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Supersymmetry as a cosmic censor
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In supersymmetric theories the mass of any state is bounded below by the values of some of its
charges. The corresponding bounds in the case of Schwarzschild (M & 0 ) and Reissner-Nordstrom

(M & ~q~) black holes are known to coincide with the requirement that naked singularities be absent.
Here we investigate [U(1)j charged dilaton black holes in this context. The extreme solutions are
shown to saturate the supersymmetry bound of N = 4, d = 4 supergravity, or dimensionally reduced

superstring theory. Specifically, we have shown that extreme dilaton black holes, with electric and

magnetic charges, admit supercovariantly constant spinors. The supersymmetric positivity bound
for dilaton black holes is given by M & ~ (~Q~+ ~P~). This condition for dilaton black holes coincides

with the cosmic censorship requirement that the singularities be hidden, as was the case for other
asymptotically Bat static black-hole solutions. We conjecture that the bounds from supersymmetry
and cosmic censorship will coincide for more general solutions as well. The temperature, entropy, and

singularity of the stringy black hole are discussed in connection with the extreme limit and restoration
of supersymmetry. The Euclidean action (entropy) of the extreme black hole is given by 2+~PQ~. We

argue that this result is not altered by higher-order corrections in the supersymmetric theory. In the
Lorentzian signature, quantum corrections to the effective on-shell action in the extreme black-hole

background are also absent. When a black hole reaches its extreme limit, the thermal description
breaks down. It cannot continue to evaporate by emitting (uncharged) elementary particles, since

this would violate the supersymmetric positivity bound. We speculate on the possibility that an

extreme black hole may "evaporate" by emitting smaller extreme black holes.

PACS number(s): 97.60.Lf, 04.60.+n, 04.65.+e

I. INTRODUCTION

Evaporation of black holes is one of the most interest-
ing effects of nonperturbative quantum gravity. Investi-

gation of this process may help us to understand the na-

ture of singularities in gravitational theory, the problem
of information loss during the process of black-hole evap-

oration and the interplay between quantum and thermal

descriptions of processes near black holes. All of these
problems become especially urgent in the theory of the
last stages of black-hole evaporation. For a Schwarzschild

black hole, this happens when its mass approaches the
Planck value Mp. In this case any semiclassical descrip-
tion of the black hole becomes impossible. Therefore,
despite many attempts, we still do not have a complete
understanding of the last stages of black-hole evapora-
tion.
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Recently there have been many new attempts to study

quantum effects near black holes. Most of them are re-

lated to more complicated black holes, such as magnet-

ically or electrically charged black holes, dilaton black

holes, etc. First of all, this provides a more complete

picture of black-hole physics in the context of theories

of elementary particles and/or superstrings. Moreover,

some aspects of the theory of such black holes prove to be

simpler than the corresponding aspects of ordinary black

holes. For example, evaporation of a charged Reissner-

Nordstrom black hole stops when its mass, measured

in units of the Planck mass Mp, approaches the abso-

lute value of its charge ~q~. Thus, for a sufficiently large

charge, one may study the last stages of black-hole evap-

oration when the mass of the black hole is much larger

than M~ and quantum Huctuations of the metric are not

too strong. ~

However, strongly charged black holes may discharge

by creation of pairs of charged elementary particles. To
isolate these effects from the effects of quantum gravity,

in which we are mainly interested, one may consider mod-

els without charged elementary particles. In such models

electric and magnetic fields are not produced by charged

particles, but How from infinity or from the singularity.

'Throughout this paper we will work in a system of units

where M~ = 1.
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At the classical level, there is no difference between a
Reissner-Nordstrom black hole with charged particles in

its center and a black hole with a spherically symmet-
ric electric field originating from the singularity. In both
cases we will have the same theory of black-hole evapora-
tion, but in the last case we do not need to be concerned
with extra complications, such as particle production in

strong electric fields, charge quantization, etc.
This idea proves to be especially productive if one can

find a way of embedding the original bosonic theory in

a supersymmetric theory. In such a case one has the
same description of the classical properties of the black
hole and of its evaporation, but higher-order quantum

corrections are under much better control. For exam-

ple, an extreme Reissner-Nordstrom black hole with mass
M =

~q] may be embedded in N = 2 supergravity [1,2].
All higher-order quantum corrections to the effective ac-
tion of N = 2 supergravity in the field of the extreme
black hole could be shown to vanish if the theory had no

anomalies [3]. In particular, the effective action would

have no imaginary part, which would mean no particle
creation in the field of an extreme Reissner-Nordstrom
black hole. These and some other properties of super-

symmetric black holes indicate that they may prove to
be a unique laboratory for investigation of black-hole

physics and quantum gravity in general. Indeed, until

we started studying supersymmetric black holes, we had

no example of a nontrivial Lorentzian four-dimensional

background where all quantum gravity corrections to the
effective action vanished.

The theory of N = 2 supergravity, however, has one-

loop anomalies [4]. Therefore the formal proof of the
absence of quantum corrections for the classical extreme
Reissner-Nordstrom black hole is not sufficient. One is

led to try to find a supersymmetric embedding of charged

dilaton black holes [5—8] in dimensionally reduced string

theory or d = 4, N = 4 supergravity, where the anomalies

can be cancelled.

Surprisingly enough, until now, no such supersymmet-

ric embedding has been found. It was argued in [2] that
the lower bound on the mass of such black holes does not

follow from supersymmetry, as the supersymmetric the-

ory investigated in [2] was a Kaluza-Klein compactifica-

tion of five-dimensional supergravity. In [7] it was found

that there was again no suitable embedding if one takes
the vector field to be in a Yang-Mills multiplet. More-

over, supersymmetry is usually related to zero temper-
ature. However, the thermal properties of dilaton black
holes are somewhat unusual (the corresponding literature
contains several contradictory statements on this issue,

see, e.g. , [6—8]), and there was no clear signal for su-

persymmetry from the temperature, unlike the extreme
Reissner-Nordstrom case where T = 0.

Such dilaton black holes, if supersymmetrically embed-

ded in supergravity and/or superstring theory, would be
especially interesting since they might lead to new in-

sights into perturbative and nonperturbative quantum
effects in these theories.

In this paper we will investigate dilaton black holes in

this context. We will consider U(1)U(1) dilaton black

holes, with electric and magnetic charges and without

axion. They do not coincide with dual dilaton dyons, g],
which are dual rotations of the purely electric or purely

magnetic charged dilaton black holes. Under that dual

rotation, the second charge arises together with the ax-

ion, but the metric, causal structure, and thermodynamic

properties of the dual dilaton dyon are the same as in the

purely electric or purely magnetic solution without axion.

In the solution, the existence of a second charge does

change the metric, causal structure, and thermodynamic

properties of the solution. The importance of the second

charge is related to the existence of two central charges

in N = 4 supersymmetry. In particular, we will show

that extreme diLoton black hoLes are supersymmetric in
the context of N=g supergravity. We will also show that
the lower bound on the dilaton black-hole mass imposed

by cosmic censorship,

M'+Z' & P'+ Q', (1)

does coincide with the bound which can be derived from

supersymmetry. In Eq. (1) Z, P, Q are the dilaton, mag-

netic, and electric charges, respectively. Equality in (1)
shows that, at the extremal value of the mass, super-

symmetry leads to the balance of gravitational, electro-

magnetic, and dilatonic forces. Supersymmetric dilatonic
muLti-black-hole solutions, satisfying the force-balance

condition, will be exhibited.
The positivity bound (1) implies, in particular, that

the black-hole singularity remains hidden by the event

horizon until the mass of the black hole decreases to its
extreme value. If the black hole has both electric and

magnetic charge, the singularity always remains hidden

by the event horizon. It approaches the horizon only

if the extreme dilaton black hole has purely electric or

purely magnetic charge. Even in this case, though, any
external observer who does not touch the singularity can-

not see it. In this sense, supersymmetry plays the role of
a cosmic censor. It keeps the singularity away from the

eyes of any observer who does not want to fall into the
black hole.

The paper is organized as follows. In Sec. II
we describe the relation between the supersymmetric

positivity bound and cosmic censorship for classical

Schwarzschild and Reissner-Nordstrom black holes. In

Sec. III the spherically symmetric electrically and mag-

netically charged dilaton black hole is presented as a
solution of dimensionally reduced superstring theory.
This solution includes (for some particular values of
electric, magnetic, and dilaton charges) the classical

Schwarzschild and Reissner-Nordstrom black holes and

dilaton black holes with either purely electric, purely

magnetic, or both charges present in the solution.

In Sec. IV the extreme multi black holes are de-

scribed, as well as spherically symmetric electrically and

magnetically charged extreme dilaton black holes. It
is also explained that the purely electric extreme dila-

ton black holes are special cases of a metric of Bon-

nor [10] describing charged dust in equilibrium. z These

The purely magnetic ones also fit in to this category, as can

be seen by performing a duality transformation.
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metrics generalize the Papapetrou-Majumdar class of
metrics in the presence of specific sources in the Ein-

stein and Maxwell equations called "charged dust. " The
Papapetrou-Majumdar metrics are supersymmetric ex-

treme multi-black-hole solutions [1] of Einstein-Maxwell

theory.
In Sec. V the thermal properties of the dilaton black

holes are discussed, in particular, the temperature, en-

tropy, and specific heat. The extreme dilaton black
holes with PQ g 0 are shown to have zero temperature,
whereas their entropy is given by 2~]PQI It is shown

that the thermal description of stringy black holes near

extremality breaks down for all possible values of the
charges P and Q.

Section VI contains an investigation of the supersym-

metric properties of dilaton black holes, in the context

of N = 4 supersymmetry. It is shown that nonextreme

dilaton black holes necessarily break all supersymmetries.

The unbroken N = 1 supersymmetries of electrically
and magnetically charged extreme multi black holes are

found. In addition, the unbroken N = 2 supersymme-

tries of purely electric and purely magnetic extreme multi

black holes are identified.

In Sec. VII the partition function of the dilaton black
holes is calculated in the semiclassical approximation. A

nonrenormalization theorem for quantum corrections to
the extreme dilaton black-hole partition function is out-

lined.

In Appendix A we introduce our conventions and com-

pare them with those used by other authors. In Appendix

B some speculative ideas about splitting of extreme dila-

ton black holes are presented.

In the figures, we plot different characteristics of the

charged dilaton black hole, such as temperature and en-

tropy, by using the program MATHEMATICA.

inside it looks inwards (T region) [11]. It is possible to
send a signal towards the singularity, but it is impossi-

ble to get any signal backwards. Therefore, we will not
have information about the singularity until we fall into

it, and then we will not care.
The situation with electrically charged Reissner-

Nordstrom black holes with metric

r+ ——M + QM2 —q~, r = M —QMz —qz . (4)

At each of these horizons gqq changes its sign. An observer

deciding to fly to the region r ( r would be able to see

the singularity. However, an outside observer staying at

r ) r cannot see the singularity for the same reason as

in the Schwarzschild space: The region between r and

r+ is a T region, where all signals can go only towards

smaller r.
The extreme case M = q is special. In this case the

two horizons r+ and r coincide and the T region be-

tween them disappears. But even in this case an outside

observer staying at any finite distance from the horizon

r+ ——r = M will not see the singularity. Moreover,

just as in the Schwarzschild space, the observer will not

see anything which is hidden under the horizon or coin

cides with the horizon Indeed, . the equation describing

the radial motion of a wavefront of light is ds = 0: i.e. ,

2M qz)—~1 — + —
~

dr —r dA
r rz)

is slightly more complicated. When the mass M of the
black hole is larger than the absolute value of its charge

~q~
the singularity at r = 0 is hidden from us by two

horizons located at

II. SUPERSYMMETRIC POSITIVITY BOUND
AND COSMIC CENSORSHIP

In order to make our goals and methods more

clear, let us remember some basic facts about ordinary

Schwarzschild black holes with metric

s2 = 1 — dg~ — 1 — dr2 —r2dA .

(2)

For M & 0, this metric has a singularity at rz
——2M.

However, this is just a coordinate singularity, which cor-

responds to the event horizon where the components of
the metric gqq

——g„„~= (1 —2~) change their sign. The
true singularity, where the curvature tensor becomes in-

finite, is at r = 0.
The presence of singularities, i.e. , of places where the

normal laws of physics formulated in terms of classical

space-time break down, is one of the main problems of
classical general relativity. However, in many cases this

problem is somewhat softened. For example, any ob-

servers near the Schwarzschild black hole cannot actu-

ally see any violation of standard laws of physics until

they reach the singularity. Indeed, the change of sign of

gtt
——g„„inside the black hole means that the light cone

The time taken for a signal to go from ri to rg is given

by

r2
g~~

d
gtt

One can easily check that this time diverges if rq coin-

cides with r~ = 2M for the Schwarzschild black hole or

with r+ for the Reissner-Nordstrom black hole. Thus the
horizon at rg (at r+) is called an event horizon: Our part
of the Universe cannot be inHuenced by any event which

may happen in a region covered by the event horizon or

coinciding with it. In particular, we cannot see a sin-

gularity if it is covered by (or coincides with) the event

horizon.

Thus, in the Schwarzschild space the singularity can-

not be seen from any place with r ) 0. In the Reissner-

Nordstrom space the singularity can be seen from a place

with r ( r, but it cannot be seen from any place

with r & r . However, in a Schwarzschild metric with

M ( 0, as well as in the Reissner-Nordstrom metric with

M ( ]q], the singularity does not coincide with any hori-

zon, is not hidden by any horizon and, therefore, is vis-
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ible from any place. There exists a cosmic censorship

conjecture, which says that a naked singularity of such

type cannot be formed. There are several versions of this

conjecture, which dier from each other by specific as-

sumptions concerning initial conditions for gravitational

collapse and the structure of the energy-momentum ten-

sor (weak cosmic censorship conjecture [12], strong cos-

mic censorship conjecture [13]; see, e.g. , [14]). Even the

definition of a naked singularity is author dependent: Is
the singularity naked if it can be seen from the hori-

zon'? What if the horizon itself is singular? To avoid

unnecessary complications, we will say that the singular-

ity is hidden if it is covered by (or coincides with) the
event horizon, i.e., if an observer staying at any finite

distance from the horizon cannot see the singularity. We

will also consider only the weak cosmic censorship conjec-

ture, which refers to asymptotically flat space-time [14].
In our paper we do not address the complicated prob-

lem of the dynamical origin of naked singularities. A gen-

eral proof of the cosmic censorship conjecture is still ab-

sent, and several (rather artificial) exceptions are known.

It is very interesting, therefore, that for some supersym-

metric theories to be discussed below, the mass bound

from the cosmic censorship conjecture in the form men-

tioned above coincides with the supersymmetric positiv-

ity bound, which requires that the mass of the asymp-

totically flat space-time be larger than or equal to the
absolute values of all central charges.

In extended global supersymmetry, the mass of any

quantum state is bounded below by the moduli of the

eigenvalues of the central charges z„ofthe supersymme-

try algebra with N spinor operators, n = 1,2, . . . , 2 [15,
16]. Consider, specifically, the N = 4 theory with two

central charges zi, z2. From the supersymmetry algebra

in the rest frame it can be derived that

(S(i) ) S('i)) = 2IS(i) I' = M —lzil & 0
~

(S(2), S(2)) =2IS(2)l = M —lz2I & 0,

(T(i), T(',))= 2IT(i)l = M+ lzil & 0,

P(2) T(2)) = 2IT(2) I' = M+ Iz21 & o

(7)

The positivity bound for M —Izil and M —lz2I exists be-

cause these combinations of the mass and central charges
of some state can be expressed through the square of par-
ticular supersymmetry generators acting on that state.

The first bound is saturated, i.e. , M = Izil, if and

only if the state is invariant under one-quarter of all the
supersymmetries, since the state has to be invariant un-

der the action of Sq, S&. The saturation of the second
bound M = Iz2I means that the state has to be invari-

ant under another quarter of the supersymmetries S2, S2.
Thus, if both bounds are saturated, i.e., M = Izi I

= IZ2I,
the state has to be invariant under one-half of all su-

persymmetries. For globally supersymmetric Yang-Mills
theory, these bounds are known as Bogomolny bounds
for magnetic monopoles. To identify the central charges
one can quantize the theory, construct the supersymme-
try charges in terms of coordinates and canonical mo-

menta, and calculate the commutators of supersymme-

try charges, paying attention to boundary terms as was

done in [15] for N = 2 globally supersymmetric Yang-

Mills theory.
The situation with supersymmetric positivity bounds

for theories with local supersymmetries including gravity
is in general much more complicated. Here, we will con-

sider only configurations which are asymptotically flat
where one can identify the mass as the Arnowitt-Deser-

Misner (ADM) or Bondi mass. The positivity of en-

ergy in Einstein theory was obtained via supergravity

theory by Deser, Teitelboim, and Grisaru [17]. Using

the supergravity-type formalism, Witten has presented a
proof of the positivity bound for the ADM or Bondi mass

of an asymptotically flat space under the assumption of
the dominant energy condition. This was developed later
to the so-called Witten-Nester-Israel construction [18]. It
has been shown in [18] that the mass of an asymptoti-
cally flat space-time is non-negative and vanishes only
when the space-time is flat. In terms of the Schwarzschild

black hole we may interpret the N = 1 supersymmetry

bound M & 0 as the statement that the r = 0 singu-

larity is inside the horizon, until the bound is saturated,
i.e. , the mass vanishes. However, when the mass vanishes

the space-time becomes trivial. The Schwarzschild black

hole does not admit any unbroken supersymmetry; but

broken supersymmetry does work as a cosmic censor as

it requires M ) 0.
The positivity bound for N = 2 theory was derived

in [1], by applying the Witten-Nester-Israel construction

[18] to the local N = 2 supersymmetry transformation

rules of the gravitino. For asymptotically flat solutions

of N = 2 supergravity the corresponding bound is [1]

M & gq2+ P2 = Iz, l, (8)

where the central charge zi has been expressed through
the electric and magnetic charges.

For global N = 2 supersymmetry of asymptotic states
there is one central charge zi in the positivity bound,

according to [15, 16]. Its value

where the supercovariant connection in Eq. (10) depends
on the metric and the vector field (our notation is de-

fined in Appendix A). They have found that extreme

Reissner-Nordstrom black holes with M = QQ + P
admit supercovariantly constant spinors of N = 2, d = 4
supergravity (10) and saturate the bound (8) . The bound
is saturated only for extreme Reissner-Nordstrom black
holes, as a consequence of the fact that they admit super-
covariantly constant spinors, defined in Eq. (10). These
equations, in the case that they have solutions, define

the unbroken part (N = 1) of the original N = 2 super-

symmetry of the theory. This shows that the solution ad-

zl = gq2+ P2

has also been identified by Gibbons and Hull by solving

the equations
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mits some supersymmetries despite being purely bosonic;
the generators of unbroken supersymmetry leave fermions
invariant. 3

The positivity bound for Einstein-Maxwell theory, de-

rived from N = 2 supergravity in [1] is in fact difFerent

from the Bogomolny bound for monopoles, as discussed
in [2]. In general, the identification of the central charges
in the supersymmetry algebra, which is necessary to de

rive the positivity bound (7), is not universaL It depends
both on the dynamics and on the properties of the solu-

tions.
To see the relation between the N = 2 supersymmetry

bound and the cosmic censorship conjecture, consider the

charged Reissner-Nordstrom black hole with electric and

magnetic charges P and Q. The quantity q appearing

in the metric (3) is q = JQz+ P . In order that the
singularity at r = 0 be hidden by an event horizon, we

have to require that bAI = —(pp(p, g, A, B) e)1 ——0,
(i3)

I = 1,2, 3, 4.

since for N = 4 there are two central charges, according
to [16]. We will identify those two central charges by con-

sidering the local supersymmetry algebra. It will also be
shown that extreme black holes saturate the supersym-

metry bound (either one of them for the solutions with

electric and magnetic charge or both for the solutions

with only electric or oiily magnetic charge).
The fundamental first ord-er differential equations of

the N = 4 theory, which will be solved to produce ex-

treme dilaton black holes, generalize those of the N = 2

theory, given in Eq. (10). The four gravitinos and four di-

latinos will be required to have vanishing local supersym-

metry transformations in presence of gravity g„„,dilaton

P, electric A„,and magnetic B fields:

b4'„I= (V„(p,g, A, B) e)~ ——0,

just as in the purely electric case considered in the begin-

ning of this section. This condition coincides with the re-

quirement following from supersymmetry [1]. Therefore,
from the point of view of N = 2 supersymmetry there
exist special solutions of the Einstein-Maxwell equa-

tions, which happen to coincide with extreme Reissner-

Nordstrom black holes and which solve not only the
second-order Einstein-Maxwell differential equations, but
also the first order defer-ential equations for spinors (10).
This does not happen for nonextreme charged black
holes.

In this paper we will investigate the corresponding is-

sues for the dilaton black holes [5—8].
The positivity bound (7) for an asymptotically flat

space consists of two equations:

(12)

III. DILATON BLACK HOLES

A dimensionally reduced superstring theory in d = 4

can be described in terms of N = 4 supergravity. The
latter exists in two versions. One usually refers to the
original one as the SO(4) version [19], and to the second
one as the SU(4) version [20]. For the latter the action is

invariant under a rigid SU(4)SU(l, l) symmetry, which

makes that theory simpler. In both versions, the vector

fields transform under an SO(4)=SU(2)SU(2) group. In

the SO(4) version both factors contain three vector fields,

while in the SU(4) version one factor consists of three

vector fields and the other has three axial-vector fields.

We will consider U(1)gU(l) solutions, i.e. , solutions with

one nontrivial vector in each subgroup. There is also

a complex scalar. Its real part is the dilaton and its

imaginary part is the axion. We will look for solutions

which depend only on the dilaton P; the axion field will

be put to a constant. The remaining bosonic part of the

action in these two cases is given by

Iso(4) = "&g g[ 8+28"p —8„$——(e ~F„„F"+e ~G„G"')],

(i4)

where

The supersymmetry variation of the bosons contains only fermions and so is zero trivially for a bosonic solution.

To make the analysis complete, one would also like to prove the positivity bound for N = 4 using a Mitten-Nester-Israel —type

analysis. We leave this investigation for future work.

The parameter a (or g), which governs the strength of the coupling of the dilaton to vector fields we keep always equal to

1, as required by N = 4, d = 4 supersymmetry, and as in superstring theory; i.e. , we consider only the case a = 1 which has

been qualified in [8] as enigmatic. However, for the a = 1 case, the difference with other investigations of charged dilaton black

holes [7, 8] is the presence of two charges, electric and magnetic, simultaneously, in the absence of the axion.
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F» = BpAv &vAp

G» = OpBv BvBp,

Gpv = BpBv BvBp

(15)

The actions are almost the same, except for the terms depending on the vector B or B. The equations of motion of
the two theories are equivalent. In fact, those of the SO(4) version are

'V„(e ~F"")=0,
V (e G"")=0,

(16)

g2y 1 -2/F2 + 1 2$G2 p
2 2

R„„+2V„Q V„p—e ~(2F„pF„gg"—2g„„F) —e ~(2G„pG„gg"—2g„„G) =0,
while from the SU(4) version we obtain

7'„(e ~F"")= 0

7'„(e ~G») = 0,

g2y 1 -2/F2 1 —2$G2 p
2 2

R» + 2V„Q 7'vP —e ~(2F„PFvgg" —2g»F ) —e ~(2G„gGvqg" —2g»G ) = 0 .

The equivalence of these equations [20] can be demon-

strated through the duality rotation

1 —2G""= 21i( g) 2e ~—~"""~Gag . (18)

Both G and G are real with our conventions. Such a
duality rotation [21] transforms the equation of motion

of B (the second line) to the Bianchi identity of B, while

the field equation of B is the Bianchi identity of B. The
other field equations are mapped into each other. Note
that this transformation does not transform one action
in the other, a minus sign difFerence occurs for the G and
G' terms in a space-time of Lorentzian signature.

The solution of this system of equations has been given

by Gibbons [2], and discussed in detail later by Gibbons

and Mseda [6]. Each vector field A„and B„(orB„)
was taken to be either electric or magnetic, to satisfy (in
the simplest way) the axion field equation for a constant
axion field, which reduces to

Fpv *F""+ G» *G""= 0 .

The purely magnetic (electric) dilaton black holes have
been studied in [7, 8]. The solution generalizes the one

given in [2] by including asymptotically nonvanishing
dilaton field Po and the ones given in [7, 8] by keeping
both electric and magnetic charge. We will in fact take

A„to be purely electric, and B„to be magnetic. This

implies that B„is also electric, and the calculations are

often simpler when using the electric solution B, rather
than the magnetic B.

The solution depends on four independent parameters:

M, Q, P, Po. The mass of a black hole is M, the asymp-

totic value of the dilaton field is Po. The electric charge

of the F field is Q,~«
——e~'Q and the magnetic charge

of the G field P ss„——e&'P, or equivalently, the electric

charge of the G field is P,i« ——e ~'P.r

There are few combinations of these parameters which

will appear in the solutions.

(1) The dilaton charge, which is not an independent

variable, is given by [7]

P2 Q2

2M
(2o)

ro —M +Z —P —Q
M2 + Z2 e

—2$PP2 e
—2$PQ2

magn (21)

(3) The outer and the inner horizons are defined in

terms of the mass and rp.

ry =M+rp.

The solution of Eqs. (16) can be given in the form

(22)

where Z is defined by the equation P Pp + Z/T at
r~oo.

(2) The parameter ro, which vanishes when the black

hole becomes extremal, is given by

In Euclidean signature the two actions are connected by
duality, though.

Only when the asymptotic value of the dilaton is zero does

the electric charge equal Q snd the magnetic one equal P.
We have chosen the definition of charges in presence of Po in

a way which simplifies equations, since it is the parameters

P, Q which appear in sll equations rather than Qelec, Pmagn.
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ds2 = e2Udg2 —e-'Udr' a2dn

r+Z
r-Z'

Q e&o
F —

( )~
dt Adr,

P e-&0
G=

~ dtAdr,r+E'
where

(23)

symmetry algebra. The dilaton charge in this notation is

given by

Z1Z2

M
(32)

ro —— (M —z, )(M —zz) .

and the parameter ro showing the deviation from ex-

tremality is

and

(r —r+)(r —r )
2

2 =r2—

(24)

(25)

In Sec. VI the supersymmetric properties of the dilaton
black holes will be studied and it will be shown that
supersymmetry leads to the positivity bound (1), which

implies that

M & Iz, l,

The curvature singularity occurs at r = IZI.
The solution has manifest dual symmetry: M & lzzl .

(34)

Z~ —Z,
P~G,

(26)

Either of these inequalities can be saturated only if at
least N = 1 supersymmetry is unbroken, see Sec. VI.
In this case ra vanishes and we deal with extreme black

holes.

Equation (34) implies that the parameters of the dila-

ton black hole can vary only inside the square:
To write the solution in a form which corresponds to

the solution of Eqs. (17), we have to add to Eqs. (23) the
result for the nondually rotated field G„„:
G = Pe~o sin8d8 A dP = Pm~a„sin8d8 A dP . (27)

Notice that the solution also yields a solution of a the-

ory with a smaller field content (g„„,P, E„,) and action

I~= 'x -g -a+2 ~ . „-e-'~„„~".

Q —P
zl

Q+P
2 (30)

so that

Zg + Z2
Q e 0

2
)

Z2 Zg
Pmagn = e

2

Later on, we will identify these combinations of electric
and magnetic charges as central charges in the super-

To see this, take P to be both electric and magnetic,

Q ego
E = F+G = dt Adr+Pe~o sin8d8Adp,

(r —Z) z

(2g)

and note that the energy-momentum tensor of F is just
that of the two fields F and G, because the electric and

magnetic fields are parallel. This implies that the equa-

tions of motion for this theory are consistent with those
of the original one. All thermodynamic properties, which

are controlled by the metric, will be indifferent to whether

we use this arrangement of fields or our original one.
Let us also introduce the notation

(35)

It is instructive to consider various special cases of the
dilaton black hole (23) for a given mass M, see Fig. 1.

(1) The Schwarzschild solution is given by Eqs. (23) at
P = Q = Z = $0 = 0, r~ ——2M, r = 0. This solution

corresponds to the point at the center of coordinates in

Fig. 1.
(2) Classical Reissner-Nordstrom black hole with equal

electric and magnetic charges. IPI = IQI, Z = Pa = 0.
This solution corresponds to the lines crossing the center
of coordinates which are parallel to the boundaries of the

square in Fig. 1.
(3) Purely magnetic dilaton black hole described in

[7]. Q=0, —zi =zz =P/~2, Z =P/2M, and

ro ——M —Z, r = Z, r+ ——2M —Z. By performing

the change of variables r' = r + Z, we recover the metric

as given in [7]. This solution corresponds to the P axis

in Fig. 1.
(4) Purely electric dilaton black hole described in [8].

Change Q to P, Z to —Z in the previous case. The
solution corresponds to the Q axis in Fig. 1.

(5) Extreme black holes with electric and magnetic

~~~~g~' M = (IQI + IPI)/(~2) ~ = (IPI —IQI)/(~2)
M & IZI ra =0, r+ ——r =M. ForPQ &0,
M = Izql & Izil, while for PQ & 0, M = lzil & Izql.

These solutions will be discussed later. In Fig. 1 they

correspond to the boundary of the square excluding the
four vertices.

(6) Extreme black holes with either electric or mag-

netic charge. r+ ——r = M, ro = 0, M = Izil =
Izql = IXI. In Fig. 1 these solutions correspond to the

four vertices of the square and are the stringy extreme

charged electric or magnetic dilaton black holes of [7, 8].
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FIG. 1. The space of electrically and magnetically charged dilaton black holes with charges P and q and a fixed mass

M. q = P,„=~2M. Every point inside the square corresponds to a regular black hole. The points outside the square

(which are forbidden by supersymmetry) correspond to metrics with naked singularities. The points on the square correspond

to extreme black holes. The unbroken N = 1 supersymmetries for the extreme black holes on each of the four sides (I, II, III,

IV) of the square are shown. In the corners, we have unbroken N = 2 supersymmetry.

There are many ways to generalize the black-hole so-

lutions which we have presented above. We considered

a simple solution depending on two charges P and Q;
i.e., we assumed that each of the fields F and G has ei-

ther electric or magnetic charge, but not both. However,

these solutions can be easily generalized to solutions in

which both fields F and G have electric and magnetic

charges. The general form of these solutions is the same

as that of our solutions, with P& + P& replacing P in

all our equations, and similarly for Q. (Only products of
two I"s or two G's appear in the equations of motion. )
These solutions are consistent with a constant axion if

Q++& + QQPQ = 0. Thus, instead of solutions charac-

terized by two parameters P and Q, we essentially have a
set of solutions depending on three independent param-

eters. All the properties that hold for the solutions we

have studied and depend only on the metric, remain true
for the new set of solutions.

IV. EXTREME DILATON BLACK HOLES

We will look for a static solution of equations of
motions of the theory (14), not necessarily spherically

symmetric, with the following ansatz for the metric in

isotropic coordinates (conformastatic metric):

dsz e2Udt2 e
—2U (dpi)2 (36)

The nonzero components of the vierbein e&~ are

e0 =e0 U e-.& = e-Ub, &

where g„„=e„e„~qg, and the function U is time in-

dependent. For the determinant of the metric we have

g—g = e 2+. The nonzero elements of the spin connec-

tion ~„andRicci tensor R&„aregiven by
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ip 2Ug U-p —e i )

or~ = 26,(~Bgj U,

R = e—B,B,U,
R,~

= 2B,U B~U —6,~BI,B1,U .

(38)

M, +Z, =P, +Q, . (46)

This allows a static equilibrium due to the balance of
gravitational, scalar, and electromagnetic forces. The to-

tal mass and charges of the full con6guration are given

by

A„=6„Q, B„—6 y. (39)

For G„„this implies that it has only spacelike compo-
nents given by

1 ijk G 2P-2Ug
(4o)

We look for solutions where A& is electric and B& is mag-

netic (or B„is again electric):
Z=) Z, ,

Q =+).IQ.I,
s=1

sgn(Q) = sgn(Q, ) .

M2+Z2 P2+Q2

M=) M, ,

s=1

P =+) IP, I,
s=1

sgn(P) = sgn(P, ),
They also satisfy the condition

(47)

(48)
Then the field equations (16) in this metric are

B -2U-2$B
y p

B,e-2U+2~B, g = 0,
B B y+

—2U —2$(B,@)2 e
—2U+2$(B )2 p

B B U + e
—2U 2$(B q-)2 + e-2U+2$(B )2 p

B,U B~U+ B,P B~$

e'U 2—&By B q —e 2U+2~By B g
—0

We define

H2 ——e

These equations can be solved as follows:

s =e Udt —e

A=ddt, B=gdt,
F =dQAdt, G=dyAdt,

e = H1H2, e = H2/H1,

v 2g = +H, v 2y = kH

B,B,H1 =0, B,B,H2 =0.

(41)

(42)

(43)

To see the force balance explicitly, let us consider

Newtonian, Coulomb, and dilatonic forces. The force
between two distant objects of masses and charges

(M1, Q1, P1, Z1) and (M2, Q2, P2, Z2) is

Ml M2 Q1Q2 P1P2 Z1Z2
12 —

2 + 2 + 2 2
r12 r12 r12 r12

The dilatonic force is attractive for charges of the same

sign and repulsive for charges of opposite sign. Using
the relations (45) for the masses and dilaton charges in

terms of the magnetic and electric charges, we see that

F12 vanishes. In particular, it follows that a purely mag-

netic and a purely electric extreme black hole can be in

equilibrium, as the attractive gravitational force is bal-

anced by the repulsive dilatonic force.
The extreme electrically (or magnetically) charged

multi-black-hole solutions are solutions of the type (44)
with P, = 0 (or Q, = 0). They can be formally identified

with a special case of a metric of Bonnor [10] describing

charged dust in equilibrium. s The corresponding equa-

tions are

Thus, two arbitrary harmonic functions H1, H2 can be
used to build the metric, dilaton, and vector fields ac-

cording to Eqs. (43). Specific examples are given below.

(i) The extreme multi-black-hole solution is the solution

of the equations given above with

H, =e-~ 1+). 'IQI

; Ix —x, [)
(44)

+y,H2=e
; Ix —x, I)

where there is the following relation between the param-

eters of each black hole:

IP.
I
+ IQ. I

V„F""= J",
RPv —(2'&Fvsg —2gPvF ) = T"",

where

(50)

~(x) = +~(x) = -2(&4)'(x) (52)

or, equivalently, the trace of the energy-momentum ten-

(51)

and u~ is the four velocity of dust with normalization

g„u"u"= 1. The charged dust in equilibrium is char-

acterized, according to Bonnor [10], by the condition

c = +o.. We have found that if the density of charged

dust in equilibrium is

IP. I

—IQ. I

It follows that

(45)
The relevance of Bonnor metrics with charged dust in equi-

librium to metrics admitting supercovariant constant spinors

in the context of N = 2 supergravity was discovered by Tod

[22].
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sor of dust is proportional to the scalar curvature of the

space due to the presence of the dilaton,

T = R = -2(V'P)z, (53)

then the Bonnor solution of the system of Eqs. (50)—(52)
coincides with the set of extreme electrically (or mag-

netically, after duality transformation) charged dilaton

black holes. The reason behind the formal identification

of extreme dilaton black holes with charged dust is the

following: The energy-momentum tensor in our Eqs. (16)
and (17) is covariant; however, on solutions it coincides

with the noncovariant energy momentum tensor of the

charged dust in the Bonnor equation (50).
(ii) As a specific example of extreme black holes, let us

now consider an extreme electrically and magnetically
charged spherically syrftrnetric black hole with dilaton
field not vanishing at infinity:

~2(IQI+ IPI) + 2IPQI&

)
v 2(IQI+ IPI) + 2IPQI &

d z

p p )
(54)

where p = lxl and

Thus, all over the boundary of the square in Fig. 1, ex-

cept for the vertices, the absolute value of the dilaton

charge is smaller than the mass. This property of the ex-

treme black hole with both electric and magnetic charge
means that the singularity r = IXI is inside the hori-

zon r+ ——r = M. The purely magnetic (electric) ex-

treme black holes are the solutions given in Eq. (56) with

Q = 0 (P = 0). These solutions in Fig. 1 correspond

to the four vertices of the square. For these solutions

M = I»l = I»l = IXI F» purely magnetic extreme
black holes, the singularity at r = IXI = M coincides

with the horizon r+ ——r = M. It is argued, however,

that for the metric which the string sees, dss~„=e2~dsz,

the horizon moves infinitely far away and the curvature

tensor becomes nonsingular [7]. For purely electric ex-

treme black holes this kind of argument is absent.
It is important that for all these solutions the posi-

tivity bounds (34) imply that the singularity r = IXI is

either inside the horizon r+ or coincides with it. One can

easily check that r+ is, indeed, an event horizon, i.e. , the
integral in (6) diverges for ri ——r+. This happens inde-

pendently of our choice of normal metric versus stringy
one. This means that, in agreement with the cosmic cen-

sorship conjecture, supersymmetry saves an outside ob-

server from seeing the singularity.

ip+ +2IPli

&p+ v2IQI)
(55)

V. THERMAL PROPERTIES OF THE DILATON
BLACK HOLE

i.e., we choose

r = p+M. (57)

The electrically and magnetically charged spherically
symmetric dilaton black hole (23) with

r+ ——r =M,
(58)

ro ——0,
is the extreme dilaton black hole. This is in accordance
with Fig. 1 where the boundary of the square (exclud-

ing the vertices) corresponds to the extreme black hole
with both electric and magnetic charge. The mass and
charges of the extreme dilaton black hole with nonvan-

ishing electric and magnetic charge satisfy the bounds

M = ~, M & Z = ~ . Thus for the genericIPI+IQI I&I-III

extreme black hole with electric and magnetic charges
only one of the positivity bounds (34) required for cosmic
censorship is saturated. For PQ & 0 (sides I and III of
the square in Fig. 1) M = Izzl and the second one is still
a positivity bound since M & IZI = Izi I. For sides II and
IV with PQ ( 0 we have M = Izil, and M & IXI = Iz2I.

p )
(56)

This solution can be compared with the one described
in the previous section (case 5 in the list) under a suitable

change of variables:

ds = gtt (x) dt —h,~ (x) dx'dx~

ls slGlPly

(tt ~ttt ytt

(59)

(60)

The explicit expression for the metric of the charged
dilaton black hole allows us to calculate its thermal prop-
erties. A detailed analysis of such properties has been

performed in [7, 8) for the electric or magnetic stringy
black holes (the solutions on the Q and P axes of Fig. 1)
or for nonstringy black holes with e z'&, a P 1 in the
action. Discussion of some of the thermal properties
and singularities of electrically and magnetically charged
black holes can be found in [6].

In calculating the temperature and entropy of black

holes, we must keep in mind that the interpretation of
the results as physical temperature and entropy may not
be reliable in some limits. In fact, the thermal description
of purely electric or magnetic dilaton black holes breaks
down near extremality [8]. At the end of this section we

will analyze the breakdown of the thermal description for

our class of charged dilaton black holes. However, purely
geometric quantities such as the area A and the surface

gravity z of the black-hole horizon always make sense

and the "thermodynamic" relationship between them will

be seen to hold in any case when a black hole has a
nonsingular horizon.

The Hawking temperature of the black hole (23) can
be calculated by a variety of standard methods. In terms
of the surface gravity e, it is given by T = ~" . The
surface gravity can be calculated from the Killing vector
(t', which for any static metric
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Thus, the surface gravity is

r = —z(V"(")(V„()
1

dgtt

- p=phor jzon 2 dr ~=r+

1 r+ r—

2 r —Z+
(6&)

where again

P2 Q2

2M
ry = M + QM2+ Z2 —P2 —Q2 .

(62)

Then the temperature of our black hole (23) is given
1

lim lim T(P, Q, M) =
{~+-~ ) 0 g 0

' '
8m'M

' (64)

Fig. 4, the value of the temperature as a function of the
mass is plotted for different values of P and Q. By in-

spection of the figures, we can see the following: Extreme
black holes tvith both electric and magnetic charges have

zero temperature. At the corners there is a discontinu-

ity. Consider as an example the purely magnetic extreme
dilaton black hole. We may either first take the limit

Q —+ 0 in our expression for the temperature in Eq. (63)
and after that take the limit to extreme (r+ —r )

—+ 0,
or vice versa; the limiting temperature depends on which

choice we make:

1 r+ —r
4~ r2 g2 (63)

lim lim T(P, Q, M) =0.
Q~0 {r+—v )~0 (65)

The isothermals are drawn on the P, Q plane in Fig. 2

for a fixed value of the mass M. From Eq. (63) a fixed-

mass surface T = T(zq, z2) is plotted in Fig. 3. The
temperature falls very sharply to zero temperature near

extremality at the borders of the regular black holes. In

We can see this also from Figs. 3 and 4. Note that differ-

ent results can be obtained by calculating the limit along

different isothermals shown in Fig. 2. The limit can be
anywhere between 0 and 8 M. The fact that the tem-

perature at the corners is not well defined explains why

there are apparently contradictory statements about it

FIG. 2. Isothermals in the space of charged dilaton black holes of constant mass. The interval of temperature between two

contiguous isothermals is 50T, where T „=8 M is a temperature of the Schwarzschild black hole with a mass M. The
two axes of coordinates are isothermals corresponding to T =

s M. The four sides of the square (excluding the corners) are
isothermals corresponding to T = 0. The corners are very special: All the isothermals (for all the different allowed temperatures)
converge to the corners. This can be better seen in Fig. 3.
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-0.5

' 'I I'

«+ I'ua~w

(q —P)/v 2M

0.5

n black holes of a given mass M as a function of zi/M = (Q —P)/~2M andFIG. 3. T e tempera g
rres ond to the sides z1z2/M = (Q+ P)/v~ . eg~'~~2M. The extreme black holes eorresp

BTi
IBM) pq

This inequality may be rewritten as

Ti i )) I.
EBT) s,,q

(66)

(67)

Accor ing o
L ~,

d' to [8] this condition has a profound physical
t t . it says that a thermal description is pos-interpretation; i says

sible when the available entropy of the blac o e, i.e.,

9One possl e ln0 'bl '
dicator as to which temperature we should

tak
'

ded by supersymmetry, which is usua y re a e ot e 1s prov1

zero rather than finite temperature. We wi s
that the extreme purely magnetic or electric solutions possess
two out of four possible supersymmetries, so one may prefer
to take T = 0.

r ]9
To investigate this problem furt er, e us

carefullyt e imi soh l' 't of applicability of the thermal descrip-

tion of blac o es.k h 1 There are several conditions w
'

must be satisfied. ne omu
'

d. 0 f them was obtained and exten-

Hef. [8]. A thermal description of a
~ ~

sivel discussed in He. [ ].
is ossible only if, after an emission of a sing ele

uan
' T the temperature of theuantum of a typical energy, e

b idTi « T. Applying this to a blacsystem changes y ~

hole of a mass M gives, according to [8],

interval is very large.

was that theTh al belief expressed in Ref. [8] was t a,

al descri tion breaks down for extreme b ac holes.

since the crite-However, there remained some confusion, since
ria (66) and (67), applied to purely electric (or magnetic)

itrari y c o

res ond to the(or P/+2) [8]. Our dilaton black holes correspon o
—I '

t inology of Ref. [8], where this case was
labeled "enigmatic. " To clarify what is going on, e
go back to the derivation of (66).

Wh black hole emits a particle of typical energy T
(from the point of view of a static observer a in ni y,

'
en a ac

, M ~ (M —T). Its temperature T(M)
—T.

The condition 6T « T can be written as

(68)iT(M —T) —T(M)i « T .

If and only if) the function T(M) has a derivative
which remains a mos c1 t constant in the interval between

—T E . ,68) can be rewritten in the form
T iBT/BMi « T, which is equivalent to (6 ). n mos
theories stu ie in ad' d

'
8 ll the conditions necessary or the

derivation of (66) are satisfied. However, for pure y e ec-
d 1 t black holes, we see violation

when the mass of the black hole approaches its extreme

For example, (68) is violated near

extremaity, w erl' h re any emission of a quantum o yp-
T — would reduce the mass belowical energy T —

8 M wo

metr, and thisthe lower bound coming from supersymme ry, a
is absolutely or i en.f b'dd Thus failure of the thermal de-
scription occurs for PQ = 0 holes when
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FIG. 4. The temperature vs the mass for different electric and magnetic charges. For definiteness, we take Q & P & 0.
The black hole evaporates until its mass approaches the limiting value M,„t,——zz = (Q+ P)/~2. The three families of curves

correspond to zz = 1, zz = 2, and zz = 4. For each of these values of zz = (Q + P)/y 2 we choose three difFerent P/Q ratios:

P/Q = 1, 4, 0. The smoothest curves are the ones with P = Q (classical Reissner-Nordstrom). The sharpest correspond to

the limit P/Q ~ 0, which reproduces purely electric dilaton black holes. There is always a maximum for the temperature (a
point where the specific heat diverges and reverses sign), and always the temperature falls sharply to zero in the vicinity of the

bound. This implies the breakdown of the thermal description when we approach extremality for all values of P and Q.

1
AM=M —M,„t,&

8aM,„g,
(69)

1 6 2AM
27r gz, (z,' —z,') y

(70)

Therefore, the expression for (gMT) &
diverges in this

7

limit,

To obtain further insight, let us approach this question
in a more general context, when both Q and P do not
vanish. Assume, for example, that Q & P & 0. In this
case z2 & zq & 0, and the black hole becomes extreme
when its mass decreases down to M,„q, ——zz = (Q +
P)/~2. One can easily verify by using Eq. (63), that
when the mass of the black hole approaches z~, i.e., when
b,M = (M —M,„t,) -+ 0, the temperature of the black

hole vanishes as v'EM:

r'&T l 1

kciM) pg 2& /AM/2'(z2 —z2)

1 1

2vrQ y &M /2~2 P

This result is illustrated by Fig. 4. Equation (71) implies

that the condition (66) is always violated when the black
hole approaches its extreme limit. It is just more difficult

to see it working in the limit P = 0. We see, in partic-

ular, that in the limit P —+ 0 the thermal description

breaks down along the whole slope from T,„i,, 1/87rM

to T = 0. Thus, the discrepancy between diferent ways

of calculating the temperature of extreme electric (or
magnetic) black holes is just one manifestation of the

breakdown of the thermal description in this limit.

However, from our previous arguments it follows that
thermal description breaks down even earlier. Indeed,

one can easily check that for small P the assumptions

used in the derivation of Eq. (66) break down, and that
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the thermal description becomes inapplicable even efore

the temperature reaches 1ts maximum, jus'ust as in the case
P = 0, see Eq. (69).

Add't 1 information can be obtained by studying1 iona
the behavior of the entropy. The expression in q. &

can be interpreted as the available entropy only if the
temperature of the extreme black hole is equal to zero.

may write that 68 = (08/BT) T. As we noted already,
the value of T for extreme purely electric (or magnetic)
black holes is ambiguous, due to the failure of therma

tropy can be calculated by several other methods, and

the results do not depend on this ambiguity.

The entropy of a black hole can most easily be calcu-

lated as one-fourth of the area of the horizon A. The

physical radial coordinate is R, so that the area of a
sphere of radius R is simply 4vrR2. This gives

8 = z R ~"„~+= x(r+ —Z ) . (72)

The thermodynamic relation T = (sM)pq y
~ (Bs 3-

ma be

readily checked to be obeyed. There is also a nice relation
between the temperature and the entropy of the c arge
dilaton black hole:

ST=4(r~ —r ).1 (73)

0 h k that Eq. (72) correctly describes all thene can c ec a
r which theparticular cases listed in the end of Sec. III, for w ic e

8 = 8 —S,„r,, ——x(r+ —Z ) —2+~PQ~ . (75)

This quantity becomes much larger than I only far away

from the extreme regime, as we can see by considering

two particular cases.

(i) If the black hole has only electric charge Q & 0, then
we obtain, for the regime b,M—:M —Mextr « Mextr~

8 = 8, = 8n b,MMexrr,

while, for b,M » Mexrr,

(76)

entropy was already known. For example, it is easy to
see from (72) that the entropy unambiguously vanishes at
the corners of our square, when the horizon r+ coincides

'th th 1 e of the dilaton charge ~Z~. However, on t e
sides of the square (for PQ g 0 extremal black o es) e

entropy does not vanish. Its value is

S,„t,——vr(M —Z ) = 2+~PQ~ = z zi —zz . (74)

All these properties can be seen in Fig. , wwhere the
surface S = S(zi, zz) (for fixed mass M) is plotted.
Another example of extreme dilaton black holes wit

nonzero entropy has recently been studied by Horne and
Horowitz [23]. The angular momentum J playstheret e
same role as the mixing of electric and magnetic charge

To calculate the available entropy S„oneshould sub-

tract Sexrr from 8:

'
n of z, M and zq,~M. It has a maximum for theFIG. 5 Th t 8 of the charged dilaton black holes as a function o z~, an zqe en ropy

t'Schwarzschild black hole, which corresponds to the origin of coordinates
~

extreme dilaton black holes (in the corners) it is zero. On the sides of the square the te~pe~ature va»shes,
entropy (Euclidean action) remains nonzero, 8 = 2rr ~PQ~.
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S = S = 47r (M —4M,„„). (77)

(ii) If the black hole has Q = P ) 0, then in the case
AM && M,„t,we have

S = 2v 2irv'6M M,„„.
In the opposite limit, LM )) M, t„

S = S~ = 4ir (M —
z M,„t,) .

(78)

The thermal description is valid only if S, &) 1. Note
that the entropy S = S~ of the purely electric black hole

is always smaller than the entropy of the black hole with

both electric and magnetic charge corresponding to the
same M,„t„i.e. , breakdown of the thermal description

occurs earlier during the evaporation process for PQ = 0
holes. This result is rather surprising, since the (uncrit-

ical) use of Eq. (66) would have led us to the opposite
conclusion.

To get a more quantitative estimate, let us assume

that the thermal description is applicable when 8 & N,
where N is some large constant, N )) 1. Let us assume

also that the thermal description breaks down (with a de-

crease of hM) in the domain where 6M (( M,„t,. This
is possible only if 8irMz„t, )& N. In the purely electric

case the thermal description breaks down at

AM&
N

8' Me„t,
(80)

This condition is in an agreement with our earlier es-

timate (69), but is even stronger. For large Me„i„the

temperature of the black hole at that time is very close

to (8aM,„i,), but it never reaches this limit in the re-

gion where a thermal description is possible.

In the case P = Q the thermal description breaks down

later, at

N~
LM&

8x M,
„„

(81)

At this stage the temperature of the black hole is given

by

1 N

Mextr
(82)

[P —Q]' —6[P —Q]'+ 8[P + Q] —3 = 0 . (84)

The larger the body, the smoother the function T(M),
and the smaller the temperatures at which thermody-

namics describes successfully the black hole near its ex-

tremal state.
In Fig. 4 we also see that the temperature has a max-

imum for every combination of the charges. (sM)z&
7

vanishes there, has different sign at both sides, and goes

to zero when we approach extremality. This means that
the specific heat blows up at the temperature maximum,

changes sign there and goes smoothly to zero when we

approach extremality. A direct calculation gives

(BT'l T 1
C =

~ ~

= ——
z M —Z —2Mro . (83)

i,BM) ~& M roz

In Fig. 6 the specific heat C is plotted in terms of

M/M, „t,for the classical Reissner-Nordstrom family of
black holes (P = Q). Note that the specific heat is posi-

tive near the extreme value of M for all black holes with

PQ g 0. Thus, as distinct from ordinary Schwarzschild

black holes, the charged dilaton black holes with PQ g 0

(as well as the Reissner-Nordstrom ones) can be in a state
of stable thermal equilibrium with "hot" matter with a
temperature smaller than T

The values of P = P/y 2M and Q = Q/v2M for

which C vanishes obey the equation

0.5 1.5 2.5 3.5

M/M,
„

FIG. 6. The specific heat of a Reissner-Nordstrom black hole with P = Q ) 0 as a function of M/M, „t,= V 2M/(Q+ P).
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2b@pI = V peI —80' T )r Ig'7i)e )
1 1 per + J

2bAI = p—"eIB„Q
1

+ o e Fp~crIJ —e Gp~pIJ
2

(85)

where the covariant derivative contains the spin connec-

tion (see Appendix A), and would also contain a U(1)
connection if the axion had been included. Tp„IIis an

auxiliary field. Its algebraic field equation, which was

used to obtain the action (14), has put it equal to

Tp~I~ ——2v2e Fp~nIJ + e Gp)rPIJ
2P (86)

The local supersymmetry algebra of N = 4 [24] con-

tains the following terms which are relevant for the solu-

tions which we consider:

[bq(e))bQ(e')] = —2bGC (e p t I+ H. c)

+bLor(& & TIJ +Hc)+''' (87)

FIG. 7. The locus of points in the (P, Q) plane where

the specific heat of a fixed-mass charged dilaton black hole

diverges. Inside the curve, the specific heat is negative; out-

side, it is positive.

In the ('P, Q) plane, the line of the zeros of (83) divides

the square into two regions of difFerent sign of C. This

line is plotted in Fig. 7. There is also a line of zeroes of
G in the (J, Q) plane in the case of Kerr-Newman black

holes. The fact that our black holes have both electric

and magnetic charges is analogous to the fact that Kerr-

Newman black holes have angular momentum.

It is clearly very important to understand the intrinsic

properties of extreme black holes as candidates for the fi-

nal state after the process of evaporation. The extremal

limit (r+ —r ) ) 0 is also the limit in which the su-

persymmetry is restored since re = (r+ —r )/2 will be
shown to be the parameter of supersymmetry breaking.

The understanding of the supersymmetric properties of
extreme black holes may shed new light on the final stages
of the evaporation of charged black holes.

where bac and bL„are the general coordinate and

Lorentz transformations which act on the vierbeins in

the following way:

bGC (()e'„=B,(' —~„"(i, bL„(A)e„=A' e„
(88)

~0r= p+ —+M
4p

(89)

and p = (x'), we have

ds2 2Udt2 e 2U+2c—(dpi)2

where

(90)

The nonvanishing value of the auxiliary field T in our

solution will imply that the last term of (87) produces

central charges.
To simplify the analysis of supersymmetry, we will

use a system of coordinates which has a conformally fiat

three-dimensional space. Defining

VI. SUPERSYMMETRIC PROPERTIES OF
DILATON BLACK HOLES

BT To= —= 1—
Bp 4p2

(91)

First we will prove that nonextreme black holes al-

ways break supersymmetry. After that we will consider
extreme solutions and find unbroken supersymmetries.

In a bosonic background, the unbroken supersymme-

tries are determined by the terms depending on the
bosons in the transformation laws of the fermions. Delet-

ing there again the axion field, the relevant transforma-
tion laws of the N = 4 theory areio [19,20, 24] (in chiral

notation, see Appendix A)

' We use the SO(4) version for convenience, but the duality

transformation (18) can be used to translate everything to the

SU(4) version.

T o Iz 2+2 (AIJe Big + pI je BiX) (92)

We now take the dilaton field going to a constant Po at
infinity, and the electric field strengths going to zero as

—G-- = B y = — '" + O(p ) .
p

i0 P p2

Then, defining as before,

(93)

From (86) we see that the only nonzero components of

T» Iq for purely electric F and G (and no axion) are
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Q=& Qelec r P = e 'Pelec

we have at large p the behavior

(94) Q —P
zl — ~ )

Q+P
2 (98)

x'
Tpp II — Tzp rg: 2~2 p (AIJQ + /IHIP)+O(p )

(95)

We will now take T to have this asymptotic value for

large p.
We choose the antisymmetric matrices nr J and prI as

ns and P3 in the notation of [25]:

o o o

0 0 0
(0 0 —1 0)

(0 -1 0 0)
1 0 0 0
0 0 0 1

&0 o -1 0)

Z —3T pry = 4 Erg+ O(P ) (97)

and the values of Z in the (1,2) and the (3, 4) sector are,
respectively,

Thus, they are block diagonal in the pairs (1,2) and (3,4).
In each of the pairs TIJ is proportional to eIJ, the two-

index antisymmetric symbol with ei2 = 1 (or &34 —1).
So we put

We see now that Z is a central charge operation in the
sense that

[bq(t)) bg(E )] = 2bGc—(6 '7 Er + H.c.)
Z - I,J—4—

2 (e E tr j)bi az + (EICIE )6I az
P

+ a ~ 4 (99)

where 6&, is a self-dual version of a Lorentz transforma-

tion, and b&„ananti-self-dual one:

f ~i
gab i[a b]p y ~1

abcdez eo
I

(1pp)
r

Let us prove that nonextreme charged dilaton black

holes break all supersymmetries.

In the supersymmetry transformation law we will use
now the metric (90), and the assumption that F„,and

G„„areelectric solutions, i.e. , that F~p = 0,$ and

Gzp = 8 y are the only nonzero components. The co-

variant derivatives on spinors are

V'p = Op
—e'U ~B,U~,p, 7', = 0, o,, 8—~(U —C),

(1o1)

where indices on derivatives are curved, while those on

p matrices are flat. The resulting transformation laws of
the fermions are

2
b4'PI

—,'6C,I

1
p, e e Bi eI — nIJ e i IJ e O,g ppt

2

u-c& U
2&pz e

I
e B,U er — (czrz e &i@+PII e Ag) ppc

jb

8 sr —
P&j Bj(U —C) Er —

rj 7, nrem e Bjg + l II e OjX &p e E

2 2

(102)

For preserved supersymmetries, the first two relations

lead to

gr a, eU+4'=
v 2' c II e'O, q,

&I Ae = v2'7pPrz~ AX )

(1o3)

while the remaining equation b@,I = 0 reduces to

zcI 26I BzU + Ozj 6I OjC = 0 (104)

U/2&(o) (105)

Acting with Oj on this equation and antisymmetrizing
with respect to ij (the integrability condition) gives zero

only if C is a constant, which proves that we can only
have supersymmetry for rp ——0, the "extreme case."

Let us find now the unbroken supersymmetries of ex-

treme charged dilaton black holes with C = rp ——0. In
that case we find

~2(q-qp) =aeU+4, ~2(X —Xo) =be' '
(106)

where Qp and yp are undetermined constants, and a =
—sgn(Q) and b = —sgn(P). We now get two conditions

from Eqs. (103):

(er —az2. „gpss ) B,(U+ Q) =0,

(er —b P„gpss ) 0, (U —P) = 0 .

(107)

Consider first the case in which both PQ g 0, which

means that neither B,(U+ P) nor 0,(U —P) vanishes.

We get in each of the four quadrants of Fig. 1 one

where eI are constant spinors.(p)

The relations (103) (and consistency with their com-

plex conjugates in view of o;»+~K = br ) imply that—
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= f2 + jj'PE'
)

12 1

C~ =E4 +34 3

0El
2

634 f + PPC3
4

(1os)

Note that these spinors are still chiral.

The unbroken supersymmetries in each quadrant are

and e34 for Q ) 0, P ) 0

e+ and@+, z for Q&O, P(0,
E and c34 for Q ( 0, P ( 0

and eiz for Q ( 0, P ) 0 .

(1o9)

Thus, for each side of the square in Fig. 1 we have one
unbroken N = 1 supersymmetry, each time a different

part of the original N = 4 supersymmetry.
If Q or P are zero, then in the first case 8,(U+ P) = 0,

and in the second case 8;(U —P) = 0. So only one of the
two conditions in (107) for spinors applies, and we have

two remaining supersymmetries:

unbroken supersymmetry. To see this, let us introduce a
new basis for the supersymmetries:

in (111)that the sign of the Z contribution changes, and

one finds M —Z & 0 and zero only for unbroken e su-

persymmetry. In this way one obtains M & [Z[. Using

the pair (1,2) leads to M & zi, while the pair (3,4) leads

to the bound M & z2. From these arguments it is also

clear that supersymmetries are unbroken if and only if
the charges are equal to their extreme values as in Fig. 1.

There is nothing in our analysis which depends on

spherical symmetry; thus, the multi-black-hole case is in-

cluded automatically. We must, however, remember that
P and Q refer to the total charge. Only purely magnetic

or purely electric multi black holes possess N = 2 super-

symmetry; a configuration with mixing between P and

Q, such as the one with charges (P, o) and (0, Q), pos-

sesses only N = 1 supersymmetry.
Thus we have shown that the extreme dilaton multi-

black-hole solutions of N = 4 supergravity, given in

Eqs. (42)—(44), have some N = 1 or N = 2 supersymme-

tries unbroken.

Note that there exists a particular conformal transfor-

mation of the original canonical geometry which brings

the parameters of unbroken supersymmetry to constant

spinors, according to Eq. (105):

34 + 12
, f34)

34 — 12 +
6—) 634) 6+ ) 612

forQ=O, P)0,
for Q = 0, P (0,

34 + 12 +tp, e34 E+, Eis for P=O, Q)0,
E, C34 t, Ei2 for P = 0, Q ( 0

(110)

(o) —U/2 can (P) —2U can—e eI, g„v—e g&„

A =e+ ~ A"" etc. (112)

After such a conformal transformation, the metric takes

the form

E'IJ =
4 ~6 +PC+ —6 /PE'

-II-J 1 t-I+
(111)

+ e /pe+ —E '7pt )

Thus in each vertex in Fig. 1 there is an unbroken N = 2

supersymmetry, each time a different part of the origi-

nal N = 4 supersymmetry. And since the vertex of the
square is the intersection of two sides, the supersymme-

tries which are unbroken in the vertex are those which

are unbroken on both sides adjoining the given vertex.
The bound M & [Z[ was derived in [16] using this basis

for the spinors. Indeed, one may check that [with a sum

over the pairs (1,2) and (3,4)]

~I 1 r~+
'HEI =

z (E '7pcy + E 'apt' )

dsz (P) —dt2 e-4&(d~~)2 (113)

In such a geometry, supersymmetry with parameter 6( ~

exists globally on the space, in contrast with the canon-

ical geometry where the parameter of unbroken super-

symmetry is ecP" = e ~ ei and goes to zero near the
horizon. In addition, the time component of the spin con-

nection vanishes and the time derivative coincides with

the covariant time derivative. The conformal transfor-

mation (112) defines a choice of time coordinate for the
supersymmetric state for which the commutator of two

supersymmetries is a translation in time. For one of the
solutions discussed above, namely, for purely magnetic
multi black holes with U = —P, the corresponding con-

formal transformation is

{0) e
—2U can e2$ can string

PV PV PV PV (114)
—E Ppt+ + E '7pE )

The complex conjugates of the first two equations are
minus these expressions with e and e' interchanged.

This implies that when one takes the commutator as in

(99) between two supersymmetries e~ and e+ then only
the space translation does not enter. The time transla-
tion is proportional to the mass, and there is a central
charge (acting as bz+, + 6z, ) proportional to Z. In this
basis both terms are proportional to e'+ppt. +. The Her-

miticity properties then imply that M + Z should be
non-negative, and becomes zero only if e+ is an unbro-
ken supersymmetry [16]. When one uses ~, one can see

So we see that in the purely magnetic case the unbroken

supersymmetries in the stringy geometry are realized in

terms of constant spinors.

VII. NONRENORMALIZATION THEOREM
FOR THE PARTITION FUNCTION

OF THE EXTREME CHARGED
DILATON BLACK HOLE

The advantage of establishing the supersymmetric

properties of extreme black holes is that of obtaining

the possibility to prove a powerful nonrenormalization

theorem for quantum corrections. For classical Reissner-

Nordstrom extreme black holes, the corresponding theo-
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rem has been established in [3]; the analogous theorem
exists for extreme dilaton black holes, as we will now

show.

An extensive and complementary treatment of quan-

tum corrections in N = 2 supergravity, in the context
of quantization of the collective coordinates of the black-
hole solution, may be found in Aichelburg and Embacher

[26].
The language we will use for formulation of the theo-

rem is that used by Gibbons and Hawking [27] for cal-

culation of actions and partition functions in the context
of black holes and de Sitter space. In our previous publi-

cation [3] we used the language of the "effective on-shell

action, " which is often used when considering supersym-
metric theories. It will be clear from the following equa-
tions that we will discuss the calculation of the same path
integral as before, but for the black holes, in addition, the
thermodynamic interpretation of the path integral as the
partition function will be available.

The fundamental path integral in quantum gravity is

—ln Z ' = IEucl = S = 4A (121)

i.e. , the Euclidean action is 4 of the area of the hori-

zon. Our investigation of electrically and magnetically

charged dilaton black holes (23) also confirms the rule

(121); the logarithm of the partition function in the clas-

sical approximation is given by the expression

—lnZ" = S = 7r(r+2 —Z') = vr([M+2(r+ —r )] —Z ) .

(122)

Our calculation of the value of the on-shell action re-

quired a careful treatment of all terms in the action,
including the extrinsic curvature term, as was done in

the calculation of the entropy of the Reissner-Nordstrom

black hole in [27].
The calculation of the partition function of one ex-

trerne spherically symmetric dilaton black hole can be

performed, for example, by taking the limit r+ ~ r in

Eq. (122). The result is

Z = d[g]d[O] exp(iI[g, 4]), (115)
Sextr =(1) cl 1 2 2

=~(M'- Z') = 2~]PQ]. (123)

where d[g] is the measure on the space of metrics, d[4]
is the measure on the space of matter fields and I[g, 4]
is the action. We assume that the path integral is well

defined; i.e., an appropriate background invariant gauge-

fixing of all local symmetries is performed. Let gp, 4'p be
extremals of the classical action, i.e. , solutions of clas-

sical equations of motion. One can then represent our

integration variables as

g=gp+g )

4=Cp+C,

and expand the action around this background,

(116)

(117)

I[g, 4 ]
= I[go, 4 0] + Ig [g, 4] + Is [g, 4]+, (118)

where I2 contains terms quadratic in fluctuations, I3 con-

tains terms cubic in fluctuations, etc.
In other words, we are calculating the background

functional by expanding it near the classical extremal

(saddle point):

Rather than taking the limit, we can calculate the ac-

tion for extreme purely magnetic or purely electric black
holes directly, even though the temperature is not well

defined. After we express the volume integral of the La-

grangian as a surface integral, this term is exactly can-

celed by the surface integral of the extrinsic curvature.

This vanishing of the Lagrangian, due to supersymmetry,

confirms the previous result (123) at PQ = 0.
In the extreme case, the force balance condition is sat-

isfied, so we may have multi-black-hole solutions which

are not spherically symmetric. However, we can still cal-

culate the partition function of such a configuration, by
following [28]. Using the equation of motion for the vec-

tor fields, we can write the action, including extrinsic

curvature term, as a single surface integral. Near the
horizon of the rth black hole, the metric, dilaton, and

electromagnetic fields are all dominated by terms involv-

ing only the charges of the rth black hole, so that the
action ends up being just the sum of 4 of the areas of the
individual holes:

ln Z = iI [go, 4'0] + ln d[g]d[4'] exp(i(I2[g, 4] + )). I~„",~, = —lnZ;„'„=2~) ]P„Q„]= n ) (M„—Z„).

lnZ = IEucl = T F (120)

where I = M —TS —P,. p, C, is the free energy and p,
are chemical potentials associated with conserved charges

C, , S being the entropy of the system. Gibbons and

Hawking have calculated the classical action on the black-

hole solution in [1] [the first term in Eq. (119)]and in this

way have established, for all black holes known at that
time, that

(119)

At finite temperature, this path integral in Euclidean

space can also be interpreted as a thermal partition func-

tion with the properties

(124)

Notice that the action I,"„t,of the multi-black-hole con-

figuration is always less than that of the action I,„~,of a(1)

single black hole with total charges P = P"„i ]P„]g 0
and Q = Q„"i ]Q„~g 0:

n n

I~„I,= 2vr(PQ] = 2~) ]P„])]Q, ]
= vr(M —Z ) .

r=1 s=l

(125)

Thus the total area of the horizons of the dilaton multi-

black-hole configuration at a given P and Q is smaller
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Z,"„„=exp
~

—) 4A„~, (126)

than that of one extreme spherically symmetric black
hole. All these solutions with any number of black holes,
but difFerent Euclidean actions, have unbroken N = 1

supersymmetry.
The extreme dilaton multi black holes have a special

solution with only electric or only magnetic charge of each
hole. All these solutions have zero Euclidean action, in-

dependently of the number of holes. This vanishing of
the action is the consequence of the higher unbroken su-

persymmetry, N = 2, as opposite to the ones with mixing
of P and Q, which have only N = 1 supersymmetry un-

broken.

A nonrenormalization theorem can be derived in com-

plete analogy with that in Ref. [3] for the classical ex-

treme Reissner-Nordstrom case.
For the extreme dilaton multi black holes the theorem

can be formulated as follows: The exact partition func-

tion of the extreme dilaton multi black hole is

ground which has some unbroken supersymmetries. In
those backgrounds the dependence on some combinations

of Grassmann coordinates of the superspace vanishes and

the corresponding superinvariants vanish due to the prop-

erties of Berezin integration over the anticommuting vari-

ables. For example, all local gauge-independent countert-

erxns in this background acquire the form

(127)

where 4 is some spinorial superfield [the result of the
action of (4N —1) fermionic derivatives on the superfield

Lagrangian]. The last fermionic derivative, denoted by

D„„b„is chosen to correspond to one of the unbroken

supersymmetries of the background. Using the fact that
the standard definition of the supersymmetry variation
of the superfield is

where A„is the area of the horizon of the rth individ-

ual hole, i.e. , the partition function, calculated in the

semictassical approximation, acquires no quantum cor
rections.

The absence of quantum corrections to the path in-

tegral Z = exp( —
IE&D~[gp, C'p]) (119) takes place under

the following conditions. One should perform the calcu-

lations of the path integral within N = 4 supergravity

or in superstring theory. This means that perturbations
near the extreme dilaton black hole have to include the

graviton, four gravitino, four dilatino, six vectors, a dila-

ton, and an axion. Also an N = 4 vector multiplet may

be included. This means that the matter fields 4 in Eq.
(115) are all fields which are superpartners of the gravi-

ton in the N = 4 supermultiplet, and a matter N = 4
supermultiplet, including a gluon and gluino. There ex-

ists a choice of the representation of the fields in the
N = 4 multiplet which leads to the absence of one-loop
conformal-axial anomalies [4]. Also it is known that the
one-loop anomalies are absent in extended supergravi-

ties for N & 3 in the case that the loop calculations are

performed in terms of N = 1 superfields. Starting from

N = 3 supergravity, the net number of chiral N = 1 mat-

ter and ghost multiplets is zero, and therefore there are
no anomalies. In particular, there is no divergent one-

loop correction to the supersymmetric form of the Euler
number [4].

The proof of the nonrenormalization theorem for the
on-shell ective action (119) consists of the following

steps.

(i) Establishing that in N = 4 supergravity or super-
string theory Z[gp, Op] has to be a locally supersymmetric
functional of supergravity fields for an arbitrary on-shell

background.

(ii) Realizing the property (i) in the form of manifestly

supersymmetric on-shell N = 4 superinvariants, which

are given by the integrals over the superspace.

(iii) Observing that manifestly supersymmetric on-

shell N = 4 superinvariants vanish in a bosonic back-

(128)

we conclude that

D„„b,@(x,8)
~
s=() = 0, (129)

and that the supersymmetric invariant (127) is vanishing

in the bosonic background with an unbroken supersym-

metry.

Thus, the existence of unbroken supersymmetries in

the purely bosonic background means that quantum cor-

rections to the partition function cannot change the semi-

classical value of ln Z if the corrections satisfy generalized

Ward identities following from local supersymmetry, i.e.,

if the theory has no anomalies.

The nonrenormalization theorem was derived above

in the context of the Euclidean action. However, our

derivation of unbroken supersymmetries in Sec. VI was

in the context of a space-time with Lorentzian signature.
One may wonder whether the theorem and the super-

symmetries apply in both signatures. The only previ-

ously known example of absence of quantum supergrav-

ity corrections was in case of super-self-dual instanton

backgrounds [29]. These backgrounds exist only in Eu-
clidean space; the unbroken supersymmetry and corre-

sponding nonrenormalization theorem rely on properties

of Euclidean space-time, where right-handed spinors can
be set to zero while left-handed spinors may be nonvan-

ishing. This does not extend to Lorentzian space-time,
where right and left spinors are complex conjugates of
each other and cannot be set to zero separately. In con-

trast to this, the unbroken supersymmetries for extreme
dilaton black holes exist in both signatures, since in de-

riving the constraints on the parameters of unbroken su-

persymmetry we never used chirality properties specific

to Euclidean signatures.
Therefore our nonrenormalization theorem for ex-

treme dilaton black holes holds for both Euclidean and

Lorentzian signatures.
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VIII. DISCUSSION

The main goal of this paper was to study the relation-
ship between black-hole physics and supersymmetry. We
were especially interested in both electrically and mag-
netically charged dilaton black holes. Such black holes

may appear in supergravity and in string theory. They
interpolate between purely electric and purely magnetic
dilaton black holes, which exhibit very interesting but
somewhat confusing properties discussed by many au-

thors.
We found that supersymmetry indeed provides us with

powerful tools for investigation of black holes. First, we

were able to find a supersymmetric theory which con-

tains electrically and magnetically charged dilaton black
holes. We have shown that the mass of each black hole
satisfies two inequalities, M & ~zi~ and M & ~zz~, where

z, are the central charges of the supersymmetry algebra,
and are related to the electric and magnetic charges as
follows: zi = ~ and zz = ~ . When neither of these

inequalities is saturated (i.e. , when M ) ~zi ~, M ) ~z2~),

supersymmetry is broken; when one is saturated, we have

extreme N = 1 supersymmetric dilaton black holes. The
two inequalities can be saturated only for purely mag-

netic or purely electric extreme black holes, in which case
N = 2 supersymmetry becomes restored.

Thus, with the help of supersymmetry one can justify
the very notion of an extreme black hole as a body which

has a minimal mass for given values of charges. This im-

plies that extreme black holes cannot evaporate by emit-

ting (uncharged) elementary particles. This is consistent
with the vanishing of the Hawking temperature and/or
breakdown of the thermal description for extreme black
holes. It is consistent also with the vanishing of the imag-

inary part of the efFective action in the extreme black-hole

background.
But the most unusual result, which we obtained with

the aid of supersymmetry, is that the higher-order (per-
turbative) quantum supergravity or superstring correc-

tions to the effective action vanish in both Lorentzian

and Euclidean extreme dilaton black-hole backgrounds.

Previously, the only example of such a background (with
Lorentzian signature) was flat Minkowski space. As a
consequence of the Euclidean result, we were able to ob-

tain an exact expression for the entropy of the extreme
dilaton black hole.

This allowed us to describe properties of dilaton black
holes near the extreme limit with greater confidence. We

calculated the temperature, entropy, and specific heat
of dilaton black holes as a function of M, P, and Q.
We have shown that even though the Euclidean action

(entropy) for extreme black hole can be calculated ex-

actly, the usual thermal description of dilaton black holes

breaks down near the extreme limit for all possible values

of P and Q.
Another interesting observation is the relation between

supersymmetry and the cosmic censorship conjecture.
Indeed, the supersymmetric bound on the black-hole

mass ensures that the black-hole singularity is hidden by

the event horizon. It approaches the event horizon only

in the extreme case when N = 2 supersymmetry becomes

restored, which is possible if only one of the charges is

present. It is not clear whether an evaporating black
hole can ever reach its extreme limit (due to breakdown

of the thermal description), but even if it can do so, the
singularity can never appear outside the event horizon.

This means that an outside observer will never see the
singularity.

It is interesting that this relationship between super-

symmetry and the cosmic censorship hypothesis in an

asymptotically flat space-time is valid for all static black-

hole solutions which are known to us. Indeed, this re-

lationship is valid for the ordinary Schwarzschild black

holes, for the Reissner-Nordstrom ones and, as we have

shown in this paper, for a large class of electrically and

magnetically charged dilaton black holes.

We expect that the coincidence of the bounds from su-

persymmetry and cosmic censorship may occur for more

general situations as well. In addition, it is plausible that

any complicated dynamics occurring in an asymptotically
flat space will still respect the positivity conditions ob-

tained from the global extended supersymmetry algebra

and expressed in Eqs. (7). This makes it very tempting
to propose the following super cosmic censorship conjec-
ture.

(1) Supersymmetry does not like naked singularities.

It either hides a singularity under the horizon, or keeps

it at the event horizon, where it still cannot be seen by

an outside observer.

(2) Broken supersymmetry dislikes singularities even

more. When supersymmetry is broken (which is the case

in our Universe), a singularity always remains hidden un-

der the horizon.

At present we are investigating the possibility of
whether this conjecture could be violated when black

holes are not static (for example, when black holes are

rotating), or when the singularity is not of a (multi-)

black-hole type, but, for example, is linear [30]. An in-

vestigation of global supersymmetry in such situations is

much more complicated. In any case, it seems that an

investigation of static black holes is more relevant to the

study of the last stages of gravitational collapse. Indeed,

it is very difficult for us to imagine any physical process

which would lead to creation of a linear singularity; for

example, collapsing cosmic strings typically produce ei-

ther rotating or static black holes. On the other hand,

with an account taken of quantum effects, rotating black

holes usually lose their angular momentum much faster

than their mass and eventually become static. We be-

lieve, therefore, that the coincidence of the bounds from

supersymmetry and cosmic censorship for static black-

hole solutions is most interesting, and so far we have not

found any exceptions to this rule. In particular, we

have verified recently that this rule remains true for the

i'The solution with a naked singularity found in [31] is not

relevant to the discussion of the weak cosmic censorship con-

jecture, since it is a solution which is asymptotically anti de

Sitter, rather than flat.
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dilaton black holes with three independent charges men-

tioned in Sec. III and for the solutions with two electric,
two magnetic, and an axion charge obtained in [32].

Throughout the paper, we have been studying the su-

persymmetry of extreme black holes mainly in the canon-
ical geometry, i.e., with the metric of standard four-

dimensional Einstein theory. It is, however, possible to
address the question: what will happen with unbroken

supersymmetries after a conformal transformation, for

example, to the stringy geometry? We have found a
very nice feature of purely magnetic solutions: the string
sees a geometry which possesses unbroken supersymme-

try with constant spinors. It would be interesting to un-

derstand why the magnetic dilaton black hole is special
in this respect.

Another interesting problem is to establish some rels
tion between our study of dilaton four-dimensional (4D)
dilaton black holes and the recent studies of 2D black
holes. In particular, there is a discussion of whether a
naked singularity can be formed in the process of evolu-

tion of a two-dimensional black hole, see e.g. , [33]. Our
results suggest that if a two-dimensional black hole is ob-

tained as a result of a consistent dimensional reduction of
a four-dimensional supersymmetric theory or superstring

theory, then no naked singularities should appear.
Note that even though we embedded our black-hole so-

lutions in a supersymmetric theory, all our solutions are

purely bosonic. It is possible, therefore, that the positiv-

ity bounds which we obtained are valid for such bosonic
solutions not only in the context of the supersymmetric
theories where they were derived, but in other theories
which have the same bosonic sector. A similar statement
is known to be true in N = 1 supergravity, where it was

shown that the positivity bound on energy in supergrav-

ity implies the positivity of energy in ordinary gravity [17,
18]. As it was formulated by Grisaru [17], it is enough
that Einstein theory "knows" that it can be successfully

coupled to gravitinos.
In this paper we discussed not only single extreme

black holes, but also extreme multi-black-hole solutions.
An important feature of these solutions is that extreme
black holes can be in an equilibrium state due to can-

cellation of Coulomb-like forces between their electric,
magnetic, gravitational, and dilaton charges. The multi

black holes also have unbroken supersymmetry: N = 1

for PQ g 0 and N = 2 for PQ = 0, where P, Q are the
total charges of the multi-black-hole configuration.

The existence of many equilibrium configurations of
black holes with the same total mass and charge, inde-

pendent of the position of each black hole, raises many
interesting questions. Is there any possibility of quantum
tunneling between these degenerate configurations, sim-

ilar to the tunneling between vacua with different topo-
logical charges in QCD? Does this degeneracy mean that
the final result of a charged black-hole evaporation will

be not a single black hole but a quantum superposition of
states corresponding to an arbitrary number of charged
black holes with a given total mass and charge? Is it pos-
sible that at the last stage of the evaporation of a charged
black hole it splits into many smaller black holes' Our
understanding of these problems is rather limited. In or-

der to stimulate their investigation, we will discuss some

relevant issues in Appendix B.
The solutions which we presented depended on only

two charges. It is natural to consider solutions with more

parameters, for example those discussed at the end of
Sec. III. The study of the supersymmetry properties of
those solutions is in progress. Also to be studied in this
context are dual dilaton dyons and rotating black holes

with or without axion. Investigation of these solutions

would give us an extra opportunity to study the rela-

tion between supersymmetry and the cosmic censorship

conjecture.
In fact, our investigations suggest the following chal-

lenge. Is it possible to classify and to find all solutions

of Einstein theory, interucting with matter, iohich are

svpersymmetricP There exists a partial answer to this

problem, given by Tod [22], for N = 2 supergravity. He

has found atl metrics admitting supercovariantly constant

spinors of this theory. Currently, only part of his results

are understood from the point of view of field theory,
where the Einstein and Mmcwell equations together with

their right-hand side are derived from some Lagrangian.

Tod has solved first-order difFerential equations for un-

broken supersymmetry, but only some of his solutions

have been identified with solutions of some covariant La-

grangian theory. For other supersymmetric theories in-

cluding gravity, such a complete analysis has not yet been

performed, though many interesting results are already

known; see, for example, the review on supersymmetric

string solitons in [34], supersymmetric domain walls in

N = 1 supergravity [35], and the results of the present

paper for N = 4 supergravity.
Thus we expect on the basis of Tod's results that a rich

family of covariant Lagrangians and their solutions (not
only asymptotically fiat spaces as studied here) might

have a supersymmetric embedding in the sense explained
in our paper. Those theories will include plane waves,

Israel-Wilson-Perjes metrics, etc. For all of these solu-

tions we may expect that the unbroken supersymmetry
will take quantum gravity corrections under control.
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APPENDIX A: NOTATION AND
CONVENTIONS

abF I abF- I
abt-' = C7 ab

For the spin connections and curvatures we have

(A9)

We use the metric signature (+ ———). The curved in-

dices are denoted by p, v, . . . = 0, . . . , 3 and the flat ones

by a, b, . . . . If restricted to space, we use i, j, . . . = 1, 2, 3
for both types of indices. From the context it is usually
clear which type they represent, e.g. , on derivatives 0
the indices are curved, while on p matrices tl.ey are flat.
Where confusion can arise, we use 0 or i to indicate that
indices are curved ones.

We define

R = —R„„g"". (A10)

This implies that

d zg gR =——Q—g (R„v+ ~ g„vR) (A11)

ab 2ev[aB e b] eapeb~e 0 ec
p

=
fp, v] pc [p u])

Rpv(ld) = 28[pldvj + 2Ld~ ldv

p ab
+p,v = ea ep,b+vp

&pvpn g g ep ev ep en &abed
a b c d

0123
0123 The covariant derivative on spinors is

'V„e= (8„—,'~„"—o.b) c . (A12)
where the former implies that the latter is true for fiat
as as well for curved indices. For spherical coordinates
we have t."e~ = i. The dual of an antisymmetric tensor
is defined as

*Fab 1 &abed Fcd (A2)

We introduce the self-dual and anti-self-dual tensors

F.+, = —,
' (F.5 +*F.b) . (A3)

If we write antisymmetric tensors as forms, there is the
correspondence

F = 2'F„„dx"A dx (A4)

Antisymmetrization is done with weight one: [ab] =
2 (ab —ba). A centered dot is used to indicate that deriva-

tives do not act further to the right. Without such a
symbol all 8 operations are assumed to act on all fields

to the right in the same terms, unless it is enclosed in

brackets.
The p and o matrices are defined by

4 Yb
— Iab + 2&ah &

'Y5 —&'7Q I'1/2/3 ~ (A5)

which implies that zc
' o,d = —p o' . The matrices p,

and p5 are Hermitian, while p0 is anti-Hermitian.
For the spinors, we use a chiral notation, where the

ehirality is indicated by the position of the I, J [SO(4)]
index, or 6 after the redefinitions (108). Which posi-

tion corresponds to which chirality is not the same for all

spinors. We have

e„'= —,'(1+~5)e„',e„i= -', (1 —~5)e„i,

t = 2(1 + f5)E, fl = &(1 —Q5)61,

AI = z'(1 —p5)AI ) AI = ~~(1+/5)AI .

The conjugates for any spinor y are

&' = —i(xi)'vo = (x') ~

where C is the charge conjugation matrix

(A6)

(A7)

C = —C, Cp C
—1 T

(A8)

such that, e.g. , elp5 ——el. In chiral notation the an-

tisymmetric tensors are often automatically (anti)self-

dual. For example,

For the translation from [19,20] (the notation is in the
first article) we replaced their p by ip and p5 gets a
minus sign. We replace their e~"P by —is~"P . For the
spinors, their @„becomes~4„and5 becomes v 2e, and

we changed the sign of A.
For translation from [24] we changed the metric, thus

g„„getsa minus sign, at any implicit appearance, e.g. ,
in 8". The vierbein ec is unchanged, but then, e.g. , e„
gets a minus sign. Note that with the translation given

above, u is the same as in [24] which is opposite to the
conventions of [36]. But we define R&„and R such that
they are the same [the minus sign in the last equation in

(A10) is thus due to the metric].

APPENDIX B: SPLITTING OF EXTREME
BLACK HOLES

A very interesting situation appears when we consider
multi-black-hole solutions. As we already noted, they de-

scribe an equilibrium configuration of black holes which

have the same mass and total charge independent of the

position of each individual black hole. Let us now try to
understand the behavior of such a configuration at the

quantum level. One may expect that quantum fluctua-

tions of the metric, as well as those of the dilaton and vec-

tor fields, may lead to quantum jumps of the positions of
black holes. In a normal situation, when the total energy

of a system depends on the positions of its constituents,
this would lead to some change EE of the energy of the

system which would violate energy conservation. Such

a system then returns to its original state within a time

(AE), in accordance with the uncertainty principle.

However, in our case LE = 0 for any change of the ex-

treme black hole configuration. This suggests that ex-

trerne black holes behave as Brownian particles at a flat

surface. If originally they are localized in some place,

later on the distance between them grows and eventually

become indefinitely large. This behavior has a simple

quantum mechanical interpretation as a spreading of the

wave packet describing several noninteracting particles.

Now we can make a second step and ask the question:

what will happen if an extreme black hole splits quantum

mechanically into two extreme black holes of the same

total mass and charge? This process is not forbidden by
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energy and charge conservation. Usually, it is forbidden

by the second law of black-hole physics, since in such a
process the total area of the horizons of the black holes

(and the total entropy) would decrease. However, the
thermodynamic interpretation of the law suggests that
this process may be possible due to fluctuations of the
entropy 6S ( 0, even though the probability of such
fluctuations will be exponentially suppressed. Moreover,
as distinct from the ordinary Reissner-Nordstrom black
holes, the area of the horizon (and the entropy) of purely
magnetic and purely electric extreme ditaton black holes

vanishes. Thus, the second law of black-hole physics does
not forbid their splitting.

To obtain an intuitive (though, admittedly, vague) un-

derstanding of the process of splitting, let us consider

a purely electric or magnetic dilaton black hole near its
horizon. The horizon is singular (for the moment, we

will not consider the stringy version of a magnetic black

hole), and the black hole can be completely described

by a conformastatic metric (36), with the singularity at
x = 0. Since the area of the horizon vanishes, one may
imagine that quantum fiuctuations of the metric on the
Planck scale can easily split the singularity into two, i.e.,

we will get a conformastatic metric with two black holes

very close to each other. (After all, we cannot actually
interpret processes at the Planck scale in terms of classi-

cal space time with a fixed number of classical singulari-

ties. ) In a normal situation, such an event would not have

any interesting consequences, since the baby black hole

would immediately recombine with its parent. However,

extreme black holes described by the conformastatic solu-

tion (36), (43) do not attract each other. If our picture of
Brownian motion of extreme black holes is correct, then
the average distance between the baby black holes and
their parent can only grow. This is very similar to the
standard picture of black-hole evaporation: If the black
hole is not surrounded by ultrarelativistic particles with

a large temperature, the particles emitted by the black
hole move away and its mass decreases. Similarly, if the
Universe is not filled by a dense gas of black holes, then

I

I' exp &
—vr —) M„' (B1)

One can easily see that the probability of splitting of large

black holes is exponentially suppressed. However, this

suppression may be not very strong for small black holes

with masses of the order of the Planck mass M~ = 1.
An s,nalogous expression for dilaton black holes, which

follows from Eqs. (124) and (125) in Sec. VII, is

the new black holes, produced by the black-hole split-

ting, typically will move away due to Brownian motion.

Perhaps a more adequate way to say it is to remember

that splitting of the black hole (which changes the num-

ber of singularities) occurs without any energy release.

Thus, the products of splitting have vanishing relative

momenta, which means that the distances between them

become indefinitely large. In this sense, the theory of the

black-hole splitting resembles the theory of baby Universe

formation, where the baby Universe is produced with

vanishing energy and momenta, hence the place where

it is created cannot be localized. Another useful analogy

is the tunneling between difFerent vacua in /CD which

have the same energy but are characterized by different

topological numbers.

In a more general case, when the black hole has both

electric and magnetic charges, its singularity is hidden

under the horizon. Then the transition between one

black hole, with one singularity, and two black holes,

with two singularities separated by their two horizons,

is discontinuous. This is why we expect the probability

of such processes to be exponentially suppressed. To get

an estimate of the probability of splitting, one may use

standard thermodynamic arguments, which suggest that
it should be proportional to exp(ES), where ES is the

change of entropy [28j.~2 If this interpretation is correct,

one may expect that the probability of splitting of one

Reissner-Nordstrom black hole into many, with a total

mass M = P„M„,is given by

I' exp &
n. —) M„

I

— ) Z„
)

—) (M„'-Z„')

= exp 2~ ) .I&.l ):IQ. I

—).I&.q. l

s r )
= exp (B2)

This expression, unlike Eq. (Bl), shows that there is no
exponential suppression of splitting of purely electric or
purely magnetic dilaton black holes. This agrees with
our qualitative discussion of quantum fluctuations and
Brownian motion of extreme black holes. It would be
very desirable to confirm (or disprove) the validity of Eqs.
(Bl) and (B2) by finding an explicit instanton solution

which is responsible for the black-hole splitting. It may

well happen that the suppression of splitting is given by a

' This argument was used in [28] applied to splitting of
Bertotti-Robinson Universes, which have the same geometry
as the geometry near the horizon of the Reissner-Nordstrom
black hole. It is interesting that this simple argument some-

times gives correct results even in some situations where the
description of tunneling in terms of instantons is ambiguous;
for example, it gives a correct expression for the probability of
tunneling in an inflationary Universe, in terms of the entropy
of de Sitter space.
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more complicated expression than exp(b, S), especially in

the situation where the thermal description of black holes

breaks down. However, at this stage it would be most

important to understand whether this probability is finite

at all. If this is the case (and at least for purely electric
black holes it seems to be a reasonable possibility), then
the physics of black holes may prove to be even more

interesting than we thought.
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