimal

parameter ξµ(x), Weyl transformations σ(x), local Lorentz transformations λab(x), axial

U(1) gauge transformations θ(x), as well as Q- and S-supersymmetry, parameterized re-

spectively by the local spinors ε(x) and η(x). These local symmetries act on the fields of

conformal supergravity as

δeaµ = ξλ∂λe
a
µ + eaλ∂µξ

λ − λabebµ + σeaµ −
1

2
ψµγ

aε,

δψµ = ξλ∂λψµ + ψλ∂µξ
λ − 1

4
λabγ

abψµ +
1

2
σψµ +Dµε− γµη − iγ5θψµ,

δAµ = ξλ∂λAµ +Aλ∂µξ
λ +

3i

4
φµγ

5ε− 3i

4
ψµγ

5η + ∂µθ, (3.9)

where the covariant derivatives of the spinor parameters, ε and η, are given by (cf. (2.7))

Dµε ≡
(
∂µ +

1

4
ωµ

ab(e, ψ)γab + iγ5Aµ

)
ε ≡ (

Dµ + iγ5Aµ
)
ε,

Dµη ≡
(
∂µ +

1

4
ωµ

ab(e, ψ)γab − iγ5Aµ

)
η ≡ (

Dµ − iγ5Aµ
)
η, (3.10)

and the spin connection, ωµ
ab(e, ψ), was given in (2.5). These transformations close off-

shell and form a so called ‘soft algebra’ or ‘algebroid’, which refers to an algebra with field

dependent structure constants. In our conventions, this algebra can be found in [38].

Before discussing the coupling of the massless WZ model to conformal supergravity, let

us briefly recall how the superconformal algebra SU(2, 2|1) arises as the Killing symmetry

of Minkowski space from the local symmetries of N = 1 conformal supergravity. The

Killing symmetries of a conformal supergravity background (êaµ, Âµ, ψ̂µ) correspond to the

subset of local symmetry transformations that preserve the background. In the case of

Minkowski space, the local transformations (3.9) determine that the Killing conditions are

êaλ∂µξ̂
λ − λ̂abêbµ + σ̂êaµ = 0, ∂µε̂− γµη̂ = 0, ∂µθ̂ = 0, (3.11)

where êaλ = ηaλ is the vierbein of Minkowski space. The trace and antisymmetric parts of

the first equation determine the parameters σ̂ and λ̂ab in terms of ξ̂µ through the relations

σ̂ = −1

4
∂µξ̂

µ, λ̂ab = −êµa êνb∂[µξ̂ν], (3.12)

which lead to the conformal Killing vector equation

∂µξ̂
ν − ∂[µξ̂

ν] − 1

4
∂ρξ̂

ρδνµ = 0. (3.13)

The general solution of this system of equations takes the form

ξ̂µ = aµ − ℓµνxν + λxµ + (2δµν bρ − ηνρbµ)xνxρ, σ̂ = −λ− 2bρx
ρ,

λ̂ab = −êµa êνb (ℓµν + 4b[µxν]), θ̂ = θ0, ε̂ = ε0 + γµx
µη0, η̂ = η0, (3.14)

where aµ, ℓµν , λ, bµ, θ0, ε0 and η0 are constants parameterizing the global SU(2, 2|1)

symmetry transformations in (3.4).
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Wess-Zumino model coupled to conformal supergravity. Up to quadratic terms

in the gravitino, the coupling of the massless WZ model to conformal supergravity takes

the form [52, 59, 60]

e−1
LWZ = − 1

2α2
Dµφ

∗Dµφ− 1

2
χ̄ /Dχ+

1

2α2
F ∗F − 1

12α2
φ∗φR[ω(e)]

+
1

2α
ψ̄µ(/∂φγµχR+ /∂φ∗γµχL)− 1

3α
(φχ̄R+φ∗χ̄L)γµνDµψν +

i

3α
Aµψ̄

µ(φχR−φ∗χL)

− 1

12α2
∂µ(φφ∗)ψ̄νγ

νψµ−
i

12α2
φ∗φ ǫµνρσψ̄µγ

5γνDρψσ (3.15)

+
i

16α2
ǫµνρσψ̄µγνψρ

(
φ∗∂σφ−φ∂σφ∗ +

α2

2
χ̄γσγ

5χ

)
− 1

16
(χ̄γ5γνχ)(ψ̄µγ

5γνψ
µ)+O(ψ3).

where the covariant derivatives act on the chiral multiplet fields as

Dµφ =

(
∂µ +

2i

3
Aµ

)
φ, Dµχ =

(
∂µ +

1

4
ωµ

ab(e, ψ)γab −
i

3
γ5Aµ

)
χ. (3.16)

Under the local symmetries of N = 1 conformal supergravity, the WZ fields transform as

δφ= ξµ∂µφ−σφ−
2i

3
θφ+αε̄LχL, (3.17)

δχL = ξµ∂µχL−
3

2
σχL+

i

3
θχL−

1

4
λabγ

abχL+
1

2α

(
γµ

(
Dµφ−αψ̄µLχL

)
εR+FεL+2φηL

)
,

δF = ξµ∂µF −2σF +
4i

3
θF +

1

2
ε̄Rγ

µ
(
2αDµχL−γν

(
Dνφ−αψ̄νLχL

)
ψµR−FψµL−2φφµL

)
,

where the gravitino fieldstrength, φµ (not to be confused with the lowest component of

the chiral multiplet, φ), in the transformation of F was defined in (2.6). Together with

the transformations of the supergravity fields in (3.9), these leave the Lagrangian (3.15)

invariant, up to a total derivative term. Notice that evaluating the transformations (3.17)

on Minkowski space and replacing the local parameters with their Killing form in (3.14)

leads to the global symmetry transformations in table 1. Moreover, the flat space limit of

the S-supersymmetry transformation in (3.17) coincides with δ̃η0 defined in (B.25).

The variation of the WZ Lagrangian (3.15) with respect to the background supergravity

fields determines the corresponding current operators, as discussed in section 2. This gives

T µa =
1

α2
D(µφ∗Da)φ+

1

2
χ̄γµDaχ−

1

8
∇ρ

(
χ̄γaγ

ρµχ+ χ̄γµγρaχ− χ̄γργµaχ
)

+
1

6α2
eνa

(
Rµν −∇µ∇ν +δµν�

)
(φφ∗)− 1

2α2
eµa

(
Dνφ

∗Dνφ+α2χ̄ /Dχ−FF ∗ +
1

6
φφ∗R

)
+O(ψ),

J µ =
i

3α2

(
φ∗Dµφ−φDµφ∗ +

α2

2
χ̄γµγ5χ+αψ̄µ(φχR−φ∗χL)

)
, (3.18)

Qµ =
1

2α
(/∂φγµχR+ /∂φ∗γµχL)+

1

3α
γµνDν(φχR+φ∗χL)+

i

3α
Aµ(φχR−φ∗χL)

− 1

6α2
γ[µψν∂

ν](φφ∗)− i

12α2
ǫµνρσ

(
2φ∗φγ5γνDρψσ+∂ρ(φ

∗φ)γ5γνψσ
)

+
i

8α2
ǫµνρσγνψρ

(
φ∗∂σφ−φ∂σφ∗ +

α2

2
χ̄γσγ

5χ

)
− 1

8
γ5γνψ

µ(χ̄γ5γνχ)+O(ψ2).
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Notice that the expression for the R-current is exact to all orders in the gravitino, since

the qubic and quartic terms in the gravitino in the WZ action do not involve the gauge

field, Aµ, (see e.g. eqs. (2.5) and (2.6) in [59]).

Using the equations of motion following from the WZ action (3.15), it can be shown

that the currents (3.18) satisfy the classical version of the Ward identities (2.4), namely

eaµ∇νT νa +∇ν(ψ̄µQν)− ψ̄ν
←−
DµQν − FµνJ ν = 0,

∇µJ µ + iψ̄µγ
5Qµ = 0, DµQµ −

1

2
γaψµT µa −

3i

4
γ5φµJ µ = 0,

eaµT µa +
1

2
ψ̄µQµ = 0, eµ[aT µb] +

1

4
ψ̄µγabQµ = 0, γµQµ −

3i

4
γ5ψµJ µ = 0. (3.19)

These generalize the flat space conservation equations (3.7) and algebraic constraints (3.8)

to a general supergravity background.

The flat space limit of the currents (3.18) coincides with the improved Noether cur-

rents (3.6). However, they also contain linear and higher order couplings to the background

fields. In appendix B we demonstrate that these terms ensure that the symmetry transfor-

mations of the current operators involve only currents and are independent of the specific

microscopic model. This is not the case for the Noether currents (3.6), whose transforma-

tions are model dependent. The difference between the current operators (3.18) defined

through functional differentiation and the model dependent Noether currents (3.6) gives

rise to the seagull terms discussed in appendix C. Since Feynman diagram computations

involve the Noether currents (3.6), in order to obtain the Ward identities in the model in-

dependent form discussed in section 2 from a 1-loop computation it is necessary to include

suitable seagull terms to replace the Noether currents with the corresponding operators

obtained through functional differentiation.

A 1-loop computation also requires regulating and renormalizing all Feynman diagrams

that enter in the evaluation of current multiplet correlation functions. Since any regulator

breaks scale invariance, the conformal multiplet of current operators cannot be defined

for the regulated theory. The current multiplet that the regulated theory admits and the

background supergravity it can be coupled to is the subject of the next section.

4 Pauli-Villars regularization

The 1-loop diagrams that determine the correlation functions of conserved currents in the

free and massless WZ model (3.1) suffer from UV divergences that must be regulated and

renormalized. In this section we present a supersymmetric Pauli-Villars (PV) regulator

that suffices for removing the 1-loop UV divergences from all correlation functions that

appear in the Ward identities we examine in section 5.

Consistency of any PV regulator requires that its contributions to the 1-loop diagrams

follow from a local Lagrangian. A supersymmetric PV regulator further demands that

this Lagrangian preserves supersymmetry and hence must involve a number of N = 1

multiplets. The PV regulator we use consists of three massive chiral multiplets, one with

standard statistics and two with ‘wrong’ statistics. The corresponding PV Lagrangian
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is a standard massive WZ model, except that terms involving the multiplets with wrong

statistics are appropriately modified.

To help make the discussion of the PV regulator more transparent, it is instructive to

discuss in parallel the standard massive WZ Lagrangian

L̂WZ = − 1

2α2

(
∂µφ

∗∂µφ+ α2χ̄/∂χ− F ∗F
)− 1

2
mχ̄χ+

m

2α2
(φF + φ∗F ∗), (4.1)

as a reference. Despite using the same notation as for the massless WZ model in (3.1),

we emphasize that (4.1) is only meant as a generic reference — it is neither the physical

model we are interested in nor the PV Lagrangian we use. We simply use it to elucidate

the structure of the PV regulator and of the symmetries it preserves.

Integrating out the auxiliary field, F , using its equation of motion, F = −mφ∗, the

massive WZ Lagrangian (4.1) becomes

− L̂WZ =
1

2α2
∂µφ

∗∂µφ+
m2

2α2
φφ∗ +

1

2
χ̄/∂χ+

m

2
χ̄χ. (4.2)

The PV Lagrangian we consider takes the closely related form

−L̂PV =
1

2α2
∂µϕ

∗
2∂

µϕ2 +
m2

2

2α2
ϕ∗

2ϕ2 +
1

2
λ̄2/∂λ2 +

m2

2
λ̄2λ2 (4.3)

+
1

2α2
∂µϕ

∗
1∂

µϕ1 +
m2

1

2α2
ϕ∗

1ϕ1 +
1

2α2
∂µϑ1∂

µϑ∗
1 +

m2
1

2α2
ϑ1ϑ

∗
1 + λ1/∂λ1 +m1λ1λ1,

where (ϕ2, λ2) is a standard massive WZ multiplet, consisting of a commuting complex

scalar, ϕ2, and an anticommuting Majorana spinor, λ2, while ϕ1, ϑ1 are anticommuting

complex scalars and λ1 is a commuting Dirac spinor. Here, we should emphasize the

distinction between the Dirac (e.g. λ1) and Majorana (e.g. λ̄2) conjugates of a spinor, both

of which are discussed in appendix A.

In fact, the fields (ϕ1, ϑ1, λ1) form two chiral multiplets with ‘wrong’ statistics. This

can be made manifest by means of the field redefinition

λ+ ≡
1

2
(λ1 + λC1 ), λ− ≡

1

2i
(λ1 − λC1 ), ϕ+ ≡

ϕ1 + ϑ1

2
, ϕ− ≡

ϕ1 − ϑ1

2i
, (4.4)

where the Majorana conjugate, λC1 , is defined in (A.9), ϕ± are anticommuting complex

scalars and λ± are commuting Majorana spinors. The two chiral multiplets correspond to

(ϕ+, λ+) and (ϕ−, λ−). The advantage of this parameterization is that it greatly simplifies

the discussion of the symmetries preserved by the PV regulator. However, once expressed

in terms of the fields (4.4), the PV Lagrangian (4.3) contains non diagonal terms for the

fields of wrong statistics, namely

−L̂PV =
1

2α2
∂µϕ

∗
2∂

µϕ2 +
m2

2

2α2
ϕ∗

2ϕ2 +
1

2
λ̄2/∂λ2 +

m2

2
λ̄2λ2

+
i

α2
(∂µϕ

∗
+∂

µϕ− − ∂µϕ∗
−∂

µϕ+) +
im2

1

α2
(ϕ∗

+ϕ− − ϕ∗
−ϕ+)

+ i(λ̄+/∂λ− − λ̄−/∂λ+) + im1(λ̄+λ− − λ̄−λ+). (4.5)
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Both forms (4.3) and (4.5) of the PV Lagrangian will be used in the following to analyze

different aspects of the regulator.

Notice that the PV Lagrangian contains two independently supersymmetric parts,

namely the standard WZ action for the massive chiral multiplet with canonical statistics,

and the remaining terms for the two massive chiral multiplets of wrong statistics. The non

diagonal terms in (4.5) imply that the latter do not preserve supersymmetry independently

— it is not possible to write down a supersymmetric Lagrangian for a single massive

chiral multiplet of wrong statistics. Supersymmetry does not impose any relation between

the mass of the standard WZ multiplet and that of the two chiral multiplets with wrong

statistics. However, in appendix D we show that cancellation of the UV divergences requires

that m2
2 = 2m2

1. After adding suitable counterterms to renormalize the 1-loop diagrams,

this mass parameter will be sent to infinity.

Propagators. It is most convenient to express the propagators of the PV fields in diago-

nal form using the parameterization (4.3). Paying attention to the statistics of the various

fields, they take the form

ϕ2(p)ϕ∗
2(p′) = ϕ∗

2(p′)ϕ2(p) = (2π)4δ(p+ p′)Pϕ2(p),

λ2(p)λ̄2(p′) = −λ̄2(p′)λ2(p) = (2π)4δ(p+ p′)Pλ2(p),

ϕ1(p)ϕ∗
1(p′) = −ϕ∗

1(p′)ϕ1(p) = (2π)4δ(p+ p′)Pϕ1(p),

ϑ∗
1(p)ϑ1(p′) = −ϑ1(p′)ϑ∗

1(p) = (2π)4δ(p+ p′)Pϑ1(p),

λ1(p)λ1(p′) = λ1(p′)λ1(p) = (2π)4δ(p+ p′)Pλ1(p), (4.6)

where

Pϕ2(p) = − 2iα2

p2 +m2
2

, Pλ2(p) = −i(−i/p+m2)

p2 +m2
2

,

Pϕ1(p) = − 2iα2

p2 +m2
1

, Pϑ1(p) = − 2iα2

p2 +m2
1

, Pλ1(p) = −i(−i/p+m1)

p2 +m2
1

. (4.7)

4.1 Symmetries and the Ferrara-Zumino current multiplet

The PV Lagrangian (4.3) or (4.5) is invariant only under a subset of the superconformal

symmetries in table 1. Like the standard massive WZ model (4.1), it is invariant only

under the Poincaré symmetries and Q-supersymmetry. After integrating out the auxiliary

fields in the chiral multiplets, Q-supersymmetry acts on the PV fields as

δε0ϕ2 = αε̄0Lλ2, δε0ϕ
∗
2 = αε̄0Rλ2,

δε0λ2 =
1

2α

(
/∂ϕ2ε0R + /∂ϕ∗

2ε0L −m2ϕ2ε0R −m2ϕ
∗
2ε0L

)
,

δε0 λ̄2 = − 1

2α

(
ε̄0L/∂ϕ

∗
2 + ε̄0R/∂ϕ2 +m2ε̄0Rϕ2 +m2ϕ

∗
2ε̄0L

)
,

δε0ϕ± = αε̄0Lλ±, δε0ϕ
∗
± = −αε̄0Rλ±,

δε0λ± =
1

2α

(
/∂ϕ∗

±ε0L − /∂ϕ±ε0R −m1ϕ
∗
±ε0L +m1ϕ±ε0R

)
, (4.8)

– 24 –



J
H
E
P
0
2
(
2
0
2
1
)
2
0
9

where any sign differences in the transformations of (ϕ±, λ±) relative to the standard

transformations of (ϕ2, λ2) are due to the different statistics.

Using the field redefinition (4.4), we find that the fields (ϕ1, ϑ1, λ1) transform as

δε0ϑ
∗
1 = −αε0Lλ1 = −αε̄0Rλ1, δε0ϑ1 = −αλ1ε0L = αε̄0Lλ

C
1 ,

δε0ϕ1 = αε0Rλ1 = αε̄0Lλ1, δε0ϕ
∗
1 = αλ1ε0R = −αε̄0Rλ

C
1 ,

δε0λ1 =
1

2α

(
/∂ϑ∗

1ε0L − /∂ϕ1ε0R −m1ϑ
∗
1ε0L +m1ϕ1ε0R

)
,

δε0λ1 = − 1

2α

(
ε̄0R/∂ϑ1 − ε̄0L/∂ϕ

∗
1 +m1ε̄0Rϑ1 −m1ε̄0Lϕ

∗
1

)
. (4.9)

Once again, in these expressions one must be careful to distinguish between the Dirac and

Majorana conjugates of a spinor, both of which are discussed in appendix A. In partic-

ular, for a Majorana spinor, χ, the Dirac conjugate, χ, and the Majorana conjugate, χ̄,

coincide, i.e. χ = χ̄. Moreover, the Dirac and Majorana conjugates of Weyl spinors are

related as χL,R = χ̄R,L, while those of Dirac spinors are unrelated. For example, using the

decomposition of the Dirac spinor λ1 into two Majorana spinors λ± as in (4.4), we have

λ1 = λ+ + iλ−, λ1 = λ+ − iλ− = λ̄+ − iλ̄−. (4.10)

Ferrara-Zumino multiplet operators. The Noether procedure for Poincaré and Q-

supersymmetry invariance of either the massive WZ model (4.1) or the PV Lagrangian (4.3)

results in a conserved and symmetric stress tensor,
ˆ̃T µν , and a conserved supercurrent,

ˆ̃Qµ,

i.e.

∂µ
ˆ̃T µν = 0,

ˆ̃T [µν] = 0, ∂µ
ˆ̃Qµ = 0, (4.11)

where the tilde indicates that these are operators of a massive theory and, as above, the

hat denotes quantities evaluated in Minkowski space.

Although the conformal multiplet of currents consists only of the classically conserved

current operators (3.6), any current multiplet for a massive theory contains additional

operators [61]. The simplest and best known such multiplet is the Ferrara-Zumino (FZ)

multiplet [5], which, as we will show later on, turns out to be particularly relevant for

examining the presence of supersymmetry anomalies in superconformal theories. Besides

the stress tensor and supercurrent, the FZ multiplet contains a generically non conserved

R-current,
ˆ̃J µ, as well as a complex scalar operator

ˆ̃OM and its complex conjugate,
ˆ̃OM∗ .

For the massive WZ model (4.1), the FZ multiplet operators take the form

ˆ̃T µ
ν =

1

α2
∂(µφ∗∂ν)φ+

1

2
χ̄γµ∂νχ−

1

8
∂ρ

(
χ̄γνγ

ρµχ+ χ̄γµγρ
νχ− χ̄γργµ

νχ
)

− 1

6α2

(
∂µ∂ν−ηµ

ν ∂
2
)
(φ∗φ)− 1

2α2
ηµ

ν

(
∂ρφ
∗∂ρφ+α2χ̄/∂χ−F ∗F +mα2χ̄χ−m(φF +φ∗F ∗)

)
,

ˆ̃J µ =
i

3α2

(
φ∗∂µφ−φ∂µφ∗+

α2

2
χ̄γµγ5χ

)
,

ˆ̃Qµ =
1

2α
(/∂φγµχR + /∂φ∗γµχL)+

1

3α
γµν∂ν(φχR +φ∗χL)+

m

2α
(φγµχL +φ∗γµχR),

ˆ̃OM =
m

4α2
φ2,

ˆ̃OM∗ =
m

4α2
φ∗2. (4.12)
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Using the equations of motion following from (4.1),

�φ = m2φ, /∂χ = −mχ, F = −mφ∗, (4.13)

it is straightforward to verify that the stress tensor and the supercurrent satisfy the iden-

tities (4.11). Moreover, we find that

ˆ̃T µµ = −m
2
χ̄χ− m2

α2
φ∗φ, ∂µ

ˆ̃J µ =
im

3
χ̄γ5χ, γµ

ˆ̃Qµ =
m

α
(φχL + φ∗χR), (4.14)

which reflect the breaking of, respectively, scale invariance, R-symmetry and S-

supersymmetry.

Integrating out the auxiliary fields in the PV multiplets and including suitable im-

provement terms, the FZ multiplet operators following from the PV Lagrangian (4.3) take

the form

ˆ̃T µ
ν

∣∣
PV

=
1

α2
∂(µϕ∗2∂ν)ϕ2−

1

6α2

(
∂µ∂ν−ηµ

ν ∂
2
)
(ϕ∗2ϕ2)− 1

2α2
ηµ

ν

(
∂ρϕ

∗
2∂

ρϕ2 +m2
2ϕ
∗
2ϕ2

)

+
1

2
λ̄2γ

µ∂νλ2−
1

2
ηµ

ν

(
λ̄2/∂λ2 +m2λ̄2λ2

)
− 1

8
∂ρ

(
λ̄2γνγ

ρµλ2 + λ̄2γ
µγρ

νλ2− λ̄2γ
ργµ

νλ2

)

+
1

α2
∂(µϕ∗1∂ν)ϕ1−

1

6α2

(
∂µ∂ν−ηµ

ν ∂
2
)
(ϕ∗1ϕ1)− 1

2α2
ηµ

ν

(
∂ρϕ

∗
1∂

ρϕ1 +m2
1ϕ
∗
1ϕ1

)

+
1

α2
∂(µϑ1∂ν)ϑ

∗
1−

1

6α2

(
∂µ∂ν−ηµ

ν ∂
2
)
(ϑ1ϑ

∗
1)− 1

2α2
ηµ

ν

(
∂ρϑ1∂

ρϑ∗1 +m2
1ϑ1ϑ

∗
1

)

+λ1γ
µ∂νλ1−ηµ

ν

(
λ1/∂λ1 +m1λ1λ1

)
− 1

4
∂ρ

(
λ1γνγ

ρµλ1 +λ1γ
µγρ

νλ1−λ1γ
ργµ

νλ1

)
,

ˆ̃J µ
∣∣
PV

=
i

3α2

(
ϕ∗2
↔

∂µϕ2 +
α2

2
λ̄2γ

µγ5λ2

)
+

i

3α2

(
ϕ∗1
↔

∂µϕ1−ϑ∗1
↔

∂µϑ1 +α2
λ1γ

µγ5λ1

)
,

ˆ̃Qµ
∣∣
PV

=
1

2α
(/∂ϕ2γ

µλ2R + /∂ϕ∗2γ
µλ2L)+

1

3α
γµν∂ν(ϕ2λ2R +ϕ∗2λ2L)+

m2

2α
(ϕ2γ

µλ2L +ϕ∗2γ
µλ2R)

+
1

2α
(/∂ϑ1γ

µλ1R− /∂ϕ∗1γµλ1L)+
1

3α
γµν∂ν(ϑ1λ1R−ϕ∗1λ1L)+

m1

2α
(ϑ1γ

µλ1L−ϕ∗1γµλ1R)

+
1

2α
(/∂ϑ∗1γ

µλC
1L− /∂ϕ1γ

µλC
1R)+

1

3α
γµν∂ν(ϑ∗1λ

C
1L−ϕ1λ

C
1R)+

m1

2α
(ϑ∗1γ

µλC
1R−ϕ1γ

µλC
1L),

ˆ̃OM

∣∣
PV

=
m2

4α2
ϕ2

2 +
m1

2α2
ϕ1ϑ1,

ˆ̃OM∗

∣∣
PV

=
m2

4α2
ϕ∗22 +

m1

2α2
ϑ∗1ϕ

∗
1. (4.15)

We emphasize that the supercurrent for the PV fields remains an anticommuting Majorana

fermion, which is essential for coupling the theory to background supergravity. Its Majorana

conjugate is

ˆ̃
Qµ

∣∣
PV

=
1

2α
(λ̄2Rγ

µ/∂ϕ2 + λ̄2Lγ
µ/∂ϕ∗2)− 1

3α
∂ν(ϕ2λ̄2R +ϕ∗2λ̄2L)γµν−m2

2α
(ϕ2λ̄2L +ϕ∗2λ̄2R)γµ (4.16)

+
1

2α
λ

C

1 (PRγ
µ/∂ϑ1−PLγ

µ/∂ϕ∗1)− 1

3α
∂ν(ϑ1λ

C

1 PR−ϕ∗1λ
C

1 PL)γµν−m1

2α
λ

C

1 (ϑ1PL−ϕ∗1PR)γµ

+
1

2α
λ1(PLγ

µ/∂ϑ∗1−PRγ
µ/∂ϕ1)− 1

3α
∂ν(ϑ∗1λ1PL−ϕ1λ1PR)γµν−m1

2α
λ1(ϑ∗1PR−ϕ1PL)γµ.

The FZ multiplet operators of the full theory, comprising the massless WZ model

and the PV fields, are the sum of the conformal currents (3.6) and the PV operators

in (4.15), and will be denoted by
ˆ̃T µν , ˆ̃J µ,

ˆ̃Qµ and
ˆ̃OM in the following. Their counterparts

without a hat, ·̂ , will again refer to the corresponding operators defined through functional
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differentiation by coupling the theory to background supergravity, which is the subject of

the next subsection. The FZ multiplet operators satisfy the on-shell identities (4.11), while

the breaking of scale invariance, R-symmetry and S-supersymmetry is reflected respectively

in the relations

ˆ̃T µµ = − m2
2

α2
ϕ∗

2ϕ2 −
m2

2
λ̄2λ2 −

m2
1

α2
(ϕ∗

1ϕ1 + ϑ1ϑ
∗
1)−m1λ1λ1 ≡ B̂W ,

∂µ
ˆ̃J µ =

im2

3
λ̄2γ

5λ2 +
2im1

3
λ1γ

5λ1 ≡ B̂R,

γµ
ˆ̃Qµ =

m2

α
(ϕ2λ2L + ϕ∗

2λ2R) +
m1

α
(ϑ1λ1L − ϕ∗

1λ1R) +
m1

α
(ϑ∗

1λ
C
1R − ϕ1λ

C
1L) ≡ B̂S , (4.17)

where we have introduced the notation B̂W , B̂R and B̂S for the quantities on the r.h.s. of

these identities for later convenience. Notice that these quantities, as well as the scalar

operatorOM , receive contributions only from the PV fields. This observation will play a key

role in the discussion of anomalies in section 5. As for the Noether currents (3.6) following

from superconformal symmetry, in appendix B we provide a path integral derivation of the

naive Ward identities associated with the conservation laws (4.11) of the massive theory.

However, the coupling to background supergravity that we discuss next provides a more

efficient derivation of these Ward identities, directly in their model independent form in

terms of operators defined by functional differentiation.

4.2 Coupling to background old minimal supergravity

As discussed earlier, a massive theory does not admit a conformal current multiplet due

to the broken scale invariance and, hence, it cannot be coupled to conformal supergravity.

The off-shell supergravity that sources the FZ multiplet is old minimal supergravity [58,

62, 63]. It can be obtained from N = 1 conformal supergravity by adding a compensating

superconformal chiral multiplet, (φ̃, χ̃, F̃ ), and suitable gauge fixing [59, 64, 65]. The

compensating chiral multiplet sources a subset of operators in the FZ multiplet [5, 61] that

form a chiral multiplet. This chiral multiplet comprises a complex scalar operator (x in the

notation of [61]) that is sourced by F̃ , the gamma trace of the supercurrent sourced by χ̃,

and the trace of the stress tensor and the divergence of the R-current, which are sourced

by the real and imaginary parts the complex scalar φ̃.

The local symmetry transformations of the compensating multiplet are exactly those

of the chiral multiplet in (3.17), namely

δφ̃= ξµ∂µφ̃−σφ̃−
2i

3
θφ̃+αε̄Lχ̃L, (4.18)

δχ̃L = ξµ∂µχ̃L−
3

2
σχ̃L+

i

3
θχ̃L−

1

4
λabγ

abχ̃L+
1

2α

(
γµ

(
Dµφ̃−αψ̄µLχ̃L

)
εR+ F̃ εL+2φ̃ηL

)
,

δF̃ = ξµ∂µF̃ −2σF̃ +
4i

3
θF̃ +

1

2
ε̄Rγ

µ
(
2αDµχ̃L−γν

(
Dν φ̃−αψ̄νLχL

)
ψµR− F̃ψµL−2φ̃φµL

)
.

The compensating multiplet allows us to redefine the supergravity fields so that they

are invariant under Weyl, S-supersymmetry and axial gauge transformations. Using the

conformal supergravity transformations in (3.9), it is straightforward to verify that the
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redefined fields

e′a
µ = |φ̃|eaµ, ψ′

µ =
1

|φ̃|
(
φ̃PR + φ̃∗PL

)3/2
ψµ +

α

|φ̃|
γµ

(
φ̃PL + φ̃∗PR

)1/2
χ̃,

A′
µ = Aµ −

3i

4
|φ̃|−2

(
φ̃∗∂µφ̃− φ̃∂µφ̃∗ +

α2

2
¯̃χγµγ

5χ̃− αψ̄µ(φ̃∗χ̃L − φ̃χ̃R)

)
. (4.19)

do not transform under Weyl, S-supersymmetry and axial gauge transformations [59].

Having defined the invariant supergravity fields (e′a
µ , ψ

′
µ, A

′
µ), we fix the gauge by setting

φ̃ = 1, χ̃ = 0. (4.20)

This gauge choice eliminates the sources of the gamma trace of the supercurrent, the

trace of the stress tensor and the divergence of the R-current in the FZ multiplet, all of

which are redundant. In this gauge, the field redefinition (4.19) reduces to the identity,

so that (e′a
µ , ψ

′
µ, A

′
µ) = (eaµ, ψµ, Aµ). However, only a subset of the local transformations

of conformal supergravity preserve this gauge. From the transformations (4.18) of the

compensator multiplet we see that the gauge (4.20) is preserved if and only if the local

symmetry parameters satisfy the conditions

σ = 0, θ = 0, η =
i

3
/Aγ5ε− 1

2
(F̃ εL + F̃ ∗εR). (4.21)

The surviving local symmetries are those of old minimal Poincaré supergravity with

δom
ε = δε + δη(ε), η(ε) =

i

3
/Aγ5ε− 1

2
(F̃ εL + F̃ ∗εR), (4.22)

where δε, δη are the Q- and S-supersymmetry transformations of N = 1 conformal super-

gravity.

The field content of old minimal supergravity, therefore, consists of that of N = 1

conformal supergravity, as well as the auxiliary complex scalar, F̃ , of the compensator

multiplet, which is not fixed by the gauge fixing conditions (4.20). Adopting standard

notation [66], we denote this field by M in the following.6 The supersymmetry transfor-

mations of old minimal supergravity are

δom
ε eaµ = − 1

2
ψµγ

aε,

δom
ε ψµ = Dµε− γµ

(
i

3
/Aγ5ε− 1

2
(MεL +M∗εR)

)
,

δom
ε Aµ =

3i

4
φµγ

5ε− 3i

4
ψµγ

5
(
i

3
/Aγ5ε− 1

2
(MεL +M∗εR)

)
,

δom
ε M =− ε̄Rγµ

(
i

3
/AψµR +

1

2
MψµL + φµL

)
. (4.23)

6In fact, M here is related to MWB in [66] as M = −3M∗
WB.
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Ward identities. Given the field content and local symmetry transformations of old

minimal supergravity, we can define the corresponding current multiplet operators and

determine the Ward identities they satisfy. A variation of the generating function of (reg-

ulated) connected correlation functions takes the form

δW̃ [e,A, ψ,M ] =

∫
d4x e

(〈T̃ µa 〉sδeaµ + 〈J̃ µ〉sδAµ + δψ̄µ〈Q̃µ〉s + 〈ÕM 〉sδM + 〈ÕM∗〉sδM∗)
,

(4.24)

where the local operators defined by

〈T̃ µa 〉s = e−1 δW̃

δeaµ
, 〈J̃ µ〉s = e−1 δW̃

δAµ
, 〈Q̃µ〉s = e−1 δW̃

δψ̄µ
,

〈ÕM 〉s = e−1 δW̃

δM
, 〈ÕM∗〉s = e−1 δW̃

δM∗
, (4.25)

comprise the FZ current multiplet [5, 61]. Like the currents (2.1) defined from conformal

supergravity, this definition of the FZ multiplet is independent of the specific theory and

applies even to non Lagrangian theories.

The local symmetries of old minimal supergravity consist of diffeomorphisms, local

frame rotations, as well as the local supersymmetry transformations (4.23). The algebra of

these transformations closes off-shell [58, 62]. Since there exist no gravitational or Lorentz

anomalies in four dimensions, diffeomorphisms and local frame rotations are preserved at

the quantum level. Whether the old minimal supersymmetry transformations (4.23) are

anomalous can be determined using the associated WZ consistency conditions. We will not

perform such an analysis here, but we will show that the four point functions of currents

in the free and massless WZ model are compatible with a non anomalous old minimal

supersymmetry.7

Inserting the local symmetry transformations of old minimal supergravity in the varia-

tion (4.24) and invoking the invariance of W̃ [e,A, ψ,M ] leads to the three Ward identities

eaµ∇ν〈T̃ νa 〉s+∇ν(ψ̄µ〈Q̃ν〉s)− ψ̄ν
←−
Dµ〈Q̃ν〉s−Fµν〈J̃ ν〉s−∂µM〈ÕM 〉s−∂µM∗〈ÕM∗〉s

+Aµ
(∇ν〈J̃ ν〉s+ iψ̄νγ

5〈Q̃ν〉s
)−ωµab

(
eν[a〈T̃ νb] 〉s+

1

4
ψ̄νγab〈Q̃ν〉s

)
= 0,

eµ[a〈T̃ µb] 〉s+
1

4
ψ̄µγab〈Q̃µ〉s = 0,

Dµ〈Q̃µ〉s−
1

2
γaψµ〈T̃ µa 〉s−

3i

4
γ5φµ〈J̃ µ〉s

+
1

2

(
MPL+M∗PR−

2i

3
/Aγ5

)(
γµ〈Q̃µ〉s−

3i

4
γ5ψµ〈J̃ µ〉s

)
(4.26)

+γµ
(
i

3
/AψµR+

1

2
MψµL+φµL

)
〈ÕM 〉s+γµ

(
− i

3
/AψµL+

1

2
M∗ψµR+φµR

)
〈ÕM∗〉s = 0.

Since diffeomorphisms and local frame rotations are preserved at the quantum level, the

first two Ward identities hold also in the quantum theory. In section 5 we will show that

7The claim that there exists no supersymmetry anomaly in old minimal supergravity is implicit in [23, 25–

27, 67]. However, these works concern the superspace formulation of old minimal supergravity, which

contains additional fields that may act as compensators.
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the old minimal supersymmetry Ward identity is also maintained at the quantum level, at

least for the current correlation functions we examine.

Differentiating the supersymmetry Ward identity in (4.26) with respect to the old

minimal sources leads to the flat space Ward identities

∂µ〈Q̃µ(x) ˜̄Qσ(y)〉− 1

2
〈T̃ σa (x)〉γaδ(x,y)+

i

8
〈J̃ ν(x)〉(4δ[ρ

ν δ
σ]
λ +iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x,y) (4.27)

+
1

3

(〈ÕM 〉PR+〈ÕM∗〉PL
)
γσρ∂xρ δ(x,y)=0,

∂µ〈Q̃µ(x) ˜̄Qσ(y)J̃ κ(z)〉−iγ5δ(x,z)〈Q̃κ(x) ˜̄Qσ(y)〉− 1

2
〈T̃ σa (x)J̃ κ(z)〉γaδ(x,y) (4.28)

+
i

8
〈J̃ ν(x)J̃ κ(z)〉(4δ[ρ

ν δ
σ]
λ +iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x,y))

+
1

8
〈J̃ ν(x)〉(4δ[κ

ν δ
σ]
λ +iγ5ǫνλ

κσ)
γλδ(x,z)δ(x,y)

− i
3
δ(x,z)γκγ5

(
γµ〈Q̃µ(x) ˜̄Qσ(y)〉− 3i

4
γ5δ(x,y)〈J̃ σ(x)〉

)

+
i

3
ησκδ(x,y)δ(x,z)

(
〈ÕM (x)〉PR−〈ÕM∗(x)〉PL

)

+
1

3
γσρ∂ρδ(x,y)

(
〈ÕM (x)J̃ κ(z)〉PR+〈ÕM∗(x)J̃ κ(z)〉PL

)
=0,

∂µ〈Q̃µ(x) ˜̄Qσ(y)J̃ κ(z)J̃ α(w)〉−iγ5δ(x,w)〈Q̃α(x) ˜̄Qσ(y)J̃ κ(z)〉 (4.29)

−iγ5δ(x,z)〈Q̃κ(x) ˜̄Qσ(y)J̃ α(w)〉− 1

2
〈T̃ σa (x)J̃ κ(z)J̃ α(w)〉γaδ(x,y)

+
i

8
〈J̃ ν(x)J̃ κ(z)J̃ α(w)〉(4δ[ρ

ν δ
σ]
λ +iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x,y)

+
1

8

(
4δ[β
ν δ

σ]
λ +iγ5ǫνλ

βσ)
γλ

(
〈J̃ ν(x)J̃ α(w)〉δκβδ(x,z)+〈J̃ ν(x)J̃ κ(z)〉δαβ δ(x,w)

)
δ(x,y)

− i
3
δ(x,z)γκγ5

(
γµ〈Q̃µ(x) ˜̄Qσ(y)J α(w)〉− 3i

4
〈J̃ σ(x)J̃ α(w)〉γ5δ(x,y)

)

− i
3
δ(x,w)γαγ5

(
γµ〈Q̃µ(x) ˜̄Qσ(y)J κ(z)〉− 3i

4
〈J̃ σ(x)J̃ κ(z)〉γ5δ(x,y)

)

+
i

3
δ(x,y)δ(x,z)ησκ

(
〈ÕM (x)J̃ α(w)〉PR−〈ÕM∗(x)J̃ α(w)〉PL

)

+
i

3
δ(x,y)δ(x,w)ησα

(
〈ÕM (x)J̃ κ(z)〉PR−〈ÕM∗(x)J̃ κ(z)〉PL

)

+
1

3
γσρ∂ρδ(x,y)

(
〈ÕM (x)J̃ κ(z)J̃ α(w)〉PR+〈ÕM∗(x)J̃ κ(z)J̃ α(w)〉PL

)
=0.

In section 5 we will verify that these identities remain true at one loop for both the regulated

and renormalized WZ model.

Ward identities for broken symmetries. Even though Weyl invariance, R-symmetry

and S-supersymmetry are not symmetries of old minimal supergravity and are therefore

explicitly broken in the FZ current multiplet, there still exist Ward identities associated

with these symmetries. This is because the FZ multiplet operators possess well defined

transformations under these symmetries. These Ward identities can be derived by tem-

porarily relaxing the gauge fixing conditions (4.20). The operators sourced by the extra
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components φ̃ and χ̃ of the compensator chiral multiplet do not belong to the FZ multiplet,

but result in symmetry breaking terms in the Ward identities.

Relaxing the gauge fixing conditions (4.20), the generating functional of the FZ

multiplet is W̃ [e′, A′, ψ′,M ′], where e′a
µ , A′

µ and ψ′
µ are the composite supergravity

fields (4.19) and M ′ ≡ φ̃∗−2M , like e′, A′, ψ′, is invariant under Weyl, R-symmetry and

S-supersymmetry transformations. Hence, an infinitesimal variation of the generating func-

tional under any of these symmetries, collectively denoted by δB, leads to the identity

0 = δBW̃ [e′,A′,ψ′,M ′] =

∫
d4xe

(〈T̃ µa 〉sδBeaµ+〈J̃ µ〉sδBAµ+δψ̄µ〈Q̃µ〉s+〈ÕM 〉sδBM

+〈ÕM∗〉sδBM∗ +〈O
φ̃
〉sδBφ̃+〈O

φ̃∗〉sδBφ̃∗ +δB ˜̄χ〈Oχ̃〉s
)
, (4.30)

where 〈O
φ̃
〉s, 〈Oφ̃∗〉s and 〈Oχ̃〉s are defined analogously to (4.25). Using the symmetry

transformations (4.18) of the compensator multiplet, this identity leads to the following

three Ward identities, respectively for Weyl invariance, R-symmetry and S-supersymmetry:

eaµ〈T̃ µa 〉s +
1

2
ψ̄µ〈Q̃µ〉s = 〈BW 〉s,

∇µ〈J̃ µ〉s + iψ̄µγ
5〈Q̃µ〉s = 〈BR〉s,

γµ〈Q̃µ〉s −
3i

4
γ5ψµ〈J̃ µ〉s = 〈BS〉s, (4.31)

where, after imposing the gauge fixing conditions (4.20), the symmetry breaking terms on

the r.h.s. take the form

BW = 2ReO
φ̃

+ 2(MÕM +M∗ÕM∗),

BR =
4

3
ImO

φ̃
+

4i

3
(MÕM −M∗ÕM∗),

BS = − 1

α
Oχ̃. (4.32)

As we will see below, for a classically conformal theory BW , BR and BS depend only on

the regulator and so they become ultralocal after renormalization.

The S-supersymmetry Ward identity in (4.31) implies that flat space correlators satisfy

γµ〈Q̃µ(x) ˜̄Qσ(y)〉 − 3i

4
γ5δ(x, y)〈J̃ σ(x)〉 = 〈BS(x) ˜̄Qσ(y)〉, (4.33)

γµ〈Q̃µ(x) ˜̄Qσ(y)J̃ κ(z)〉 − 3i

4
〈J̃ σ(x)J̃ κ(z)〉γ5δ(x, y) = 〈BS(x) ˜̄Qσ(y)J̃ κ(z)〉, (4.34)

γµ〈Q̃µ(x) ˜̄Qσ(y)J̃ κ(z)J̃ α(w)〉

−3i

4
〈J̃ σ(x)J̃ κ(z)J̃ α(w)〉γ5δ(x, y) = 〈BS(x) ˜̄Qσ(y)J̃ κ(z)J̃ α(w)〉, (4.35)

while R-symmetry implies that

∂µ〈J̃ µ(x)J̃ ν(y)〉 = 〈BR(x)J̃ ν(y)〉, (4.36)

∂µ〈J̃ µ(x)J̃ ν(y)J̃ ρ(z)〉 = 〈BR(x)J̃ ν(y)J̃ ρ(z)〉, (4.37)

∂µ〈J̃ µ(x)Q̃ν(y) ˜̄Qρ(z)〉+ δ(x, y)iγ5〈Q̃ν(x) ˜̄Qρ(z)〉
+i〈Q̃ν(y) ˜̄Qρ(x)〉γ5δ(x, z) = 〈BR(x)Q̃ν(y) ˜̄Qρ(z)〉, (4.38)
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∂µ〈J̃ µ(x)Q̃ν(y) ˜̄Qρ(z)J̃ σ(w)〉+ δ(x, y)iγ5〈Q̃ν(x) ˜̄Qρ(z)J̃ σ(w)〉
+ i〈Q̃ν(y) ˜̄Qρ(x)J̃ σ(w)〉γ5δ(x, z) = 〈BR(x)Q̃ν(y) ˜̄Qρ(z)J̃ σ(w)〉. (4.39)

Using the identities for the broken symmetries, the FZ multiplet supersymmetry Ward

identities may be written in a simpler form that is more suitable for the analysis in section 5.

Namely, inserting (4.33) and (4.34) respectively in (4.28) and (4.29) we get

∂µ〈Q̃µ(x) ˜̄Qσ(y)J̃ κ(z)〉 − iγ5δ(x, z)〈Q̃κ(x) ˜̄Qσ(y)〉 − 1

2
〈T̃ σa (x)J̃ κ(z)〉γaδ(x, y)

+
i

8
〈J̃ ν(x)J̃ κ(z)〉(4δ[ρ

ν δ
σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x, y))

+
1

8
〈J̃ ν(x)〉(4δ[κ

ν δ
σ]
λ + iγ5ǫνλ

κσ)
γλδ(x, z)δ(x, y)

=
i

3
δ(x, z)γκγ5〈BS(x) ˜̄Qσ(y)〉 − i

3
ησκδ(x, y)δ(x, z)

(
〈ÕM (x)〉PR − 〈ÕM∗(x)〉PL

)

− 1

3
γσρ∂ρδ(x, y)

(
〈ÕM (x)J̃ κ(z)〉PR + 〈ÕM∗(x)J̃ κ(z)〉PL

)
= 0, (4.40)

∂µ〈Q̃µ(x) ˜̄Qσ(y)J̃ κ(z)J̃ α(w)〉 − iγ5δ(x,w)〈Q̃α(x) ˜̄Qσ(y)J̃ κ(z)〉

− iγ5δ(x, z)〈Q̃κ(x) ˜̄Qσ(y)J̃ α(w)〉 − 1

2
〈T̃ σa (x)J̃ κ(z)J̃ α(w)〉γaδ(x, y)

+
i

8
〈J̃ ν(x)J̃ κ(z)J̃ α(w)〉(4δ[ρ

ν δ
σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x, y)

+
1

8

(
4δ[β
ν δ

σ]
λ + iγ5ǫνλ

βσ)
γλ

(
〈J̃ ν(x)J̃ α(w)〉δκβδ(x, z) + 〈J̃ ν(x)J̃ κ(z)〉δαβ δ(x,w)

)
δ(x, y)

=
i

3
δ(x, z)γκγ5〈BS(x) ˜̄Qσ(y)J α(w)〉+

i

3
δ(x,w)γαγ5〈BS(x) ˜̄Qσ(y)J κ(z)〉

− i

3
δ(x, y)δ(x, z)ησκ

(
〈ÕM (x)J̃ α(w)〉PR − 〈ÕM∗(x)J̃ α(w)〉PL

)

− i

3
δ(x, y)δ(x,w)ησα

(
〈ÕM (x)J̃ κ(z)〉PR − 〈ÕM∗(x)J̃ κ(z)〉PL

)

− 1

3
γσρ∂ρδ(x, y)

(
〈ÕM (x)J̃ κ(z)J̃ α(w)〉PR + 〈ÕM∗(x)J̃ κ(z)J̃ α(w)〉PL

)
= 0. (4.41)

Massive chiral multiplet coupled to old minimal supergravity. The coupling of

a massive chiral multiplet to old minimal supergravity is discussed e.g. in [66, 68, 69] (see

also [57]). However, the analysis in the literature typically involves field redefinitions that

are not suitable for our purposes here and so it is easier to derive the relevant results

directly in our conventions.8

As for the supergravity fields, the supersymmetry transformation of a chiral mul-

tiplet in old minimal supergravity corresponds to the combination (4.22) of Q- and S-

8For example, comparing the old minimal supersymmetry transformations in (4.42) with eq. (19.21)

in [66] or eq. (3.19) in [68], one sees that the top component of the chiral multiplet there has been shifted

by a multiple of φM . Such a shift is related to an improvement term of the FZ multiplet (see [57] for a

discussion of this shift) that allows old minimal supersymmetric actions to be expressed in terms of a generic

holomorphic superpotential, but obscures the relation between the old minimal and conformal supergravity

supersymmetry transformations.
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supersymmetry in conformal supergravity, given in (3.17). Namely,

δom
ε φ = ξµ∂µφ+ αε̄LχL,

δom
ε χL = ξµ∂µχL −

1

4
λabγ

abχL +
1

2α

(
γµ

(
Dµφ− αψ̄µLχL

)
εR + FεL + 2φηL

)
,

δom
ε F = ξµ∂µF +

1

2
ε̄Rγ

µ
(
2αDµχL − γν

(
Dνφ− αψ̄νLχL

)
ψµR − FψµL − 2φφµL

)
. (4.42)

It follows that the massless WZ model (3.15) preserves old minimal supersymmetry. The

interaction terms for a superconformal chiral multiplet coupled to conformal supergrav-

ity [49], namely

e−1
L

int
WZ = g(φχ̄χL+φ∗χ̄χR)− g

2α2
(φ2F +φ∗2F ∗) (4.43)

− g

2α
(φ2ψ̄µγ

µχL+φ∗2ψ̄µγ
µχR)− g

12α2
(φ3ψ̄µγ

µνψνR+φ∗3ψ̄µγ
µνψνL)+O(ψ3),

where, the overall factor, g, is the arbitrary coupling constant, also preserve old minimal

supersymmetry independently. Although we do not consider the interacting WZ model in

our analysis, we will see shortly that these terms can help us determine the supersymmetric

local counterterms required to renormalize the non interacting WZ model.

The only term that breaks the conformal supergravity symmetries to those of old

minimal supergravity is the supersymmetric mass term9

e−1
L

mass
WZ =− 1

2
mχ̄χ+

m

2α2
(φF+φ∗F ∗)+

m

4α2
(φ2M+φ∗2M∗)+

m

2α
(φψ̄µγ

µχL+φ∗ψ̄µγ
µχR)

+
m

8α2
(φ2ψ̄µγ

µνψνR+φ∗2ψ̄µγ
µνψνL)+O(ψ3), (4.44)

where m is an arbitrary mass parameter. This mass term is invariant under the old minimal

supersymmetry transformation, but not under the individual Q- and S-supersymmetry

transformations of conformal supergravity. It also breaks R-symmetry and local Weyl

invariance explicitly. The general coupling of a chiral multiplet to old minimal supergravity

therefore takes the form

L
om
WZ = LWZ + L

int
WZ + L

mass
WZ , (4.45)

where the three terms are given respectively in (3.15), (4.43) and (4.44).

The Lagrangian (4.45) determines that the FZ multiplet operators of a massive non

interacting WZ model take the form

T̃ µa = T µa +
1

2
eµa

(
−mχ̄χ+

m

α2
(φF + φ∗F ∗) +

m

2α2
(φ2M + φ∗2M∗) +O(ψ)

)
,

Q̃µ = Qµ +
m

2α
(φγµχL + φ∗γµχR) +

m

4α2
γµν(φ2ψνR + φ∗2ψνL) +O(ψ2),

J̃ µ = J µ, ÕM =
m

4α2
φ2, ÕM∗ =

m

4α2
φ∗2. (4.46)

9Once again, we use the generic massive WZ model (4.1) in order to simplify the discussion. In our

analysis this is eventually replaced with the massive WZ model for the PV fields.
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where T µa , J µ and Qµ are the currents (3.18) of the conformal multiplet. In the flat space

limit these reduce to the operators (4.12) obtained earlier, but as is shown again in ap-

pendix B, the terms linear and higher in the background fields ensure that the symmetry

transformations of the currents (4.46) are model independent, contrary to the transforma-

tions of the operators (4.12). The dependence of the operators (4.46) on the background

fields also determines the seagull terms discussed in appendix C, which relate correlation

functions of these operators with Feynman diagrams.

The FZ multiplet operators (4.46) satisfy the classical version of the Ward identi-

ties (4.26), which generalize the flat space conservation laws (4.11) to an arbitrary super-

gravity background. They also satisfy the classical version of the identities (4.31) for the

broken symmetries with

BW = − m

2
χ̄χ+

m

2α2
(φF + φ∗F ∗) + 3(MÕM +M∗ÕM∗) +O(ψ),

BR =
im

3
χ̄γ5χ− im

3α2
(φF − φ∗F ∗) +

4i

3
(MÕM −M∗ÕM∗)

− im

3α
(φψ̄µγ

µχL − φ∗ψ̄µγ
µχR)− i

3
(ÕM ψ̄µγµνψνR − ÕM∗ψ̄µγ

µνψνL) +O(ψ3),

BS =
m

α
(φχL + φ∗χR) +

3

2
γν(ÕMψνR + ÕM∗ψνL) +O(ψ2). (4.47)

These again generalize the flat space identities (4.17) to a generic supergravity background.

Notice that the expressions (4.47) for the symmetry breaking terms are fully off-shell. They

can be obtained either from the corresponding symmetry transformations of the massive

WZ model action, or equivalently using the relations (4.32) in terms of functional deriva-

tives with respect to the lowest components of the compensating multiplet. Since infinites-

imal variations of the compensator fields φ̃ and χ̃ around the gauge-fixing values (4.20) are

equivalent to infinitesimal Weyl, R-symmetry and S-supersymmetry transformations, only

the symmetry breaking mass terms (4.44) contribute.

4.3 Local counterterms

The local counterterms required to renormalize correlation functions of the FZ multiplet

operators are local functionals of the background supergravity fields and preserve the sym-

metries of the regulated theory. In particular, the local counterterms W̃ct[e,A, ψ,M ] that

remove the UV divergences are a local functional invariant under the symmetries of old

minimal supergravity and allow us to define the generating function of renormalized cor-

relation functions as

W̃ren[e,A, ψ,M ] ≡ W̃ [e,A, ψ,M ] + W̃ct[e,A, ψ,M ], (4.48)

where W̃ [e,A, ψ,M ] is the generating function of regulated correlators.

The counterterms can be decomposed into terms of increasing mass dimension as

W̃ct[e,A, ψ,M ] = W̃
(1)

ct + W̃
(2)

ct + W̃
(3)

ct + W̃
(4)

ct , (4.49)

each of which is separately invariant under the symmetries of old minimal supergravity.

Dimensional analysis determines that for n < 4, W̃
(n)

ct must be of order 4−n in the regulator
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mass, while W̃
(4)

ct is logarithmic. Finite counterterms are order zero in the PV masses and

will be discussed separately below. In appendix D we show that, at least to 1-loop, there

are no UV divergences proportional to odd powers of the PV mass and so only even mass

dimension counterterms are required.

At each mass level, the local counterterms can be determined by writing down the most

general local expression involving the fields of old minimal supergravity using the mass

dimensions [∂µ] = [Aµ] = [M ] = 1, [ψµ] = 1/2, and [eaµ] = 0 of the building blocks, and im-

posing old minimal supersymmetry. However, in practice, most of the counterterms can be

obtained directly from known results using conformal calculus. For example, although not

required for the WZ model, the mass dimension 1 counterterm follows from the interaction

Lagrangian (4.43) for the compensating chiral multiplet of old minimal supergravity. Gauge

fixing the compensating multiplet as in (4.20) leads to a mass dimension 1 invariant action

I1 =

∫
d4x e

(
M +M∗ +

1

6
ψ̄µγ

µνψν +O(ψ4)

)
. (4.50)

This is the unique old minimal local invariant at mass dimension 1 and so

W̃
(1)

ct = a1 I1, (4.51)

where the constant a1 is cubic in the regulator mass, but vanishes for the WZ model.

Similarly, the mass dimension 2 counterterm can be obtained from the free and mass-

less WZ action (3.15) for the compensating chiral multiplet using the gauge fixing condi-

tion (4.20). This leads to the well known Poincaré supergravity action [58, 62, 63]

I2 =

∫
d4x e

(
R[ω(e)] +

8

3
AµAµ − 6M∗M + iǫµνρσψ̄µγ

5γνDρψσ +O(ψ4)

)
. (4.52)

This is again the unique local invariant at mass dimension 2 and so

W̃
(2)

ct = a2 I2, (4.53)

where the constant a2 is quadratic in the PV masses and will be determined by canceling

the corresponding UV divergences in the current multiplet correlators.

The mass dimension 3 counterterm requires a bit more effort to determine using confor-

mal calculus, but this is not necessary here since there are no UV divergences linear in the

PV mass in the free and massless WZ model. Moving to mass dimension 4, there exist three

local densities that are invariant under old minimal supergravity, given in full generality

in [70]. Two of these correspond to the supersymmetrized Weyl squared and Euler densities

and are in fact invariant under the full symmetries of conformal supergravity, while the third

is only invariant under the symmetries of old minimal supergravity. The supersymmetrized

Euler density is locally a total derivative and so we focus on the other two local invariants.
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The supersymmetric Weyl squared invariant is the conformal supergravity action [47–

50, 52]

I4 =

∫
d4x e

(
W 2 − 8

3
FµνF

µν + 8iǫµνρσφ̄µγ
5γνDρφσ + 4ψ̄µγρψσ∇µPρσ

− 2Rµν
(
ψ̄ργρνφµ − ψ̄µγρνφρ −

2

3
gµνψ̄

ργρσφ
σ + 2ψ̄ργν(D[µψρ] − γ[µφρ])

)

+
4i

3
F ρσψ̄µ(2η[µ

ρ η
ν]
σ − iγ5ǫµνρσ)γ5φν +O(ψ4)

)
. (4.54)

Notice that this action does not involve the auxiliary field M of old minimal supergravity

and it is separately invariant under the Q- and S-supersymmetry transformations of con-

formal supergravity. The second invariant at mass dimension 4 relevant for our analysis

takes the form [64, 70]

I ′
4 =

∫
d4x e

(
R2 − 36∂µM∂µM∗ + 16(∇µAµ)2 +

16

3
RAρA

ρ + 36φ̄µγ
µ /Dγνφν

− 12iφ̄µγ
µ /Aγ5γνφν + 24ǫµνρσAµψ̄νDρφσ

+ 48iψ̄ργ
5 /Aγ(ρ

D
σ)φσ − 48iAρψ̄µγ

5γµσD[ρφσ] + 24iAµψ̄
µγ5γρσDρφσ − 24iψ̄σγ5 /A /Dφσ

+ 8
(
gνρAµ∇µAσ − gνρAσ∇µAµ −Aρ∇νAσ

)
ψ̄ργνψσ

+
16

3
AµA

µψ̄ργσD[ρψσ] +
16

3
Aµψ̄µ /Aγ

ρσ
Dρψσ −

8

3
AµA

µψ̄νγ
νρσ

Dρψσ

− 8AµAνψ̄
νγµρσDρψσ + 16AρAµψ̄νγ

µνσ
D[ρψσ] + 4AνA

νψ̄µγ
µρσ

Dρψσ + · · ·
)
, (4.55)

where the ellipses in this expression stand for terms that are not relevant for our analysis

(not only O(ψ4) terms). The full expression can be found in eq. (4.4) of [70].10 The general

form of the local counterterms at mass dimension 4 therefore is

W̃
(4)

ct = a4 I4 + a′
4 I ′

4, (4.57)

where the constants a4 and a′
4 are logarithmic in the PV mass.

Finite local counterterms. The structure of the local counterterms that cancel the UV

divergences of FZ multiplet correlators is uniquely determined by the symmetries of old

minimal supergravity. However, there remains the freedom of adding finite local countert-

erms, on top of those that cancel the UV divergences. Such finite local counterterms may

or may not preserve the symmetries of the theory. For example, one could add an arbitrary

linear combination of the two old minimal invariants (4.54) and (4.55) with coefficients that

10The notation of [70] translates to that of this paper under the following substitutions:

ie−1εµνρσ → ǫµνρσ, Aµ → 2Aµ, S → 3

2
(M+M∗), P → 3i

2
(M−M∗), η → i

3
/Aγ5− 1

2
(MPL+M∗PR).

(4.56)
Moreover, the notation for the covariant derivatives on spinors is reversed: Dµ → Dµ, Dµ → Dµ, and the

Riemann curvature is defined with opposite sign: Rµ
νρσ → −Rµ

νρσ.
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are independent of the PV masses. Such a finite counterterm would preserve all symme-

tries of the regulated theory, with the coefficients parameterizing different supersymmetric

renormalization schemes. As we discuss in section 5, a specific finite counterterm of this

form (given in (5.6)) is required to bring all 2-point functions computed with our PV reg-

ulator to a form compatible with the corresponding conformal multiplet 2-point functions.

Finite local counterterms that do not preserve all symmetries may be used to move

quantum anomalies from one symmetry to another. In particular, we claim that there

exists a finite local counterterm, W̃fin[e,A, ψ,M ], that can be added to the renormalized

generating function, W̃ren[e,A, ψ,M ], of the FZ multiplet, such that

W [e,A, ψ] = W̃ren[e,A, ψ,M ] + W̃fin[e,A, ψ,M ], (4.58)

where W [e,A, ψ] depends only on the conformal supergravity fields, and the current oper-

ators

〈T µa 〉 = 〈T̃ µa 〉ren + e−1 δW̃fin

δeaµ
, 〈J µ〉 = 〈J̃ µ〉ren + e−1 δW̃fin

δAµ
, 〈Qµ〉 = 〈Q̃µ〉ren + e−1 δW̃fin

δψ̄µ
,

(4.59)

satisfy the superconformal Ward identities (2.4), with the superconformal anomalies given

in (2.9). Moreover, since W [e,A, ψ] depends only on the conformal supergravity fields,

〈ÕM 〉ren + e−1 δW̃fin

δM
= 0, 〈ÕM∗〉ren + e−1 δW̃fin

δM∗
= 0. (4.60)

This implies that, for a classically superconformal theory, ÕM and ÕM∗ are ultralocal oper-

ators. The finite local counterterm W̃fin, therefore, relates the conformal and FZ multiplets

of any renormalized N = 1 SCFT in four dimensions. The role of this counterterm on the

way superconformal symmetry is broken at the quantum level in each of these multiplets

will be discussed in detail in section 5.

Since W̃ren is invariant under old minimal supersymmetry, the relation (4.58) implies

that the counterterm W̃fin transforms exactly as the conformal multiplet generating function

W , namely

δom
ε W̃fin = −

∫
d4x e ε̄

[
AQ +

1

2

(
MPL +M∗PR −

2i

3
/Aγ5

)
AS

]
, (4.61)

where the Q- and S-supersymmetry anomalies are given in (2.9). This may be taken as the

defining property of W̃fin and can be expressed in the form of a functional partial differential

equation as

Dµ

(
δW̃fin

δψ̄µ

)
− 1

2
γaψµ

δW̃fin

δeaµ
− 3i

4
γ5φµ

δW̃fin

δAµ

+
1

2

(
MPL +M∗PR −

2i

3
/Aγ5

)(
γµ
δW̃fin

δψ̄µ
− 3i

4
γ5ψµ

δW̃fin

δAµ

)

+ γµ
(
i

3
/AψµR +

1

2
MψµL + φµL

)
δW̃fin

δM
+ γµ

(
− i

3
/AψµL +

1

2
M∗ψµR + φµR

)
δW̃fin

δM∗

= eAQ +
1

2

(
MPL +M∗PR −

2i

3
/Aγ5

)
eAS . (4.62)
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This can be used in order to systematically determine the general form of the finite coun-

terterm W̃fin, but we will not pursue this problem here. Instead, in section 5 we determine

certain parts of W̃fin that are relevant for the specific current correlators we consider.

5 Ferrara-Zumino and conformal multiplet Ward identities at one loop

We are now in a position to prove our main result. We begin by demonstrating that the

FZ multiplet supersymmetry remains non anomalous at one loop, at least up to the level

of 4-point functions. However, R-symmetry, conformal invariance, as well as the original

Q- and S-supersymmetry of the conformal multiplet are broken explicitly. Evaluating the

local symmetry breaking terms in the corresponding Ward identities, we show that there

exists a local counterterm that removes the explicit breaking from all correlators, except

for terms that reproduce exactly the superconformal anomalies of the conformal multiplet

discussed in section 2.

The model independent form of the Ward identities suitable for discussing quantum

anomalies involves current multiplet correlators defined through functional differentiation

with respect to the corresponding sources, i.e. the background supergravity fields. Such

correlators are indicated throughout the paper by the wide brackets 〈·〉. As we have al-

ready mentioned and discuss in more detail in appendix C, these differ from correlation

functions defined by operator insertions in the path integral by seagull terms, which en-

code the dependence of the current multiplet operators on the background supergravity

fields. Individual correlators defined via path integral operator insertions, denoted by <·>,

generically contain additional UV divergences and cannot be renormalized by local coun-

terterms that depend only on the background supergravity fields. These model dependent

UV divergences cancel in the combinations of path integral correlators corresponding to

correlation functions defined by functional differentiation. The remaining UV divergences

are model independent and can be regulated and renormalized using local counterterms

that involve only background supergravity fields.

Although we will organize the analysis of the Ward identities in terms of universal

correlation functions defined through functional differentiation, actual Feynman diagrams

compute correlators corresponding to path integral operator insertions. The dictionary

between the two definitions of correlators is provided explicitly in appendix C and is used

extensively in the subsequent analysis. Another subtlety in the evaluation of the 1-loop

correlation functions concerns the presence of an overall phase factor due to the definition

of the generating function of connected correlators in (2.2), and the normalization of the

current multiplet operators that is chosen to coincide with derivatives of the classical action.

Namely, for connected path integral n-point functions

<O1O2 · · · On>∼ −i
∫

[d{Φ}]
(
i
δS

δJ1

)
· · ·

(
i
δS

δJn

)
eiS[{Φ};{J}] ∼ in−1 × Feynman diagrams,

(5.1)

where the Feynman diagrams are evaluated using standard Wick contractions.

Finally, the following generic observations help organize and simplify the computation

of the current multiplet correlation functions. Firstly, it is useful to notice that the fermion
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propagators in (3.3) and (4.7) may be expressed in terms of their bosonic counterparts as

Pχ(p) =
−i/p
2α2

Pφ(p), Pλ1(p) =
−i/p+m1

2α2
Pϕ1(p), Pλ2(p) =

−i/p+m2

2α2
Pϕ2(p). (5.2)

Using these relations, supersymmetry together with the PV mass condition (D.6) give rise

to certain universal structures that render the 1-loop integrals UV finite. In particular, in

the computation of all n-point functions one encounters the two homogeneous propagator

polynomials

G
(n)
1 (q1, q2, . . . , qn) ≡ Pφ(q1) · · ·Pφ(qn) + Pϕ2(q1) · · ·Pϕ2(qn)− 2Pϕ1(q1) · · ·Pϕ1(qn),

G
(n)
2 (q1, q2, . . . , qn) ≡ Pϕ2(q1) · · ·Pϕ2(qn)− Pϕ1(q1) · · ·Pϕ1(qn). (5.3)

Imposing the mass condition (D.6), the large momentum behavior of these polynomials is

G
(n)
1 (q, . . . , q) ∼ q−2n−4, G

(n)
2 (q, . . . , q) ∼ q−2n−2. (5.4)

In appendix D we show that this suffices to ensure the UV finiteness of all relevant corre-

lators.

5.1 Ward identities for the Ferrara-Zumino multiplet

Since the PV regulator introduced in section 4 manifestly preserves old minimal su-

persymmetry, it follows that the FZ multiplet Ward identities (4.27)–(4.29), as well

as (4.33)–(4.35) and (4.36)–(4.39) for the broken symmetries, hold at the quantum level

provided all relevant Feynman diagrams are properly regulated. In appendix D we

verify explicitly that the UV divergences of all Feynman diagrams required to compute

correlation functions that involve only FZ multiplet operators are canceled at one loop.

For correlators with insertions of the symmetry breaking operators (4.47) that involve PV

fields only, UV finiteness is demonstrated in appendix E. Hence, all FZ multiplet Ward

identities for the regulated theory remain valid at one loop. This remains true for the

renormalized theory, since all divergences of FZ multiplet correlators as the PV masses

are sent to infinity are canceled by the supersymmetric counterterms (4.53)–(4.57), with

the coefficients a2 and a4 specified respectively in (D.9) and (D.16).

Comparing the FZ multiplet Ward identities (4.33)–(4.35), (4.36)–(4.39) and (4.40)–

(4.41) with the corresponding ones for the conformal current multiplet in section 2, one sees

that they coincide exactly, except for the contact terms related to superconformal anomalies

in the conformal multiplet Ward identities, and the terms involving the symmetry breaking

operators BW , BR and BS in the FZ multiplet ones. In order to provide an independent

perturbative calculation of the anomalies, therefore, it suffices to evaluate all correlation

functions with insertions of the symmetry breaking operators BW , BR and BS . We will

see, however, that evaluating these correlation functions does not immediately reproduce

the contact terms of the conformal multiplet Ward identities. For example, the 2-point

functions 〈BRJ̃ 〉 and 〈BS ˜̄Q〉 turn out to be non zero, while there are no contact terms

in the corresponding conformal multiplet Ward identities arising due the superconformal

anomalies. In the next subsection we show that all 2-point functions of FZ multiplet
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operators can be mapped to conformal multiplet 2-point functions using supersymmetric

local counterterms. Moreover, there exists a finite local counterterm that depends on the

old minimal fields (but not supersymmetric) that maps all contact terms in 3- and higher-

point functions with BW , BR and BS insertions to precisely those of the conformal multiplet

in section 2 due to the superconformal anomalies. The explicit 1-loop computation of

all contact terms arising from FZ multiplet correlation functions with BW , BR and BS
insertions is carried out in appendix E.

5.2 Finite counterterm and the Ward identities for the conformal multiplet

Having obtained all breaking terms we now proceed to add finite counterterms to restore

the conformal multiplet Ward identities to the extend possible. For the correlators we

analyze the relevant counterterms W̃ ∗
fin ⊂ W̃fin are:

W̃
∗

fin =− 1

2433π2

[
3i

8
ǫµνρσψ̄µγσγ

5
DρD

2ψν +Aρ∇2Aρ−
1

2
RAρA

ρ+
9

4
∂µM∂µM∗

−iAρ
(
∂[νψ̄µ]γµγ

5∂ρψν +∂[ρψ̄
µ]γµγ

5∂νψ
ν +∂[µψ̄ν]γργ

5∂νψµ+∂[µψ̄ν]γµγ
5∂νψρ+2∂ν∂[ρψ̄µ]γ

µγ5ψν

)

+
1

8
Aρ

(
7ǫρτµν∂µψ̄

σγτ∂νψσ +2ǫρστµ∂µψ̄σγτ∂νψ
ν +14ǫρστµ∂νψ̄σγτ∂µψ

ν +7ǫρτµν∂σψ̄µγτ∂
σψν

+4ǫρστµ∂ν∂µψ̄σγτψ
ν−2ǫρσµν∂µψ̄σγτ∂νψ

τ−2ǫρσµν∂νψ̄σγτ∂
τψµ

)

+
1

3
AµA

ν∂τ ψ̄
µγτψν−

5

12
AνA

ν∂τ ψ̄
µγτψµ+

1

2
∂µA

τAνψ̄µγτψν

+
1

3
AµA

νψ̄µγτ∂νψτ−
1

4
AνA

ν∂µψ̄
µγτψτ−

5

12
AνA

νψ̄µγτ∂µψτ

− 1

2
∂τAµAνψ̄

µγτψν−AτAµ∂µψ̄
νγτψν +AτAν∂µψ̄

µγτψν +
3

2
∂µA

νAτ ψ̄µγτψν

+
5i

24
AρAσǫ

σµντ ψ̄µγ
ργ5∂τψν +

i

4
∂νAσAτ ǫ

σµρτ ψ̄µγργ
5ψν

+
23i

24
AσAτ ǫ

τµνρ∂σψ̄µγργ
5ψν +

i

8
∂νAσAτ ǫ

τσρνψ̄µγργ
5ψµ

− 5i

24
AσAτ ǫ

τµρν∂νψ̄µγργ
5ψσ−

23i

24
AτAσǫ

τµρνψ̄µγργ
5∂νψ

σ

]
. (5.5)

The terms quadratic in the sources renormalize (finitely) the 2-point functions of the R-

current and the supercurrent, which are now conserved (and gamma-trace conserved for

the supercurrent). The finite renormalization of the 2-point functions now enters in the

3-point function Ward identities and the contribution of the cubic counterterm is such

that the 3-point function 〈QQ̄J 〉 preserves Q-supersymmetry and R-symmetry and the

anomaly of S-supersymmetry exactly matches that presented in section 2. Similarly, the

counterterms ensure that the 〈T JJ 〉 correlator preserves R-symmetry and has the correct

trace anomaly. Finally, moving to the Ward identity for 〈QQ̄JJ 〉, collecting all finite terms

from the finite renormalisation of the lower-point functions and the quartic contribution

of the finite counterterm one finds that R-symmetry Ward identity is non-anomalous but

both Q- and S-supersymmetry are anomalous with the anomalies exactly matching those

of section 2. It should be emphasized that the local counterterms (5.5) deduced from

the correlation functions we computed are ambiguous up to an arbitrary multiple of the

superconformal invariant I4 in (4.54). This ambiguity corresponds to the usual scheme
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dependence of the conformal multiplet and does not affect the form of the anomalies. In

writing down (5.5) we have made an implicit choice for the coefficient of the superconformal

invariant I4.

In fact, all terms in W̃ ∗
fin that contribute to 2-point functions are actually supersym-

metric. Using the form of the supersymmetric invariants I4 and I ′
4 respectively in (4.54)

and (4.55), we get

− 1

2832π2

(
I4−

1

3
I ′4

)

=− 1

2832π2

∫
d4xe

(
RµνρσR

µνρσ−2RµνR
µν +

16

3
Aµ

(
∇2Aµ− 1

2
RAµ−2PµνAν

)
+12∂µM∂µM∗

+8iǫµνρσφ̄µγ
5γνDρφσ−12φ̄µγ

µ /Dγνφν +16iφ̄µγ
µ /Aγ5γνφν−8ǫµνρσAµψ̄νDρφσ

−16iψ̄ργ
5 /Aγ(ρ

D
σ)φσ +16iAρψ̄µγ

5γµσ
D[ρφσ]−8iAµψ̄

µγ5γρσ
Dρφσ +8iψ̄σγ5 /A /Dφσ

+
4i

3
F ρσψ̄µ(2η[µ

ρ η
ν]
σ − iγ5ǫµν

ρσ)γ5φν−
8

3

(
gνρAµ∇µAσ−gνρAσ∇µAµ−Aρ∇νAσ

)
ψ̄ργνψσ

− 16

9
AµA

µψ̄ργσ
D[ρψσ]−

16

9
Aµψ̄µ /Aγ

ρσ
Dρψσ +

8

9
AµA

µψ̄νγ
νρσ

Dρψσ

+
8

3
AµAνψ̄

νγµρσ
Dρψσ−

16

3
AρAµψ̄νγ

µνσ
D[ρψσ]−

4

3
AνA

νψ̄µγ
µρσ

Dρψσ + · · ·
)
, (5.6)

where the ellipses stand for terms that do not contribute to the correlators we are consid-

ering. While the coefficient of I ′
4 is unambiguous, as we mentioned above, the coefficient of

I4 corresponds to the superconformal scheme dependence of the conformal multiplet and

is a priory arbitrary. The coefficient in (5.6) is chosen to match the choice made implicitly

in (5.5).

It is clear that the contribution of this supersymmetric counterterm to the 2-point

functions 〈J J 〉 and 〈OMOM∗〉 agrees with the corresponding ones in (5.5). Verifying that

the contributions to the 2-point function 〈Q̄Q〉 agree requires a bit more work. Using the

identities

γµφµ = −1

3
γρσDρψσ, (5.7)

and

iǫµνρσφ̄µγ
5γνDρφσ = 2φ̄µγ

µDνφν − φ̄µ /Dφµ − φ̄µγµ /Dγνφν , (5.8)

one finds that, up to a total derivative,

8iǫµνρσφ̄µγ
5γνDρφσ + 12φ̄µγ

µ /Dγνφν = 16φ̄µγ
µDνφν − 8φ̄µ /Dφ

µ − 20φ̄µγ
µ /Dγνφν

= −1

3
ψ̄ρ

(
3γρσγκλτ + γτρσγκλ − 6γργτγ[κgλ]σ + 6γσγτγ[κgλ]ρ)DσDτDκψλ. (5.9)

Isolating the part that is totally symmetric in the indices σ, κ and τ it is straightforward to

show that the contributions of (5.5) and (5.6) to the 2-point function 〈Q̄Q〉 coincide up to a

local term that is divergence and gamma-trace free. The supersymmetric counterterm (5.6)

should also bring the 2-point function of the stress tensor to its conformal multiplet form,

but we cannot verify this directly here because our PV regulator does not regulate this

2-point function. Assuming this is indeed the case, we deduce that

W̃
∗

fin = − 1

2832π2

(
I4 −

1

3
I ′

4

)
+ W̃

∗∗
fin , (5.10)
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where the symmetry breaking term W̃ ∗∗
fin contributes to 3- and higher-point correlation

functions. As in the conformal multiplet, therefore, all symmetry breaking terms in the FZ

multiplet appear first in 3-point functions.

This finishes the construction of part of W̃fin. In principle, performing a similar anal-

ysis involving (a suitable set of) other correlators one should be able to construct the

full counterterm W̃fin (though this would be tedious in practice). We should emphasise

that the existence of a finite counterterm W̃fin satisfying (4.58) does not imply that Q-

supersymmetry in conformal supergravity is non anomalous. Indeed, the symmetry algebra

of conformal supergravity implies that there exists no local counterterm — in conformal

supergravity — that removes the Q-supersymmetry anomaly, without breaking diffeomor-

phism and/or Lorentz invariance [38]. The existence of W̃fin instead implies that there

exists a field-dependent combination of Q- and S-supersymmetry that is non anomalous.

No such combination can be a symmetry of pure conformal supergravity, however, since the

algebra does not close off-shell without additional auxiliary fields. The unique combination

of Q- and S-supersymmetry that is non anomalous is precisely the old minimal supersym-

metry (4.22) transformation. Closure of the algebra requires the additional auxiliary field

M of old minimal supergravity [58, 62, 63].

While the existence of a finite counterterm W̃fin does not contradict the results

of [1, 30, 38], it may be in agreement with the superspace analysis in [22]. In particular,

W̃ren[e,A, ψ,M ] may be identified with what was termed the ‘minimal Q-supersymmetric

scheme’, while W [e,A, ψ] was referred to as the ‘Wess-Zumino scheme’ in [22].11 However,

a more detailed comparison between the two analyses, including the general form of the

finite counterterm W̃fin, is beyond the scope of the present work.

6 Discussion

We have presented a comprehensive analysis of the 1-loop computation of supersymmetry

anomalies in the free and massless WZ model. As for any N = 1 SCFT in four dimensions,

the renormalized theory admits both a conformal and a Ferrara-Zumino multiplet of cur-

rents, with the latter inherited from the regulated theory.12 The two multiplets are related

by a set of local counterterms that shift the anomalies between different symmetries. The

conformal multiplet possesses the standard superconformal anomalies of N = 1 SCFTs. In

particular, R-symmetry is anomalous because of the standard triangle diagram, but both

Q- and S-supersymmetries are necessarily also anomalous. On the contrary, the Poincaré

supersymmetry of the FZ multiplet (which corresponds to a specific field-dependent linear

11We note that in this respect there is a similarity with an analogous discussion of the supersymmetry

anomaly related to gauge/flavor anomalies, where the anomaly is manifest in the WZ gauge [21, 22]. There

are however also important differences. For example, the WZ gauge for the gauge multiplet is obtained

by eliminating the so called ‘gauge away’ fields, while the relation between conformal and old minimal

supergravity is more subtle, since they do not differ only by gauge away fields. A detailed discussion of

these issues is left for future work.
12Other multiplets such as the R- and S-multiplets are also admissible but were not considered in this

paper. The supersymmetry anomaly of the R-multiplet was studied recently in [71, 72]. See also [28]. Like

the FZ multiplet, the S-multiplet does not suffer from a supersymmetry anomaly.
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combination of the Q- and S-supersymmetries of the conformal multiplet) is non anoma-

lous, but R-symmetry and S-supersymmetry are explicitly broken. The FZ multiplet is

more natural if one wishes to view the massless model as the zero mass limit of a massive

WZ model, while the conformal multiplet is more natural if one wishes to view the mass-

less WZ model as an example of an N = 1 SCFT. Indeed, in the context of the AdS/CFT

correspondence only the conformal multiplet is available and it is in this context that the

anomaly was first discovered [30].

Our analysis focused on the 〈QQ̄JJ 〉 correlator, which is where the supersymmetry

anomaly first arises in flat space. We demonstrated that, if the currents belong to the

FZ multiplet, this 4-point function (as well as all lower-point functions entering in the

supersymmetry Ward identity) is regulated by a suitable PV regulator that preserves old

minimal supersymmetry. Hence the FZ multiplet supersymmetry Ward identity for this

correlator is non anomalous. The PV regulator we used does not regulate all correlation

functions of the FZ multiplet (for example it does not regulate all correlators that enter in

the supersymmetry Ward identity of 〈QQ̄J T 〉, which is expected to be anomalous for the

conformal multiplet), but there is hardly any doubt that such a regulator exists. Identifying

it remains an interesting open problem, since it would allow one to demonstrate explicitly

that old minimal supersymmetry is preserved at the quantum level for all FZ multiplet

correlators. The second main aspect of our analysis was demonstrating the existence of

local counterterms that interpolate between the FZ and superconformal multiplets. In the

present analysis we do this at the level of correlation functions, but it would be prohibitively

complicated and inefficient to try to generalize this to all current multiplet correlators. The

general form of the local counterterm that interpolates between conformal and old minimal

supergravity may be determined instead directly from the structure of the solution of the

WZ consistency conditions, which again we hope to address in future work.

The presence of a supersymmetry anomaly in the conformal and R-multiplet [71, 72]

is an important caveat one should keep in mind in the context of supersymmetric local-

ization, especially when the results are compared with holographic computations, as noted

in [30, 37, 38, 73] in relation to the analysis of [74]. In particular, in the presence of anoma-

lies, physical observables depend on the choice of current multiplet and one should make

sure that only results specific to a given multiplet are compared. Given that different mul-

tiplets are often used for field theory and holographic computations, failing to do so may re-

sult in a superficial mismatch. We anticipate that a local counterterm analogous to that re-

lating the conformal and FZ multiplets interpolates between the R-multiplet, which couples

to new minimal supergravity, and the S-multiplet, corresponding to 16+16 supergravity,

enabling one to remove the supersymmetry anomaly of the R-multiplet. Determining this

counterterm would be particularly interesting for supersymmetric localization applications.

Since current multiplets describing SCFTs are related by finite local counterterms, such

counterterms can be used to match the computation of physical observables using different

multiplets. Indeed, it was through the identification of a non-covariant local counterterm

(specific to a class of rigid supersymmetric backgrounds) that the authors of [74] managed to

reconcile their holographic computation with the expected field theory result. Understand-

ing the general structure of supersymmetry anomalies in different multiplets allows one
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to explicitly determine the local counterterms that interpolate between them. Of course,

such counterterms are not unique since it is always possible to add further ‘trivial’ local

counterterms that preserve all the symmetries. In particular, the local counterterms inter-

polating between the conformal and FZ multiplets that we determined here through the

1-loop computation may agree with the superspace results in [22] up to such trivial terms.

Finally, in this paper supergravity was viewed as non-dynamical and it would be in-

teresting to extend the analysis to include dynamical supergravity. Our results imply that

only the FZ multiplet can be consistently coupled to (old minimal) dynamical supergravity,

since the Poincaré supersymmetry of old minimal supergravity is non anomalous. This is in

line with earlier work [28] where it was argued that quantum anomalies in the matter sector

require the use of old minimal supergravity. However, the conformal multiplet that suf-

fers from a supersymmetry anomaly may still be coupled to dynamical supergravity in the

context of effective field theory [75–79]. In that context, the anomalies are canceled either

by fields with a mass above the cut-off through a generalized Green-Schwarz mechanism,

or more generally by supersymmetric anomaly inflow [80].
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A Spinor conventions and identities

We largely follow the spinor conventions of [84]. We use the Minkowski metric η =

diag (−1, 1, 1, 1) and the Levi-Civita symbol εµνρσ = ±1 satisfies ε0123 = 1. This is re-

lated to the Levi-Civita tensor as ǫµνρσ =
√−g εµνρσ = e εµνρσ, where e ≡ det(eaµ) is the

determinant of the vierbein. We also use the convention that complex conjugation reverses

the order of Grassmann fields (spinors or scalars), e.g. (AB)∗ ≡ B∗A∗.

Gamma matrices. The gamma matrices satisfy the Hermiticity properties

γµ† = γ0γµγ0, γ5† = γ5, (A.1)

where the chirality matrix in four dimensions is given by

γ5 = iγ0γ1γ2γ3. (A.2)
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The antisymmetrized products of gamma matrices are defined as

γµ1µ2...µn ≡ γ[µ1γµ2 · · · γµn], (A.3)

where antisymmetrization with weight one in understood, e.g. γµν = 1
2 [γµ, γν ].

The following is a list of identities in d dimensions that the antisymmetrized products

of gamma matrices satisfy, several of which we use repeatedly in this paper (see also section

3 of [84]):

γµνρ =
1

2
{γµ, γνρ},

γµνρσ =
1

2
[γµ, γνρσ],

γµνγρσ = γµνρσ + 4γ[µ
[σδ

ν]
ρ] + 2δ[µ

[σδ
ν]
ρ],

γµγ
ν1...νp = γµ

ν1...νp + pδ[ν1
µ γν2...νp],

γν1...νpγµ = γν1...νp
µ + pγ[ν1...νp−1δνp]

µ ,

γµνργστ = γµνρστ + 6γ[µν
[τδ

ρ]
σ] + 6γ[µδν [τδ

ρ]
σ],

γµνρσγτλ = γµνρστλ + 8γ[µνρ
[λδ

σ]
τ ] + 12γ[µνδρ[λδ

σ]
τ ],

γµνργστλ = γµνρστλ + 9γ[µν
[τλδ

ρ]
σ] + 18γ[µ

[λδ
ν
τδ
ρ]
σ] + 6δ[µ

[λδ
ν
τδ
ρ]
σ],

γµ1...µrν1...νsγνs...ν1 =
(d− r)!

(d− r − s)!γ
µ1...µr ,

γµργρν = (d− 2)γµν + (d− 1)δµν ,

γµνργρσ = (d− 3)γµνσ + 2(d− 2)γ[µδν]
σ,

γµνγ
νρσ = (d− 3)γµ

ρσ + 2(d− 2)δ[ρ
µ γ

σ],

γµνλγλρσ = (d− 4)γµνρσ + 4(d− 3)γ[µ
[σδ

ν]
ρ] + 2(d− 2)δ[µ

[σδ
ν]
ρ],

γµργ
ρστγτν = (d− 4)2γµ

σ
ν + (d− 4)(d− 3)

(
γµδ

σ
ν − γσgµν

)

+ (d− 3)(d− 2)δσµγν − (d− 3)γσγµν ,

γργ
µ1µ2...µpγρ = (−1)p(d− 2p)γµ1µ2...µp . (A.4)

For d = 4 specifically, we have the gamma matrix identities

γργµγσ + γσγµγρ = 2(gµργσ + gµσγρ − gρσγµ),

γργµγσ − γσγµγρ = 2γρµσ,

γργµγσ = gµργσ + gµσγρ − gρσγµ + γρµσ

γµργσ = γµρσ + γµgρσ − γρgµσ

γ[µγρσγ
ν] = −iǫµνρσγ5 + 2g[µ

ρ g
ν]
σ ,

γµνρσ = −iǫµνρσγ5,

γµρσ = iǫµρσνγνγ
5,

γµν =
i

2
ǫµνρσγρσγ

5, (A.5)
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as well as the trace relations

tr (any odd number of gamma matrices) = 0,

tr (γµγνγ5) = 0,

tr (γµγν) = 4ηµν ,

tr (γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ),

tr (γµγνγργσγ5) = −4iǫµνρσ. (A.6)

Dirac conjugate. The Dirac conjugate of a Dirac spinor, χ, is defined as

χ≡ iχ†γ0, (A.7)

and is denoted with a thick overbar in order to distinguish it from the Majorana conjugate.

Majorana conjugate and spinors. The Majorana conjugate of a Dirac spinor, χ, is

defined as

χ̄ ≡ χTC, (A.8)

where C is the charge conjugation matrix (see section 3.1.8 of [84]). A spinor χ is said to

be Majorana if it equals its charge conjugate, or equivalently, if its Dirac and Majorana

conjugates coincide, i.e.

χC ≡ B−1χ∗ = χ ⇔ χ= χ̄, (A.9)

where the unitary matrix B is related to the charge conjugation matrix, C, as in eq. (3.47)

of [84].

Dirac spinor bilinears involving Majorana conjugation in four dimensions satisfy the

identity

λ̄γµ1γµ2 · · · γµpχ = (−1)pχ̄γµp · · · γµ2γµ1λ, [eq. (3.53) in [84]]. (A.10)

which also implies that

λ̄γµ1γµ2 · · · γµpγ5χ = (−1)pχ̄γ5γµp · · · γµ2γµ1λ = χ̄γµp · · · γµ2γµ1γ5λ. (A.11)

Majorana fermion bilinears possess in addition the reality property

(χ̄γµ1...µrλ)∗ = χ̄γµ1...µrλ, [eq. (3.82) in [84]]. (A.12)

Chirality projectors and Weyl spinors. The Weyl projections of a generic Dirac

spinor, χ, are defined as

χL ≡ PLχ ≡
1

2
(1 + γ5)χ, χR ≡ PRχ ≡

1

2
(1− γ5)χ. (A.13)

Notice that, since there are no Majorana-Weyl spinors in four dimensions, the Weyl projec-

tion of a Majorana spinor is Weyl but not Majorana. Another potential source of confusion

we should emphasize is the following relation between the Dirac and Majorana conjugates

of Weyl spinors:
χL ≡ iχ†

Lγ
0 = iχ†P †

Lγ
0 = χPR = χ̄R. (A.14)
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Fierz identities. Finally, we make extensive use of the following Fierz relations in four

dimensions

χLλ̄L = − 1

2
PL(λ̄χL) +

1

8
PLγ

µν(λ̄γµνχL),

χLλ̄R = − 1

2
PLγ

µ(λ̄γµχL). (A.15)

B Path integral derivation of the naive Ward identities

In this appendix we provide a path integral derivation of the ‘naive’ (i.e. classical) Ward

identities for both the conformal and regulated WZ model, using the standard Noether

procedure. This derivation does not rely on input from the coupling of the theory to

background supergravity, but it is considerably more laborious than the approach adopted

in the main body of the paper. In particular, while the Ward identities obtained from

background supergravity involve only operators defined through functional differentiation

and are therefore model independent, the path integral derivation involves model dependent

operators that are directly related to Feynman diagrams. In order to derive the Ward

identities in their model independent form using the path integral approach, therefore, one

must carefully keep track of all seagull terms that relate the two definitions of the currents.

The general structure of the seagull terms for the current multiplet of the WZ model is

discussed separately in appendix C.

B.1 Ward identities for the conformal Wess-Zumino model

Applying Noether’s theorem to the path integral of the WZ model (3.1) turns the three

conservation laws (3.7) and the algebraic identities (3.8) into constraints for flat space

correlation functions. In particular, using the variation of the WZ action under infinitesimal

translations, R-symmetry and Q-supersymmetry transformations with a local parameter,

namely13

δaŜWZ = −
∫
d4x ∂µa

ν T̂ µν , δθ0ŜWZ = −
∫
d4x ∂µθ0Ĵ µ, δε0ŜWZ = −

∫
d4x ∂µε̄0Q̂µ,

(B.1)

and ignoring potential anomalies from the path integral measure, one obtains the identities

−
∫
d4xaν(x)∂x

µ<T̂ µ
ν(x)O1(x1)···On(xn)>=

n∑

i=1

<O1(x1)···δaOi(xi)···On(xn)>,

−
∫
d4xθ0(x)∂x

µ<Ĵ µ(x)O1(x1)···On(xn)>=

n∑

i=1

<O1(x1)···δθ0
Oi(xi)···On(xn)>,

−
∫
d4xε̄0(x)∂x

µ<Q̂µ(x)O1(x1)···On(xn)>=

n∑

i=1

<O1(x1)···δε0
Oi(xi)···On(xn)>, (B.2)

where the brackets < · > stand for connected correlators defined through operator inser-

tions (see appendix C) and all spacetime indices in the operators Oi have been suppressed.

13These relations hold for the unimproved currents. However, the improvement terms do not affect the

l.h.s. of the Ward identities (B.2) and so they can be included at the end of the argument. See e.g. section

2 of [85].
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The transformations of Oi on the r.h.s. of these identities admit an expansion of the

form

δaOi(x) = aµ(T |Oi)[1]
µ + ∂νaµ(T |Oi)[2]

µ|ν + ∂ν∂ρaµ(T |Oi)[3]
µ|νρ + · · · ,

δθ0Oi(x) = θ0(J |Oi)[1] + ∂νθ0(J |Oi)[2]
ν + ∂ν∂ρθ0(J |Oi)[3]

νρ + · · · ,
δε0Oi(x) = ε̄0(Q|Oi)[1] + ∂ν ε̄0(Q|Oi)[2]

ν + ∂ν∂ρε̄0(Q|Oi)[3]
νρ + · · · , (B.3)

where the coefficients depend on the structure of the specific operator. In particular, the

highest order derivatives in Oi determine the order at which these expansions terminate.

For the supercurrent and R-symmetry current in (3.6), for example, these expansions trun-

cate at the second order, while for the stress tensor they terminate at the third order.

Inserting the expansions of the operator transformations back in (B.2) and using the fact

that the local symmetry parameters are arbitrary leads to local (unintegrated) versions of

these Ward identities, which depend explicitly on the coefficients in the expansions (B.3).

We will write the explicit form of those Ward identities relevant for our analysis, after first

computing the symmetry transformations of the currents (3.6).

Analogous identities can be derived from the conserved currents associated with

Lorentz, scale, special conformal and S-supersymmetry invariance by promoting the corre-

sponding parameters to local functions, namely

δℓŜWZ = −
∫
d4x ∂µℓ

ρσxρT̂ µσ, δλŜWZ = −
∫
d4x ∂µλx

ν T̂ µν ,

δbŜWZ = −
∫
d4x ∂µbρ(2x

ρxν − ηρνx2)T̂ µν , δε0ŜWZ =

∫
d4x ∂µη̄0 x

νγνQ̂µ. (B.4)

Inserting these in the path integral and ignoring potential anomalies results in the identities

−
∫
d4xℓρσ(x)∂x

µ <x[ρT̂ µ

σ](x)O1(x1) · · ·On(xn)> =

n∑

i=1

<O1(x1) · · ·δℓOi(xi) · · ·On(xn)>,

−
∫
d4xλ(x)∂x

µ <x
ν T̂ µ

ν (x)O1(x1) · · ·On(xn)> =

n∑

i=1

<O1(x1) · · ·δλOi(xi) · · ·On(xn)>,

−
∫
d4xbρ(x)∂x

µ <(2xρxν−ηρνx2)T̂ µ
ν (x)O1(x1) · · ·On(xn)> =

n∑

i=1

<O1(x1) · · ·δbOi(xi) · · ·On(xn)>,

∫
d4xη̄0(x)∂x

µ <x
νγνQ̂µ(x)O1(x1) · · ·On(xn)> =

n∑

i=1

<O1(x1) · · ·δη0
Oi(xi) · · ·On(xn)>.

(B.5)

Symmetry transformations of the Noether currents. Since we are interested in

correlation functions of current multiplet operators, we will focus on the case where all

operators Oi are currents. In order to derive the local (unintegrated) Ward identities

following from (B.2) and (B.5), we need to evaluate the classical transformations (B.3)

using the expressions for the currents in (3.7) and the symmetry transformations in table 1.
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The R-symmetry transformations of the currents take the form

δθ0 T̂ µν = (ηµρησν + ηµσηρν − ηµν ηρσ)Ĵρ∂σθ0 −
i

6
χ̄γνγ

5χ∂µθ0 ,

δθ0Ĵ µ =
4

9α2
φ∗φ∂µθ0 ,

δθ0Q̂µ = iθ0γ
5Q̂µ +

i

3α
∂µθ0(φ∗χL − φχR) , (B.6)

where the terms in pink/oval frames are model dependent and correspond to seagull terms,

discussed in more detail in appendix C. As we will see shortly, they cancel against the

transformations of the background supergravity fields in the corresponding current opera-

tors defined through functional differentiation.

Similarly, the Q-supersymmetry transformations of the R-current and of the supercur-

rent are

δε0
Ĵ µ = − iε̄0γ

5Q̂µ +
i

3α
(φ∗χ̄L−φχ̄R)∂µε0 +

i

3α
ε̄0γ

µ(φ∗/∂χL−φ/∂χR)+
i

6α
ε̄0γ

µ(F ∗χL−FχR) ,

δε0
Q̂µ =

1

2
T̂ µ

νγ
νε0 +

i

8
∂ρ

[
Ĵσ(iǫµνρσγ5 +2ηµνηρσ−2ηρνηµσ)γνγ

5ε0

]
− 3

8
ǫµνρσĴσγν∂ρε0

+
1

8
(χ̄γσγ

5χ)γσγ5∂µε0 +
1

12α2
∂ρ(φφ∗)(iǫµνρσγ5 +ηµνηρσ−ηµρηνσ)γν∂σε0

+
1

8

(
χ̄(γµν−ηµν)γ5/∂χ

)
γνγ

5ε0−
1

8

(
χ̄(γµν−ηµν)/∂χ

)
γνε0

+
1

4α2
(F ∗/∂φγµε0R +F /∂φ∗γµε0L)+

1

6α2
γµν∂ν(φF ∗ε0R +φ∗Fε0L) , (B.7)

where seagull terms appear again in pink/oval frames, while those in blue/rectangular

frames vanish on-shell.

Finally, the S-supersymmetry transformations of the R-current and of the supercurrent

are

δη0Ĵ µ = (δε0=xµγµη0 + δ̃η0)Ĵ µ, δη0Q̂µ = (δε0=xκγκη0 + δ̃η0)Q̂µ, (B.8)

where δε0=xκγκη0 denotes a Q-supersymmetry transformation with parameter ε0 = xµγµη0

and

δ̃η0Ĵ µ =
i

3α
η̄0γ

µ(φ∗χL − φχR) , (B.9)

δ̃η0Q̂µ =
3i

4
γ5η0Ĵ µ −

3i

4
γ5η0Ĵ µ +

1

3α2
γµν∂ν(φ

∗φη0) +
1

2α2
(φ/∂φ∗γµη0L + φ∗/∂φγµη0R) .

Symmetry transformations of the model independent currents. In order to clar-

ify the significance of the model dependent terms in the above transformations of the

Noether currents, it is instructive to determine the corresponding transformations of the

conformal multiplet currents (3.18), which are obtained by coupling the theory to back-

ground supergravity.
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The flat space limit of the Q-supersymmetry transformation of the supercurrent

in (3.18) is

δεQµ = δεQ̂µ +
3

8
ǫµνρσγν∂ρεĴσ

− 1

12α2
∂ρ(φφ

∗)(iǫµνρσγ5 + ηµνηρσ − ηµρηνσ)γν∂σε−
1

8
(χ̄γσγ5χ)γσγ

5∂µε, (B.10)

where Ĵ µ, Q̂µ are the flat space currents in (3.6) and δεQ̂µ is the supersymmetry trans-

formation of the flat space supercurrent in (B.7). Notice that the flat space limit of δεQµ
differs from δεQ̂µ by terms arising from the supersymmetry transformation of the gravitino,

which cancel the model dependent terms in pink/oval frames in δεQ̂µ. Hence, on-shell, the

flat space limit of δεQµ is

δεQµ =
1

2
T̂ µa γaε+

i

4
∂ρ

[
Ĵσ

(
i

2
ǫµνρσγ5 + ηµνηρσ − ηρνηµσ

)
γνγ

5ε

]
. (B.11)

Contrary to the transformation of the Noether current Q̂µ, the transformation of the super-

current Qµ that is defined through functional differentiation involves only current multiplet

operators and its form is independent of the specific theory. The seagull terms eliminate the

model dependence of the Noether currents, resulting in the same universal transformations.

Similarly, the Q-supersymmetry transformation of the R-current in (3.18) takes the

form

δεJ µ = δεĴ µ +
i

3α
(φχ̄R − φ∗χ̄L)∂µε, (B.12)

where δεĴ µ is the supersymmetry transformation of the flat space current in (B.7), and the

second term on the r.h.s. arises from the supersymmetry transformation of the gravitino.

This cancels the term in the pink/oval frame in δεĴ µ, so that, on-shell, the flat space limit

of δεJ µ is

δεJ µ = −iε̄γ5Q̂µ. (B.13)

The flat space limit of the R-symmetry and S-supersymmetry transformations of the

currents (3.18) can be determined similarly. We find respectively

δθT µν = δθT̂ µν − (ηµρησν + ηµσηρν − ηµν ηρσ)Ĵρ∂σθ +
i

6
χ̄γνγ

5χ∂µθ = 0,

δθJ µ = δθĴ µ −
4

9α2
φ∗φ∂µθ = 0,

δθQµ = δθQ̂µ −
i

3α
∂µθ(φ∗χL − φχR) = iθγ5Q̂µ, (B.14)

δηJ µ = δ̃ηĴ µ −
i

3α
η̄γµ(φ∗χL − φχR) = 0, (B.15)

δηQµ = δ̃ηQ̂µ +
3i

4
γ5ηĴ µ − 1

3α2
γµν∂ν(φ

∗φη)− 1

2α2
(φ/∂φ∗γµηL + φ∗/∂φγµηR) =

3i

4
γ5ηĴ µ,

where δ̃η was introduced in (B.9) and denotes the flat space limit of the S-supersymmetry

transformation of conformal supergravity.

In all cases, the model dependent seagull terms in the Noether currents cancel against

terms in the current multiplet operators defined by functional differentiation that are linear
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in the background supergravity fields, i.e. quadratic at the level of the Lagrangian. The

resulting transformations involve only current multiplet operators and are independent

of the specific theory. In fact, they can be obtained directly from the symmetry transfor-

mations of the background supergravity fields and the general definition of the currents

in (2.1), without any reference to a specific theory. This approach also determines the

quantum corrections to the transformations arising from the superconformal anomalies.

For theories coupled to N = 1 conformal supergravity, the current transformations were

derived using this approach in [30, 38].

Naive superconformal Ward identities. Having clarified the role of the seagull terms

in the transformation of the Noether currents, we return to the computation of the path

integral derivation of the naive superconformal Ward identities for the massless WZ model.

Inserting the transformations of the Noether currents in the relations (B.2), (B.5) and

eliminating the arbitrary local transformation parameters determines the corresponding

classical Ward identities. In order to simplify the resulting expressions it is convenient to

introduce the ‘seagull operators’

ŝ(1|0) = φ∗φ, ŝµ(2|1) = χ̄γµγ5χ, ŝ(3| 1
2 ) = i(φ∗χL−φχR), ŝµ(4|1) = φ∂µφ∗, (B.16)

and the ‘null operators’

n̂µν(1|2) = χ̄(γµν − ηµν)γ5/∂χ, n̂µν(2|2) = χ̄(γµν − ηµν)/∂χ, n̂(3| 1
2 ) = i(φ∗/∂χL − φ/∂χR),

n̂(4|0) = F ∗φ, n̂µ(5|1) = F ∗∂µφ, n̂(6| 1
2 ) = i(F ∗χL − FχR), (B.17)

which are proportional to the classical equations of motion. We use small letters to denote

these operators, as opposed to capital script letters, in order to emphasize that they are

model dependent. Moreover, the first entry in the subscript (·|·) simply labels the operator,

while the second entry indicates its spin. As is shown in appendix C, the derivatives of the

current multiplet operators with respect to background supergravity fields can be expressed

uniquely in terns of the seagull operators (B.16). However, there is no unique way of writing

the operators (B.16) in terms of derivatives of currents.

From the conservation of the R-current in (B.2), we obtain the three naive identities

∂xµ<Ĵ µ(x)Ĵ ν(y)Ĵ ρ(z)>=
4

9α2

(
∂νxδ(x,y)< ŝ(1|0)(y) Ĵ ρ(z)>+∂ρxδ(x,z)<Ĵ ν(y) ŝ(1|0)(z) >

)
,

∂xµ <Ĵ µ(x)Q̂ν(y) ˆ̄Qρ(z)>+δ(x,y)iγ5<Q̂ν(y) ˆ̄Qρ(z)>+iδ(x,z)<Q̂ν(y) ˆ̄Qρ(z)>γ5

− 1

3α
∂νxδ(x,y)< n̂(3| 1

2 )(y) ˆ̄Qρ(z)>− 1

3α
∂ρxδ(x,z)<Q̂ν(y) ˆ̄n(3| 1

2 )(z) >= 0,

∂xµ <Ĵ µ(x)Q̂ν(y) ˆ̄Qρ(z)Ĵ σ(w)>+δ(x,y)iγ5<Q̂ν(y) ˆ̄Qρ(z)Ĵ σ(w)>

+ iδ(x,z)<Q̂ν(y) ˆ̄Qρ(z)Ĵ σ(w)>γ5− 1

3α
∂νxδ(x,y)< n̂(3| 1

2 )(y) ˆ̄Qρ(z)Ĵ σ(w)> (B.18)

− 1

3α
∂ρxδ(x,z)<Q̂ν(y) ˆ̄n(3| 1

2 )(z) Ĵ σ(w)>− 4

9α2
∂σx δ(x,w)<Q̄ν(y) ˆ̄Qρ(z) ŝ(1|0)(w) >= 0,

which should be compared respectively with the fully quantum identities (2.31), (2.33)

and (2.34). Except for the superconformal anomalies that we have not accounted for in
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the path integral derivation of the naive Ward identities, the only difference between the

two sets of identities are the terms in pink/oval frames, which correspond to seagull terms

that are absorbed in the definition of the correlation functions 〈·〉 used in section 2 (see

appendix C).

Similarly, the conservation of the supercurrent in (B.2) leads to the naive identities

∂x
µ<Q̂µ(x) ˆ̄Qσ(y)>−1

2
<T̂ σ

λ(x)>γλδ(x,y)+
i

8
<Ĵ ν(x)>

(
iγ5ǫρσ

νλ+4η[ρ
ν η

σ]
λ

)
γ5γλ∂x

ρ δ(x,y)

+
3

8
< Ĵν(y)>ǫρσνλγλ∂

x
ρ δ(x,y)+

1

12α2
∂ν

y < ŝ(1|0)(y)>
(
−iγ5ǫρσ

νλ+2η[ρ
ν η

σ]
λ

)
γλ∂x

ρ δ(x,y)

+
1

8
< ŝλ

(2|1)(y)>γ5γλ∂
σ
x δ(x,y)+

1

8
< n̂σλ

(1|2)(x)>γλγ
5δ(x,y)+

1

8
< n̂σλ

(2|2)(x)>γλδ(x,y)

+
1

4α2

(
< n̂ρ

(5|1)(x)>PR+< n̂ρ∗
(5|1)(x)>PL

)
γσγρδ(x,y)

+
1

6α2

(
< n̂(4|0)(x)>PR+< n̂∗(4|0)(x)>PL

)
γσν∂x

ν δ(x,y)=0, (B.19)

∂x
µ<Q̂µ(x) ˆ̄Qσ(y)Ĵ κ(z)>−iγ5δ(x,z)<Q̂κ(x) ˆ̄Qσ(y)>−1

2
<T̂ σ

λ(x)Ĵ κ(z)>γλδ(x,y)

+
i

8
<Ĵ ν(x)Ĵ κ(z)>

(
iγ5ǫρσ

νλ+4η[ρ
ν η

σ]
λ

)
γ5γλ∂x

ρ δ(x,y)+
3

8
< Ĵν(y) Ĵ κ(z)>ǫρσνλγλ∂

x
ρ δ(x,y)

+
1

12α2
∂ν

y < ŝ(1|0)(y) Ĵ κ(z)>
(
−iγ5ǫρσ

νλ+2η[ρ
ν η

σ]
λ

)
γλ∂x

ρ δ(x,y)

+
1

8
< ŝλ

(2|1)(y) Ĵ κ(z)>γ5γλ∂
σ
x δ(x,y)− 1

3α
∂κ

xδ(x,z)< ŝ(3| 1
2 )(z) ˆ̄Qσ(y)>

+
1

8
< n̂σλ

(1|2)(x) Ĵ κ(z)>γλγ
5δ(x,y)+

1

8
< n̂σλ

(2|2)(x) Ĵ κ(z)>γλδ(x,y)

+
1

3α
δ(x,z)γκ< n̂(3| 1

2 )(x) ˆ̄Qσ(y)>+
1

6α
δ(x,z)γκ< n̂(6| 1

2 )(x) ˆ̄Qσ(y)>

+
1

4α2

(
< n̂ρ

(5|1)(x) Ĵ κ(z)>PR+< n̂ρ∗
(5|1)(x) Ĵ κ(z)>PL

)
γσγρδ(x,y)

+
1

6α2
(< n̂(4|0)(x) Ĵ κ(z)>PR+< n̂∗(4|0)(x) Ĵ κ(z)>PL)γσν∂x

ν δ(x,y)=0, (B.20)

∂x
µ<Q̂µ(x) ˆ̄Qσ(y)Ĵ κ(z)Ĵ α(w)>−iγ5δ(x,z)<Q̂κ(x) ˆ̄Qσ(y)Ĵ α(w)>−iγ5δ(x,w)<Q̂α(x) ˆ̄Qσ(y)Ĵ κ(z)>

− 1

2
<T̂ σ

λ(x)Ĵ κ(z)Ĵ α(w)>γλδ(x,y)+
i

8
<Ĵ ν(x)Ĵ κ(z)Ĵ α(w)>

(
iγ5ǫρσ

νλ+4η[ρ
ν η

σ]
λ

)
γ5γλ∂x

ρ δ(x,y)

+
3

8
< Ĵν(y) Ĵ κ(z)Ĵ α(w)>ǫρσνλγλ∂

x
ρ δ(x,y)+

1

8
< ŝλ

(2|1)(y) Ĵ κ(z)Ĵ α(w)>γ5γλ∂
σ
x δ(x,y)

+
1

12α2
∂ν

y < ŝ(1|0)(y) Ĵ κ(z)Ĵ α(w)>
(
−iγ5ǫρσ

νλ+2η[ρ
ν η

σ]
λ

)
γλ∂x

ρ δ(x,y)

− 1

3α

(
∂κ

xδ(x,z)< ŝ(3| 1
2 )(z) ˆ̄Qσ(y)Ĵ α(w)>+∂α

x δ(x,w)< ŝ(3| 1
2 )(w) ˆ̄Qσ(y)Ĵ κ(z)>

)

+
1

8

(
< n̂σλ

(1|2)(x) Ĵ κ(z)Ĵ α(w)>γλγ
5+< n̂σλ

(2|2)(x) Ĵ κ(z)Ĵ α(w)>γλ

)
δ(x,y)

+
1

3α

(
δ(x,z)γκ< n̂(3| 1

2 )(x) ˆ̄Qσ(y)Ĵ α(w)>+δ(x,w)γα< n̂(3| 1
2 )(x) ˆ̄Qσ(y)Ĵ κ(z)>

)

+
1

6α

(
δ(x,z)γκ< n̂(6| 1

2 )(x) ˆ̄Qσ(y)Ĵ α(w)>+δ(x,w)γα< n̂(6| 1
2 )(x) ˆ̄Qσ(y)Ĵ κ(z)>

)
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+
1

4α2

(
< n̂ρ

(5|1)(x) Ĵ κ(z)Ĵ α(w)>PR+< n̂ρ∗
(5|1)(x) Ĵ κ(z)Ĵ α(w)>PL

)
γσγρδ(x,y)

+
1

6α2
(< n̂(4|0)(x) Ĵ κ(z)Ĵ α(w)>PR+< n̂∗(4|0)(x) Ĵ κ(z)Ĵ α(w)>PL)γσν∂x

ν δ(x,y)=0, (B.21)

which should be compared respectively with (2.22), (2.23) and (2.24). Besides the super-

conformal anomalies and the terms in pink/oval frame that correspond to seagull terms,

the two sets of identities now differ also by the terms in blue/rectangular frame. Classically,

these terms vanish on-shell, but they contribute inside correlation functions. In particular,

using the propagators (3.3) and the Noether currents (3.6), it can be shown that (up to

further seagull terms)

(
χ̄(γσλ−ησλ)γ5/∂χ

)
(x)Ĵ κ(z)γλγ

5δ(x,y)+
(
χ̄(γσλ−ησλ)/∂χ

)
(x)Ĵ κ(z)γλδ(x,y) (B.22)

+
8i

3α
δ(x,z)γκ

(
φ∗/∂χL(x) ˆ̄Qσ(y)−φ/∂χR(x) ˆ̄Qσ(y)

)
= Ĵ ν(x)

(
iγ5ǫκσ

νλ +4η[κ
ν η

σ]
λ

)
γλδ(x,y)δ(x,z),

and similarly,

(
χ̄(γσλ−ησλ)γ5/∂χ

)
(x)Ĵ κ(z)Ĵ α(w)γλγ

5δ(x,y)+
(
χ̄(γσλ−ησλ)γ5/∂χ

)
(x)Ĵ κ(z)Ĵ α(w)γλγ

5δ(x,y)

+
(
χ̄(γσλ−ησλ)/∂χ

)
(x)Ĵ κ(z)Ĵ α(w)γλδ(x,y)+

(
χ̄(γσλ−ησλ)/∂χ

)
(x)Ĵ κ(z)Ĵ α(w)γλδ(x,y)

+
8i

3α
δ(x,z)γκ

(
φ∗/∂χL(x) ˆ̄Qσ(y)Ĵ α(w)−φ/∂χR(x) ˆ̄Qσ(y)Ĵ α(w)

)

+
8i

3α
δ(x,z)γκ

(
φ∗/∂χL(x) ˆ̄Qσ(y)Ĵ α(w)−φ/∂χR(x) ˆ̄Qσ(y)Ĵ α(w)

)

+
8i

3α
δ(x,w)γα

(
φ∗/∂χL(x) ˆ̄Qσ(y)Ĵ κ(z)−φ/∂χR(x) ˆ̄Qσ(y)Ĵ κ(z)

)

+
8i

3α
δ(x,w)γα

(
φ∗/∂χL(x) ˆ̄Qσ(y)Ĵ κ(z)−φ/∂χR(x) ˆ̄Qσ(y)Ĵ κ(z)

)

=
(
4δ[β

ν δ
σ]
λ + iγ5ǫνλ

βσ
)
γλ

(
Ĵ ν(x)Ĵ α(w)δκ

βδ(x,z)+ Ĵ ν(x)Ĵ κ(z)δα
β δ(x,w)

)
δ(x,y). (B.23)

Moreover, all correlation functions involving the auxiliary field F can be shown to vanish

identically. It follows that the naive Ward identities (B.19), (B.20) and (B.21) agree with

their counterparts in section 2, up to seagull terms and quantum anomalies.

Finally, the S-supersymmetry identity in (B.5) can be decomposed as
∫
d4xη̄0(x)xνγν∂

x
µ <Q̂µ(x)O1(x1) · · ·On(xn)>+

∫
d4xη̄0(x)γµ <Q̂µ(x)O1(x1) · · ·On(xn)>

=

n∑

i=1

<O1(x1) · · ·δε0=xµγµη0
Oi(xi) · · ·On(xn)>+

n∑

i=1

<O1(x1) · · · δ̃η0
Oi(xi) · · ·On(xn)>, (B.24)

where, as above δε0=xµγµη0 is a Q-supersymmetry transformation with parameter ε0 =

xµγµη0 and

δ̃η0 ≡ δη0 − δε0=xµγµη0 . (B.25)

As we will see in section 3.2, the flat space limit of the S-supersymmetry transformation

in conformal supergravity coincides with δ̃η0 — not with δη0 , i.e. δ̂sugra
η0

= δ̃η0 . Utilizing the

Q-supersymmetry identity in (B.2), we therefore arrive at the gamma trace constraint
∫
d4x η̄0(x)γµ <Q̂µ(x)O1(x1) · · · On(xn)>=

n∑

i=1

<O1(x1) · · · δ̃η0Oi(xi) · · · On(xn)> .

(B.26)
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Inserting the transformations (B.9) in (B.26) leads to the naive gamma trace Ward

identities

γµ <Q̂µ(x)Q̄σ(y)>=
3i

4
δ(x,y)γ5 <Ĵ σ(x)>−3i

4
δ(x,y)γ5 < Ĵ σ(x) >+

1

3α2
∂x

ρ δ(x,y)γσρ < ŝ(1|0)(y) >

+
1

2α2
δ(x,y)γσγρ(< ŝρ

(4|1)(x) >PL+< ŝρ∗
(4|1)(x) >PR),

γµ <Q̂µ(x)Q̄σ(y)Ĵ κ(z)>=
3i

4
δ(x,y)γ5 <Ĵ σ(x)Ĵ κ(z)>−3i

4
δ(x,y)γ5 < Ĵ σ(x) Ĵ κ(z)>

+
1

2α2
δ(x,y)γσγρ(< ŝρ

(4|1)(x) Ĵ κ(z)>PL+< ŝρ∗
(4|1)(x) Ĵ κ(z)>PR)

+
1

3α2
∂x

ρ δ(x,y)γσρ < ŝ(1|0)(y) Ĵ κ(z)+
1

3α
δ(x,z)γκ < ŝ(3| 1

2 )(z) Q̄σ(y)>,

γµ <Q̂µ(x)Q̄σ(y)Ĵ κ(z)Ĵ α(w)>=
3i

4
δ(x,y)γ5 <Ĵ σ(x)Ĵ κ(z)Ĵ α(w)>

− 3i

4
δ(x,y)γ5 < Ĵ σ(x) Ĵ κ(z)Ĵ α(w)>+

1

3α2
∂x

ρ δ(x,y)γσρ < ŝ(1|0)(y) Ĵ κ(z)Ĵ α(w)>

+
1

2α2
δ(x,y)γσγρ(< ŝρ

(4|1)(x) Ĵ κ(z)Ĵ α(w)>PL+< ŝρ∗
(4|1)(x) Ĵ κ(z)Ĵ α(w)>PR)

+
1

3α
δ(x,z)γκ < ŝ(3| 1

2 )(x) Q̄σ(y)Ĵ α(w)>+
1

3α
δ(x,w)γα < ŝ(3| 1

2 )(x) Q̄σ(y)Ĵ κ(z)>, (B.27)

which should be compared respectively with (2.27), (2.28) and (2.29). Again, we see that

these agree with their counterparts in section 2, up to seagull terms and quantum anomalies.

B.2 Ward identities for the regulated Wess-Zumino model

The classical action of the regulated massless WZ model is

Ŝreg ≡ ŜWZ + ŜPV, (B.28)

where ŜWZ is the massless WZ model action (3.1) and ŜPV is the PV action (4.3). The

total action is invariant only under the symmetries preserved by the regulator, namely

spacetime translations, Lorentz transformations and Q-supersymmetry, so that

δaŜreg = −
∫
d4x ∂µa

ν ˆ̃T µν , δℓŜreg = −
∫
d4x ∂µℓ

ρσxρ
ˆ̃T µσ, δε0Ŝreg = −

∫
d4x ∂µε̄0

ˆ̃Qµ.
(B.29)

As for the bare theory, inserting these variations in the path integral for the regulated

theory leads to the integrated identities

−
∫
d4xaν(x)∂x

µ <
ˆ̃T µ

ν(x)Õ1(x1) · · · Õn(xn)> =

n∑

i=1

<Õ1(x1) · · ·δaÕi(xi) · · · Õn(xn)>,

−
∫
d4xℓρσ(x)∂x

µ <x[ρ
ˆ̃T µ

σ](x)Õ1(x1) · · · Õn(xn)> =

n∑

i=1

<Õ1(x1) · · ·δℓÕi(xi) · · · Õn(xn)>,

−
∫
d4xε̄0(x)∂x

µ <
ˆ̃Qµ(x)Õ1(x1) · · · Õn(xn)> =

n∑

i=1

<Õ1(x1) · · ·δε0
Õi(xi) · · · Õn(xn)>, (B.30)

where again we have suppressed any spacetime indices in the operators Õi.
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Symmetry transformations of the Noether currents. As for the conformal case, in

order to turn the integrated identities (B.30) into local constraints for flat space correlation

functions we need to evaluate the classical symmetry transformations of the operator inser-

tions. We are only interested in the supersymmetry Ward identity for correlation functions

involving the supercurrent and the R-current and, hence, we need only determine the naive

supersymmetry transformations of these two operators.

Restoring the auxiliary fields in the PV multiplets, we determine that the off shell

supersymmetry transformations of the PV R-current and of the supercurrent take respec-

tively the form

δε0

ˆ̃J µ
∣∣
PV

= − i

3
ε̄0γ

5(2ηµ
ν −γµ

ν)
ˆ̃Qν

∣∣
PV

+
i

3α
ε̄0

←

∂µ(ϕ∗2λ2L−ϕ2λ2R) − i

3α
ε̄0

←

∂µ
(
ϕ∗1λ1L−ϕ1λ

C
1R +ϑ1λ1R−ϑ∗1λC

1L

)

+
i

3α
ε̄0γ

µ
(
ϕ∗2(/∂λ2L +m2λ2R)−ϕ2(/∂λ2R +m2λ2L)

)

− i

3α
ε̄0γ

µ
(
ϕ∗1(/∂λ1L +m1λ1R)+ϑ1(/∂λ1R +m1λ1L)

)

+
i

3α
ε̄0γ

µ
(
ϕ1(/∂λC

1R +m1λ
C
1L)+ϑ∗1(/∂λC

1L +m1λ
C
1R)

)

+
i

6α
ε̄0γ

µ
(
(F ∗ϕ2

+m2ϕ2)λ2L−(Fϕ2
+m2ϕ

∗
2)λ2R

)

+
i

6α
ε̄0γ

µ
(
(Fϕ1

+m1ϕ
∗
1)λ1R +(F ∗ϑ1

+m1ϑ1)λ1L

)

− i

6α
ε̄0γ

µ
(
(F ∗ϕ1

+m1ϕ1)λC
1L +(Fϑ1

+m1ϑ
∗
1)λC

1R

)
, (B.31)

δε0

ˆ̃Qµ
∣∣
PV

=
1

2
ˆ̃T µ

ν

∣∣
PV
γνε0 +

i

8
∂ρ

( ˆ̃J σ

∣∣
PV

(iǫµνρσγ5 +2ηµνηρσ−2ηρνηµσ)γνγ
5ε0

)

+
1

3
γµν∂ν

( ˆ̃OM

∣∣
PV
ε0R +

ˆ̃OM∗

∣∣
PV
ε0L

)
− 3

8
ǫµνρσ ˆ̃J σ

∣∣
PV
γν∂ρε0

− γµν
( ˆ̃OM

∣∣
PV
∂νε0R +

ˆ̃OM∗

∣∣
PV
∂νε0L

)
+

1

8
(λ̄2γσγ

5λ2 +2λ1γσγ
5λ1)γσγ5∂µε0

+
1

12α2
∂ρ(ϕ∗2ϕ2 +ϕ∗1ϕ1 +ϑ1ϑ

∗
1)(iǫµνρσγ5 +ηµνηρσ−ηµρηνσ)γν∂σε0

+
1

8

(
λ̄2(γµν−ηµν)γ5(/∂+m2)λ2

)
γνγ

5ε0−
1

8

(
λ̄2(γµν−ηµν)(/∂+m2)λ2

)
γνε0

+
1

4

(
λ1(γµν−ηµν)γ5(/∂+m1)λ1

)
γνγ

5ε0−
1

4

(
λ1(γµν−ηµν)(/∂+m1)λ1

)
γνε0

+
1

4α2

(
(F ∗ϕ2

+m2ϕ2)/∂ϕ2γ
µε0R +(Fϕ2

+m2ϕ
∗
2)/∂ϕ∗2γ

µε0L

)

+
1

6α2
γµν∂ν

(
ϕ2(F ∗ϕ2

+m2ϕ2)ε0R +ϕ∗2(Fϕ2
+m2ϕ

∗
2)ε0L

)
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+
1

4α2

(
(F ∗ϕ1

+m1ϕ1)/∂ϑ1γ
µε0R +(Fϑ1

+m1ϑ
∗
1)/∂ϕ∗1γ

µε0L

− (F ∗ϑ1
+m1ϑ1)/∂ϕ1γ

µε0R−(Fϕ1
+m1ϕ

∗
1)/∂ϑ∗1γ

µε0L

)

+
1

6α2
γµν∂ν

(
(F ∗ϕ1

+m1ϕ1)ϑ1ε0R +(Fϑ1
+m1ϑ

∗
1)ϕ∗1ε0L

− (F ∗ϑ1
+m1ϑ1)ϕ1ε0R−(Fϕ1

+m1ϕ
∗
1)ϑ∗1ε0L

)
, (B.32)

where again seagull terms are indicated by an pink/oval frame, while terms in a

blue/rectangular frame vanish on-shell.

Symmetry transformations of the model independent FZ currents. The model

dependent seagull terms in the transformations (B.31)–(B.32) again cancel against the

transformation of terms linear in supergravity fields in the FZ currents. In particular,

generalizing the FZ multiplet operators (4.46) to the PV-regulated theory described by the

action (B.28) and using the on-shell form of the Noether current transformations (B.31)–

(B.32) gives

δom
ε J̃ µ =− i

3
ε̄γ5(2ηµ

ν−γµ
ν)

ˆ̃Qν , (B.33)

δom
ε Q̃µ =

1

2
ˆ̃T µ

νγ
νε+

i

4
∂ρ

[
ˆ̃J σ

(
i

2
ǫµνρσγ5+ηµνηρσ−ηρνηµσ

)
γνγ

5ε

]
+

1

3
γµν∂ν

( ˆ̃OMεR+
ˆ̃OM∗εL

)
.

These transformations depend only on current multiplet operators and follow directly from

the general definition of the FZ current multiplet operators in (4.25), together with the old

minimal supergravity transformations (4.23).

Naive supersymmetry Ward identities. Returning to the path integral derivation

of the naive Ward identities for the regulated WZ model, it is convenient to introduce

a shorthand notation for the seagull and null operators that enter the Noether current

transformations (B.31) and (B.32). Namely, the analogues of the seagull operators (B.16)

in the regulated theory are

ˆ̃s(1|0) = φ∗φ+ ϕ∗
2ϕ2 + ϕ∗

1ϕ1 + ϑ1ϑ
∗
1,

ˆ̃sµ(2|1) = χ̄γµγ5χ+ λ̄2γ
µγ5λ2 + 2λ1γ

µγ5λ1,

ˆ̃s(3| 1
2 ) = i

(
φ∗χL − φχR + ϕ∗

2λ2L − ϕ2λ2R − ϕ∗
1λ1L + ϕ1λ

C
1R − ϑ1λ1R + ϑ∗

1λ
C
1L

)
, (B.34)
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while the null operators (B.17) become

ˆ̃n
µν

(1|2) = χ̄(γµν−ηµν)γ5/∂χ+λ̄2(γµν−ηµν)γ5(/∂+m2)λ2+2λ1(γµν−ηµν)γ5(/∂+m1)λ1,

ˆ̃n
µν
(2|2) = χ̄(γµν−ηµν)/∂χ+λ̄2(γµν−ηµν)(/∂+m2)λ2+2λ1(γσν−ηµν)(/∂+m1)λ1,

ˆ̃n(3| 1
2 ) = i

(
φ∗/∂χL−φ/∂χR+ϕ∗

2(/∂λ2L+m2λ2R)−ϕ2(/∂λ2R+m2λ2L)

−ϕ∗
1(/∂λ1L+m1λ1R)+ϕ1(/∂λC1R+m1λ

C
1L)−ϑ1(/∂λ1R+m1λ1L)+ϑ∗

1(/∂λC1L+m1λ
C
1R)

)
,

ˆ̃n
µ
(5|0) =F ∗∂µφ+(F ∗

ϕ2
+m2ϕ2)∂µϕ2+(F ∗

ϕ1
+m1ϕ1)∂µϑ1+(Fϑ1 +m1ϑ

∗
1)∂µϕ∗

1,

ˆ̃n(4|0) =F ∗φ+(F ∗
ϕ2

+m2ϕ2)ϕ2+(F ∗
ϕ1

+m1ϕ1)ϑ1+(Fϑ1 +m1ϑ
∗
1)ϕ∗

1,

ˆ̃n(6| 1
2 ) = i

(
F ∗χL−FχR+(F ∗

ϕ2
+m2ϕ2)λ2L−(Fϕ2 +m2ϕ

∗
2)λ2R (B.35)

+(Fϕ1 +m1ϕ
∗
1)λ1R+(F ∗

ϑ1
+m1ϑ1)λ1L−(F ∗

ϕ1
+m1ϕ1)λC1L−(Fϑ1 +m1ϑ

∗
1)λC1R

)
.

Inserting the supercurrent transformation (B.32) in the integrated supersymmetry

Ward identity (B.30) results in the following local Ward identity for the 2-point function

of the supercurrent:

∂xµ <
ˆ̃Qµ(x)

ˆ̄̃Qσ(y)>−1

2
<

ˆ̃T στ (x)>γτδ(x,y)+
i

8
<

ˆ̃J ν(x)> (iǫσρτνγ
5 +4η[σ

τ η
ρ]
ν )γ5γτ∂xρ δ(x,y)

+
1

3

(
<

ˆ̃OM (x)>PR+<
ˆ̃OM∗(x)>PL

)
γστ∂xτ δ(x,y)+

3

8
<

ˆ̃J ν(y) >ǫρσντγτ∂
x
ρ δ(x,y)

−(
<

ˆ̃OM (y) >PR+<
ˆ̃OM∗(y) >PL

)
γστ∂xτ δ(x,y)+

1

8
< ˆ̃sτ(2|1)(y) >γ5γτ∂

σ
x δ(x,y)

+
1

12α2
∂νy <

ˆ̃s(1|0)(y) >
(
2η[σ
τ η

ρ]
ν − iǫσρτνγ5)

γτ∂xρ δ(x,y)+
1

8
< ˆ̃n

σν
(1|2)(x) >γνγ

5δ(x,y)

+
1

8
< ˆ̃n

σν
(2|2)(x) >γνδ(x,y)+

1

4α2

(
< ˆ̃n

ρ
(5|1)(x) >PR+< ˆ̃n

ρ∗
(5|1)(x) >PL

)
γσγρδ(x,y)

+
1

6α2

(
< ˆ̃n(4|0)(x) >PR+< ˆ̃n

∗
(4|0)(x) >PL

)
γσν∂xν δ(x,y) = 0. (B.36)

In terms of composite operators, this identity coincides with (B.19) for the bare theory,

except for terms involving the complex scalar operator OM of the FZ multiplet. Moreover,

using the fact that the 1-point functions of all null operators vanish and absorbing the

seagull terms in the definition of the current correlators, it is straightforward to verify that

it reproduces the Ward identity (4.27) obtained from old minimal supergravity.

For the 3- and 4-point functions we obtain similarly

∂x
µ <

ˆ̃Qµ(x)
ˆ̄̃Qσ(y)

ˆ̃J κ(z)>− i
3
δ(x,z)γ5(2ηκ

ν −γκ
ν)<

ˆ̃Qν(x)
ˆ̄̃Qσ(y)>−1

2
<

ˆ̃T σ
τ (x)

ˆ̃J κ(z)>γτδ(x,y)

+
i

8
<

ˆ̃J ν(x)
ˆ̃J κ(z)> (iǫσρ

τνγ
5 +4η[σ

τ η
ρ]
ν )γ5γτ∂x

ρ δ(x,y)+
3

8
<

ˆ̃J ν(y)
ˆ̃J κ(z)>ǫρσντγτ∂

x
ρ δ(x,y)

+
1

3

(
<

ˆ̃OM (x)
ˆ̃J κ(z)>PR+<

ˆ̃OM∗(x)
ˆ̃J κ(z)>PL

)
γστ∂x

τ δ(x,y)

−
(
<

ˆ̃OM (y)
ˆ̃J κ(z)>PR+<

ˆ̃OM∗(y)
ˆ̃J κ(z)>PL

)
γστ∂x

τ δ(x,y)− 1

3α
∂κ

xδ(x,z)<
ˆ̃s(3| 1

2 )(z)
ˆ̄̃Qσ(y)>

+
1

8
< ˆ̃sτ

(2|1)(y)
ˆ̃J κ(z)>γ5γτ∂

σ
x δ(x,y)+

1

12α2
∂ν

y <
ˆ̃s(1|0)(y)

ˆ̃J κ(z)>
(
2η[σ

τ η
ρ]
ν − iǫσρ

τνγ
5
)
γτ∂x

ρ δ(x,y)
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+
1

3α
δ(x,z)γκ < ˆ̃n(3| 1

2 )(x)
ˆ̄̃Qσ(y)>+

1

6α
δ(x,z)γκ < ˆ̃n(6| 1

2 )(x)
ˆ̄̃Qσ(y)>

+
1

8
< ˆ̃n

σν

(1|2)(x)
ˆ̃J κ(z)>γνγ

5δ(x,y)+
1

8
< ˆ̃n

σν

(2|2)(x)
ˆ̃J κ(z)>γνδ(x,y)

+
1

4α2

(
< ˆ̃n

ρ

(5|1)(x)
ˆ̃J κ(z)>PR+< ˆ̃n

ρ∗

(5|1)(x)
ˆ̃J κ(z)>PL

)
γσγρδ(x,y)

+
1

6α2

(
< ˆ̃n(4|0)(x)

ˆ̃J κ(z)>PR+< ˆ̃n
∗

(4|0)(x)
ˆ̃J κ(z)>PL

)
γσν∂x

ν δ(x,y) = 0, (B.37)

∂x
µ <

ˆ̃Qµ(x)
ˆ̄̃Qσ(y)

ˆ̃J κ(z)
ˆ̃J α(w)>− i

3
δ(x,z)γ5(2ηκ

ν −γκ
ν)<

ˆ̃Qν(x)
ˆ̄̃Qσ(y)

ˆ̃J α(w)>

− i

3
δ(x,w)γ5(2ηα

ν −γα
ν)<

ˆ̃Qν(x)
ˆ̄̃Qσ(y)

ˆ̃J κ(z)>−1

2
<

ˆ̃T σ
τ (x)

ˆ̃J κ(z)
ˆ̃J α(w)>γτδ(x,y)

+
i

8
<

ˆ̃J ν(x)
ˆ̃J κ(z)

ˆ̃J α(w)> (iǫσρ
τνγ

5 +4η[σ
τ η

ρ]
ν )γ5γτ∂x

ρ δ(x,y)

+
1

3

(
<

ˆ̃OM (x)
ˆ̃J κ(z)

ˆ̃J α(w)>PR+<
ˆ̃OM∗(x)

ˆ̃J κ(z)
ˆ̃J α(w)>PL

)
γστ∂x

τ δ(x,y)

−
(
<

ˆ̃OM (y)
ˆ̃J κ(z)

ˆ̃J α(w)>PR+<
ˆ̃OM∗(y)

ˆ̃J κ(z)
ˆ̃J α(w)>PL

)
γστ∂x

τ δ(x,y)

+
3

8
<

ˆ̃J ν(y)
ˆ̃J κ(z)

ˆ̃J α(w)>ǫρσντγτ∂
x
ρ δ(x,y)+

1

8
< ˆ̃sτ

(2|1)(y)
ˆ̃J κ(z)

ˆ̃J α(w)>γ5γτ∂
σ
x δ(x,y)

+
1

12α2
∂ν

y <
ˆ̃s(1|0)(y)

ˆ̃J κ(z)
ˆ̃J α(w)>

(
2η[σ

τ η
ρ]
ν − iǫσρ

τνγ
5
)
γτ∂x

ρ δ(x,y)

− 1

3α
∂κ

xδ(x,z)<
ˆ̃s(3| 1

2 )(z)
ˆ̄̃Qσ(y)

ˆ̃J α(w)>− 1

3α
∂α

x δ(x,w)< ˆ̃s(3| 1
2 )(w)

ˆ̄̃Qσ(y)
ˆ̃J κ(z)>

+
1

8
< ˆ̃n

σν

(1|2)(x)
ˆ̃J κ(z)

ˆ̃J α(w)>γνγ
5δ(x,y)+

1

8
< ˆ̃n

σν

(2|2)(x)
ˆ̃J κ(z)

ˆ̃J α(w)>γνδ(x,y)

+
1

3α
δ(x,z)γκ < ˆ̃n(3| 1

2 )(x)
ˆ̄̃Qσ(y)

ˆ̃J α(w)>+
1

3α
δ(x,w)γα < ˆ̃n(3| 1

2 )(x)
ˆ̄̃Qσ(y)

ˆ̃J κ(z)>

+
1

4α2

(
< ˆ̃n

ρ

(5|1)(x)
ˆ̃J κ(z)

ˆ̃J α(w)>PR+< ˆ̃n
ρ∗

(5|1)(x)
ˆ̃J κ(z)

ˆ̃J α(w)>PL

)
γσγρδ(x,y)

+
1

6α2

(
< ˆ̃n(4|0)(x)

ˆ̃J κ(z)
ˆ̃J α(w)>PR+< ˆ̃n

∗

(4|0)(x)
ˆ̃J κ(z)

ˆ̃J α(w)>PL

)
γσν∂x

ν δ(x,y)

+
1

6α
δ(x,z)γκ < ˆ̃n(6| 1

2 )(x)
ˆ̄̃Qσ(y)

ˆ̃J α(w)>+
1

6α
δ(x,w)γα < ˆ̃n(6| 1

2 )(x)
ˆ̄̃Qσ(y)

ˆ̃J κ(z)>= 0. (B.38)

These Ward identities coincide with those of the bare theory, respectively (B.20) and (B.21),

except for terms involving the complex scalar operator OM and the gamma trace of the

supercurrent, both of which vanish in the bare theory. Moreover, evaluating the 2- and

3-point functions involving null operators as in (B.22) and (B.23) and absorbing the seagull

terms in the definition of the correlators, one finds that these identities reproduce the Ward

identities (4.28) and (4.29) that follow from the coupling to old minimal supergravity.

C Functional differentiation versus operator insertions

In this appendix we discuss the relation between correlation functions defined through

functional differentiation and those obtained by path integral operator insertions. The two

differ by the so called ‘seagull terms’, which can be expressed as derivatives of operators

with respect to sources. The distinction is important because the structure of ultraviolet
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divergences is different in the two cases. In particular, only the ultraviolet divergences

of current multiplet correlators defined through functional differentiation can be canceled

by counterterms that depend on the background supergravity fields. Feynman diagram

computations, however, result in correlation functions involving operator insertions. The

two different definitions also affect the form of the Ward identities.

Throughout this manuscript correlation functions defined through functional differen-

tiation are denoted by wide brackets, 〈·〉, while those involving operator insertions by <·>.

For the current multiplet correlators of the PV regulated WZ model we discuss in the main

text, the relation between these two definitions simplifies because several operator deriva-

tives vanish. In particular, using the form of the currents in (3.18) and (4.46) when the

theory is coupled to background supergravity and the seagull operators defined in (B.34),

we determine that the only non zero operator derivatives are

δT̃ µν(x)

δAρ(y)
= −(ηµρηνσ+ηµσηνρ−ηµνηρσ)δ(x,y)J̃σ+

i

6
ηµρδ(x,y)ˆ̃sν(2|1),

δT̃ µν(x)

δAρ(y)δAσ(z)
=

4

9α2
(ηµρηνσ+ηµσηνρ−ηµνηρσ)δ(x,y)δ(x,z)ˆ̃s(1|0),

δJ̃ µ(x)

δAν(y)
= − 4

9α2
ηµνδ(x,y)ˆ̃s(1|0),

δJ̃ µ(x)

δψ̄ν(y)
=
δQ̃µ(x)

δAν(y)
=− 1

3α
ηµνδ(x,y)ˆ̃s(3| 1

2 ), (C.1)

δQ̃µ(x)

δψν(y)
=

3

8
ǫµνρσ

ˆ̃J ργσδ(x,y)+γµν(ÕMPR+ÕM∗PL)δ(x,y)+
1

8
ˆ̃sρ(2|1)γ

5γρη
µνδ(x,y)

+
1

12α2
∂ρˆ̃s(1|0)

(
2η[µ
ρ η

ν]
σ + iǫµνρσγ

5)
γσδ(x,y)+

i

6α2
ǫµνρσˆ̃s(1|0)γ

5γσ∂
x
ρ δ(x,y).

It follows that the two definitions of current multiplet correlation functions of the

regulated WZ model that are relevant for our analysis are related as

〈J̃ µ(x)J̃ ν(y)〉=<J̃ µ(x)J̃ ν(y)>+<
δJ̃ µ(x)

δAν(y)
>, (C.2)

〈J̃ µ(x)J̃ ν(y)J̃ κ(z)〉=<J̃ µ(x)J̃ ν(y)J̃ κ(z)>

+<
δJ̃ µ(x)

δAκ(z)
J̃ ν(y)>+<J̃ µ(x)

δJ̃ ν(y)

δAκ(z)
>+<

δJ̃ µ(x)

δAν(y)
J̃ κ(z)>,

〈T̃ µ
ν (x)J̃ ρ(y)〉=<T̃ µ

ν (x)J̃ ρ(y)>+<
δT̃ µ

ν (x)

δAρ(y)
>,

〈T̃ µ
ν (x)J̃ ρ(y)J̃ σ(z)〉=<T̃ µ

ν (x)J̃ ρ(y)J̃ σ(z)>

+<
δT̃ µ

ν (x)

δAρ(y)
J̃ σ(z)>+<

δT̃ µ
ν (x)

δAσ(z)
J̃ ρ(y)>+<T̃ µ

ν (x)
δJ̃ ρ(y)

δAσ(z)
>+<

δ2T̃ µ
ν (x)

δAρ(y)δAσ(z)
>,

〈Q̃µ(x) ˜̄Qν(y)〉=<Q̃µ(x) ˜̄Qν(y)>+<
δQ̃µ(x)

δψν(y)
>,

〈Q̃µ(x) ˜̄Qν(y)J̃ ρ(z)〉=<Q̃µ(x) ˜̄Qν(y)J̃ ρ(z)>

+<
δQ̃µ(x)

δψν(y)
J̃ ρ(z)>+<

δQ̃µ(x)

δAρ(z)
˜̄Qν(y)>+<Q̃µ(x)

δ ˜̄Qν(y)

δAρ(z)
>,
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〈Q̃µ(x) ˜̄Qν(y)J̃ ρ(z)J̃ σ(w)〉=<Q̃µ(x) ˜̄Qν(y)J̃ ρ(z)J̃ σ(w)>

+<
δQ̃µ(x)

δψν(y)
J̃ ρ(z)J̃ σ(w)>+<

δQ̃µ(x)

δAρ(z)
˜̄Qν(y)J̃ σ(w)>+<

δQ̃µ(x)

δAσ(w)
˜̄Qν(y)J̃ ρ(z)>

+<
δQ̃µ(x)

δψν(y)

δJ̃ ρ(z)

δAσ(w)
>+<

δQ̃µ(x)

δAρ(z)

δ ˜̄Qν(y)

Aσ(w)
>+<

δQ̃µ(x)

δAσ(w)

δ ˜̄Qν(y)

δAρ(z)
>

+<Q̃µ(x)
δ ˜̄Qν(y)

δAρ(z)
J̃ σ(w)>+<Q̃µ(x)

δ ˜̄Qν(y)

δAσ(w)
J̃ ρ(z)>+<Q̃µ(x) ˜̄Qν(y)

J̃ ρ(z)

δAσ(w)
>.

Analogous expressions can be derived for any other current multiplet correlator. Explicit

evaluation of the correlation functions (C.2) in appendix D shows that individual correla-

tors on the r.h.s. of these relations contain additional UV divergences that cancel among

different path integral correlators. The UV divergences that survive in the linear combina-

tion corresponding to correlators defined through functional differentiation can be canceled

by the counterterms (4.51)–(4.57) that depend only on the background supergravity fields.

Clearly, the difference between correlation functions defined via functional differentia-

tion and operator insertions affects the form of the Ward identities. In sections 2.2 and 4.2

we present the Ward identities in terms of correlation functions defined through functional

differentiation. This form of the Ward identities is universal and follows directly from

the symmetries of the background supergravity the current multiplet couples to. When ex-

pressed in terms of correlators defined through operator insertions, however, these identities

contain additional seagull terms, as can be seen explicitly in the path integral derivation

of the Ward identities in appendix B. In fact, the universal form of the Ward identities

in terms of correlators obtained by functional differentiation can be expressed as a linear

combination of path integral Ward identities involving operator insertions.

To illustrate this point, let us consider the Ward identities (4.27)–(4.29) for the FZ

multiplet that follow from old minimal supergravity. Using the relations (C.2) between the

two alternative definitions of correlation functions, (4.27) becomes

∂µ<Q̃µ(x) ˜̄Qσ(y)>−1

2
<T̃ σa (x)>γaδ(x,y)+

i

8
<J̃ ν(x)>

(
4δ[ρ
ν δ

σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x,y)

+
1

3

(
<ÕM>PR+<ÕM∗>PL

)
γσρ∂xρ δ(x,y)+∂µ<

δQ̃µ(x)

δψσ(y)
>= 0, (C.3)

which contains an additional seagull term. This Ward identity is identical to (B.36),

obtained from the path integral through the Noether procedure.

Similarly, in terms of path integral correlators (4.28) takes the form

∂µ<Q̃µ(x) ˜̄Qσ(y)J̃ κ(z)>−iγ5δ(x,z)<Q̃κ(x) ˜̄Qσ(y)>−1

2
<T̃ σa (x)J̃ κ(z)>γaδ(x,y) (C.4)

+
i

8
<J̃ ν(x)J̃ κ(z)>

(
4δ[ρ
ν δ

σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x,y))

+
1

8
<J̃ ν(x)>

(
4δ[κ
ν δ

σ]
λ + iγ5ǫνλ

κσ)
γλδ(x,z)δ(x,y)

− i

3
δ(x,z)γκγ5

(
γµ<Q̃µ(x) ˜̄Qσ(y)>−3i

4
γ5δ(x,y)<J̃ σ(x)>

)

+
i

3
ησκδ(x,y)δ(x,z)

(
<ÕM (x)>PR−<ÕM∗(x)>PL

)
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+
1

3
γσρ∂ρδ(x,y)

(
<ÕM (x)J̃ κ(z)>PR+<ÕM∗(x)J̃ κ(z)>PL

)

+∂µ<
δQ̃µ(x)

δψσ(y)
J̃ κ(z)>+∂µ<

δQ̃µ(x)

δAκ(z)
˜̄Qσ(y)>

+∂µ<Q̃µ(x)
δ ˜̄Qσ(y)

δAκ(z)
>−iγ5δ(x,z)<

δQ̃κ(x)

δψσ(y)
>−1

2
<
δT̃ σρ (x)

δAκ(z)
>γρδ(x,y)

+
i

8
<
δJ̃ ν(x)

δAκ(z)
>

(
4δ[ρ
ν δ

σ]
λ + iγ5ǫνλ

ρσ)
γ5γλ∂ρδ(x,y))− i

3
δ(x,z)γκγ5γµ<

δQ̃µ(x)

δψσ(y)
>= 0.

This coincides with (B.37) obtained using the path integral Noether procedure, except for

the last two lines that comprise an independent path integral Ward identity. The 4-point

function Ward identity (B.38) admits an analogous decomposition in terms of path integral

Ward identities.

D Cancellation of UV divergences in FZ current multiplet correlators

In this appendix we demonstrate that the supersymmetric PV regulator (4.3) removes the

UV divergences from all 1-loop correlation functions necessary for the analysis of the 4-point

function supersymmetry Ward identity. This must be checked for all Feynman diagrams

that enter in the computation of the relevant path integral correlators, including those

that involve seagull terms. However, as we discuss in appendix C, the only universal UV

divergences that can be renormalized by the background supergravity counterterms (4.51)–

(4.57) are those of current multiplet correlators defined through functional differentiation.

These are also the correlators that appear in the model independent form of the Ward

identities, and hence determine the quantum anomalies.

The analysis in this appendix, as well as in section 5, is therefore organized in terms

of current multiplet correlators defined by functional differentiation. For all relevant 1-

and 2-point functions we obtain their full renormalized form, which allows us to determine

the coefficients of the supersymmetric counterterms (4.51)–(4.57). For the 3- and 4-point

functions we compute their regulated form and show that the PV regulator removes all UV

divergences. All calculations in this appendix involve flat space operators only and so we

drop the hat ·̂ throughout to simplify the notation.

D.1 1-point functions

The 1-point functions of the current multiplet operators all vanish identically, as long as

the regulator preserves supersymmetry. However, a number of 1-point functions of seagull

terms are not identically zero and require renormalization. Such 1-point functions are

related to certain current multiplet 2-point functions and so we defer their discussion until

we consider 2-point functions.

The 1-point functions of the supercurrent and of the scalar operators OM , OM∗ vanish

trivially due to the absence of possible self contractions. The R-current 1-point function

receives contributions from the 1-loop diagrams in figure 1, all of which vanish individually
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J̃ µ
φ

+
J̃ µ

χ

+
J̃ µ

ϕ2

+
J̃ µ

λ2

+
J̃ µ

ϕ1

+
J̃ µ

ϑ1

+
J̃ µ

λ1

Figure 1. One-loop diagrams that contribute to the 1-point function of the R-current. The 1-point

function of the stress tensor is determined by exactly the same diagrams.

due to parity. In particular, using the propagators (3.2), (3.3) and (4.6), (4.7) together

with the expressions for the currents in (3.6) and (4.15), we obtain

〈J̃ µ(p)〉 =
i

3α2

∫
d4q

(2π)4

(
2iqµ

(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)
(D.1)

− α2

2
tr

[
γµγ5(

Pχ(q) + Pλ2(q)− 2Pλ1(q)
)])

= 0,

where in the last step we have used the trace identities (A.6).

The stress tensor 1-point function receives contributions from the same diagrams as

the R-current in figure 1 and it is straightforward to show that it too vanishes:

〈T̃ µν(p)〉 =

∫
d4q

(2π)4

(
1

α2
qµqν

(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)
+ iηµν(1 + 1− 1− 1)

− 1

2
qνtr

[
iγµ

(
Pχ(q) + Pλ2(q)− 2Pλ1(q)

)]− i

2
ηµνtr (1 + 1− 2)

)
= 0, (D.2)

where the last equality follows from the relation between the scalar and spinor propaga-

tors (5.2) and the trace identities (A.6). Notice that the 1-point function of the stress

tensor vanishes due to the presence of the regulator multiplets. In particular, surprisingly,

it does not vanish for each individual multiplet.14 However, multiplet-wise cancellation

does occur if one includes the auxiliary fields in the chiral multiplets.

Using the auxiliary field propagators [40, 87] (see also eq. (9.11) in [66])

PF (q) = −q2Pφ(q), PφF = 0, PFϕ2
(q) = −q2Pϕ2(q), Pϕ2Fϕ2

= −m2Pϕ2(q),

(D.3)

14This result apparently contradicts the conclusion of [86] in the case when the auxiliary fields are

integrated out. A possible source for the discrepancy is the values for the auxiliary fields in eq. (22) of [86],

which seem incorrect.
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ÕM ÕM∗

ϕ2

+ ÕM ÕM∗

ϕ1

ϑ1

Figure 2. One-loop diagrams that contribute to the 2-point function 〈ÕM (p)ÕM∗(−p)〉.

and so on, the 1-point function of the stress tensor is given by

〈T̃ µν(p)〉 =

∫
d4q

(2π)4

(
1

α2
qµqν

(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)

− 1

2α2
ηµνq2(

Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)
)

+
1

2α2
ηµν

(
PF (q) + PFϕ2

(q)− PFϕ1
(q)− PFϑ1

(q)
)

+
1

2α2
ηµν

(
2m2Pϕ2Fϕ2

(q)− 2m1Pϕ1Fϕ1
(q)− 2m1Pϑ1Fϑ1

(q)
)

− 1

2
qνtr

[
iγµ

(
Pχ(q) + Pλ2(q)− 2Pλ1(q)

)]− i

2
ηµνtr (1 + 1− 2)

)

=

∫
d4q

(2π)4

(
1

α2
qµqν

(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)
+ 2iηµν(1 + 1− 1− 1)

− 1

2
qνtr

[
iγµ

(
Pχ(q) + Pλ2(q)− 2Pλ1(q)

)]− i

2
ηµνtr (1 + 1− 2)

)
= 0. (D.4)

This shows that the 1-point function of the stress tensor vanishes separately for each

multiplet once the auxiliary fields are included.

D.2 2-point functions

〈OM OM∗〉. The simplest 2-point function of current multiplet operators is that between

ÕM and ÕM∗ . For massless theories like the massless WZ model we consider here, this

2-point function depends only on the regulator fields and hence its renormalized form is

ultralocal. Renormalizing this 2-point function is the fastest way to compute the coefficient

a2 of the supersymmetric counterterm (4.53).

Only the two diagrams shown in figure 2 contribute to this 2-point function. Moreover,

there is no difference between the functional differentiation and operator insertion form of

this 2-point function since no seagull terms contribute. Using the expressions for ÕM , ÕM∗

in (4.15), we obtain

〈ÕM (p)ÕM∗(−p)〉 =<ÕM (p)ÕM∗(−p)> (D.5)

= 2i×
(
m2

4α2

)2 ∫
d4q

(2π)4
Pϕ2(p+ q)Pϕ2(q)− i

(
m1

2α2

)2 ∫
d4q

(2π)4
Pϕ1(p+ q)Pϑ1(q)

= − im
2
2

2

∫
d4q

(2π)4

1(
(p+ q)2 +m2

2

)
(q2 +m2

2)
+ im2

1

∫
d4q

(2π)4

1(
(p+ q)2 +m2

1

)
(q2 +m2

1)
.
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φ

+
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χ

+
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ϕ2
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J̃ µ J̃ ν

ϕ1

+
J̃ µ J̃ ν

ϑ1

+
J̃ µ J̃ ν

λ1

Figure 3. One-loop diagrams that contribute to the 2-point function of the R-current.

The factor of 2 in the first diagram reflects the number of possible Wick contractions,

while the overall factor of i is due to (5.1). These integrals are individually logarithmically

divergent for large loop momentum qµ, but this divergence cancels provided the PV masses

satisfy the condition

m2
2 = 2m2

1. (D.6)

With this choice of PV masses, the above integrals can be evaluated using Feynman

parameters:

1(
(p+ q)2 +m2

1

)
(q2 +m2

1)
=

∫ 1

0
du

1

(ℓ2 + ∆1)2
, (D.7)

where ℓµ = qµ +upµ and ∆1 = u(1−u)p2 +m2
1, and similarly for the first integral. Hence,

〈ÕM (p)ÕM∗(−p)〉 = im2
1

∫ 1

0
du

∫
d4ℓ

(2π)4

(
1

(ℓ2 + ∆1)2
− 1

(ℓ2 + ∆2)2

)
(D.8)

= −m2
1

2π2

(2π)4

∫ 1

0
du

∫ ∞

0
dℓEℓ

3
E

(
1

(ℓ2E + ∆1)2
− 1

(ℓ2E + ∆2)2

)

= − m2
1

16π2

∫ 1

0
du log

(
∆2

∆1

)
= − 1

16π2

(
m2

1 log 2− p2

12
+O(m−2

1 )

)
,

where we have Wick rotated ℓµ according to ℓ0 → iℓ0E and used that Vol(S3) = 2π2. The

divergence of this 2-point function as the PV mass m1 is sent to infinity is canceled by the

supersymmetric counterterm (4.53) provided the constant a2 takes the value

a2 = − log 2

96π2
m2

1. (D.9)

This results in the renormalized 2-point function

〈ÕM (p)ÕM∗(−p)〉ren =
p2

192π2
. (D.10)

As we anticipated, this is indeed ultralocal, i.e. polynomial in the momentum pµ, which

reflects the fact that the theory is classically conformal.
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〈J J 〉. Next, we consider the 2-point function of R-currents, which receives contributions

from the diagrams in figure 3. As we discuss in appendix C, the functional derivative and

operator insertion versions of this 2-point function differ by the 1-point function of a seagull

term, namely

〈J̃ µ(p)J̃ ν(−p)〉 =<J̃ µ(p)J̃ ν(−p)> − 4

9α2
ηµν <s̃(1|0)(p)>, (D.11)

where s̃(1|0) is given in (B.34). In terms of loop integrals, its 1-point function takes the

form

<s̃(1|0)(p)>=

∫
d4q

(2π)4

(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)
=

α2

4π2
m2

1 log 2. (D.12)

Moreover, the 2-point function defined via operator insertions is given by

<J̃ µ(p)J̃ ν(−p)>=−i
(

i

3α2

)2 ∫
d4q

(2π)4
(q+q′)µ(q+q′)νG

(2)
1 (q,q′) (D.13)

−2i

(
i

6

)2 ∫
d4q

(2π)4
tr

(
γµγ5Pχ(q)γνγ5Pχ(q′)+γµγ5Pλ2

(q)γνγ5Pλ2
(q′)−2γµγ5Pλ1

(q)γνγ5Pλ1
(q′)

)
,

where we have introduced the shorthand notation q′µ ≡ qµ + pµ and G
(2)
1 (q, q′) was defined

in (5.3).

Using the Feynman parameterization of the momentum integral, this expression re-

duces to

<J̃ µ(p)J̃ ν(−p)>=− i

9

∫ 1

0

du

∫
d4ℓ

(2π)4

(
5ℓ2ηµν +4(1−3u+3u2)pµpν−2u(1−u)p2ηµν

)

×
(

1

(ℓ2 +∆)2
+

1

(ℓ2 +∆2)2
− 2

(ℓ2 +∆1)2

)
− 4

9
ηµν〈ÕM (p)ÕM∗(−p)〉

=
2π2

9(2π)4

∫ 1

0

du

[
5ηµν

(
∆log∆+∆2 log∆2−2∆1 log∆1

)
(D.14)

−
(

2(1−3u+3u2)pµpν−u(1−u)p2ηµν
)

log

(
∆∆2

∆2
1

)
+2m2

1η
µν log

(
∆2

∆1

)]
,

where ∆ = u(1− u)p2, ∆1 = ∆ +m2
1, ∆2 = ∆ + 2m2

1 and we have replaced ℓµℓν → 1
4ℓ

2ηµν

in the momentum integral. Combining this with (D.12) and expanding for large PV mass

gives

〈J̃ µ(p)J̃ ν(−p)〉 =
2π2

9(2π)4

[
4m2

1 log 2 ηµν+(pµpν−ηµνp2)

(
logm2

1− log(2p2)+
8

3

)
− 1

3
pµpν

]
,

(D.15)

where terms that vanish in the limit m1 →∞ have been dropped.

This regulated 2-point function has two divergent terms as m1 → ∞. It is straight-

forward to verify that the quadratic divergence is removed by the supersymmetric coun-

terterm (4.53) with the same coefficient a2 as the one obtained from the scalar 2-point

function in (D.9). Moreover, the logarithmic divergence is canceled by the supersymmetric

counterterm (4.57) provided the coefficient a4 takes the value

a4 = − 1

768π2

(
log(m2

1/µ
2)− log 2 +

7

3

)
, (D.16)
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Figure 4. One-loop diagrams that contribute to the supercurrent 2-point function.

where the arbitrary scale µ is independent of the PV mass and parameterizes the choice of

supersymmetric renormalization scheme. The resulting renormalized 2-point function is

〈J̃ µ(p)J̃ ν(−p)〉ren = − 2π2

9(2π)4

(
(pµpν − ηµνp2) log(p2/µ2) +

1

3
p2ηµν

)
. (D.17)

〈T J 〉. Another 2-point function that we need to determine is that between an R-current

and a stress tensor. The diagrams that contribute to this 2-point function are identical to

the corresponding ones for the 2-point function of two R-currents shown in figure 3, except

that one of the two R-current insertions is replaced with a stress tensor. From appendix C

follows that the T J 2-point function potentially receives a contribution from the 1-point

function of a seagull term. However, using the explicit form of this seagull term in (C.1),

one sees that its 1-point function is a linear combination of < J̃ µ(p)> and <s̃ν(2|1)(p)>,

both of which vanish. Hence,

〈T̃ µν(p)J̃ ρ(−p)〉=<T̃ µν(p)J̃ ρ(−p)> (D.18)

=− i

3α4

∫
d4q

(2π)4
(q+q′)ρ

[(
q(µq′ν)− 1

2
ηµνq ·q′+ 1

6
(pµpν−ηµνp2)

)
G

(2)
1 (q,q′)−m2

1η
µνG

(2)
2 (q,q′)

]

+
i

96α4

∫
d4q

(2π)4

[
G

(2)
1 (q,q′)tr

((
4ην[µγσ](q′+q)σ +iǫµνκσγκγ

5pσ

)
/qγ

ργ5
/q
′
)

+8im2
1ǫ

µνρσpσG
(2)
2 (q,q′)

]
,

where q′µ ≡ qµ − pµ. Since G
(2)
1 (q, q′) ∼ q−8 as q2 → ∞ and G

(2)
2 (q, q′) ∼ q−6, the loop

integrals are properly regulated.

Since the loop integrals are regulated, we may transform the loop momentum as q →
p − q. This changes the sign of all terms that are odd and symmetric in q and q′, which

therefore vanish identically. Using the trace identities (A.6), the remaining terms give

〈T̃ µν(p)J̃ ρ(−p)〉 =
m2

1

3
ǫµνρσpσ

∫ 1

0
du

∫
d4ℓ

(2π)4

(
1

(ℓ2 + ∆2)2
− 1

(ℓ2 + ∆1)2

)
(D.19)

+
1

12
ǫµνρσpσ

∫ 1

0
du

∫
d4ℓ

(2π)4

(
1

(ℓ2 + ∆)2
+

1

(ℓ2 + ∆2)2
− 2

(ℓ2 + ∆1)2

)(
ℓ2 − 2u(u− 1)p2)

,

where now ℓ = q − up and ∆, ∆1 and ∆2 are as above. Evaluating the loop integrals and

taking the limit m1 →∞ we find that this expression is identically zero. Hence,

〈T̃ µν(p)J̃ ρ(−p)〉ren = 0. (D.20)

〈QQ̄〉. Finally, we evaluate the 2-point function of two supercurrents, corresponding to

the 1-loop diagrams shown in figure 4. We see from appendix C that in this case too there is
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a contribution from the 1-point function of a seagull term. The only non zero contribution

to this 1-point function is proportional to (D.12), from which we obtain

〈Q̃µ(p) ˜̄Qν(−p)〉 =<Q̃µ(p) ˜̄Qν(−p)> +
m2

1

24π2
log 2 ǫµνρσγσγ

5pρ. (D.21)

Moreover, a straightforward calculation determines that

<Q̃µ(p) ˜̄Qν(−p)>=
m2

1

2α4

∫
d4q

(2π)4

(
1

2

(
γµγν

/q+/qγ
µγν +γµ

/q
′γν

)
+

1

3
pρ

(
γµργν +γµγρν

))
G

(2)
2 (q,q′)

− 1

2α4

∫
d4q

(2π)4

(
1

4
/qγ

µ
/q
′γν

/q+
1

6
pρ

(
γµρ

/q
′γν

/q−/qγµ
/q
′γνρ

)
− 1

9
pρpσγ

µρ
/q
′γνσ

)
G

(2)
1 (q,q′), (D.22)

where now q′ ≡ q − p. Since G
(2)
1 (q, q′) ∼ q−8 as q2 → ∞ and G

(2)
2 (q, q′) ∼ q−6, we see

again that the loop integrals are properly regulated.

Evaluating the loop integrals we obtain

<Q̃µ(p) ˜̄Qν(−p)>=

∫ 1

0

du

∫
d4ℓ

(2π)4

(
1

(ℓ2 + ∆)2
+

1

(ℓ2 + ∆2)2
− 2

(ℓ2 + ∆1)2

)
×

×
[
− 1

4
ℓ2

(
1

2

(
γµγν

/p+ /pγ
µγν − γµ

/pγ
ν
)

+
2

3
pρ

(
γµργν + γµγρν

)
− iǫµνρσγσγ

5pρ

)

− 1

4
u(1− u)/pγ

µ
/pγ

ν
/p−

1

3
u(1− u)pρ(γµρ

/pγ
ν
/p− /pγµ

/pγ
νρ) +

1

9
pρpσγ

µρ
/pγ

νσ

]

− i〈ÕM (p)ÕM∗(−p)〉
(

1

2

(
γµγν

/p+ /pγ
µγν − γµ

/pγ
ν
)

+
2

3
pρ

(
γµργν + γµγρν

))

=
2iπ2

(2π)4

∫ 1

0

du

{
1

6

(
2p(µγν) + ηµν

/p+ iǫµνρσγσγ
5pρ

)[
m2

1

2
log

(
∆2

∆1

)
− 1

4
log

(
∆∆∆∆2

2

∆2∆1

1

)]

− p2

6

[(
u(1− u)− 1

3

)
pµpν

p2 /p−
1

2
u(1− u)p(µγν) +

(
1

3
− 5

4
u(1− u)

)(
ηµν

/p+ iǫµνρσγσγ
5pρ

)]
×

× log

(
∆∆2

∆2
1

)
+
i

4
ǫµνρσγσγ

5pρ log

(
∆∆∆∆2

2

∆2∆1

1

)}

= − 2iπ2

(2π)4

1

72

[(
logm2

1 − log(2p2) +
7

3

)(
2/p(p

µpν − ηµνp2) + iǫµνρσγσγ
5pρp

2
)

+ iǫµνρσγσγ
5pρp

2

]

+
2iπ2

(2π)4

1

2
m2

1 log 2 iǫµνρσγσγ
5pρ, (D.23)

where ℓ = q−up and ∆, ∆1 and ∆2 are as above. Combining this expression with the con-

tribution from the seagull term in (D.21), one can verify that the quadratic and logarithmic

divergences in m1 cancel respectively against the contributions from the supersymmetric

counterterms (4.53) and (4.57), with the values of a2 and a4 given in (D.9) and (D.16). It

follows that the renormalized supercurrent 2-point function takes the form

〈Q̃µ(p) ˜̄Qν(−p)〉ren =
2iπ2

72(2π)4

((
2/p(p

µpν−ηµνp2)+ iǫµνρσγσγ
5pρp

2
)

log(p2/µ2)− iǫµνρσγσγ
5pρp

2
)
.

(D.24)

Notice that the tensor multiplying the non local term vanishes when contracted with either

pµ or γµ, but the last term is local and gives zero only when contracted with pµ.
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+
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Figure 5. One-loop diagrams that contribute to the 3-point function of R-currents.

D.3 3-point functions

〈J J J 〉. Moving to 3-point functions, we consider first the correlation function of three

R-currents, which determines the R-symmetry anomaly. From the analysis in appendix C

follows that this 3-point function receives contributions from the 2-point function between

the scalar seagull operator s̃(1|0) (see (B.34)) and an R-current. However, this 2-point

function takes the form

<s̃(1|0)(p)J̃ µ(−p)>=
i3

3α2

∫
d4q

(2π)4
(q + q′)µG

(2)
1 (q, q′), (D.25)

where q′ = q + p, and can be easily shown to vanish identically. Hence,

〈J̃ µ(p1)J̃ ν(p2)J̃ ρ(p3)〉 =<J̃ µ(p1)J̃ ν(p2)J̃ ρ(p3)> . (D.26)

The triangle diagrams that contribute to this 3-point function are shown in figure 5.

They give

<J̃ µ(p1)J̃ ν(p2)J̃ ρ(p3)>= i2
(

i

3α2

)3 ∫
d4q

(2π)4
i3(q+q′)µ(q′+q′′)ν(q′′+q)ρG

(3)
1 (q,q′, q′′)

−4i2
(
i

6

)3 ∫
d4q

(2π)4
tr

(
γµγ5Pχ(q′)γνγ5Pχ(q′′)γργ5Pχ(q)+γµγ5Pλ2

(q′)γνγ5Pλ2
(q′′)γργ5Pλ2

(q)

−2γµγ5Pλ1
(q′)γνγ5Pλ1

(q′′)γργ5Pλ1
(q)

)
+ν↔ ρ, p2↔ p3, (D.27)

where q′ = q + p1, q′′ = q + p1 + p2, and p1 + p2 + p3 = 0. It follows that this 3-point

function is also properly regulated by the PV fields.

The bosonic contribution vanishes identically by symmetry. After some manipula-

tions, the fermionic contribution can be expressed in terms of an integral over Feynman

parameters as

<J̃ µ(p1)J̃ ν(p2)J̃ ρ(p3)>=−4i2
(
i

6

)3
2iπ2

(2π)4

[
− i

3
ǫµνρσp13σ−2i

∫ 1

0

dudvdwδ(u+v+w−1)×

× 1

∆

((
v2p2

2 +u(1−u)p2
3−∆

)
ǫµνρσ

(
p12 +3(t−up3)

)
σ

+2ǫνρστ
(
v(1−v)p1 +vwp3

)µ
p1σp3τ +2ǫµρστ

(
v(1−v)p1 +vwp3

)ν
p1σp3τ

+2ǫµνστp1σp3τ

(
−v(u−w)p1 +(1+u−w)wp3

)ρ
+2(∆+vp1 ·p2)ǫµνρσ(p1 + t)σ

)]
, (D.28)

– 68 –



J
H
E
P
0
2
(
2
0
2
1
)
2
0
9

where p23 ≡ p2 − p3, ∆ = uvp2
1 + vwp2

2 + uwp2
3 + m2

1, ∆1 = ∆ + m2
1, ∆2 = ∆ + 2m2

1 and

t ≡ −vp1 + wp3.

〈T J J 〉. Another 3-point function that enters the supersymmetry Ward identity is that

between two R-currents and a stress tensor. This correlation function receives contributions

from a number of 2- and 1-point functions involving seagull operators, as well as from the

R-current 2-point function. In particular, the results in appendix C determine that

〈T̃ µν(p1)J̃ ρ(p2)J̃ σ(p3)〉 =<T̃ µν(p1)J̃ ρ(p2)J̃ σ(p3)>

− (ηµρηνκ + ηµκηνρ − ηµνηρκ) <J̃κ(−p3)J̃ σ(p3)> +
i

6
ηµρ <s̃ν(2|1)(−p3)J̃ σ(p3)>

− (ηµσηνκ + ηµκηνσ − ηµνησκ) <J̃κ(−p2)J̃ ρ(p2)> +
i

6
ηµσ <s̃ν(2|1)(−p2)J̃ ρ(p2)>

− 4

9α2
ηρσ <T̃ µν(p1)s̃(1|0)(−p1)> +

4

9α2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) <s̃(1|0)(0)>, (D.29)

where all seagull operators are defined in (B.34). Since the R-current 2-point function was

already computed in (D.12) and the 1-point function <s̃(1|0)(0)> in (D.15), we need only

determine the two 2-point functions <s̃ν(2|1)J̃ σ> and <T̃ µν s̃(1|0)>, as well as the Feynman

diagram contribution to the 3-point function.

The seagull operator s̃ν(2|1) is proportional to the fermionic part of the R-current, and so

the first 2-point function can be read off the computation of the R-current 2-point function,

namely

<̃sν
(2|1)(p)J̃ σ(−p)>= (D.30)

=−2i

(
i

6

)∫
d4q

(2π)4
tr

(
γµγ5Pχ(q)γνγ5Pχ(q′)+γµγ5Pλ2

(q)γνγ5Pλ2
(q′)−2γµγ5Pλ1

(q)γνγ5Pλ1
(q′)

)
,

where q′ = q + p. Hence, this 2-point function is properly regulated by our choice of PV

fields. The second 2-point function can also be easily evaluated to obtain

<T̃ µν(p)s̃(1|0)(−p)>=
i

α2

∫
d4q

(2π)4

[(
q(µq′ν)− 1

2
ηµνq ·q′+

1

6
(pµpν −ηµνp2)

)
G

(2)
1 (q,q′)−m2

1η
µνG

(2)
2 (q,q′)

]
,

(D.31)

which is therefore also fully regulated.

The Feynman diagrams that contribute to the 3-point function of a stress tensor and

two R-currents are the same as those in figure 5, with an R-current replaced by a stress

tensor. We get

<T̃ µν(p1)J̃ ρ(p2)J̃ σ(p3)>= i2
(

i

3α2

)2
1

α2

∫
d4q

(2π)4
i2(q′ +q′′)ρ(q′′ +q)σ×

×
[(

q(µq′ν) − 1

2
ηµνq ·q′ +

1

6
(pµpν −ηµνp2)

)
G

(3)
1 (q,q′, q′′)−m2

1η
µνG

(3)
2 (q,q′, q′′)

]

−4i2
(
i

6

)2 ∫
d4q

(2π)4

(
i

8
tr

[(
4ηµ[κην]λγκ(q+q′)λ + iǫµνκλγκγ

5p1κ

)
× (D.32)

×
(
Pχ(q′)γργ5Pχ(q′′)γσγ5Pχ(q)+Pλ2

(q′)γργ5Pλ2
(q′′)γσγ5Pλ2

(q)−2Pλ1
(q′)γργ5Pλ1

(q′′)γσγ5Pλ1
(q)

)]

− 1

2
ηµνtr

(
m2Pλ2

(q′)γργ5Pλ2
(q′′)γσγ5Pλ2

(q)−2m1Pλ1
(q′)γργ5Pλ1

(q′′)γσγ5Pλ1
(q)

))
+
ρ↔σ

p2 ↔ p3

,
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Q̃µ ˜̄Qν

J̃ ρ

χ

φφ +

Q̃µ ˜̄Qν

J̃ ρ

λ2

ϕ2ϕ2 +

Q̃µ ˜̄Qν

J̃ ρ

λ1

ϕ1ϕ1 +

Q̃µ ˜̄Qν

J̃ ρ

λ1

ϑ1ϑ1

+

Q̃µ ˜̄Qν

J̃ ρ

φ

χχ +

Q̃µ ˜̄Qν

J̃ ρ

ϕ2

λ2λ2 +

Q̃µ ˜̄Qν

J̃ ρ

ϕ1

λ1λ1 +

Q̃µ ˜̄Qν

J̃ ρ

ϑ1

λ1ϑ1

Figure 6. One-loop diagrams that contribute to the 3-point function of two supercurrents and an

R-current.

where again q′ = q + p1, q′′ = q + p1 + p2, and p1 + p2 + p3 = 0. The bosonic part of

this 3-point function is manifestly regulated by simple power counting. Straightforward

manipulations of the fermionic part show that it too is properly regulated.

〈QQ̄J 〉. The last 3-point function of current multiplet operators that enters in the su-

persymmetry Ward identity is that between two supercurrents and an R-current. Using

appendix C we determine

〈Q̃µ(p1) ˜̄Qν(p2)J̃ ρ(p3)〉 =<Q̃µ(p1) ˜̄Qν(p2)J̃ ρ(p3)>

+
3

8
ǫµνκλ <J̃κ(−p3)J̃ ρ(p3)> γλ +

1

8
<s̃κ(2|1)(−p3)J̃ ρ(p3)> γ5γκη

µν

+
i

12α2
<s̃(1|0)(−p3)J̃ ρ(p3)>

(
2η[µ
κ η

ν]
λ p

κ
3 + iǫµνκλγ

5pκ21

)
γλ

− 1

3α
ηµρ <s̃(3| 1

2 )(−p2) ˜̄Qν(p2)> − 1

3α
ηνρ <Q̃µ(p1)ˆ̄̃s(3| 1

2 )(−p1)>, (D.33)

where we have used the fact that correlation functions with a single insertion of OM or OM∗

vanish trivially in the free WZ model due to the absence of possible contractions. The only

terms that we have not already determined are the seagull 2-point functions <s̃(1|0)J̃ ρ>,

<s̃(3| 1
2 )

˜̄Qν>, and the Feynman diagram contribution to the 3-point function.

The two 2-point functions can be easily evaluated and take the form

<s̃(1|0)(p)J̃ ρ(−p)>=− i

3α2

∫
d4q

(2π)4
(q+q′)ρG

(2)
1 (q,q′), (D.34)

<s̃(3| 1
2 )(p) ˜̄Qµ(−p)>=− 1

4α3
γ5

∫
d4q

(2π)4

[
G

(2)
1 (q,q′)/q

′
(
γµ/q+

2

3
γµνpν

)
−2m2

1G
(2)
2 (q,q′)γµ

]
,

(D.35)

where again q′ = q + p. These too, therefore, are regulated by the PV fields. In fact,

using the transformation q → −p− q of the loop momentum, we see that the first of these

vanishes identically.
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Turning to the Feynman diagram contribution to the 3-point function, shown in fig-

ure 6, we get

<Q̃µ(p1) ˜̄Qν(p2)J̃ ρ(p3)>=

=
i

48α6

∫
d4q

(2π)4
G

(3)
1 (q, q′, q′′)γ5(

2(q + q′′)ρΩµ
1 (−q)/q′Ων

2(q′′)− Ωµ
1 (q′)/qγ

ρ
/q

′′Ων
2(−q′)

)

+
im2

1

24α6

∫
d4q

(2π)4
G

(3)
2 (q, q′, q′′)γ5

(
2(q + q′′)ρ

(
γµΩν

2(q′′)− Ωµ
1 (−q)γν + γµ/q

′γν
)

+ Ωµ
1 (q′)(γρ/q

′′ − /qγρ)γν − γµ(/qγ
ρ − γρ/q′′)Ων

2(−q′)− Ωµ
1 (q′)γρΩν

2(−q′) + γµ/qγ
ρ
/q

′′γν
)

+
im4

1

12α6
γ5γµγργν

∫
d4q

(2π)4

(
Pϕ2(q)Pϕ2(q′)Pϕ2(q′′)− 1

2
Pϕ1(q)Pϕ1(q′)Pϕ1(q′′)

)
, (D.36)

where we have introduced the shorthand notation

Ωµ
1 (q) ≡ /qγµ +

3

2
γµρp1ρ, Ωµ

2 (q) = γµ/q −
2

3
γµρp2ρ. (D.37)

D.4 4-point functions

〈QQ̄J J 〉. There is only one 4-point function we need to consider, namely the one be-

tween two supercurrents and two R-currents. From the results in appendix C we determine

that it takes the form

〈Q̃µ(p1) ˜̄Qν(p2)J̃ ρ(p3)J̃ σ(p4)〉=<Q̃µ(p1) ˜̄Qν(p2)J̃ ρ(p3)J̃ σ(p4)>

+
3

8
ǫµνκλγλ <J̃κ(−p3−p4)J̃ ρ(p3)J̃ σ(p4)>+

1

8
ηµνγ5γκ <s̃

κ
(2|1)(−p3−p4)J̃ ρ(p3)J̃ σ(p4)>

+
i

12α2

(
2η[µ

κ η
ν]
λ (p3 +p4)κ + iǫµν

κλγ
5pκ

21

)
γλ <s̃(1|0)(−p3−p4)J̃ ρ(p3)J̃ σ(p4)>

− 1

3α
ηµρ <̂s̃(3| 1

2 )(−p2−p4) ˜̄Qν(p2)J̃ σ(p4)>− 1

3α
ηµσ <s̃(3| 1

2 )(−p2−p3) ˜̄Qν(p2)J̃ ρ(p3)>

− 1

3α
ηνρ <Q̃µ(p1)˜̄s(3| 1

2 )(−p1−p4)J̃ σ(p4)>− 1

3α
ηνσ <Q̃µ(p1)˜̄s(3| 1

2 )(−p1−p3)J̃ ρ(p3)>

− 4

9α2
ηρσ <Q̃µ(p1) ˜̄Qν(p2)s̃(1|0)(−p1−p2)>− 1

6α2
ηρσǫµνκλγλ <J̃κ(−p3−p4)s̃(1|0)(p3 +p4)>

− i

27α4
ηρσ

(
2η[µ

κ η
ν]
λ (p3 +p4)κ + iǫµν

κλγ
5pκ

21

)
γλ <s̃(1|0)(−p3−p4)s̃(1|0)(p3 +p4)> (D.38)

+
1

9α2
ηµρηνσ <s̃(3| 1

2 )(−p2−p4)˜̄s(3| 1
2 )(p2 +p4)>+

1

9α2
ηµσηνρ <s̃(3| 1

2 )(−p2−p3)˜̄s(3| 1
2 )(p2 +p3)>,

where again we have used the fact that correlation functions with a single insertion of OM
or OM∗ vanish trivially, as does the 2-point function < s̃κ(2|1)s̃(1|0) >= 0, due to lack of

possible contractions. Besides the Feynman diagram contribution to the 4-point function,

there are two 2-point functions and four 3-point functions involving seagull operators that

we have not already determined.

The two 2-point functions are easily evaluated with the result

<s̃(1|0)(p)s̃(1|0)(−p)> = i

∫
d4q

(2π)4
G

(2)
1 (q, q′), (D.39)

<s̃(3| 1
2 )(p)˜̄s(3| 1

2 )(−p)> =
1

2α2

∫
d4q

(2π)4
G

(2)
1 (q, q′)/q

′, (D.40)
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where again q′ = q + p. Both of these are therefore properly regulated. Moreover, the

transformation q → −p− q shows that the second 2-point function is identically zero.

Since the seagull operator s̃µ(2|1) is proportional to the fermionic part of the R-current

and the R-current 3-point function receives contributions only from the fermionic part, it

follows that

<s̃µ(2|1)(p1)J̃ ν(p2)J̃ ρ(p3)>= −6i <J̃ µ(p1)J̃ ν(p2)J̃ ρ(p3)>, (D.41)

which is properly regulated and has already been evaluated above. Next, we find that

<s̃(1|0)(p1)J̃ ρ(p2)J̃ σ(p3)>= − 1

9α4

∫
d4q

(2π)4
(q′ + q′′)ρ(q′′ + q)σG

(3)
1 (q, q′, q′′) +

ρ↔ σ

p2 ↔ p3

,

(D.42)

where q′ = q + p1, q′′ = q + p1 + p2, and p1 + p2 + p3 = 0. Hence, this 3-point function is

properly regulated by the PV fields as well. The remaining two 3-point functions take the

form

<s̃(3| 1
2 )(p1) ˜̄Qµ(p2)J̃ ν(p3)>=

i

24α5

∫
d4q

(2π)4
G

(3)
1 (q,q′, q′′)

(
2(q+q′′)ν

/q
′Ωµ

2 (q′′)−/qγν
/q
′′Ωµ

2 (−q′)
)

− im2
1

12α5

∫
d4q

(2π)4
G

(3)
2 (q,q′, q′′)

(
2(q+q′′)νγµ +γνΩµ

2 (−q′)+(/qγ
ν−γν

/q
′′)γµ

)
, (D.43)

and

<Q̃µ(p1) ˜̄Qν(p2)s̃(1|0)(p3)>= − i

8α4

∫
d4q

(2π)4
G

(3)
1 (q, q′, q′′)Ωµ

1 (−q)/q′Ων
2(q′′)

− im2
1

4α4

∫
d4q

(2π)4
G

(3)
2 (q, q′, q′′)

(
γµΩν

2(q′′)− Ωµ
1 (−q)γν + γµ/q

′γν
)
, (D.44)

and are therefore properly regulates as well.

The Feynman diagrams that contribute to the 4-point function are shown in figure 7.

They give

<Q̃µ(p1) ˜̄Qν(p2)J̃ ρ(p3)J̃ σ(p4)>=
1

72α8

∫
d4q

(2π)4
G

(4)
1 (q,q′, q′′, q′′′)(q′′ +q′′′)ρ(q+q′′)σΩµ

1 (−q)/q′Ων
2(q′′)

+
m2

1

36α8

∫
d4q

(2π)4
G

(4)
2 (q,q′, q′′, q′′′)(q′′ +q′′′)ρ(q+q′′)σ

(
γµΩν

2(q′′)−Ωµ
1 (−q)γν +γµ

/q
′γν

)

− 1

144α8

∫
d4q

(2π)4
G

(4)
1 (q,q′, q′′, q′′′)Ωµ

1 (q′)/qγ
σ
/q

′′′γρ
/q

′′Ων
2(−q′)

− m2
1

72α8

∫
d4q

(2π)4
G

(4)
2 (q,q′, q′′, q′′′)

(
γµ
/qγ

σ
/q

′′′γρ
/q

′′γν +Ωµ
1 (q′)(/qγ

σγρ +γσ
/q

′′′γρ +γσγρ
/q

′′)Ων
2(−q′)

+Ωµ
1 (q′)(/qγ

σ
/q

′′′γρ +/qγ
σγρ

/q
′′ +γσ

/q
′′′γρ

/q
′′)γν −γµ(/qγ

σ
/q

′′′γρ +/qγ
σγρ

/q
′′ +γσ

/q
′′′γρ

/q
′′)Ων

2(−q′)
)

− m4
1

36α8

∫
d4q

(2π)4

(
Pϕ2

(q)Pϕ2
(q′)Pϕ2

(q′′)Pϕ2
(q′′′)−Pϕ1

(q)Pϕ1
(q′)Pϕ1

(q′′)Pϕ1
(q′′′)

)
×

×
(

Ωµ
1 (q′)γσγργν −γµγσγρΩν

2(−q′)+γµ(/qγ
σγρ +γσ

/q
′′′γρ +γσγρ

/q
′′)γν

)

− 1

144α8

∫
d4k

(2π)4
G

(4)
1 (k,k′,k′′,k′′′)

(
(k+k′′′)σΩµ

1 (−k)/k
′
γρ/k

′′
Ων

2(k′′′)−(k′ +k′′)ρΩµ
1 (k′)/kγσ/k

′′′
Ων

2(−k′′)
)
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+

Q̃µ ˜̄Qν

J̃ ρJ̃ σ

λ1

ϕ1

+

Q̃µ ˜̄Qν

J̃ ρJ̃ σ

λ1

ϑ1

+

Q̃µ ˜̄Qν

J̃ ρJ̃ σ

φ

χ

+

Q̃µ ˜̄Qν

J̃ ρJ̃ σ

ϕ2

λ2

+

Q̃µ ˜̄Qν

J̃ ρJ̃ σ

ϕ1

λ1

+

Q̃µ ˜̄Qν

J̃ ρJ̃ σ

ϑ1

λ1

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ

φ

χ

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ

ϕ2

λ2

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ

ϕ1

λ1

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ

ϑ1

λ1

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ
φ

χ

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ
ϕ2

λ2

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ
ϕ1

λ1

+

Q̃µ J̃ ρ

˜̄QνJ̃ σ
ϑ1

λ1

Figure 7. One-loop diagrams that contribute to the 4-point function of two supercurrents and two

R-currents.

− m2
1

72α8

∫
d4k

(2π)4
G

(4)
2 (k,k′,k′′,k′′′)×

×
[
(k+k′′′)σ

(
Ωµ

1 (−k)γρΩν
2(k′′′)+γµ/k

′
γρ/k

′′
γν +Ωµ

1 (−k)(γρ/k
′′ −/k

′
γρ)γν +γµ(γρ/k

′′ −/k
′
γρ)Ων

2(k′′′)
)

−(k′ +k′′)ρ
(
Ωµ

1 (k′)γσΩν
2(−k′′)+γµ/kγσ/k

′′′
γν −Ωµ

1 (k′)(γσ/k
′′′ −/kγσ)γν −γµ(γσ/k

′′′ −/kγσ)Ων
2(−k′′)

)]

+
m4

1

36α8

∫
d4k

(2π)4

(
Pϕ2

(k)Pϕ2
(k′)Pϕ2

(k′′)Pϕ2
(k′′′)− 1

2
Pϕ1

(k)Pϕ1
(k′)Pϕ1

(k′′)Pϕ1
(k′′′)

)
×

×
(
(k+k′′′)σγµγργν −(k′ +k′′)ργµγσγν

)
+ρ↔σ, p2 ↔ p3, (D.45)

where q′ = q+p1, q′′ = q+p1 +p2, q′′′ = q+p1 +p2 +p3, k′ = k+p1, k′′ = k+p1 +p3, and

k′′′ = k+p1+p2+p3. Simple power counting shows that all UV divergences in this expression

as properly regulated. This completes the proof that the PV fields regulate all correlation

functions relevant for the analysis of the 4-point function supersymmetry Ward identity.

E Contact terms from correlators with insertions of BW , BR and BS

In this appendix we evaluate all 1-loop correlators that involve the symmetry breaking

operators BW , BR and BS in the FZ multiplet Ward identities (4.33)–(4.35), (4.36)–(4.39)
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and (4.40)–(4.41). Since these operators depend on the PV fields only, all such correlators

are pure contact terms once the PV masses are sent to infinity. It this appendix we

set α = 1/
√

2 in the propagators (3.3), (4.7) and, as in appendix D, we drop the hat

·̂ to simplify the notation. In particular, BW , BR and BS here refer to the flat space

operators (4.17), but we will utilize the more general form in the presence of supergravity

fields given in (4.47) to obtain the relevant seagull terms.

〈BRJ̃ 〉. This 2-point function enters in the Ward identity (4.36) encoding the breaking

of R-symmetry at the level of the R-current 2-point function. It can be easily computed

directly, but this is not necessary since we have already evaluated both the regulated and

renormalized R-current 2-point function, respectively in (D.15) and (D.17). Using the

Ward identity (4.36), we read off

〈BR(p)J̃ ν(−p)〉 = ipµ〈J̃ µ(p)J̃ ν(−p)〉 =
2iπ2

9(2π)4

(
4m2

1 log 2− 1

3
p2

)
pν , (E.1)

and

〈BR(p)J̃ ν(−p)〉ren = ipµ〈J̃ µ(p)J̃ ν(−p)〉ren = − 2iπ2

27(2π)4
p2pν . (E.2)

This 2-point function reflects the explicit breaking of R-symmetry in the FZ multiplet.

〈BS
˜̄
Q 〉. This 2-point function appears in the Ward identity (4.33), which reflects the S-

supersymmetry breaking in the 2-point function of the supercurrent. Since we have already

determined both the regulated and renormalized form of the supercurrent 2-point function

respectively in (D.21)–(D.23) and (D.24), we immediately deduce that

〈BS(p) ˜̄Qν(−p)〉 = γµ〈Q̃µ(p) ˜̄Qν(−p)〉 =
iπ2

3(2π)4

(
m2

1 log 2− 1

12
p2

)
iǫµνρσγµσγ

5pρ, (E.3)

and

〈BS(p) ˜̄Qν(−p)〉ren = γµ〈Q̃µ(p) ˜̄Qν(−p)〉ren = − iπ2

36(2π)4
iǫµνρσγµσγ

5pρp
2. (E.4)

This 2-point function reflects the explicit breaking of S-supersymmetry in the FZ multiplet.

〈BRJ̃ J̃ 〉. It is straightforward to see from (4.47) and (C.1) that the functional derivative

and operator insertion definitions of this 3-point function are related as

〈BR(p1)J̃ µ(p2)J̃ ν(p3)〉 =<BR(p1)J̃ µ(p2)J̃ ν(p3)> −8

9
ηµν <BR(p1)s̃(1|0)(−p1)>, (E.5)

where the seagull operator s̃(1|0) is defined in (B.34). Since BR contains spinor fields only

and s̃(1|0) only scalars, the 2-point function <BRs̃(1|0)> vanishes identically.

The Feynman diagram contribution to this 3-point function takes the form

<BR(p3)J̃ λ(p4)J̃ σ(p1)>= i2× i

27

∫
d4q

(2π)4

(
m2tr

(
γσγ5Pλ2(q)γλγ5Pλ2(q+p4)γ5Pλ2(q−p1)

)

+m2tr
(
γσγ5Pλ2(q)γ5Pλ2(q+p3)γλγ5Pλ2(q−p1)

)

−2m1tr
(
γσγ5Pλ1(q)γλγ5Pλ1(q+p4)γ5Pλ1(q−p1)

)

−2m1tr
(
γσγ5Pλ1(q)γ5Pλ1(q+p3)γλγ5Pλ1(q−p1)

))
. (E.6)
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Using the trace identities (A.6) and introducing suitable Feynman parameters, this gives

<BR(p3)J̃ λ(p4)J̃ σ(p1)>= i2×4m2
1

27

2iπ2

(2π)4

∫
dℓEℓ

3
E

∫ 1

0
dx dy dz δ(x+ y + z − 1) (E.7)

×
[(

1

(ℓ2E + ∆2(p4, p1))3
− 1

(ℓ2E + ∆1(p4, p1))3

)
tr (γσγαγλγβγ5)(2p4 y − 2p1 z + p4)αp3β

+

(
1

(ℓ2E + ∆2(p3, p1))3
− 1

(ℓ2E + ∆1(p3, p1))3

)
tr (γσγαγβγλγ5)(2p3 y − 2p1 z − p1)αp3β

]
,

where ∆i(p, q) ≡ m2
i + p2 y+ q2 z− (p y− q z)2 with i = 1, 2. The integration over ℓE gives

<BR(p3)J̃ λ(p4)J̃ σ(p1)>= i2×m
2
1

27

2iπ2

(2π)4

∫ 1

0
dx dy dz δ(x+ y + z − 1)

×
[(

1

∆2(p4, p1)
− 1

∆1(p4, p1)

)
tr (γσγαγλγβγ5)(2p4 y − 2p1 z + p4)αp3β

+

(
1

∆2(p3, p1)
− 1

∆1(p3, p1)

)
tr (γσγαγβγλγ5)(2p3 y − 2p1 z − p1)αp3β

]
. (E.8)

This expression has a finite limit as the PV mass m1 is sent to infinity. Namely,

<BR(p3)J̃ λ(p4)J̃ σ(p1)>

= −i2 × 1

54

2iπ2

(2π)4

∫
dydz tr (γσγαγλγβγ5)p3β(2p4 y − 2p1 z + p4 − 2p3 y + 2p1 z + p1)α

= −i2× 2

54

2iπ2

(2π)4

∫
dydz tr (γσγαγλγβγ5)p3βp4α y = −i2× 1

324π2
ǫσλβαp3βp4α. (E.9)

Hence, this 3-point function is equal to the finite contact term

〈BR(p1)J̃ µ(p2)J̃ ν(p3)〉 = 〈BR(p1)J̃ µ(p2)J̃ ν(p3)〉ren =
1

648π2
ǫµνρσp1ρ(p3σ − p2σ). (E.10)

Using the values of the anomaly coefficients for the WZ model (2.16), this 3-point function

matches the R-symmetry anomaly in the conformal multiplet 3-point function of R-currents

given in (2.31).

〈BS
˜̄
QJ̃ 〉. From (4.47) and (C.1) again follows that

〈BS(p1) ˜̄Qµ(p2)J̃ ν(p3)〉 =<BS(p1) ˜̄Qµ(p2)J̃ ν(p3)> −
√

2

3
ηµν <BS(p1)˜̄s(3| 1

2 )(−p1)>,

(E.11)

where the seagull operator s̃(3| 1
2 ) is given in (B.34). The 2-point function involving the seag-

ull term can be shown to be proportional to the 2-point function 〈ÕM ÕM∗〉. Using (D.8),

we determine

<BS(p1)˜̄s(3| 1
2

)(−p1)>= 2
√

2 iγ5〈ÕM (p)ÕM∗(−p)〉 = −
√

2

8π2
iγ5

(
m2

1 log 2− p2
1

12
+O(m−2

1 )

)
.

(E.12)
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The Feynman diagram contribution to the 3-point function is

<BS(p1) ˜̄Qν(p2)J̃ κ(p3)>=

= i2× i
3

∫
d4q

(2π)4

(
m2Pϕ2(q)PLPλ2(p1−q)γκγ5Pλ2(−q−p2)

(
iΩν

2(−q)−m2γ
ν)
PL

+2im2(2q+p3)κPϕ2(q)Pϕ2(q+p3)PLγ
5Pλ2(p1−q)

(
iΩν

2(−q−p3)−m2γ
ν)
PL

−2m1Pϕ1(q)PLPλ1(p1−q)γκγ5Pλ1(−q−p2)
(
iΩν

2(−q)−m1γ
ν)
PL (E.13)

−4im1(2q+p3)κPϕ1(q)Pϕ1(q+p3)PLγ
5Pλ1(p1−q)

(
iΩν

2(−q−p3)−m1γ
ν)
PL+PL↔PR

)
,

where Ωµ
1,2(q) were defined in (D.37). Introducing Feynman parameters this gives

<BS(p1) ˜̄Qν(p2)J̃ κ(p3)>=
2iπ2

(2π)4

4m2
1

3

∫
dℓE

∫ 1

0

dxdydzδ(x+y+z−1)×

×
[(

ℓ3
E

(ℓ2
E +∆2(p2,p1))3

− ℓ3
E

(ℓ2
E +∆1(p2,p1))3

)(
1

4
ℓ2

E

(
γαγκγ5γαγ

ν +γαγκγ5γνγα+γκγ5γαγνγα

)

+(/a+/p1
)γκγ5

(
(/a−/p2

)γν +γν/a
)
− 2

3

(
(/a+/p1

)γκγ5+γκγ5(/a−/p2
)
)
γνρp2ρ+γκγ5(/a−/p2

)γν/a

)

+m2
1

(
2ℓ3

E

(ℓ2
E +∆2(p2,p1))3

− ℓ3
E

(ℓ2
E +∆1(p2,p1))3

)
γ5γκγν +2

(
ℓ3

E

(ℓ2
E +∆2(p3,p1))3

− ℓ3
E

(ℓ2
E +∆1(p3,p1))3

)

×
(
ℓ2

Eγ
5ηνκ+(2b−p3)κ

(
γ5(/p1

+/b)γν +γ5γν(/b−/p3
)− 2

3
p2ργ

νργ5
))]

, (E.14)

where again ∆i(p, q) ≡ m2
i + p2 y + q2 z − (p y − q z)2 with i = 1, 2, a ≡ p2 y − p1 z and

b ≡ p3 y − p1 z. Dropping terms that diverge as the PV mass is sent to infinity, this gives

<BS(p1) ˜̄Qµ(p2)J̃ ν(p3)>ren=
2iπ2

432(2π)4

(
iγκλ

(
2ηµνǫκλρσp1ρp2σ − ǫκλµρp1ρp

ν
2 + ǫκλµρp2ρp

ν
1

+ 3ǫκλνρp1ρp
µ
2 + ǫκλνρp2ρp

µ
1 + 4ǫκλµνp1 · p2 + 4ǫκλµνp2

2 − 8ǫκλµρp2ρp
ν
2 + 4ǫκλνρp2ρp

µ
2

)

− 8iγµκǫ
νκρσp1ρp2σ + 2iγκ

σǫµνκρp1ρp2σ + 6iγκ
σǫµνκρp2ρp1σ − 4iǫµνρσp1ρp2σ

+ γ5(
20ηµνp1 · p2 + 36ηµνp2

1 + 28ηµνp2
2 + 12pµ2p

ν
1 + 4pµ1p

ν
2 + 24pµ1p

ν
1 − 16pµ2p

ν
2

))
. (E.15)

〈BRQ̃
˜̄
Q 〉. Using (4.47) and (C.1) we determine that

〈Q̃µ(p1) ˜̄Qν(p2)BR(p3)〉 =<Q̃µ(p1) ˜̄Qν(p2)BR(p3)>

− i

3
γµγ5 <BS(−p2) ˜̄Qν(p2)> − i

3
<Q̃µ(p1)B̄S(−p1)> γνγ5

+
3

8
ǫµνρσ <J̃ρ(−p3)BR(p3)> γσ +

1

8
<s̃ρ(2|1)(−p3)BR(p3)> γ5γρη

µν , (E.16)

where the seagull operator s(2|1) is given in (B.34). We have already computed the 2-

point functions <BRJ̃ > and <BS ˜̄Q> respectively in (E.2) and (E.4). Moreover, s(2|1) is

proportional to the fermionic part of the R-current and BR contains only fermions so that

<s̃ρ(2|1)(−p3)BR(p3)>= −6i <J̃ ρ(−p3)BR(p3)> . (E.17)
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The Feynman diagram contribution to the 3-point function is

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)> (E.18)

= i2× i

3

∫
d4q

(2π)4

(
m2PR

(
iΩµ

1 (q)+m2γ
µ
)
Pλ2

(p1−q)γ5Pλ2
(−p2−q)

(
iΩν

2(−q)−m2γ
ν
)
PLPϕ2

(q)

−2m1PR

(
iΩµ

1 (q)+m1γ
µ
)
Pλ1

(p1−q)γ5Pλ1
(−p2−q)

(
iΩν

2(−q)−m1γ
ν
)
PLPϕ1

(q)+PL↔PR

)
,

where Ωµ
1,2(q) were defined in (D.37). Introducing Feynman parameters this becomes

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)>= i2× 2iπ2

(2π)4

im2
1

3
γ5

∫
dℓE

∫ 1

0

dxdydz δ(x+y+z−1)×

×
[
−2

(
ℓ3

E

(ℓ2
E +∆2(p2))2

− ℓ3
E

(ℓ2
E +∆1(p2))2

)(
/cγµγν−γµγν/c+γµγνρ 2p2ρ

3
−γµσγν 2p1σ

3

)

+

(
ℓ5

E

(ℓ2
E +∆2(p2,p1))3

− ℓ5
E

(ℓ2
E +∆1(p2,p1))3

)(
γξγµγκγνγξ +γµγξγκγνγξ−γξγµγξγ

κγν
)
p3κ

+4

(
ℓ3

E

(ℓ2
E +∆2(p2,p1))3

− ℓ3
E

(ℓ2
E +∆1(p2,p1))3

)(
−/aγµ(/p1

+/a)/p3
γν +/aγµ

/p3
γν/a−/aγµ

/p3
γνρ 2p2ρ

3

+γµ(/p1
+/a)/p3

(
γν/a−γνρ 2p2ρ

3

)
+γµσ(/p1

+/a)/p3
γν 2p1σ

3
−γµσ

/p3
γν/a

2p1σ

3
+γµσ

/p3
γνρ 4p1σ p2ρ

9

)

+4m2
1γ

µ
/p3
γν

(
2ℓ3

E

(ℓ2
E +∆2(p2,p1))3

− ℓ3
E

(ℓ2
E +∆1(p2,p1))3

)]
, (E.19)

where for i = 1, 2, we define ∆i(p) ≡ m2
i +p2(1−y)y, ∆i(p, q) ≡ m2

i +p2 y+q2 z−(p y−q z)2,

a ≡ p2 y − p1 z and c = p2 y . Evaluating these expressions we determine

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)>ren=
2iπ2

108(2π)4

(
γκ

(
3ǫµκρσp1ρp2σp

ν
1−ǫνκρσp1ρp2σp

µ
1 +2ǫνκρσp1ρp2σp

µ
2

+ǫµνκρp1ρp
2
2+2ǫµνκρp2ρp

2
1−ǫµνκρp1ρp2 ·p1+ǫµνκρp1ρp

2
1+ǫµνκρp2ρp

2
2

)

+γ5
/p1

(
3iηµνp1 ·p2+2iηµνp2

1+2iηµνp2
2+ipµ2p

ν
1−ipµ1pν2−2ipµ1p

ν
1

)

+γ5
/p2

(
3iηµνp1 ·p2+2iηµνp2

1+2iηµνp2
2+ipµ2p

ν
1−ipµ1pν2−2ipµ2p

ν
2

)−/p1
ǫµνρσp1ρp2σ (E.20)

+γ5γµ
(
ip2

1p
ν
2 +ip2

2p
ν
1 +2ip1 ·p2p

ν
1 +3ip2

1p
ν
1

)
+γ5γν

(
ip2

2p
µ
1 +ip2

1p
µ
2 +2ip2 ·p1p

µ
2 +3ip2

2p
µ
2

))
.

〈BS
˜̄
QJ̃ J̃ 〉. Equations (4.47) and (C.1) imply that

〈BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)〉 =<BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>

−
√

2

3
ηνκ <BS(p1)˜̄s(3| 1

2 )(−p1 − p4)J̃ λ(p4)> −
√

2

3
ηνλ <BS(p1)˜̄s(3| 1

2 )(−p1 − p3)J̃ κ(p3)>

− 8

9
ηκλ <BS(p1) ˜̄Qν(p2)s̃(1|0)(−p1 − p2)>, (E.21)

where the seagull operators ˜̄s(3| 1
2 ) and s̃(1|0) are given in (B.34).
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Let us first consider the two 3-point functions involving seagull operators. The first is

given by

√
2

3
<BS(p1)˜̄s(3| 1

2
)(−p1 − p3)J̃ κ(p3)>=

− i2 × 2

9

∫
d4q

(2π)4

[
m2

(
Pϕ2(q)PLPλ2(p1 − q)γκγ5Pλ2(p1 + p3 − q)PLγ5

+ 2i(2q + p3)κPϕ2(q)Pϕ2(q + p3)PLγ
5Pλ2(p1 − q)PLγ5

)

− 2m1

(
Pϕ1(q)PLPλ1(p1 − q)γκγ5Pλ1(p1 + p3 − q)PLγ5

+ 2i(2q + p3)κPϕ1(q)Pϕ1(q + p3)PLγ
5Pλ1(p1 − q)PLγ5

)
+ PL ↔ PR

]
, (E.22)

or, introducing Feynman parameters,

√
2

3
<BS(p1)˜̄s(3| 1

2
)(−p1−p3)J̃ κ(p3)>=−i2× 2iπ2

(2π)4

8m2
1

9

∫
dℓE

∫ 1

0
dxdydz δ(x+y+z−1)×

×
[(

ℓ3E
(ℓ2E +∆2(p1,−p1−p3))2

− ℓ3E
(ℓ2E +∆1(p1,−p1−p3))2

)(
(/p1

+/d)γκ−γκ(/d+/p1
+/p3

)
)

−2

(
ℓ3E

(ℓ2E +∆2(p1,p3))2
− ℓ3E

(ℓ2E +∆1(p1,p3))2

)
(2yp1 +(1−2z)p3)κ

]
. (E.23)

As above, ∆j(p, q) ≡ m2
j+p

2 y+q2 z−(p y−q z)2, and we have defined d = −(p1+p3)z−p1y.

We find that

<BS(p1)˜̄s(3| 1
2

)(−p1 − p3)J̃ κ(p3)>ren=
2iπ2

36(2π)4

√
2
(
4pκ1 + 5pκ3 + 2γκρp1ρ + γκρp3ρ

)
. (E.24)

The second 3-point function with a seagull operator insertion takes the form

<s̃(1|0)(−p1 − p2)BS(p1) ˜̄Qν(p2)>= (E.25)

= i2 ×
∫

d4q

(2π)4

[
m2Pϕ2(q)Pϕ2(q − p1 − p2)PLPλ2(p1 − q)

(
iΩν

2(p1 + p2 − q)−m2γ
ν)
PL

− 2m1Pϕ1(q)Pϕ1(q − p1 − p2)PLPλ1(p1 − q)
(
iΩν

2(p1 + p2 − q)−m1γ
ν)
PL + PL ↔ PR

]
,

which evaluates to

<s̃(1|0)(−p1−p2)BS(p1) ˜̄Qν(p2)>=−i2× 2iπ2

(2π)4
4m2

1

∫
dℓE

∫ 1

0

dxdydz δ(x+y+z−1) (E.26)

×
(

ℓ3
E

(ℓ2
E +∆2(p1,−p1−p2))2

− ℓ3
E

(ℓ2
E +∆1(p1,−p1−p2))2

)(
(/p1

+/e)γν +γν(/e+/p1
+/p2

)−γνρ 2p2ρ

3

)
,

where we defined e = −(p1 + p2)z − p1y. We get

<s̃(1|0)(−p1 − p2)BS(p1) ˜̄Qν(p2)>ren= − 2iπ2

12(2π)4

(
2pν1 + pν2 + γνρp2ρ

)
. (E.27)
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Turing to the Feynman diagram contributions to the 4-point function, we have

<BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>=−i3× 1

9

∫
d4q

(2π)4

×
[
m2

(
Pϕ2

(q)PLPλ2
(p1−q)γκγ5Pλ2

(−q′′)γλγ5Pλ2
(−q−p2)

(
iΩν

2(−q)−m2γ
ν
)
PL

−4(2q+p3)κ(2q+2p3 +p4)λPϕ2
(q)Pϕ2

(q+p3)Pϕ2
(q′)PLPλ2

(p1−q)
(
iΩν

2(−q′)−m2γ
ν
)
PL

+2i(2q+p3)κPϕ2
(q)Pϕ2

(q+p3)γ5PRPλ2
(p1−q)γλγ5Pλ2

(−q′′′)
(
iΩν

2(−q−p3)−m2γ
ν
)
PL

)

−2m1

(
Pϕ1

(q)PLPλ1
(p1−q)γκγ5Pλ1

(−q′′)γλγ5Pλ1
(−q−p2)

(
iΩν

2(−q)−m1γ
ν
)
PL

−4(2q+p3)κ(2q+2p3 +p4)λPϕ1
(q)Pϕ1

(q+p3)Pϕ1
(q′)PLPλ1

(p1−q)
(
iΩν

2(−q′)−m1γ
ν
)
PL

+2i(2q+p3)κPϕ1
(q)Pϕ1

(q+p3)γ5PRPλ1
(p1−q)γλγ5Pλ1

(−q′′′)
(
iΩν

2(−q−p3)−m1γ
ν
)
PL

)

+PL↔PR

]
+

( p3 ↔ p4

κ ↔ λ

)
, (E.28)

where q′ = q− p1− p2, q′′ = q− p1− p3, q′′′ = q− p1− p4. This can be written in the form

<BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>= i3 × i(Y νκλ
1 + Y νκλ

2 + Y νκλ
3

)
+

( p3 ↔ p4

κ ↔ λ

)
, (E.29)

where Y νκλ
1 , Y νκλ

2 and Y νκλ
2 denote the loop integrals

Y νκλ
1 ≡ − 2iπ2

(2π)4

8m2
1

3

∫ 1

0

dxdydz dtδ(x+y+z+ t−1)

×
∫
dℓE

(
ℓ5

E

(ℓ2
E +∆2(p3 +p4,−p3,p1))4

− ℓ5
E

(ℓ2
E +∆1(p3 +p4,−p3,p1))4

)

×
((

2ηκλ(−a−p1)β +ηκβ(−2a+2p3 +p4)λ +ηλβ(−2a+p3)κ
)
γβγ

ν (E.30)

+
(

2ηκλ(−a+p3 +p4)β +ηκβ(−2a+2p3 +p4)λ +ηλβ(−2a+p3)κ
)
γνγβη

κλγνρ 2p2ρ

3

)
,

Y νκλ
2 ≡ − 2iπ2

(2π)4

8m2
1

3

∫ 1

0

dxdydz dtδ(x+y+z+ t−1)×

×
∫
dℓE

[(
ℓ5

E

(ℓ2
E +∆2(p4,p1 +p3,p1))4

− ℓ5
E

(ℓ2
E +∆1(p4,p1 +p3,p1))4

)

×
(

1

4

(
2ηλα(p2 +p4−b)β +2ηλβ(−b−p1)α +ηαβ(−2b+p4)λ

)
γαγ

κγβγ
ν

+
1

4

(
2(−b+p4)β +2ηλβ(−b−p1)α +ηαβ(−2b+p4)λ

)
γαγ

κγνγβ

+ηλα p2ρ

3
γαγ

κγνρ−ηλα p2ρ

3
γκγαγ

νρ

− 1

4

(
2ηλα(−b+p4)β +2ηλβ(p2 +p4−b)α +ηαβ(−2b+p4)λ

)
γκγαγ

νγβ

)
(E.31)

+m2
1

(
2ℓ3

E

(ℓ2
E +∆2(p4,p1 +p3,p1))4

− ℓ3
E

(ℓ2
E +∆1(p4,p1 +p3,p1))4

)
(−2b+p4)λγκγν

]
,

Y νκλ
3 ≡ 2iπ2

(2π)4

4m2
1

3

∫ 1

0

dxdydz dtδ(x+y+z+ t−1)×

×
∫
dℓE

[
1

4

(
ℓ5

E

(ℓ2
E +∆2(p2,p1 +p3,p1))4

− ℓ5
E

(ℓ2
E +∆1(p2,p1 +p3,p1))4

)
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×
(
−

(
ηαβ(−c+p2)ξ +ηβξ(−c−p1)α +ηαξ(p2 +p4−c)β

)
γαγ

κγβγ
λγξγ

ν

−
(
−ηαβcξ +ηβξ(−c−p1)α +ηαξ(p2 +p4−c)β

)
γαγ

κγβγ
λγνγξ

+
(
−ηαβcξ +ηβξ(−c−p1)α +ηαξ(−c+p2)β

)
γαγ

κγλγβγ
νγξ

−
(
−ηαβcξ +ηβξ(p2 +p4−c)α +ηαξ(−c+p2)β

)
γκγαγ

λγβγ
νγξ

−ηαβ 2p2ρ

3
γαγ

κγβγ
λγνρ +ηαβ 2p2ρ

3
γαγ

κγλγβγ
νρ−ηαβ 2p2ρ

3
γκγαγ

λγβγ
νρ

)

+m2
1

(
2ℓ3

E

(ℓ2
E +∆2(p2,p1 +p3,p1))4

− ℓ3
E

(ℓ2
E +∆1(p2,p1 +p3,p1))4

)

×
(

(c+p1)αγαγ
κγλγν +(p2 +p4−c)αγκγαγ

λγν

+(c−p2)αγκγλγαγ
ν +cαγκγλγνγα−

2p2ρ

3
γκγλγνρ

)]
. (E.32)

In these expressions we have introduced the notation ∆j(p, q, r) = m2
j + p2y + q2z + r2t−

(py−qz−rt)2, a = (p3+p4)y+p3z−p1t, b = p4y−(p1+p3)z−p1t, c = p2y−(p1+p3)z−p1t.

Moreover, integrals that vanish in the large PV mass limit have not been included.

The 4-point function is given by

<BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>ren=
2iπ2

324(2π)4

(
22γνρηκλp1ρ + 12γλρηκνp1ρ + 12γκρηλνp1ρ

+ 25γνρηκλ (p3ρ + p4ρ) + 6γλν (pκ1 + pκ3) + 6γκν(pλ1 + pλ4) + 9γκλ(pν3 − pν4)

+ 3iǫκλνργ5(p4ρ − p3ρ)− 36pν1η
κλ + 36pλ1η

κν + 36pκ1η
νλ + 18pν3η

κλ + 12pλ3η
κν

+ 36pκ3η
νλ + 18pν4η

κλ + 12pκ4η
λν + 36pλ4η

νκ
)
. (E.33)

〈BRQ̃
˜̄
QJ̃ 〉. From (4.47) and (C.1) we once again determine that

〈Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)〉=<Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>

− i

3
γµγ5 <BS(−p2−p4) ˜̄Qν(p2)J̃ λ(p4)>− i

3
<Q̃µ(p1)B̄S(−p1−p4)J̃ λ(p4)>γνγ5

+
3

8
ǫµνρσ <J̃ρ(−p3−p4)BR(p3)J̃ λ(p4)>γσ +

1

8
<s̃ρ

(2|1)(−p3−p4)BR(p3)J̃ λ(p4)>γ5γρη
µν

−
√

2

3
ηµλ <s̃(3| 1

2 )(−p2−p3) ˜̄Qν(p2)BR(p3)>−
√

2

3
ηνλ <Q̃µ(p1)˜̄s(3| 1

2 )(−p1−p3)BR(p3)> (E.34)

+

√
2 i

9
ηµλ <s̃(3| 1

2 )(−p2−p3)BS(p2 +p3)>γνγ5 +

√
2 i

9
ηνλγµγ5 <BS(p1 +p3)˜̄s(3| 1

2 )(−p1−p3)>,

where the seagull operators s̃(2|1) and s̃(3| 1
2 ) are given in (B.34). We have already computed

the correlators <BS ˜̄QJ̃ >, <BRJ̃ J̃ > and <BS˜̄s(3| 1
2 )> (see eq. (E.12) for the 2-point

function). Moreover, < s̃(2|1)BRJ̃ >= −6i < J̃ BRJ̃ > since BR contains only fermions,

s̃(2|1) is proportional to the fermionic part of the R-current, and only fermions contribute

to the 3-point function < BRJ̃ J̃ >. Besides the Feynman diagram contribution to the

4-point function, therefore, we only need to determine the 3-point function <s̃(3| 1
2 )

˜̄QBR>.
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However, it is convenient to evaluate instead the linear combination of this 3-point func-

tion and the 2-point function <BS˜̄s(3| 1
2 )> that appears in the 4-point function. We have

√
2

3
<Q̃µ(p1)˜̄s(3| 1

2
)(−p1 − p3)BR(p3)> (E.35)

= i2 × −2

9

∫
d4q

(2π)4

(
m2Pϕ2(q)PR

(
iΩµ

1 (q) +m2γ
µ)
Pλ2(p1 − q)γ5Pλ2(p1 + p3 − q)PLγ5

− 2m1Pϕ1(q)PR
(
iΩµ

1 (q) +m1γ
µ)
Pλ1(p1 − q)γ5Pλ1(p1 + p3 − q)PLγ5

)
+ PL ↔ PR,

as well as,

−
√

2

9
γµγ5 <BS(p1 + p3)˜̄s(3| 1

2
)(−p1 − p3)>=

= i× −2

9
iγµ

∫
d4q

(2π)4

(
m2

2Pϕ2(q)Pϕ2(p1 + p3 − q)− 2m2
1Pϕ1(q)Pϕ1(p1 + p3 − q)

)
. (E.36)

Introducing Feynman parameters these give

√
2

3
<Q̃µ(p1)˜̄s(3| 1

2
)(−p1 − p3)BR(p3)> −

√
2 i

9
γµγ5 <BS(p1 + p3)˜̄s(3| 1

2
)(−p1 − p3)>=

= i2 × 2iπ2

(2π)4

8im2
1

9

∫
dℓE

∫ 1

0
dx dy dz δ(x+ y + z − 1)×

×
(

ℓ3E
(ℓ2E + ∆2(p2 + p4, p1))3

− ℓ3E
(ℓ2E + ∆1(p2 + p4, p1))3

)

×
(
− (

(/p2
+ /p4

) y − /p1
z
)
γµ/p3

− γµ(
(/p2

+ /p4
) y + (1− z)/p1

)
/p3

+
2

3
γµσ/p3

p1σ

)
, (E.37)

where, as above, ∆j(p, q) ≡ m2
j + p2 y + q2 z − (p y − q z)2. Integrating over ℓE and taking

the limit m1 →∞ we get

√
2

3
<Q̃µ(p1)˜̄s(3| 1

2
)(−p1 − p3)BR(p3)> −

√
2 i

9
γµγ5 <BS(p13)˜̄s(3| 1

2
)(−p1 − p3)>=

= −i2 × 2iπ2

(2π)4

i

9

∫ 1

0
dx dy dz δ(x+ y + z − 1)×

×
(
− (

(/p2
+ /p4

) y − /p1
z
)
γµ/p3

− γµ(
(/p2

+ /p4
) y + (1− z)/p1

)
/p3

+
2

3
γµσ/p3

p1σ

)
. (E.38)

√
2

3
<Q̃µ(p1)˜̄s(3| 1

2
)(−p1 − p3)BR(p3)>ren −

√
2i

9
γµγ5 <BS(p1 + p3)˜̄s(3| 1

2
)(−p1 − p3)>ren

=
2iπ2

54(2π)4

(
γνγ

5ǫµνρσp1ρp3σ − iγµp1 · p3 + i/p1
pµ3 + ipµ1/p3

+ 2ipµ3/p3

)
. (E.39)
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The Feynman diagram contribution to the 4-point function takes the form

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>=

= i3 × i2

9

∫
d4q

(2π)4
×

×
(
m2Pϕ2

(q)PL

(
iΩµ

1 (q)+m2γ
µ
)
Pλ2

(p1 −q)γ5Pλ2
(p1 +p3 −q)γλγ5Pλ2

(−q−p2)
(
iΩν

2(−q)−m2γ
ν
)
PL

−2m1Pϕ1
(q)PL

(
iΩµ

1 (q)+m1γ
µ
)
Pλ1

(p1 −q)γ5Pλ1
(p1 +p3 −q)γλγ5Pλ1

(−q−p2)
(
iΩν

2(−q)−m1γ
ν
)
PL

)

+ i3 × i2

9

∫
d4q

(2π)4
×

×
(
m2Pϕ2

(q)PL

(
iΩµ

1 (q)+m2γ
µ
)
Pλ2

(p1 −q)γλγ5Pλ2
(p1 +p4 −q)γ5Pλ2

(−q−p2)
(
iΩν

2(−q)−m2γ
ν
)
PL

−2m1Pϕ1
(q)PL

(
iΩµ

1 (q)+m1γ
µ
)
Pλ1

(p1 −q)γλγ5Pλ1
(p1 +p4 −q)γ5Pλ1

(−q−p2)
(
iΩν

2(−q)−m1γ
ν
)
PL

)

+ i3 × 2i

9

∫
d4q

(2π)4
(2q+p4)λ×

×
(
m2Pϕ2

(q)Pϕ2
(q+p4)γ5PR

(
iΩµ

1 (q)+m2γ
µ
)
Pλ2

(p1 −q)γ5Pλ2
(p1 +p3 −q)

(
iΩν

2(−q−p4)−m2γ
ν
)
PL

−2m1Pϕ1
(q)Pϕ1

(q+p4)γ5PR

(
iΩµ

1 (q)+m1γ
µ
)
Pλ1

(p1 −q)γ5Pλ1
(p1 +p3 −q)

(
iΩν

2(−q−p4)−m1γ
ν
)
PL

)

+PL ↔PR. (E.40)

Notice that the first and second integrals in this expression are related by charge con-

jugation (i.e. C(. . .)TC−1) and the interchange µ ↔ ν, p1 ↔ p2. Introducing Feynman

parameters, the sum of all three integrals can be written in the form

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>= i3× i
(
(Ξµνλ1 + Ch.C.) + (Ξµνλ2 + Ch.C.) + Θµνλ

1 + Θµνλ
2

)
,

(E.41)

where

Θµνλ
1 ≡ 2iπ2

(2π)4

−4im2
1

9

∫ 1

0

dxdydz δ(x+y+z−1)×

×
∫
dℓE

[
(γλγµγν−γµγνγλ)

(
ℓ5

E

(ℓ2
E +∆2(p4,p1 +p3))3

− ℓ5
E

(ℓ2
E +∆1(p4,p1 +p3))3

)

+2(2w−p4)λ

(
ℓ3

E

(ℓ2
E +∆2(p4,p1 +p3))3

− ℓ3
E

(ℓ2
E +∆1(p4,p1 +p3))3

)
×

×
(
γαγµγνwα−γµγνγα(w−p4)α +γµγνρ 2p2ρ

3
−γµσγν 2p1σ

3

)]
, (E.42)

Θµνλ
2 ≡ 2iπ2

(2π)4

−24im2
1

9

∫ 1

0

dxdydz dtδ(x+y+z+ t−1)×

×
∫
dℓE

[
m2

1

(
2ℓ3

E

(ℓ2
E +∆2(p4,p1,p1 +p3))4

− ℓ3
E

(ℓ2
E +∆1(p4,p1,p1 +p3))4

)
γµ
/p3
γν(−2e+p4)λ

+

(
ℓ5

E

(ℓ2
E +∆2(p4,p1,p1 +p3))4

− ℓ5
E

(ℓ2
E +∆1(p4,p1,p1 +p3))4

)
×

×
(
− 1

4
γβγ

µγα/p3
γν

(
−2ηλαeβ−2ηλβ(e+p1)α +ηαβ(−2e+p4)λ

)

+
1

4
γαγ

µ
/p3
γνγβ

(
−2ηλα(e−p4)β−2ηλβeα +ηαβ(−2e+p4)λ

)

+
1

4
γµγα/p3

γνγβ

(
−2ηλα(e−p4)β−2ηλβ(e+p1)α +ηαβ(−2e+p4)λ

)
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+γλγµ
/p3
γνρ p2ρ

3
+γµγλ

/p3
γνρ p2ρ

3
−γµσγλ

/p3
γν p1σ

3
+γµσ

/p3
γνγλ p1σ

3

)]
, (E.43)

Ξµνλ
1 ≡ 2iπ2

(2π)4

−4im2
1

9

∫ 1

0

dxdydz δ(x+y+z−1)×

×
∫
dℓE

[(
ℓ5

E

(ℓ2
E +∆2(p2,p1 +p3))3

− ℓ5
E

(ℓ2
E +∆1(p2,p1 +p3))3

)
(γληµν−γµηλν)

+

(
ℓ3

E

(ℓ2
E +∆2(p2,p1 +p3))3

− ℓ3
E

(ℓ2
E +∆1(p2,p1 +p3))3

)
×

×
(
/nγµγλ(/n−/p2

)γν + /nγµγλγν/n− /nγµγλγνρ 2p2ρ

3
+γµγλ(/n−/p2

)γν/n

+γµγλ(−/n+/p2
)γνρ 2p2ρ

3
+γµσγλ(−/n+/p2

)γν 2p1σ

3
−γµσγλγν/n

2p1σ

3
+γµσγλγνρ 4p2ρp1σ

9

)

−m2
1

∫
dℓE

(
2ℓ3

E

(ℓ2
E +∆2(p2,p1 +p3))3

− ℓ3
E

(ℓ2
E +∆1(p2,p1 +p3))3

)
γµγλγν

]
, (E.44)

Ξµνλ
2 =

2iπ2

(2π)4

im2
1

3

∫ 1

0

dxdydz dtδ(x+y+z+ t−1)×

×
∫
dℓE

[
4m2

1

(
2ℓ3

E

(ℓ2
E +∆2(p2,p1,p1 +p3))4

− ℓ3
E

(ℓ2
E +∆1(p2,p1,p1 +p3))4

)

×
((
/uγµ +γµ(/p1

+/u)
)
/p3
γλγν +γµ

/p3
γλ

(
(/u−/p2

)γν +γν/u
)
−γµ

/p3
γλγνρ 2p2ρ

3
−γµσ

/p3
γλγν 2p1σ

3

)

+

(
ℓ5

E

(ℓ2
E +∆2(p2,p1,p1 +p3))4

− ℓ5
E

(ℓ2
E +∆1(p2,p1,p1 +p3))4

)
×

×
(
γαγµγα/p3

γλ(−/u+/p2
)γν +γαγµ(−/u−/p1

)/p3
γλγαγ

ν−/uγµγα
/p3
γλγαγ

ν−γαγµγα/p3
γλγν/u

+γαγµ(−/u−/p1
)/p3

γλγνγα−/uγµγα/p3
γλγνγα +γαγµγα/p3

γλγνρ 2p2ρ

3
−γαγµ

/p3
γλγαγ

ν/u

+γαγµ
/p3
γλ(−/u+/p2

)γνγα−/uγµ
/p3
γλγαγνγα +γαγµ

/p3
γλγαγ

νρ 2p2ρ

3
−γµγα

/p3
γλγαγ

ν/u

+γµγα
/p3
γλγαγ

νρ 2p2ρ

3
+γµσγα

/p3
γλγαγ

ν 2p1σ

3
+γµγα

/p3
γλ(−/u+/p2

)γνγα

+γµ(−/u−/p1
)/p3

γλγαγνγα +γµσγα
/p3
γλγνγα

2p1σ

3
+γµσ

/p3
γλγαγνγα

2p1σ

3

)]
. (E.45)

In all these expressions ∆j(p, q) ≡ m2
j + p2 y + q2 z − (p y − q z)2, ∆j(p, q, r) = m2

j +

p2y + q2z + r2t − (py − qz − rt)2, w = p4y − p13z, n = p2y − p13z, e = p4y − p13t − p1z,

u = p2y − p13t − p1z. Moreover, as above, we have dropped integrals that vanish in the

large PV mass limit, e.g.

m2
1

∫
dℓE

(
ℓ3E

(ℓ2E + ∆2(p4, p1, p1 + p3))4
− ℓ3E

(ℓ2E + ∆1(p4, p1, p1 + p3))4

)
. (E.46)
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Evaluating the above expressions we find that the 4-point function takes the form

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>ren

=
2iπ2

324(2π)4

[
i/p3

(
9(pµ1η

λν−pν2ηλµ)+18(pµ3η
λν−pν3ηλµ)+4(pµ2η

λν−pν1ηλµ)+4ηνµ(pλ1−pλ2)
)

+ i/p2

(
3pν1η

λµ+2pν2η
λµ−3pν3η

λµ−pµ1ηλν−2pµ3η
λν−4pλ2η

µν−3pλ3η
νµ)

− i/p1

(
3pµ2η

λν +2pµ1η
λν−3pµ3η

λν−pν2ηλµ−2pν3η
λµ−4pλ1η

µν−3pλ3η
νµ)

+2iγλ
(
pµ1p

ν
1 +5pµ3p

ν
1−pµ2pν2 +3pµ3p

ν
2−3pµ1p

ν
3−5pµ2p

ν
3 +(p2−p1) ·(p2 +p1 +2p3)ηµν

)

+ iγν
(
4pµ1p

λ
1−2pλ2p

µ
1 +3pµ1p

λ
3−2pµ2p

λ
2 +3pµ2p

λ
3 +2pµ3p

λ
1−4pλ2p

µ
3

−7p2
1η
µλ−9p2 ·p1η

µλ−8p3 ·p1η
µλ−15p2 ·p3η

µλ−11p2
2η
µλ−9p2

3η
µλ)

− iγµ(
4pν2p

λ
2−2pλ1p

ν
2 +3pν2p

λ
3−2pν1p

λ
1 +3pν1p

λ
3 +2pν3p

λ
2−4pλ1p

ν
3

−7p2
2η
νλ−9p1 ·p2η

νλ−8p3 ·p2η
νλ−15p1 ·p3η

νλ−11p2
1η
νλ−9p2

3η
νλ)

+
1

2
ǫλµρσγνγ5(4p2ρ−11p1ρ)p3σ+

1

2
ǫλνρσγµγ5(24p1ρ−7p2ρ)p3σ

+
1

4
ǫµνρσγλγ5(13p2ρ−5p1ρ)p3σ+

1

4
ǫλµνρ/p3

γ5(
5p2ρ−13p1ρ

)
+2ǫλµνρ(2/p1

−/p2
)γ5p3ρ

+
1

4
γκγ

5
(
8ǫλµνκp2

1 +ǫλµνκp1 ·p3−8ǫλµνκp2
2−ǫλµνκp2 ·p3−22ηµνǫλκρσp1ρp3σ

+10ηµνǫλκρσp2ρp3σ+7ηλνǫµκρσp1ρp3σ+3ηλνǫµκρσp2ρp3σ+51ηλµǫνκρσp1ρp3σ

+23ηλµǫνκρσp2ρp3σ−ǫλµκρp1ρp
ν
2−17ǫλµκρp1ρp

ν
3−3ǫλµκρp2ρp

ν
1−8ǫλµκρp2ρp

ν
2

−ǫλµκρp2ρp
ν
3−14ǫλµκρp3ρp

ν
1−8ǫλνκρp1ρp

µ
1 −3ǫλνκρp1ρp

µ
2 +31ǫλνκρp1ρp

µ
3

−4ǫλνκρp2ρp
µ
1 −17ǫλνκρp2ρp

µ
3 −32ǫλνκρp3ρp

µ
1 −14ǫλνκρp3ρp

µ
2 +16ǫµνκρp1ρp

λ
1

+8ǫµνκρp1ρp
λ
3−16ǫµνκρp2ρp

λ
2 +8ǫµνκρp2ρp

λ
3−19ǫµνκρp3ρp

λ
1 +3ǫµνκρp3ρp

λ
2

)]
. (E.47)
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