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Supersymmetric higher derivative gravities define superconformal field theories via the AdS/CFT

correspondence. From the boundary theory viewpoint, supersymmetry implies a relation between the

coefficients which determine the three point function of the stress energy tensor which can be tested in the

dual gravitational theory. We use this relation to formulate a necessary condition for the supersymmet-

rization of higher derivative gravitational terms. We then show that terms quadratic in the Riemann tensor

do not present obstruction to supersymmetrization, while generic higher order terms do. For technical

reasons, we restrict the discussion to seven dimensions where the obstruction to supersymmetrization can

be formulated in terms of the coefficients of Weyl anomaly, which can be computed holographically.

DOI: 10.1103/PhysRevD.82.066001 PACS numbers: 11.25.Tq, 11.30.Pb

Higher derivative terms in gravity naturally arise in the
low energy limit of string theories. It is interesting to
investigate the role these terms play in the AdS/CFT
correspondence [1–3]. Common lore states that these terms
encode corrections due to deviation from the large N or
infinite coupling limit in the boundary theory. In fact,
higher derivative terms are necessary if one wants to study
the holographic duals of four-dimensional CFTs with dif-
ferent a and c central charges of the conformal algebra.

Once these higher derivative terms are introduced, a
natural question is whether the gravity theory can be
made supersymmetric. An affirmative answer presumably
implies that the dual boundary theory is superconformal.
The two and three point functions of the stress energy
tensor of conformal field theories in d > 3 dimensions
are completely specified by the three coefficients A, B,
C. The superconformal Ward identity further reduces the
number of independent coefficients to two; the explicit
form of the constraint in four dimensions has been worked
out in [4]. In six dimensions the form of the constraint has
been determined in [5], and it is not hard to generalize this
to arbitrary dimensions. The three point functions of the
stress energy tensor are related to graviton scattering am-
plitudes in AdS. (These on-shell amplitudes, and conse-
quently, the results of this paper, are unaffected by the field
redefinitions in the bulk.) One should therefore be able to
test whether there is an obstacle to making a given gravity
theory supersymmetric by computing these scattering am-
plitudes and checking whether the constraint is satisfied.1

For technical reasons, we consider gravities in seven
dimensions which are dual to the six-dimensional CFTs.
This is because the latter have a peculiar property; the three
coefficients in front of the B-type terms in the Weyl anom-
aly, which we denote by bn, n ¼ 1; . . . ; 3, are linearly
related toA,B, C. Hence, supersymmetry implies a linear

relation between bn. More precisely, consider the Weyl
anomaly in the form

AW ¼ E6 þ
X3
n

bnIn þriJi; (1)

where E6 is the Euler density in six dimensions, In, n ¼
1; . . . 3 are three independent conformal invariants com-
posed out of theWeyl tensor and its derivatives, and the last
term is a total derivative of a covariant expression. The free
field theory result for the B-type part of the Weyl anomaly
is [6]

b1 ¼ 28

3
ns þ 896

3
nf þ 8008

3
na;

b2 ¼ 5

3
ns � 32nf � 2378

3
na;

b3 ¼ 2ns þ 40nf þ 180na;

(2)

where ns, na, nf are the numbers of scalar fields, antisym-

metric two-forms, and Dirac fermions in six dimensions. In
terms of free fields, the supersymmetry condition can be
written as

6na þ ns � 8nf ¼ 0: (3)

This defines a plane in the ðna; ns; nfÞ space which passes

through the origin (na ¼ 0, ns ¼ 8, nf ¼ 1) and the point

(na ¼ 1, ns ¼ 10, nf ¼ 2). The former corresponds to a

free scalar superfield in six dimensions, while the latter
to two (2, 0) multiplets. Since the relations between
ðna; ns; nfÞ, ðA;B; CÞ, and ðb1; b2; b3Þ are linear, Eq. (3)

allows one to determine the explicit form of the constraint
that supersymmetry imposes on bn. The result is

b1 � 2b2 þ 6b3 ¼ 0: (4)

In the following we are going to check if this constraint is
satisfied to leading order in the coefficients in front of the
higher derivative terms in the gravitational Lagrangian.

1It would be interesting to generalize this to include other
fields, but we leave this for future work.

PHYSICAL REVIEW D 82, 066001 (2010)

1550-7998=2010=82(6)=066001(4) 066001-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.066001


Consider the following action with negative cosmologi-
cal constant:

S ¼
Z ffiffiffiffiffiffiffi�g

p
L ¼

Z ffiffiffiffiffiffiffi�g
p �

Rþ 30

L2
þX

i

Li

�
;

Li ¼
X
j

aijLij:
(5)

In (5) Li stand for all possible OðRiÞ higher derivative
terms, while Lij denotes all possible contractions of the

Riemann tensors which areOðRiÞ. An AdS space of length
LþOðaijÞ is a solution of the equations of motion. The

explicit expressions for the higher derivative terms L2 and
L3 are

L2 ¼ a21R
2
MNPQ þ a22R

2
MN þ a23R

2;

L3 ¼ a31R
IJKLRKLMNR

MN
IJ þ a32R

IJ
KMR

KL
JNR

MN
IL

þ a33R
IJKLRKLJMR

M
I þ a34RR

2
IJKL

þ a35R
IKJLRJIRLK þ a36R

IJRJKR
K
I

þ a37RR
2
IJ þ a38R

3: (6)

We will also consider an OðR4Þ term of the type

L 4 ¼ a41R
IJKLRKLMNR

MNPQRPQIJ þ . . . : (7)

In the following we will compute the leading corrections to
the bn from all terms in (6) and (7). The leading (Einstein-

Hilbert) result, bð0Þ1 ¼ �1680, bð0Þ2 ¼ �420, bð0Þ3 ¼ 140
[7,8], satisfies (4). Each term in (6) and (7) is going to
give rise to

bn ¼ bð0Þn þ aij ~b
ðijÞ
n þOða2ijÞ; n ¼ 1; . . . ; 3: (8)

Let us introduce

BðijÞ ¼ ~bðijÞ1 � 2~bðijÞ2 þ 6~bðijÞ3 : (9)

The condition X
ij

aijB
ðijÞ � 0 (10)

implies that there is an obstruction to the supersymmetri-
zation of the corresponding term in higher derivative
gravity.

To compute ~bðijÞ we will make use of the prescription
developed in [7,8]. In practice, we will mostly follow [5].
Consider the Einstein-Hilbert action with negative cosmo-
logical constant, aij ¼ 0, and the following ansatz for the

metric

ds2 ¼ L2

�
1

4�2
d�2 þ 1

�
g��dx

�dx�
�
; (11)

where

g�� ¼ gð0Þ�� þ �gð1Þ�� þ �2gð2Þ�� þ �3gð3Þ�� þOð�3 log�Þ
(12)

is an expansion in powers of the radial coordinate �. One
can now solve the Einstein equations of motion order by

order in the � expansion and determine gðpÞ��, p ¼ 1; . . . in

terms of gð0Þ��. The resulting expansion (12) is then sub-
stituted back into the Einstein-Hilbert action density and
the coefficient of the 1=� term encodes the anomaly in
Einstein-Hilbert gravity. To compute the OðaijÞ correction
to the anomaly it is sufficient to evaluate the

ffiffiffiffiffiffiffiffiffi
detg

p
Lij term

on the solutions of the Einstein equations of motion and
extract the 1=� term. This is because the OðaijÞ contribu-
tion from the Einstein-Hilbert Lagrangian due to theOðaijÞ
change in the solution (12) is proportional to the equations
of motion and vanishes on shell.2 In other words, we are
going to compute

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgð0Þ

q
AðijÞ

W ¼ ½ ffiffiffiffiffiffiffi
det

p
LijðgijÞ�1=�

¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgð0Þ

q
AðijÞ

W �gð0;1;2Þ þ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgð0Þ

q
AðijÞ

W �gð3Þ ;
(13)

where ½. . .�1=� means that we are extracting the 1=� coef-

ficient from the expression in the square brackets. In (13)
Lij is evaluated on the solution (12) of Einstein equations

of motion; for technical reasons it is convenient to separate

the contributions from gð0;1;2Þ and gð3Þ. In particular, the
former piece

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgð0Þ

q
AðijÞ

W �gð0;1;2Þ
¼ ½ ffiffiffiffiffiffiffiffiffi

detg
p

Lijðg ¼ gð0Þ þ �gð1Þ þ �2gð2ÞÞ�1=� (14)

is evaluated on the metric truncated to theOð�2Þ. As in [5]
we take the boundary metric to be of the form

g��dx
�dx� ¼ fðx3; x4Þ½ðdx1Þ2þðdx2Þ2�þX6

i¼3

ðdxiÞ2 (15)

and use MATHEMATICA to determine gð1Þ,

gð1Þ�� ¼ � 1

4

�
R�� � 1

10
Rgð0Þ��

�
; (16)

and gð2Þ (which is slightly more complicated, so we do not
quote it here). In Eq. (16) R�� is the curvature tensor of the

metric gð0Þ. This way we completely determine (14).

Unlike [5], we also need an expression for gð3Þ which
contributes to the OðaijÞ term in the anomaly. This is

because we used the equations of motion to eliminate the
correction coming from the Einstein-Hilbert Lagrangian.

It is easier to find gð1Þ and gð2Þ rather than gð3Þ because the
Oð�3 log�Þ in (12) contributes to the equations of motion

at this order. Fortunately, the contribution to ~bij due to g
ð3Þ

2A similar approach was used in [9] in the context of OðR2Þ
corrections to Einstein gravity in AdS5.
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comes in a very simple form. Namely, the term in the

anomaly (13) due to gð3Þ is given by

½AðijÞ
W �gð3Þ ¼ cij Tr½ðgð0ÞÞ�1gð3Þ�; (17)

where cij are easily found to be

c21 ¼ 9; c22 ¼ 27; c23 ¼ 189; (18)

c31 ¼ �6; c32 ¼ 6; c33 ¼ 18; c34 ¼ �126;

c35 ¼ c36 ¼ �54; c37 ¼ �378; c38 ¼ �2646;

(19)

and c41 ¼ �12. To compute Tr½ðgð0ÞÞ�1gð3Þ� one can use
equations of motion of Einstein-Hilbert gravity. They have
been written down in a convenient form in [7]; we only
need the last line of Eq. (7) in [7]:

Tr ½g�1g00� ¼ 1
2 Tr½g�1g0g�1g0�: (20)

Here g is the metric (12) and prime denotes differentiation
with respect to �. Substituting the expansion (12) into (20)
one can use the Oð�Þ term in the resulting expression
to write

Tr½ðgð0ÞÞ�1gð3Þ�¼ 1
6ð4Tr½ðgð0ÞÞ�1gð1Þðgð0ÞÞ�1gð1Þ�
�Tr½ðgð0ÞÞ�1gð1Þðgð0ÞÞ�1gð1Þðgð0ÞÞ�1gð1Þ�Þ:

(21)

Together with (18) and (19) and the solution for gð1Þ, gð2Þ,
Eq. (21) allows us to compute (17). Combining this
with (14), we obtain an expression for the Weyl anomaly.
We then demand that the coefficient in front of every term
in the expression

A ðijÞ
W � X3

n¼1

~bðijÞn In �
X7
n¼1

cðijÞn Cn ¼ 0 (22)

vanishes. In Eq. (22) the In are the B-type anomaly terms
composed out of the Weyl tensor, and Cn are the total
derivative terms. Both can be found in Appendix A of

[6]. This completely fixes ~bn and cn. The results are
summarized below (we omit an overall coefficient com-

mon to all ~bðijÞn ).

~bð21Þ1 ¼ 5

96
; ~bð21Þ2 ¼ 37

384
; ~bð21Þ3 ¼ 3

128
B21 ¼ 0;

~bð22Þ1 ¼ 21

32
; ~bð22Þ2 ¼ 21

128
; ~bð22Þ3 ¼� 7

128
Bð22Þ ¼ 0;

~bð23Þ1 ¼ 147

32
; ~bð23Þ2 ¼ 147

128
; ~bð23Þ3 ¼� 49

128
Bð23Þ ¼ 0:

(23)

Thus all OðR2Þ terms have vanishing B. The results for the
OðR3Þ terms are

~bð31Þ1 ¼ 9

16
; ~bð31Þ2 ¼ 9

64
; ~bð31Þ3 ¼ � 41

192
Bð31Þ ¼ �1;

~bð32Þ1 ¼ 23

16
; ~bð32Þ2 ¼ 7

64
; ~bð32Þ3 ¼ � 31

192
Bð32Þ ¼ 1

4
;

~bð33Þ1 ¼ 5

16
; ~bð33Þ2 ¼ 37

64
; ~bð33Þ3 ¼ 9

64
Bð33Þ ¼ 0;

~bð34Þ1 ¼ � 35

16
; ~bð34Þ2 ¼ � 259

64
; ~bð34Þ3 ¼ � 63

64
Bð34Þ ¼ 0;

~bð35Þ1 ¼ � 63

16
; ~bð35Þ2 ¼ � 63

64
; ~bð35Þ3 ¼ � 21

64
Bð35Þ ¼ 0; ~bð35Þn ¼ ~bð36Þn ;

~bð37Þ1 ¼ � 441

16
; ~bð37Þ2 ¼ � 441

16
; ~bð37Þ3 ¼ 147

64
Bð37Þ ¼ 0;

~bð38Þ1 ¼ � 3087

16
; ~bð38Þ2 ¼ � 3087

16
; ~bð38Þ3 ¼ 1029

64
Bð38Þ ¼ 0: (24)

Finally,

~bð41Þ1 ¼�25

8
; ~bð41Þ2 ¼�89

32
; ~bð41Þ3 ¼ 89

96
Bð41Þ ¼ 8:

(25)

Let us discuss these results. Apparently, there is no ob-
struction to supersymmetrizing OðR2Þ terms, at least at
the linear level. This is consistent with the results of [5]
where the supersymmetric constraint for the Gauss-Bonnet

term has been shown to hold. It seems that this statement

might be dimension independent (the analogous quantity

has been shown to vanish in any dimensions [10]; see

also [11]).
The situation with cubic terms is more interesting.

Apparently a generic term cubic in the Riemann tensor

cannot be supersymmetrized. This is consistent with the

fact that such terms do not appear in superstring amplitudes

[12]. Note that it is possible to take a linear combination of
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the OðR3Þ terms to engineer B ¼ 0. In fact, according
to the recent results of [13] the cubic Lovelock term
(Euler density in six dimensions) is precisely of this type
which implies that there is no obstruction to supersymme-
trizing this term. Note that the Lovelock term vanishes
upon dimensional reduction to four dimensions, which is
consistent with the expectations that OðR3Þ terms cannot
be supersymmetrized there. It is also interesting to
observe that the generic OðR4Þ term contributes to the
anomaly, and hence to the three point function of the stress
energy tensor. This contribution leads to a nonvanishing
value of B.

To summarize, we formulated the necessary condition
for supersymmetry in CFTs dual to higher derivative grav-

ities. Nonvanishing B defined by (9) implies that the
boundary theory is not superconformal. This can be used
to check whether the relevant term in higher derivative
gravity can be supersymmetrized or not. In particular,
we found that B ¼ 0 for all terms of OðR2Þ but is generi-
cally nonvanishing for the OðR3Þ and OðR4Þ terms.
We did not investigate OðR5Þ and higher derivative terms
but see no reason why they would generically lead to
vanishing B.

We thank L. Rastelli, M. Rocek, W. Siegel, and M.
Taylor for useful discussions. We also thank J. de Boer
for collaboration on related projects. The work of M.K.
was partly supported by a NWO Spinoza grant.
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