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in two dimensions.

superalgebra are investigated in detail. As example we study the Wess—Zumino model

theory. The role of the euclidean Lie superalgebra and its relation to the Poincaré Lie

Supersymmetry is formulated within a functional approach of euclidean quantum Eeld
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symmetric tensors and for e = -1 the algebra of antisymmetric tensors (Grassmann OCR Output

bosonic or fermionic fields, S = SB sn SF, and A€(’l) denotes for e = +1 the algebra of
phic to A"”(SB) 0 ,{_(SF). Here SB and SF are the basic test function spaces for the

The factor algebra A(S) = T/J is a H., graded algebra or superalgebra which is isomor

antisymmetric) of the Schwinger functions yield an ideal J of equivalent test functions.

a space S = S(|R) 0 C. The symmetry properties (either totally symmetric or totally
dN

functions is then a linear functional on the free tensor algebra T(S) of test functions of

Wightman functional of Borchers [2]. The generating functional of all Schwinger

which goes back to Osterwalder and Schrader [34] in a formulation related to the

operators or with stochastic fields for ferrnions we use the functional point of view

the same techniques of tensor algebras. To avoid all problems with euclidean field

incorporates the euclidean Lie superalgebra and which treats bosons and fermions with

In this paper we present a general definition of euclidean supersymmetry which

representation in euclidean quantum field theory is not clarified in the literature [29].

has been studied e.g. in [27,28]. The significance of this algebra and the type of its

these approaches do not incorporate the role of the euclidean Lie superalgebra which

euclidean supertields can be found in the lectures of Jaffe and Lesniewski [19]. But

Nicolai [32], and a functional version of this model in two dimensions based on

formulation of the Wess—Zumino (WZ) model in four dimensions has been given by

functional integration the euclidean approach is more adequate. A euclidean

nal or with a Berezin type of integration, see e.g. [14,37]. On the other hand for

Green’s functions in a Schwinger—Symanzik type formalism of the generating functio

perturbation expansion with supersymmetric Ward identities for the time ordered

cal state space, see e.g. [37,40,43,46]. These prerequesites are sufficient to derive a

fields) and on a (formal) representation of the Poincaré Lie superalgebra on the physi

based on the supersymmetry of a classical Lagrangean (with anticommuting fermi

Supersymmetry of a relativistic quantum field theoretical model is usually

OCR Output1. Introduction
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representation of the Lie superalgebra. The corresponding Schwinger functions cannot OCR Output

Also in our approach the auxiliary degrees of freedom are necessary for a simple linear

Supersymmetry is easier formulated with auxiliary bosonic degrees of freedom.

ensures supersymmetry of the reconstructed minkowskian theory.

ticity with respect to the OS form singles out the real Poincaré Lie superalgebra and

serious difficulties which can be overcome only by modifying the algebra [29]. Hermi

bra. All efforts to impose a reality/hermiticity condition on the representation leads to

dean Lie superalgebra is continuous in the nuclear topology of the test function alg¢+

F 6 A(S) and all superderivations DT, L 6 E`. The representation of the complex eucli

generating functional S is supersymmetric if <S|DT_F> = 0 for all test functions

of that Lie superalgebra on the whole algebra of test functions .4(S). A theory with

space S. The corresponding superderivations Dr, L e é", provide then a representation

Lie superalgebra 6" is represented by differential operators L on the basic test function

includes the real Lie algebra of the euclidean transformations. The complex euclidean

symmetry starts with a discussion of the complex euclidean Lie superalgebra which

and supersymmetry are formulated for these functionals. The investigation of super

Schwinger functions. Then Osterwalder-Schrader (OS) positivity, euclidean invariance

the restriction to A", the space of all tensors of rank n, exactly yields the n—point

linear functional S on the test function algebra A(S): F 6 .l(S) -•<S | F> E C, such that

In Sect. 3 the generating functional of all Schwinger functions is presented as

algebras) which are not adequate for our construction.

either too general or it elaborates on superspaces (mainly based on Grassmann

superalgebra of test functions in some detail in Sect. 2,, because the cited literature is

42,44] is not nearly complete. Nevertheless we shall present the mathematics of the

(superalgebras), graded manifolds and superanalysis, the list [4,7,15,20,%,38,39,41,

algebra) of the space 'l. There is an abundand literature about graded algebras
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sion, OCR Output

formal euclidean lagrangean of this model is, see [47,5,31] for the minkowskian ver

In Sect. 4 we study as example the neutral WZ model in d = 2 dimensions. The

agreement with the operator construction in [32].

aa6the adjoint Majorana spinor %(x) by E Gg 1pH(x) as in the minkowskian case and in

(m —3)—*(x,y). In writing formal euclidean lagrangeans we may therefore substitute

<vac| ¢»·d:|vac>, is given by S(x,y)C with S(x,y) = m — E 7 8 (x,y)[] u'=]_ P N
d -1

Schwinger function of the free Majorana field operator, i.e. the analytic continuation of

uVVuW
for all hermitean Dirac matrices yu, jr: 1,...,d, ·y·y+·y·y= 26. The two point

o* =-c and oy,,o= (1.1)T F

the conditions

dimensions a real unitary charge conjugation matrix C can be dehned which satisfies

dimensions, i.e. exactly when minkowskian Majorana spinors exist [25]. For these

Schwinger functions of massive Majorana fermions can be defined for d = 2,3,4 mod 8

tors or with fermionic stochastic fields [10,24]. The generating functional for the

purely functional point of view which avoids the problems with euclidean field opera

mainly based on the construction of field operators [10,32,3]. Here we shall follow a

In the literature the euclidean quantum field theory for Majorana spinors is

auxiliary fields as was done by Nicolai [32].

minkowskian theory. There is no need to modify the theory by introducing imaginary

pear in the nontrivial kernel of the OS form if one goes over to the reconstructed

be derived from a nonnegative bosonic measure. But all "unphysical" features disap
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of euclidean functionals for Majorana fermions. OCR Output

charged ones. Appendix C presents some formulas which are needed for the calculation

laid on a construction to derive the functionals for neutral particles from those of the

spin—0 or spin——; particles including the problem of OS positivity. Some emphasis is

Appendix B we discuss the two point Schwinger functions of free charged or neutral

In Appendix A we give some norm estimates for the algebra of test functions. In

of the WZ model.

a type investigated by Jaffe et al. [17] and by Arai [1] in their hamiltonian solution

eliminated, and finally the generating functional is transferred to functional integrals of

perturbation theory. Moreover we indicate how the auxiliary degrees of freedom can be

spinor. Our formalism is used to study supersymmetry of the free WZ model and of

Here A and B are bosonic fields and ¢(x) is a two component anticommuting Majorana

(1.3)Lim = »\A‘(x)B(x) — A1/:*(x) C ¢(x) A(x).

—5<A<»=>.B<x>> m _13,.+ , ¢ (X) c on —»v>¢<»>. um
A m A x l T T[ ] []]]

fm., = - i A(¤=) A Mx) - A B(¤=) + ¤¤ A(¤¤) B(¤<) -·i ¢(¤¤) C (¤¤ -9) 1/(X)2 T

E = [free + [mv

- 4



pit) (_p). OCR Outputdistributions S’(E) = 1

the projective limit topology, see e.g. [11]. The antidual space is the space of tempered

pp=0Hilbert—Schmidt operator W—* the intersection = fl 1() is a nuclear space in

P Pwith respect to the pairing (2.1). Since the embedding 1(+1) c 1() is given by the
( P (p ) ( P)P (_p)The spaces 1) are ordered by inclusion 1+1c 1, and 1( ) is antidual to ’l

pp psatisfy ||f||5 ||f||+1. We denote by 1() = W"P’l the closure of 8 with the norm ||f\|

Schmidt operator on 1. Then ||f||“ = ||WPf]|, p 6 H is a family of norms on 6`(E) which

white noise calculus [13]. This operator satisfies W 3 f;-and W_* is a HilbertgQ

. with x = E x and A = E JE . This operator has been extensively used in
2 d 2

(2.2)Wf(a,x) = (1 + x‘ -· A) f(a,x)

dened with the differential operator of the shifted harmonic oszillator

x E Ru and summation over or 6 Ql. The norm is denoted by Finer topologies can be

where { = (a,x) E E, and the measure d§ includes Lebesgue integration with respect to

(fls) = ITG) s(£) dé = 2 I ¥(¤.><) s(¤=»¤¤) dx (2-1)

a dense subspace of the Hilbert space 'l = £‘(E) with the inner product

is now the complex linear space 6`(E) of rapidly decreasing C`”—functions. This space is

inite set with |2l| elements which label spin and field indices. The basic function space

Test functions and Schwinger functions are defined on E = Q1 ¤ Il“ where *21 is a

2.1. Algebras of Test Functions

concerning the topological structure, [13].

functions, its topology and its dual algebra. The main references are [4,41] and,

In this section we introduce the basic H., graded algebra (superalgebra) of test

2. Graded Algebras
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fermionic arguments, N', = # {(i,j)|i < j, a(i) > a·(j), a6 21,, a6 21,}. OCR Outputgo) gu)

with the sign function X”(a,...,a) = (-1) ° where NH counts the inversions of
1n

pn m,..., g) = 2 XU(¤,..., a) r(g,..., g) (2.5)l n1 u”(1) "(”)

can be imposed on £2(Eu) by
totally antisymmetric in the fermionic arguments { 6 E,. This type of mixed symmetry

The Schwinger functions are totally symmetric in the bosonic arguments { G 5,, and

(F·G)(§ ,..., :> = F(: ...., :>¤(:...., e> (2.4)
1 1 1 ‘“*““‘“‘+ ’“+“

and G 6 'lou is the numerical multiplication

The tensor space 1011 is identified with £2(E°). The tensor product of F 6 Iam

. (pi (-p>
1 d 1 °“

yields a bilinear symmetric form <f|g> = (f |g) on 1, which is the duality pairing of

nuous antilinear involution of the test function spaces 3,; , k = 0,1. This involution

is an antiunitary involution on 1 which preserves the parity. Moreover it is a conti

(2-3)f (0 = f(E )
* LY"

ponding transform on E. Then

subsets 21k, i.e. 21k = 21k, k = 0,1, we denote by § = (a,x) -•§= (a,x) the corres
* *

For any involutive mapping a-+ a , a = cz, on 21 which does not mix the
ir **

E ;.1r(f), x(f) = k if f 6 1,;. The respective test function spaces are S= S 0 1

Here and in the following k+1 is defined mod 2. The parity of a vector f is denoted by

21k_,_,.functions f(a,x) which vanish on the complement of 21,, i.e. f(a,x) = 0 if or 6

sets 210 and 21,, 21,, n 21, = G. The subspaces 1,; C 1 of parity k = 0,1 are generated by

To define a H., gradation the index set 21 = 210 U 21, is split into nonempty sub



normalizations (2.6) and (2.7) yield the following identify for the norm OCR Output

by F(§,...,§) = F(§,...,§) which satisfies the usual rule (F o G)= Gc F. The
*1nuI * * *

Y(antiunitary) involution on the algebras .4(S) and ,4('l) and on the Fock space T(,)('l)
Ythis norm is the Fock space }'(,)('l). The involution (2.3) on 1 is extended to an

RO
if F = EFu, Fu e .4n('l) and \]F“|\ being the £2(Eu) norm. The closure of A('l) with

u=O
IIFII 7 = E (¤!)||F,.|| (2-7)2 °° 1 2 °`

denote by On the algebra ,l('l) we define a family of norms, indexed by 7 G IR,

A natural norm on In and consequently on A“('l) is the £2(E.n) norm which we

such that we can define the superalgebra .l(.$`) of test functions in the same way.

All definitions (2.4) — (2.6) can be applied to test functions F 6 6`(E) C LZ(E)
u2u

py.tative superalgebra F o G = (—1)T(F)T(G)G o F for tensors with dehned arit
antisymmetric tensors of 'IT. The graded tensor product satisfies the rule of a commu

where A"`('ln) is the algebra of symmetric tensors of 1n and I` (11-) is the algebra of

H.,—graded algebra or superalgebra [26,41] which is isomorphic to A1-(16), I- (11-)
11=O

nwhich is an element of Am+(’l). The algebraic sum ,·f(“l) = 6 An('l) is then a

(2.6)}1·*¤G=&%§%)1>m+¤Fec;

G 6 A“('l) is defined as

i=l
E a‘ if k mod 2 and arbitrary x6 Ill. The graded tensor product of F G .4m('l) and

i d

has s defined parity 1r(F) = k ir F(a,x,..., a,x) = 0 for all (a,..., a) e 20with11 ““ l u*

The symmetrized tensor space will be denoted by An('l) = PD Ton. A tensor F 6 A“('l)

... 7



(DF)¤G + (-1)F<>(DG). There is a class of derivations and antiderivations which OCR OutputT(F)

called an antiderivation if it satisfies the modified Leibniz rule D(F¤G)

is called a derivation if it satishes the Leibniz rule D(F¤G) = (DF)¤G + F¤(DG), it is

importance: derivations and antiderivations, see e.g. [4]. A linear operator D on .4('l)

subsequent sections two other types of linear operators on ,4('l) will be of special

('1‘f1)¤...¤(Tfu) for arbitrary vectors fi 6 1 and n = 1,2,... . For the calculations of the
Y Bdefined on T(,)('l) by the rule I`(T) 1 = 1 on the vacuum and by I‘(T) f1¤...¤f

If T is a linear operator on 'I then the second quantization l`(T) is uniquely

Y7the spaces .4()(6`) for any 7 6 R, the spaces A(_)(S) are therefore nuclear algebras.
pD=0A(S) = fl ,l('l()). But this tensor product is continuous in the nuclear topology of

sufficient to know that the graded tensor product (2.6) is defined within the algebra

YD 0 Yp.l(,)(S) := 2 7( ,)('l()) is a nuclear space [11]. For the main part of the paper it is

Yoperator is a Hilbert—Schmidt operator on T( _)('l) for any 7 E R. Hence the intersection
YpT(,)(’l()) are imbedded by the operator l‘(W"‘). In Appendix A we prove that this

p7p 7pspace T()('l()) of the Hilbert space 'l() = W_p’l. The Fock spaces T()('l(+1)) C
7 Pmeters 7 6 R and p 6 H. The closure of ,4(S) with the norm \|F|\() is exactly the Fock

7pof norms ||F||() = ||l`(Wp)F||~ on .l(S) with the operator (2.2) W and with para

To specify test functions and distributions we introduce a two parameter family

for all i = 1,...,n we obtain ||f1¤...cfn||= (n!)det(fi [fi).
2 7

i = 1,...,n we get the usual bosonic result ||f1¤...¤f¤||‘ = (n!)7per(fi |fi) and if 1(fi) = 1

in agreement with the rules given for the sign function in eq. (2.5). If 1r(fi) = 0 for all

N,(f1 .-·-, fn) = # {(i.i)|i < J. ¤(i) ><r(l). r(f.) = ¤(f.) = 1}

The sign function XH depends on the parities ¢r(fi) as XU = (-1) ° with

UUn7||f1¤...ofu||.. (nl) §XU(f1,...,fu) (f(1)|f1)...(f(n)|f). (2.8)2 - 7

.. 8 ..



7yp 0 Yp OCR Outputof A()(.S`) is A(_,)(.S’) = ; 7(j’)(1(1)). The norm estimates of Appendix A imply

product of which is isomorphic to the graded algebra considered here). The dual space

see e.g. [4] for the symmetric and the antisymmetric tensor algebras (the tensor
pPwith fi 6 1(_) and g j E 1(). This duality respects the underlying algebraic structures,

*0U<f1o...ofu|g1¤...¤gn> = l3X(f1,...,fn) <{(1)|g1><fU(n)|gu> (2.10)

7 1 d 7 1 <—~> ( <—p>) *“‘ mi ml by
(_p) (P)between 1and 1can be extended to a duality between the Fock spaces

7pgraded algebra ,4(S) or on a Fock space T()(1()). The duality pairing <f|g> = (f lg)

An essential problem of this paper is to evaluate linear functionals on the

2.2. Dual Algebras

7 7extended to a continuous operator from 7( )(1) into T( _1`)(1).

is called a superderivation. If T is continuous this superderivation can always be

0 I
DT = D,i.+ DT (2.9)

is called the parity of the operator. The linear operator on A(1)

can be split into an even and an odd part T = T0 + T1 with Ti1E C 'li;-E , the indexi

ralizations of these constructions are superderivations [26,41]. Any operator T= 1 -• 1

generates a unique antiderivation D`; on A(1) such that Dff = Af for f G 1. The gene

operator which changes the degree, A1U C 1-1- and A1-I C 1U , the modified Leibniz rule

A(1) which reduces to T on 1. On the other hand for any odd operator A on 1, i.e. an

T1U C 16 and T11- C 11- , then the Leibniz rule generates a unique derivation D,]. on

T be an even operator on 1, i.e. an operator which does not change the degree,

can be generated via the Leibniz rule from operators on the basic Hilbert space 1. Let

- Q ..



<D,,,H|F> = <H|D,,.F> (2.12) OCR Output

are again dual operators

f E S and h 6 S'. The duality (2.10) yields that the superderivations (2.9) DT and DT,

there exists a unique continuous operator T' on S' such that <h|Tf> = <T’h|f> for

vations (2.9). If T is a continuous linear operator on the test function space 8 then

There is an important consequence of the duality (2.10) concerning superderi

fori = 1,...,2n we obtain a pfaflian <expQ|f1¤...¤f2n> = pf(w(f,,f,)), see [6].

usual bosonic result with the hafnian <exp(l|f1¤...¤f2n> = haf(w(fi,fi)) and if 1r(fi) = 1

function XH has already been used in (2.9). If ar(fi)·= 0 for all i = 1,...,2n we get the

yields a gaussian combinatorics of the two point functions w(f,g)= <0|f¤g>. The sign

2
(2.11)% 5 XU(f1,...,f2n) w(fU(1),fU(2)) w(£a(2n_1), fU(2u))

<expQ|f1¤...¤{2n> =

ppconverges within Th) (‘l(___)) if 7 < 0. Then for fi 6 ’l(), i = 1,...,2n,
11=0 `

the norm estimate (A.3) implies that exp!) = E ér O= 1 + 0 + ir Q ¤ O + ·oo n
pcalculate linear functionals. Take as example a tensor O E J2 (1(_)). The first part of

y¢ppT 1 d T be h al b S' d .4 S <—>( <—>) “<·o(“'<>) °‘°"°°° * ° 8** ’”‘<—»>( ) “‘ ml ’‘°

In the following sections we shall exploit the duality between the Fock spaces

A S' . (-v)( )

that the graded tensor product is continuous in the inductive limit topology of

- ..



F = E Fn 6 A(S), Fu E .4n(.S`), the Hnite sum OCR Output

with the Schwinger function Sn taken as element of .l“(S’). For test functions

DnnS[f1,...,fn] = <S|f1¤...¤f> (3.2)

Sn[f1,...,fi+1,fi,...,fu]. Hence it can be written asSD[f1,...,fu] = (-1) I 1
1r(f.). y(f. ) +1

is a continuous n—linear functional which has the symmetry properties

_ Snlfl »---, fn] — |$¤(§ ,·--, § )f1(§ )---fn(§ )d£ (3-1)
1 n 1 n

Schwinger function. Then

¤Let fi 6 S, i = 1,...,n, be test functions and S(§1,...,§u) be the n—p0iut

3.1. The Generating Funtional

Helds with intermediate statistics (in d = 2 or 3 dimensions) are excluded.

theories is indicated but not given explicitly. By our choice of the test function algebra

and of spin-; fermions in d 3 2 dimensions. The extension to more general Held

In the following we shall investigate a quantum Held theory of spin—0 bosons

3. Schwinger Functions

7for arbitrary H E A(_)(.S`), see [4].

<H¤G|F> = <H|G —' F> (2.13)

This algebraic operation is defined by the identity

7 Yuse the interior product (contraction) G ——l F between G e A(_)(5’) and F 6 .l(,)(5).
7for arbitrary F 6 A(S) and H E ,4(;)(8’), ry 6 IR. In the following sections we shall also

.. H



kernel is calculated by analytic continuation of the matrix OCR Output

operator D(x,y) = (m—A)(x,y). For a charged spin zero Held ¢(x), gg E Mu, the
2—1

f 6 6`(|R°), and the two-point Schwinger function is the inverse euclidean Klein—Gord0n

For a free neutral spin zero Held we need a one component test function

(adjoint Held). The involution will therefore be defined by cz = a +N mod 2N.

a+N e {N+1,...,2N} corresponds to the transition to the Held of opposite charge

we shall take an index set Qi = {1,...,2N} such that a 6 {1,...,N} —-•

For neutral Helds (particle = antiparticle) we simply have a = oz. For charged Helds

where oi —» a is the involutive map of the index set Qi which enters the involution (2.3).

B 07
<¤|f¤s> = w(f»s) = EIf(¤.¤=) ¤,,.,q.(>¤.y)s(6.y)d¤¤ dy (3-4)

bilinear form

euclidean domain R“. The tensor of the two point functions determines then the

continuation of the matrix kernel <vac|¢a(x) ¢B(y)|vac>—-• QnH(x,y) to the

functions f e 5(E) = 6`(R) •€. The two point functions are obtained by analytic
dN

Q1 = {1,...,N}, x e Mu beeing a Minkowski space variable, we have to choose test

fimction in more detail. For a theory with the minkowskian fields ¢h(;), 0: E

n-point functions has already been seen in (2.11). It remains to discuss the two point

7point function in the algebra .4(_)(S’). The correct gaussian combinatorics of the

For free Helds the Schwinger functional S is exactly the exponential of the two

7 7Hence F 6 A(_)(.S) —+ <S | F> 6 (Z is continuous in the nuclear topology of .l()(S).
7 Passure that <S|F> is continuous in a norm ||F||() for some 7 Q 0 and some p 2 O.

The usual assumptions about regularity and growth of Schwinger fimctions [35,8]

11=O
with S = E Su, S0 = 1, is then the generating functional for all Schwinger functions.

uun>0
<S\F> = 53 <S|F> (3.3)

- 12



massive Majorana Helds is therefore OCR Output

y7]<vac|¢n(x) ¢H(y)|vac> is given by E Sa_(x,y) C? The skew symmetric form for

uadjoint operator by gba = 2 C p tpp and the Schwinger function of

the conditions (1.1). The minkowskian Majorana Held operator 1[zn(x) is related to the

these cases a real unitary charge conjugation matrix C can be deHned which satisHes

Helds exist if minkowskian Held operators exist, i.e. for d = 2,3,4 mod 8 dimensions. In

Held theory. Wightman functions and consequently Schwinger functions of Majorana

euclidean classical Helds are not necessary for the corresponding euclidean quantum

Majorana Helds, often based on an investigation of classical Helds, see e.g. [33,48]. But

In the literature there has been some discussion about the existence of euclidean

,,;, #
inverse euclidean Dirac operator m —,3’= m — E 18

_ _ with the matrix }l_ (x,y) = _ where S(x,y) is the kernel of the0 —$‘(y»¤) $(¤.y) 0

(3-6)(Ls) = If‘(¤¤) L (my) s(y) dx dy

skew symmetric form (3.4) for the Dirac Held is [22,25]

need test functions f with 2N A components. Writing f as column vector the bilinear

The Dirac spinor in d = 2,3,... dimensions has N A = 2components. Hence we[d/2]

as ( ),y) ]0 D(y.¤¤) T{ = {[ . ¤( .s) I (X) D(x0 s(y) dx dy

and the test function space has two components. The resulting symmetric form is then

<v¤¢I¢(¤;) ¢(r)Iv¤¤><v¤¤|¢*(9 ¢(x)Iv¤¤><v¤¤I¢(;) ¢+(x)|v¤¢><y¤<=|¢(5) ¢(x)|y¤¤>
++

.. 13



»<¤.y> = H, ,vom- ¤<»¤—y>. (3-9>OCR Output
21 [3 2][Q]

into

Klein- Gordon propagator D(x,y) = (m—A)(x,y). This matrix can be decomposed
2"1

, see (1.2). The inverse of this operator is T(x,y) = D(x,y) with the[-3 J?]
has been given in the Introduction. The differential operator for the bosonic part is

and an auxiliary field B(x) [47,3]. The euclidean version of the free bosonic lagrangean

Then the bosonic sector of the WZ model includes a propagating spin zero field A(x)

we only give the explicit form of this matrix kernel for d = 2 dimensions with N = 2.

The kernel for the bosons is a symmetric N¤N matrix T(x,y) = 1>(y,x) = T*(x,y). Here

= X wi nw >K<><>¤»¤¤·r¤r<<>»8 X»Y 8 Y Y W1 X»Y . . <=··¤> 0 y(x,y) I
pm) °

The bilinear form (3.4) reads in this notation

SB z SF z 5(R) • C. Here Sn refers to bosonic, and Sw to fermionic test functions.
dN

structure of the test function space S = 6`(R )0€ is chosen as S = with
d 2N SB S F

but it is convenient to introduce the corresponding notations already here. The

auxiliary fields. That assumption will be used in the sections about supersymmetry,

assume already here that the bosonic sector has also N components, i.e. includes

[45,46,47]. In d dimensions the Majorana spinor has N = N A components. We shall

bosons and of Majorana fermions as in the case of the neutral Wess—Zumino model

Finally we present the bilinear form (3.4) for a theory of neutral spin zero

in Appendix B.

Schwinger functions of charged and neutral Eelds and relations between them are given

forms is also possible which we shall not use here, see [25]. More details about

with N A-component test functions. In the massless case another type of Majorana

(is) = If*(¤<) 1¢(¤.y) s(y) dx dy with 1¢(¤¤.y) = S(¤<.y) C (3-7)



operator, see Appendix B, (9f)(x) = yd C f($°r,—xd). OCR Output

(3.7) of the skew symmetric form yields for the Majorana spinors the reflection

f(x°,—xA) with the hermitean Dirac matrix ya of the coordinate xd. The choice[7d E [ 0 yd
f(x°,—xd) and for Dirac spinors with fe.$`(IR)0Cit takes the form (6f)(x)

d2N

component test function of a neutral (pseudo) scalar field it is simply (6f)(x)

with a matrix I which depends on the spin and satisfies }/2 = id. For the one

(3.10)(9f)(x) = }/f($°r,-xd)

x = (Sr,xd) 6 R. For a column vector f 6 6`(E) = S(R) • cit has the form
dN°d

operator 6 on the test function space S which reflects the cartesian coordinate x A of

Osterwalder—Schrader positivity. Following [34] and [10] we first deine a linear

The link between the Schwinger functions and the physical Hilbert space is

3.2. Osterwalder—Schrader Positivity

lagrangean in (1.2).

exactly the inverse of the differential operator C* (m—9) of the free fermionic

(3.8) is that of the Majorana fermion (3.7) for all admitted dimensions. This kernel is

Osterwalder-Schrader positivity. The antisymmetric kernel Jl(x,y) = —ll*(y,x) in

bosonic measure. We shall see in the next section that (3.9) nevertheless satisfies

In [19] Jaffe and Lesniewski give an erroneous statement about the positivity of the

problem has already been seen by Nicolai for the WZ model in four dimensions [32].

two point function (3.9) is not the correlation function of a nonnegative measure. This

nonpropagating white noise, but is has the wrong sign. Hence the euclidean bosonic

a single spin zero field, since the matrix has rank one. The second term looks like a

The first term is a positive semidetinite kernel which corresponds to the propagation of



(3.13) OCR Outputw(Tf,f) 3 0 iff 6 S

positivity of (3.12) follows already from the OS positivity of the two point functions

bilinear form w(f,g) = <D]f¤g> of the two point functions. In this case the OS

The generating functional of a free field theory is the exponential (2.11) of the

S'/S0 withS0 = {f|w(Tf,f) = 0, fe S'} = IGS.

quantum field theory. The physical one—particle space is isomorphic to the closure of

the closure of A(S’)/I is isomorphic to the physical Hilbert space of the minkowskian

dean invariance, which we shall discuss in the next section, and of the cluster property

Osterwalder and Schrader have shown that under the additional assumptions of eucli

B(F,F) = 0. Then lis a linear space and B(F,G) defines an inner product on .4(S')/M

B(F,F) 3 0 holds for all F G .4(S’). Let I be that subset of .4(S’) for which

ie {1,...,n}. A generating functional (3.3) of Schwinger functions is OS positive if

spanned by functions Fn(a,x,...,a,x) 6 An (S) which vanish if xg 5 0 for some
11°n

11=O
positivity, see [36] and [8]. The corresponding algebra ,4(.$`) = • An(S) is

oo >>

where Ii: is the open half space {(x1,...,xd)|xd > 0}. Here we refer to the extended OS

S(91¤|R.`:.)» the subset of all functions in S(€21¤R“) with a support in the closed set Qlxll

Osterwalder—Schrader reconstruction is to restrict the test functions to S(E)>=

is a sesquilinear but in general not a positive form on A(S). The crucial step of the

B(F,G) := <S](TF)¤G> (3.12)

It satisfies T‘ = id. Then

Tf = (Gt') iffe S and TF = (I`(G)F) if F G A(S). (3.11)

antilinear OS operator is defined as

The reflection operator can then be extended to the algebra .A(S) by l`(9). The

.. 16



6-function term in (3.9) does not contribute to the OS—form. OCR Output

fe 6`(Ili) • c= S. Due to the restriction of the support of the test fimctions the4 >

with the 2¤2 unit matrix 1.,. The results of Appendix B imply that w(Tf,f) 3 0 if

Tf(x) = 0 f(§E2`)` (3.15)12 0 [EC]
given by

already been specified in (3.9) and (3.7). The OS operator for this combined theory is

bilinear form (3.8) with test functions f,g 6 6`(IR) 0€. The kernels 'D and Jl have
24

The WZ theory in two dimensions which we investigate in some detail has the

positivity of <expQ|TFoF> if F E A(.$").

exp!} —' F G .4(S"). Since l`(M) is positive on .l(S’), the identity (3.14) yields the

0. These contractions do not change the support: if F 6 .4(S’) then

product (2.13) with exp!) takes into account all possible contractions with the tensor

This identity follows from (2.11), see eqs. (3.9) and (3.10) in [23]. The interior

<expQ|(TF)oG> = (exp!) -' F|I`(M)(expQ —' G)). (3.14)

form (3.12) can be identified with

(Fl l`(M)F) g 0 if F E .4(S"). As generalization of <0|Tf¤g> = (f|Mg) the sesquilinear

algebra .4(S’) by I`(M). From (3.13) we obtain (f|Mf) 3 0 if f 6 S", and consequently

1 and a hermitean operator M for all f,g E S. This operator can be extended to the

that TQ = fl, and <fl|Tf<>g> can be written as (f |Mg) with the inner product (2.1) of

euclidean invariance or by the explicit calculations of Appendix B. Hence we know

consequence of (3.13); for arbitrary functions f,g 6 S it follows with the help of

form w is hermitean, i.e. w(Tf,g) = U(T`§f)' for f,g 6 S. If f,g € S" that is an immediate

This statement is well known, but nevertheless we indicate the proof. The bilinear

- 17



W pl/l/uWu ll
(3.16) OCR OutputM= — (xii— xB) + S, M= — {i

operators

representation of the euclidean group given above is generated by the differential

convenient to use infinitesimal transformations. The real Lie algebra 6% of the
To extend euclidean invariance to euclidean supersymmetry it is more

F e .4(S).

<S|l`(U(R,a))F> = <S|F> for all R 6 SO(d), a 6 IRG and for all test functions

.4($). Euclidean invariance of the quantum 'deld theory is the statement that

This representation U on $(2) is then extended to a representation l`(U) on the algebra

algebra. Details of these representations in d = 4 dimensions can be found in [36].

intermediate statistics for d = 2 or 3 are excluded by our choice of the test function

covering group of SO(d) is also the universal covering group. Quantum Eelds with

irreducible parts according to the spins of the particles involved. For d 3 3 the twofold

with a unitary finite dimensional representation MR) of SO(d) which decomposes into

test function space U(R,a) f(a,x) = ll PHAR) f(B,R`1(x—a)) for R G SO(d) and a 6 Ru,

sely there is a faithful represention of the twofold covering group SO(d) ¤ Il“ on the

translation group |R“, which corresponds to the behaviour of classical fields. More preci

dean group SO(d) ¤ Ru, the semidirect product of the rotation group SO(d) and the

les with spin as considered in Sect. 2.1. Then $(5) carries a representation of the eucli

Let $(5) = $(Il) • cbe the test function space of a theory with several partic
dN

supersymmetry presented in the next section.

see [34,12]. This is the basis of a straightforward extension to euclidean

euclidean invariance of the functionals and Lorentz invariance of the physical theory,

In this Section we recapitulate well known facts about the relation between

3.3. Euclidean Invarianoe and Lorentz Invariance

.. lg



(TD €MF)¤G + TF¤DMG for all F,G G A(S). Euclidean invariance (3.17) then implies OCR Output

From the Leibniz rule we know DM(TFoG) = (DMTF)oG + TF¤DMG =

TDM = DEMT . (3.19)

MHA. The derivations DM then satisfy the relation

y W
with e= +1 if M = Mor Mwith p,u= 1,...,d—1 and with e = -1 if M = MA or

TM = eMT (3.18)

relations with the antilinear OS operator

identity holds for any M 6 The generators (3.16) satisfy the following commutation

for any M E EE and all test functions F 6 ,4(S). But since D AM = ADM for A G (Z this

<S|DMF> = 0 (3.17)

The euclidean invariance <S|I`(U(R,a))F> = <S|F> is equivalent to

7 7.4()(S) into A(_1)(5). The C-linear span of 8% will be denoted by
space of all derivations DM, M G The operators DM are continuous mappings from

7S. The Lie algebra of the representation I`(U(R,a)) on .4()(S) is exactly the real linear

with respect to the inner product (2.1), they are continuous in the nuclear topology of

Lie product of the algebra E5 is the commutator. All operators of 6% are antihermitean
our conventions of duality between test functions and functionals. The skew symmetric

I uVVp(7·y—·7·y). The transposed operator aiu of the spin generator originates from
W iIn the case of Dirac or Majorana spinors it reads S = nty with a

with ;i,u = 1,...,d. Here S ,__, is a finite dimensional antihermitean spin representation.

- lg



(3.12) on the closure ,4(S’)/I has therefore the correct relativistic covariance. OCR Output

operators with respect to the OS form (3.12). The physical theory constructed with

inhomogeneous Lorentz group, the elements of which are exactly the hermitean

complex Lie algebra {DMIM 6 Eg} includes the real Lie algebra {DM|M G Lg} of the
hermiticity of the corresponding derivations follows immediately from (3.20). The

given by i[· ,·]. The same argument can be applied to the derivations DM on A(S), the

forms the real Lie algebra LE of the inhomogeneous Lorentz group, the Lie product
W #

to verify that the Il—linear span of the operators J and P with ;r,u = 0,1,...,d—1

S)/Sn. Hence they are essentially selfadjoint operators on S'/Sn. It is straightforward

operators map the null space Sn into itself and have a total set of analytic vectors in

OS form w(Tf,g). A more detailed investigation, see [34,12], shows that these

with p,u = 1,...,d——1 are hermitean operators on S' with respect to the non negative

W#Vll0#du}£0 d:= `M Z= := `M := J-1,JM,P—i,PM .22 (3)

operators on S which map S' into itself. The relation (3.21) implies that the operators

with f,g 6 S and e = zh 1 specified as in (3.18). The operators M e Eg are differential

ew(TMf,g) + w(Tf,Mg) = 0 (3.21)

with the OS form (3.12). If we restrict this identity to the space S is reads

<S|DM(TF¤G)> = B(D€MF,G) + B(F,DMG) = 0 (3.20)

- 20



<S|D,_F> = 0 (3.25) OCR Output

A quantum field theory with generating functional (3.3) is supersymmetric if

A(S).

(2.9) a class of superderivations {DT_|L e 8c} operating on the test function algebra
differential operators on S, continuous in the nuclear topology. They determine by

Explicit examples for these operators will be given in Sect. 4.1. All elements of Et are

(3-24)TQ(n) Tf = (—1)Q(?z)f with ?'1= C E 5”(f)

iii) The commutation relations with the OS operator T are

{Q(n),Q(v’)} = -2 E (n‘·r,;2’)M,,

[M"",Q(r;)] = —- Q (amln), p,,u = 1,...,d. (3.23)

[M,,»Q(n)] = Os

The algebraic relations between the generators are

Q a a
a = 1,...,NA, i.e. Q(1;) = 2 Qnwith a numerical spinor 1; E (Z

ii) The odd part E? is given by the linear span of spinorial type operators Q",
i) The even part of Et is

superalgebra of differential operators with the following properties

function space S. This complex Lie algebra Eg can be extended to a complex Lie
The generators of the euclidean group (3.16) are even operators on the test

3.4. Supersymmetry

- 21



n=—r=——·yTy. (3.27) OCR Output
`r

C§}C§

Majorana condition of a minkowskian spinor Eeld

hermitean operator with respect to the OS form (3.12) on A(S’) if 1; satisfies the
nSect. 3.3 using the supersymmetry statement (3.25) to prove that DQ() is a

with Q = Q(n) and Q = Q(7;) for any F e .4(S). We can now follow the arguments of

(3.26)DOTF = (-1)"(F) T DNF

(3.24) to the operators Dm and T on .4(S). A simple calculation yields

To derive supersymmetry for the reconstructed physical theory we Erst extend

be A = C Hence (3.25) is essentially a consequence of (3.18) and (3.23).

can be satisiled only if J is the parity operator Jf = (-—1)f and the matrix A has t0T(f)

linear operator J which satisfies J‘ = id, then the relations (3.18) together with (3.23)

involution (3.11). If we start from an ansatz TQ(1;)T = Q(A`1»J with a matrix A and a

conjugation which allows a meaningful construction of a real algebra is the OS

is no reasonable reality/hermiticity condition in a purely euclidean setting. The only

superalgebra leads to inconsistencies [29]. In fact these investigations show that there

investigated in the literature, see e.g. [27,28]. But the search for a gg euclidean

constitute the complex euclidean Lie superalgebra Ec. This algebra has been
euclidean group and the relations (3.23) including the "supercharge" operators Q(r;)

conditions i) — iii). The algebraic relations between the generators (3.16) of the

definition for a minkowskian quantum field theory we give some comments to the

supersymmetry. Before we relate this definition of supersymmetry with the usual

statement; the mere existence of the Lie superalgebra Ec does not yet imply
holds for all L 6 Et and any F E A(S). This identity is the essential dynamical

- 22



part if is spanned by the Majorana type supercharges Q(r)) with 1; restricted by (3.27). OCR Output
algebra of the inhomogeneous Lorentz group considered in Section 3.3, and the odd

minkowskian supersymmetric quantum field theory. The even part Lx is the Lie
hermitean operators {DT_|L e LR} where Em is the real Lie superalgebra of a
operators in the sense of (3.25). The OS form (3.12) B(F,G) selects a subspace of

induce a representation D, of superderivations which are infinitesimal symmetry

of continuous differential operators on the test function space S. These operators

symmetric quantum field theory there exists a complex euclidean Lie superalgebra Ec
The main conclusion of this section can be formulated as follows: For a super

the hamiltonian of the theory Dp_ can be represented as the square of a "supercharge"

ted by (3.27) are essentially selfadjoint on A(8’)/.V. Moreover eq. (3.28) implies that
nthat domain. In the same way we obtain that the antiderivations DQ() with 1) restric

Q(n) have a total set of analytic vectors in S'/Sn and are essentially selfadjoint on

where ir;"`·yd·ykr;, k = 1,...,d—1, are real coefficients. Hence with PH also the operators

k=1:1 p p
(Q(n))= (#2vdv n)M = (n+n)P —§i(n"v 1 n)P (3-28) 0 d k k2 g + d1

satisfies (3.27). From the last equation of (3.23) we obtain

Dm. The restriction to S' yields that Q(1;) is hermitean with respect to w(Tf,g) if n

ly oompensated by the parity factor of the modified Leibniz rule for the antiderivation

The identity (3.26) takes over the role of (3.19) and the parity factor (-1)is exact°r(F)

.. 23



for all f,g 6 5 if M G Eg is a generator of a euclidean transformation, and as OCR Output

<Q|DM(fog)> = <0|Mf¤g> + <Q|f¤Mg> = w(Mf,g) + w(f,Mg) = 0 (4.1)

evaluated as

of oourse well known from the minkowskian approach. The identity DUH = 0 is now

equivalent to the supersymmetry Dr,0 = 0 of the two point functions, a fact which is

have DT_, expfl = (DI_,0)¤expQ. Supersymmetry of a free field theory is therefore

L' of L, see (2.12). Since DL, is a superderivation and fl has always even parity, we

Y= <DT_, exp0[H> = 0 for all H 6 ,(($) c A(_)(S) and L e Ec with the dual operator
7 < 0. The supersymmetry statement (3.28) is equivalent to <exp0]DI_H>

Yp ywithin the Fock space ?(_,)('l(_)) and consequently in the algebra A(__,)(S’) if
pfunctions. Let us assume that fl 6 A2(‘l(_)) for some p > 0, then expfl converges

exponential (2.11) of the bilinear form (3.4) w(f,g) = <(`l|f¤g> for the two point

The Schwinger functions of a free quantum field theory are generated by the

4.1. The Free WZ Model

simpler expressions.

be done also for d = 3 or 4 dimensions. The restriction to d = 2 is only used to get

Lesniewski and Weitsman [17] and Arai [1]. Up to this last step all calculations can

arguments can be transferred to a rigorous construction related to the work of Jaffe,

for the construction of supersymmetric models. Finally we indicate how these formal

nevertheless they show that the mathematics presented here is an adequate framework

are rigorous only on the level of perturbation theory with UV regularization, but

the free WZ model. For the interacting model we shall present formal agruments which

two dimensions. The consistency with the usual formulations can already be seen at

To exemplify our definition of supersymmetry we shall use the WZ model in

4. The Wess—-Zumino Model

-



Q‘ is the transposed operator (with respect to the form (4.3)). This equation is solved OCR Output

where K is the kernel of w(f,g), see (3.8), J is the parity operator Jf = (—1)f andT({)

Q‘K + JKQ = 0 (4.4)

are odd operators Q which satisfy

M12f(x) = — (:8— x8) f(x) + rf(x) with a = 1172. The solutions for (4.2)0 0 12 21[0 a]
explicit form of the generator of the rotations is

the solutions for (4.1) are the generators (3.16) of the euclidean transformations. The

operators which show up in the free lagrangean (1.2). As already known from Sect. 3

kernel (3.9) and the fermionic kemel (3.7) are obtained by inversion of the differential

bilinear form for the two point functions has already been given in (3.8). The bosonic

The test function space is split accordingly into S = SB 4 SF = S 8 • Sb • SF. The

1,o=<f1|f2> = I(¤1(¤=)¤2(¤¤) + b1(¤<)b2(¤¤) + 2x(1)O(¤¤) x(2),,(¤=)) dr- (4-3)

= £2(ll2) 0 C2. The fundamental bilinear form on 1 is
.

'IB = Ia• 'lb being the bosonic subspace, and the spinor function X(x) E 1

= 18 • 1b • 1F, i.e. f(x) = bxe 1 with a(x) e 1g = £2(lR2), b(x) e 1h = £2(Il2),a x lgg] X X
B F

1 = £2(R2) • C4. In an explicit representation we shall write 1 = 1• 1
as example. The test function space S = S(ll) 0 (is embedded into the Hilbert space

24

For the detailed calculation we take the neutral WZ model in d = 2 dimensions

if Q 6 E? is a proper supersymmetry transformation.

w(Qf.s)+(-1)»<mg> = 0 <4.¤>”(f)

f<0|Dn(f¤g)> = <Q|Qf¤g> + (—1)”() <Q|f¤Qg>

- ..



derived from the lagrangean (1.2) will be needed for the model with interaction. OCR Output

formations Q (as is well known for the minkowskian model). But the extended version

form on A(S’), can be eliminated and there are still modified supersymmetry trans

6—function. For the free WZ model such a term, which does not contribute to the OS

(4.2) it is essential that the bosonic part (3.9) of the bilinear form (3.8) includes the

sions, see [47]. To derive the operators (4.5) and (4.6) from the symmetry condition

is the euclidean version of the field transformations of the WZ model in two dimen

FM ¤)n + B(>¤)n

(4-6)Q’(n)4>(¤¤)= I #2 C F*P(¤¤)
nic; ·1»( X)

the transposed operator Q*)

by (4.3). The dual supersymmetry transformation (which on £2(IR2) 0 c4 coincides with

live in the dual space S'. The duality pairing between f 6 S and <I> = B6 S ’ is givenA {] slr
transformations operate on Schwinger functions, i.e. formally on euclidean fields which

These supersymmetry transformations operate on test functions. The dual (transposed)

a(x)Cn + CHb(x)q

(4-5)Q(v)f(¤¤) = I n‘x(¤¤)
0! x(¤=)
T T

the final representation

constraint Ri? ~—}lR2 = 0. The solutions can be labeled by a spinor n 6 C‘ and yield

by the ansatz Q = R0 if the operators R1 : SF -• SB and R.2 : SB -• SF satisfy the0 R1 2

-



in the limit A -• 0. The (regularized) interaction lagrangean is supersymmetric, i.e. OCR Output

regularization is removed by the substitution n(x) —• n,(x) = A-n(Ax), 0 < A 5 1,
1 -l

function (4.8) is totally symmetric and translation and rotation invariant. The

tion n(x) as done by Nicolai in [32] for the WZ model in four dimensions. The

jn(x)dx = 1. This ansatz may be obtained by smearing all fields with the same fnmc

with a smooth function n(x) 6 8(IR‘) with n(x) 3 0, supp rc C {xl |x|$1} and

¤(¤¤ .X nr ) = I ~(¤< -y) ~(¤¤—y) »=(>¤—y) dy (48)
1 2 31 2 3

For the further investigations we introduce an UV regularization

With this kernel the expression (4.7) is defined only for a restricted class of fields Q.

H _ . . . ere a(x ,x ,x ) - 6(x —x )6(x —x ) is the local coupling of the unregulanzed theory.
1 2 2 1 2 2 3

(4.7)
1"23123+ A3(x) wf(x) c \I¤2(x)] dxdxdx

‘2"2“12"*1·r<x.»=.») [Ale?) ¤f§<x> c ·v,<»=> - A2<x>—v§<»=>¤ ~r·,<»=>

+ A.,(x) A (X) B (x)] axaxax
123*23

1¤<»,x.»> {AIM) Am?) B,<x> + A2<x> A,<x> B,<»=>1’33*2"'

<<I>1o<I>20<I>3|I`> =

. following 3-linear form in the field vectors Q; = 6 S' = S’(|l2) • (Z4, i = 1,2,3,A‘I’1
the interaction part (1.3) is a polynomial of third degree which corresponds to the

ting fields with a kernel I` 6 .A(S’) which has even parity. In the case of the WZ model

The interaction lagrangean of a local field theory is a polynomial in the interac

4.2. Perturbation Theory

- ...



functions (here I`" is the n—~th power I`¤...¤l`) OCR Output

extract factors <fl|I`>, 2m = 3n, which are not linked to the external test
mn

problem in the next section. From the terms of the power series expansion one can

theory is a serious problem even with all regularizations. We shall come back to that

series does not absolutely converge, and the definition of (4.10) beyond perturbation

I` G .4(S), i.e. for an interaction with UV regularization and volume cutoff. But this

The terms of the power series expansion in the coupling parameter A are defined if

<S|H> = , H e .4(.$‘). (4.10)

given by

been removed (p —• oo). The generating functional for the interacting theory is formally

invariant, and complete supersymmetry can be established only after the cutoff has

unpleasant consequence of any volume cutoff is that l" is no longer translation

of these kernels with UV regularization and volume cutoff by an(x,x,x). The
123

torus of size p with appropriate boundary conditions, see [16,17]. We shall denote each

where p E [1,oo) is a cutoff parameter. Another choice would be the restriction to a

19(p`x)a(x,x,x) wm. apr) E o(1z), 19(x) = 1 ar pq < 1, 19(x)= o if |x| > 2,
13123 °°2

(4.8); one needs an additional volume cutoff. E.g. (4.8) may be amended by

algebra. That has not yet been achieved with the translational invariant regularization

in intermediate steps) a regularized tensor F which is an element of the test function

To define the generating functional for the interacting theory one needs (at least

transformations). The last equality follows from (2.12).

<l>’s are submitted to the field transformations (4.6) (or the corresponding euclidean

0 = 6 <<I>1¤<I>2o<I>3|l`> := <DL,(<I>1¤<I>2c<I>3)|I`> = <<I>1¤<I>2¤<I>3|DLI‘> where the

for all L 6 This identity is equivalent to the usual (super)symmetry statements

DLP = 0 (4.9)

.. gg



<expQ|I`oD,_H>= 0, n = 0,1,.. (4.13) OCR Output
°l

identity (3.25)

nl"¤D,_l` vanish as a consequence of (4.9). Hence we obtain the supersymmetry
u_1

these terms the limit p·• oo can be performed and all contributions from DT_I`

cutoff. This rule of partial integration can be transferred to the linked terms. But for

where Fa 6 .4.,(S) is the interaction tensor with the UV regularization and the volume

<expQ|DT_(I`:¤H)> = <exp(l|(DT_ I";)¤H> + <exp0|l";¤DT_H> = 0

Let D, be a superderivation with L 6 Ec then we know DUO = 0 and moreover

minkowskian supersymmetry can be found in [37].

integration. An extensive presentation of perturbation and renormalization theory for

language of the Symanzik-Schwinger formalism [9] or in the language of the Berezin

Feynman diagrams. This perturbation theory can of course also be formulated in the

volume divergence. Each linked term corresponds to a finite sum of connected

metric UV regularization (4.8) alone, whereas the factors <fl|I`> in (4.11) have a
mn

The linked tems of this perturbation expansion can be defined with the supersym

u=O '
(4.12)<s|11> = 2 Q]- <expo|r°¤H>’

oo n

[6]. Hence (4.10) is equivalent to the linked cluster expansion

up in (4.11) since 1r(I`) = 0. For an explicit calculation with hafnians and pfafhans see

A proof of this statement follows from (2.11); the sign factor in (2.11) does not show

H 6 A“(S)) are sums of those contractions which are connected with the test functions.

The linked terms <expfl|I`oH>(= 37 <Q|l¤H>with 2m = 3q + n ifql m`ql

p+q=n p. q.
(4.11)<expfl|I`“¤H> = E <expfl|l`*’><expQ|I"*oH>

- gg



.. . . _ and the Maprana contribution KM - 0 SC
0 0

__ _ _ _ _ K1- 01 0·’1· m m=D “dK2· 02 0·’2‘ 0 1°(" Y)·
P 01 m 0 0 2T 0 [][] [) [) OCR Output

contributions

the decomposition K = K1—K2+KM of the kernel in (3.8) with the bosonic

The tensor 0 = O1-Q2+flM of the free theory is split into three terms according to

yaaZ(H) = <exp((l1—02+0M)|exp(I`+1`b)¤H> (4.14)

A = -1, but the calculations go through for any A 6 R)

The numerator of (4.10) reads in a more explicit form (we choose for simplicity

dimensional WZ model (with space cutoff) by a hamiltouian semigroup approach.

grals investigated by Jaffe et al. [17] and by Arai [1] who have solved the two

Finally the functional is transferred to an integral which essentially agrees with inte

ii) the calculation of functionals for Majorana spinors.

i) The elimination of the auxiliary bosonic degrees of freedom, and

our fnmctional point of view:

supersymmetry. The main emphasis is laid to clarify the following two problems within

generating functional (4.10) without further investigation of OS positivity or

In this section we present a few steps towards a rigorous definition of the

4.3. Beyond Perturbation Theory

[37].

the Ward identities of the usual minkowskian perturbation theory, see e.g. [14] or

for each term of the perturbation expansion (4.12). The identities (4.13) correspond to

- 30 ..



and contractions between Pub and G. OCR Output

H = H, but for H = F¤G, F e .4(S¤) and G e ,4(Sh), it includes normal ordering of G

with a tensor H 6 .4(SR) which is a linear transform of H. For H G A(S¤) it reduces to

(4.16)Zn(h) = <expD1|exp(—% I)¤ H>`(4)

calculation of (4.15) leads to

exp(—%- l) corresponds to a (nonlocal) A" coupling with the correct minus sign. The`(4)

I`= Paabo Paab since the contributions from Sb are totally contracted. The term(4)
l`:= 02 —* (Fubo Pub) e .l4(S8). In a. more pictorial manner we may write(4)
. (exp—O.,) —l expI`aab = exp(— 6 I) o expI`ub with1 4 ‘( )

degree of freedom. As in the case of coherent states, we obtain

uD., affects only contributions from Sb and Pb has only a linear dependence on that

<exp(l1|(exp-Q2) —’ (expl`ub¤H)>. The interior product is easily calculated since

with H 6 .4(Sa¤Sb). Then the functional is identified with

ZR(H) = <exp(D1—D2)|expI`aab o H> (4.15)

we take the bosonic part of (4.14) alone

cation is rather unnatural, it yields imaginary mass terms. To simplify the arguments

introduced imaginary auxiliary Eelds to compensate the minus sign. But that modifi

causes trouble since the 6-function term Q., has the wrong sign. In [32] Nioolai had

pfaftians, we shall come back to that step below, but already the free bosonic part

the remaining bosonic part to a functional integral. The iirst step leads to a product of

the inner product with respect to the fermionic degrees of freedom, and then to transfer

convenient technique to investigate functionals of the type (4.14) is first to evaluate

bosonic term Pub 6 Sa¤Sa¤Sb and the remaining Yukawa term FY 6 SF¤SF¤SF. A

The interaction tensor (4.7) with UV regularization and volume cut off is split into the

-



identified with the integral OCR Output

lation. For H = F¤G with F6 .4($p) and G 6 .l(S_) the functional (4.14) is then

to emphasize that there is no need for euclidean Majorana field operators for this calcu

This expression is further evaluated in Appendix C in terms of pfafhans. We would like

·yT_.(A) = <expA ¤ exp0M|expl`v c F> = <exp0M|expf)"*¤ F> (4.18)

contribution is then given by

y<X(1)cX(2)¤A|I`> holds for all A 6 8;. For test functions F 6 A(Sp) the fermionic
corresponds to a family of tensors Q" 6 SF¤SF, A 6 Si, such that <X(1)¤x(2)|0">

The fermionic contribution is still missing. The Yukawa term PV 6 Sa¤SF¤5F

B vH(¢) d#(¢) (4-17)— ; r<“’<¢> Z(H) = I B

The bosonic functional (4.16) then reads for H 6 .4(8¤)

)p- K (¢) - m <¢ IF >— I¤,(>¤1,¤·2,¤¤5) ¤(¤¤3.¤¤4»X5) ¢(>¤1)¢(¤·z)¢(¤3)¢(X4) diy(4) .. 1 4 (4)

the interaction tensor l`onto(4)
given by <expO1|F¤G> = [ 1;F(¢) r;G(m¢) dp.(¢). The isomorphism F -• nF(¢) maps

and B(x) = m¢(x) 6 S’(lR‘); and the identihcation between functionals and integrals is

degeneracy of the form (f [K1 g) we can substitute the variables A(x) = ¢(x) 6 S’(Il‘)

r;F.(A) = <expA|F> with A 6 S5, or r;G(B) = <expB|G> with B 6 8;*. Due to the
7 YF 6 A()(Sa) or G 6 .l(,)(Sb) are mapped onto the entire functions

tral spin zero boson and exhibits the correct number of degrees of freedom. Tensors

with covariance D(x,y) = (m—A)(x,y). This measure corresponds to a single neu
2_1

8,3 = S’(Il2)• C2 can be traced back to the usual gaussian measure d;z(¢) on S’(Il2)
gaussian integral. But since the quadratic form is degenerate the measure on

dratic form <fl, |f ¤g> = (f |K1g) with f,g 6 SR. It can therefore be transferred to a

The remaining bosonic functional <exp01| - > is based on a nonnegative qua



spaces T`)`1)(’lU) of symmetric tensors and TE1)('lT) of antisymmetric tensors. The OCR Output

I`_(WT*’). Here Ft, e = t 1, indicates the second quantization on the restricted Fock

+6•k = 0,1, then the isomorphism of the Fock spaces maps l`(W_p) onto I`(WP)

1-(11-) with the norm |].||1. Let Wk be the restriction of W to the subspace 1;,

Fock space T(1)(’l) is isomorphic to 7`)`1)(’l0-)•7'(1)('l1-), the closure of P`('ln)
terizes the norm (2.7). We may therefore take T(1)(1) to calculate Tr I`(W—‘). The
77()('l), 7 E Il. The spectrum of I‘(W_P) is independent of the value of 7 which charac

positive bounded operators with a pure point spectrum on any of the Fock spaces

W`* is a HS operator [13]. The second quantization operators I‘(W_*') are then also

operators on 'I with a pure point spectrum with iinite multiplicity. Moreover already

The operators W1', p = 1,2,..., with W defined in (2.2) are positive bounded

product in this topology.

Ynuclearity of the topology of .4(,)(S) and for the continuity of the graded tensor

algebra, see e.g. [13]. Nevertheless we shall present here a selfconsistent proof for the

Krée [21]. Proofs with simpler techniques have been given for the symmetric tensor

algebra). Such infinite dimensional algebras have been investigated in great detail by

algebra of symmetric tensors and an algebra of antisymmetric tensors (Grassmann

The algebra A(S) is isomorphic to the tensor product A*($U) •I` (51-) of an

Appendix A

singularities plays an essential role.

also removed the UV regularization. In this step the supersymmetric cancellation of

(4.19) have been investigated by Jaffe et al. [17] and by Arai [1]. These authors have

amodified to a more complicated polynomial if G E .4(8• Sb). integrals of the type

As already mentioned in the calculation of (4.16) the bosonic polynomial nG(¢) is

7F(¢) vG(¢) <1#(¢) (4-19)

"—-;r<()<¢> Z(H) = l <=

-
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Now take F = E Fm and G = E Gu with Fu, Gu E .4n($), then (2.6), (2.7) and (A.3)

A 3 ( - )(*7+1)(m+n) 2 _ 2 S 2 ||Fm||.,,p ||G,,||,,_p

2 m+n ! 2 2 uFm¤¤,,nn,,ps [QM?] ¤nFm¤1,,,,- nacnnnm,
7+1

For Fm E Am(S) and Gn 6 .ln(.S) we have from (2.6) and (2.7)

,,,pq ,,1

ml P ml `= P+Q = F _ A_2 ||F,I|.+||i`(W ) F,.|l,,2 2 Il1(W F,.||~ 2 ll ,,|| ., ( )

The lower bound W 3 2 yields for any Fu E Au(S) the estimate

7D0YpA()(S) = ;T(,)(’l), see [11] or [13].

with p 6 lin = {0,1,2,...} defines a nuclear topology on the intersection

A.1 ( )2: P IIFIIN, I|F(W )F||,

As a consequence the countable family of norms

zTrix w6‘ + Teh w{‘ = Tr., w" < so and wa5 Q.
Both determinants are linite since

U 1
- ... - Tro l`+(W0‘) = det.l(I—W0 ) and Trl I‘_(W1‘) = det,'__(I—W1°).

2 -1

reduces to the well known traces of the grand canonical ensembles

factorization Tr I`(W") = Tr0 I`+(W6‘°) · Trl I`_(WI‘) is obvious and the trace

- 34



Schwinger functions is calculated by analytic continuation of the 2n¤2n matrix OCR Output

(d—1,1), i.e. in = (x,ct) 6 R¤ R, the kernel of the bilinear form of the two—point
°d`1

operators ¢a(x), ¢a(x), a = 1,...,n, deined on a Minkowski space with signature

For a quantum Held theory of charged bosons/fermions with n—component Held

final part of this Appendix is devoted to physical (OS) positivity.

supersymmetry the theory for bosons and fermions is developed in a parallel way. The

the bilinear form for neutral particles from that of charged particles. In the context of

with special emphasis on Majorana fermions. Following [25] we give a construction of

Schwinger functions for charged and neutral bosons or spin-}; fermions are presented

In this Appendix some results about the bilinear forms of the two—point

Appendix B

Y.l(,)(S) for any 7 G R.
77The tensor product is therefore a continuous bilinear mapping A( )(8)¤A( )(S)

IIFII- I|G||‘ ifq > 7+ ' '7»P+Q '7»P+Q '(52) 2

(·y+2)m 2 ] [ (7+2)n 2 ] S [312 ||Fm||7,p 22 ||G,,||.,,p

m m%p DM,(7+l)(m+n) 2 _ 2 S ;1(1+r¤+¤) 2 ||F|IIIGII

||FmI| ·||G II2 [ E 2
(7+1)(m+n)

F A = E E

.. 35 ..
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f

SU(x,y) ca = J ef sg (y,X).

functions which extends to the Schwinger functions

of the field operators in (B.1) exists there is a linear relation between the Wightman

with the n··n identity matrix 1_. In all cases for which a linear local charge conjugation

(Bmf<¤> = 1 Orm[] ri0 1 '“"

that f 6 S is represented by f = with a E 8 and b 6 E . The involution (2.3) is then

decomposition of the test function space: S = E • 8 with 8 ·: 6: 6(Il) • (Z, such
* `dn

with S _‘_(x,y) = P(x,y) as defined in (3.9). The form (B.2) allows for a natural isotropic

charged WZ model in two dimensions the bilinear form has still the structure (B.2) but

liary fields. Then the basic Schwinger function gets more intricate. In the case of the

Dirac operator (m—B)"(x,y). In Sect. 3. the bosonic sector has been extended by auxi

D(x,y) = (m—·A)(x,y); for free Dirac fermions S__(x,y) is the inverse euclidean
2"1

a free spin—0 field we have n = 1 and S _‘_(x,y) is the inverse Klein—Gordou operator

with test functions f,g 6 S = 6`(R) 0 (2which are represented as column vectors. For
d211

(B-2)_ ,,(f»s) — if (X) [SAW) 0 | s(y) dxdy
0 aS*(y x) T a ’

(a = -1) then reads as

spinors. The bilinear symmetric/antisymmetric form for bosons (0 = +1) /fermions

Here ¢n indicates the adjoint operator ¢`; for bosons, and ¢a = E¢E(·yd)Ba for Dirac

(B 1) •(<v¤¤|¢(§¢(x)|v¤¢><V¤¢|¢ (9 ¢(z)|v¤¢>] * <v¤¢l¢(;) ¢ (x)|v¤¤><v==¤|¢(;) ¢(x)|v¤¢>
**

.. ..



I = Ker P = b b e E . The test function space for neutral fields is therefore-Cb * ] OCR Output
has as kernel the kemel of the projection operator P

pair correspond to the degrees of freedom of two neutral particles [25]. The form (B.8)

conjugation matrices A: C. The degrees of freedom for a charged particle/antiparticle

directly checked with (B.1). Actually there are two forms related to the charge

is then the (degenerate) bilinear form for neutral particles. This identincation can be

~(Pf»Ps) = gl f (X) S SC s(y) dxdy (B-8)
1 T CS 0S

l

is a projection operator. The form

1 C _ 1 . _1 n

yields that

Here and in the following equations we omit the subscript c. The property U" = id

(B·6)¤¤(Uf,Us) = w(f,s)

such that

(B.5)Uf = C-1 0 f
0 C

charge conjugation operator U on the test function space

dimensions [33] [25]. The charge conjugation property (B.4) corresponds to a linear

is the charge conjugation matrix defined by (1.1) which only exists for d = 2,3,4 mod 8

+ u
matrices up to a sign abiguity. For bosons we obtain C = l, and for Dirac spinors C

1This identity together with CE = C;actually determines the charge conjugation

- 37
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The properties of the Klein—Gordon and of the Dirac operators yield then OS positi

(B.12)R$(#x.y) f+- w(Tf,g) - j(x) I 0 URTSTXg(y) dxdy.0 (y,0)

sesquilinear form is calculated as

hermitean with respect to this involution w(Tf,Tg) = a R},g) = Digi). The OS

with R. = In for bosons and R = 7,, for Dirac fermions. The bilinear form (B.2) is

(Tf)(x) = T TGS) (B.11)0 R R0

for test functions of charged particles by [34,36,10]

nate 0x = 0($c,x,,) = (Yr,-xr`), Fi E |R. Then the antilinear OS involution is deined°d_1

To discuss physical (OS) positivity we need the reflection of the "time" coordi

continuation of <vac | ¢(;)¢(y) | vac>.

for Majorana fermions we obtain (3.7). The kernel of (B.10) is exactly the analytic

For a single neutral spin—0 particle this form coincides with ]b1(x) D(x,y) b.2(y) dxdy,

(B-10)w°(b1»b2) = I b{(>¢) $(¤¤»Y)C b·)(y) dxdy

w"(Af1,Af2) = 2w(Pf1,Pf2). Its computation leads to

The nondegenerate bilinear form for neutral particles w: £··£—-—• C has to satisfy
o **

(Bs)A = c‘* Hb.

The surjective mapping A from 1 onto 10 z 8* is then given by
the factor space T0 = 1/I which for technical convenience will be identified with £

- 38



f,g e S.<¤(K)|£¤g> = <f|Kg>, (C.1) OCR Output

and tensors 0 6 ,Q(S’) given by

an isomorphism between skew symmetric operators K: 'l -•'l, <f|Kg> = —<g|Kf>,

be the bilinear pairing on 1 derived from the involution f` (a,x) = I] a,xI. Then there is

modified projection P m +n onto the antisymmetric tensors only. Let <f|g> = (f lg)

The antisymmetric tensor product is written as F¤G and deined by (2.6) with a

problem which we will not discuss here.

'rians [18]. These authors have also investigated the regularization of pfaiiians, a

for Majorana fermions have iirst been presented by Jaffe et al. in the language of pfaf

tional approach which has been used for Dirac and Weyl fermions in [22]. The results

dean field operators [32,3]. In this Appendix we give the essential identities for a func

Calculations for euclidean Majorana fermions are mainly performed with eucli

Appendix C

the supports of the test functions.

and the 6—function term does not contribute to the OS—form due to the restriction of

positivity of the form (3.8) of the WZ model since the matrix ,is nonnegative[gl 2]
it may be directly checked with the form (B.l0). This result is sufficient for the OS

The positivity w(Tb,b) 3 0 if supp b c R¤ R`; is then a consequence of (B.13) or
d`100

l _ _ yd C_ EGE) for Ma jorana fermions.
(B.14)(T°b)(x) = RLCEGK) =

5( Bx) for bosons ,

10 = £* this antilinear operator is then calculated as
(B.9). We define the OS involution ou 10 such that TDA = AT. With the identihcation

The transition to neutral particles is again given by the surjective mapping

w(Tf,f) 2 0 if supp fe Ill¤
d-1

- gg



<exp0(SC)|expt'l(CV)oF> = <exp0(SvC)|F> (C.3) OCR Output

then (C.2) reads

exactly given by Q(SC) with S = (m—5)_*, see (3.7). Now take K = SC and L = CV,

Yukawa term in (4.7) is of this form. The tensor QM of a free Majorana theory is

bounded skew symmetric operator on 'I, e.g. for any fixed A E S; the regularized

class operator. Moreover CV with the charge conjugation matrix (1.1) has to be a

assume that V has already been sufliciently regularized such that (m—;9)"*V is a trace

As application we consider a Majorana fermion in a (nonlocal) potential V. We

zof the factor <expfl(Mz)|f1¤...¤f2u> = pf(<fi|Mfj>).

pfaflian pf(K,zL) is an entire analytic function in z E C. Its zeros compensate the poles

whole expression (C.2) is the pfaftian minor pf(K,L;f1,...,f.2n) of [17]. The relative

is the relative pfaflian pf(K,zL) = Jdet(I-zKII[ of [18]. For F = f1c...¤f.2n, fi E 'l, the

skew symmetric operators (related to Dirac Gelds). The square root of the determinant

with the techniques of [22] where this identity has been given for a specific type of

The proof of this Lemma follows from Sect. IV of [18]; or it may be derived

in z.

with Mz = K(I—zLK)_* = (I—zKL)"*K. Moreover (C.2) is an extire analytic function

(C.2)<expO(K)|expQ(zL)¤F> = ,/det(I-zKL[ <exp0(M_)|F>

then the following identity holds for all z 6 (Z and all F 6 1- (S)

Let K and L be bounded skew symmetric operators on 1 such that KL is traceclass,

Then the basic Lemma for the calculations is:
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one choses the kernel of (3.6) as the skew symmetric operator K, see e.g. [22].

Majorana fermions. The functionals for Dirac fermions can be obtained from (C.2) if

(<fi|SVCfj>). The identity (C.3) is the Matthews—Salam formula [30] for euclidean

F = f1¤...¤f2n the last term is the pfaflian of the skew symmetric 2rx¤2n matrix

where Sv = (m-—8—·V)`* is the inverse Dirac operator with the potential V. For

- 41



zation". Nucl. Phys. B76 (1974), 310-332. OCR Output

J. Hiopoulos and B. Zumino, "Broken supergauge symmetry and renormali[14]

dimensional calculus. Dortrecht: Kluwer 1993.

T. Hida, H.—H. Kuo, J. Potthoff and L. Streit, White noise, an injinite[13]

N. Y. : Springer 1987.

J. Glimm and A. Jaffe, Quantum Physics. A junctional integral point of view.[12]

Academic Press 1964.

I.M. Gelfand and N.Ya. Vilenkin, Generalized Functions, Vol. I I6 New York:[11]

Helv. Phys. Acta 47 (1974), 781-805.

J. Frohlich and K. Osterwalder, "Is there a euclidean iield theory for fermions?[10]

Cambridge: MIT Press 1972.

H.M. Fried, Functional Methods and Models in Quantum Field theory.[9]

functions." Commun. Math. Phys. 64 (1979), 95-130.

J. P. Eckmann and H. Epstein, "Time—ordered products and Schwinger[8]

B. DeWitt, Supermanifolds. Cambridge: CUP 1984.[7]

Reading: W. A. Benjamin 1973.

E. R. Caianiello, Combinatorics and renormalization in quantum Feld theory.[6]

in two dimensions." Phys. Lett. 59B (1975), 253-255.

S. Browne, "Spontaneous breakdown and Eniteness of supersymmetric theories[5]

1974.

N. Bourbaki, Elements of Mathematics: Algebra I, chapt. 1-3. Paris: Hermann[4]

pfaffians." J. Math. Phys. 34 (1993), 2691-2712.

D. Borthwick, "Euclidean Majorana fermions, fermionic integrals and relative[3]

24 (1962), 214-236.

H. J. Borchers, "On structure of the algebra of field operators." Nuovo Cimento[2]

integral representation of their index." J . Funct. Anal. 105 (1992), 342-408.

A. Arai, "A general class of iniinite dimensional Dirac operaters and path[1]

References

- 42



Surveys 35 (1980), 1-64. OCR Output

D. A. Leites, "Introduction to the theory of supermanifolds." Russ. Math.[25]

Fortschr. Phys. 38 (1990), 35-62.

J. Kupsch and W. D. Thacker, "Euclidean Majorana and Weyl spinors.'[25]

Science Press 1993, 294-304.

on advanced topics of quantum physics -— Shanxi University 1992. Beijing:

fermions". In: J .Q. Liang et al. (eds.): Proceedings of international symposium

J. Kupsch, "Non-commutative integration and euclidean quantum fields for[24]

Rev. Math. Phys. 2 (1990), 457-477.

J. Kupsch, "A probabilistic formulation of bosonic and fermionic integration}[2z]

Singapore: World Scientific 1990, 425-451.

Pawlowski and R. Raczka (eds.): Gauge theories of fundamental interactions.

J. Kupsch, "Functional integration for euclidean Fermi ’1ields." In: M.[22]

Paul Krée, 3e année.· 1976/77. Paris: Secrétariat mathematique, 1978.

P. Krée, "Formes et coformes sur im espace nucléaire complet." In: Seminaire[21]

103-137.

A. Yu. Khrennikov, "Functional superanalysis." Russ. Math. Surveys 43 (1988),[20]

1990, 283-305.

S. Wightman (eds.): Constructive quantum field theory II. New-York: Plenum

A. Jaffe and A. Lesniewski, "Geometry of supersymmetry." In: G. Velo and A.[19]

J. Funct. Annal. 83 (1989), 348-363.

A. Lcsniewsh and J. Weitsman, "Pfamans on Hilbert space}A. JaHe,[18]

supers ctric quantum Eelds." Ann. Phys. 183 (1988), 337--351.

A. Ja.Hc,[17] A. Lesniewski and J. Weitsman, "Thc loop space S*-—•R and

147-165.

Wess—Z 1110 model on a cylinder." Commun. Math. Phys. 114 (1988),

A. Lcsniewski and J. Wcitsmau, "The tw0—dimcnsi0x1a.1, N=2A. Ja.He,[16]

Phys. 78 (1981), 371-390.

A. Jadczyk and K. Pilch, "Superspaccs and supersymmetrim." Commun. Math.[15]

.. 43 ..



385-392. OCR Output

[39] A. Rogers, "Consistent superspace integration." J. Math. Phys. 26 (1985),

1352-1365.

[38] A. Rogers, "A global theory of supermanifolds." J. Math. Phys. 21 (1980),

1986.

[37] O. Piguet and K. Sibold, Renormalized supersymmetry. Boston: Birkhauser

formula for boson-fermion models." Helv. Phys. Acta 42 (1973), 277-302.

[36] K. Osterwalder and R. Schrader, "Euclidean Fermi fields and a Feynman-Kac

Commun. Math. Phys. 42 (1975), 281-305.

[35] K. Osterwalder and R. Schrader, "Axioms for Euclidean Green’s functions. H,"

Commun. Math. Phys. 31 (1973), 83-112.

[34] K. Osterwalder and R. Schrader, "Axioms for Euclidean Green’s functions. I,"

Cambridge: CUP 1982.

supergravity." In: S. Ferrara and J. G. Taylor (eds.), Supergravity '81.

[3s] P. van Nieuwenhuizen, "Six lectures at the Trieste 1981 summerschool on

177-188.

B140 (1978), 294-300; II and IH, Nucl. Phys. B156 (1979), 157-176 and

[32] H. Nicolai, "A possible constructive approach to (super-¢°)4." I, Nucl. Phys.

supersymmetric field theory." Z. Phys. C 35 (1987), 471-478.

[31] H.J.W. Muller-Kirsten and A. Wiedemann, "Dirac quantization of a

Cimento 2 (1955), 120-134.

[30] P.T. Matthews and A. Salam, "Propagators of quantized ’5elds." Nuovo

Lett. 185B (1987), 99-103.

[29] I. Martin—Hernandez and J. G. Taylor, "On euclidean supersymmetry." Phys.

supersymmetry." J. Math. Phys. 25 (1984), 2545-2549.

[28] J. Lukierski and A. Nowicki, "On superfield formulation of euclidean

Superstrings, anomalies and supergravity. Cambridge: CUP 1986, 463-481.

W. Hawking and P. K. Townsend (eds.): Supersymmetry and its applications:

[27] J. Lukierski, "Euclidean superalgebras for 3 5 D5 10." In: G. W. Gibbons, S.

.. 44 ..



Phys. Lett. 69B (1977), 369-371. OCR Output

[43] B. Zumino, "Euclidean supersymmetry and the many-instanton problem}

367-381.

Renarmalizatian and invariance in quantum field theory. N. Y.: Plenum 1974,

[47] B. Zumino, "Relativistic strings and supergauges." In: E. R. Caianiello (ed.),

transformations." Phys. Lett. 49B (1974), 52-54.

J. Wess and B. Zumino, "A Lagrangian model invariant under supergauge[45]

Nucl. Phys. B70 (1974), 39-50.

[45] J. Wess and B. Zumino, "Supergauge transformations in four dimensions}

superspace." Sov. Math. Dokl. 35 (1985), 817-819.

[44] V. S. Vladimirov and I. V. Volovich, "On the definition of the integral in

[43] M. F. Sohnius, "Introducing supersymmetry." Phys. Rep. 128 (1985), 39-204.

476-481.

pseudodifferential operators in superanalysis." Sov. Math. Dokl. 37 (1988),

O. G. Smolyanov and E. T. Shavgulidze, "The Fourier transform and[42]

Berlin/ Heide1berg/ N.Y.: Springer 1979.

[41] M. Scheunert, The theory of Lie superalgebras. (Lect. Notes in Math. 716).

(1974), 477-482.

A. Salam and J. Strathdee, "Super—gauge transformations." Nucl. Phys. B76[40]

- 45




