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Topologically complex transient electromagnetic fields give access to nontrivial light-matter interactions and
provide additional degrees of freedom for information transfer. An important example of such electromagnetic
excitations are space-time non-separable single-cycle pulses of toroidal topology, the exact solutions of Maxwell
described by Hellwarth and Nouchi in 1996 and recently observed experimentally. Here we introduce a new
family of electromagnetic excitation, the supertoroidal electromagnetic pulses, in which the Hellwarth-Nouchi
pulse is just the simplest member. The supertoroidal pulses exhibit skyrmionic structure of the electromagnetic
fields, multiple singularities in the Poynting vector maps and fractal-like distributions of energy backflow. They
are of interest for transient light-matter interactions, ultrafast optics, spectroscopy, and toroidal electrodynamics.

Introduction – Topology of complex electromagnetic fields
is attracting growing interest of the photonics and electromag-
netics communities [1–6], while topologically structured light
fields find applications in super-resolution microscopy [7, 8],
metrology [9, 10], and beyond [11–13]. For example, the
vortex beam with twisted phase, akin to a Mobius strips in
phase domain, can carry orbital angular momentum with tune-
able topological charges enabling advanced optical tweez-
ers, machining, and communication applications [11–13].
The complex electromagnetic strip and knots structures were
also proposed as information carriers [14–16]. Recently ob-
served electromagnetic skyrmions are relevant to topologi-
cal skyrmions quasiparticles in high-energy physics and con-
densed matter [8, 17–20]. They have sophisticated vector
topology [21–23], and enable applications in super-resolution
microscopy [8], ultrafast imaging [24], and give rise to new
types of spin-orbit optical forces [25].

While a large body of work on topological properties of
structured continuous light beams may be found in literatures,
works on the topology of the time-dependent electromagnetic
excitations and pulses only start to appear. For instance, the
“Flying Doughnut” pulses, or toroidal light pulses (TLPs) first
described in 1996 by Hellwarth and Nouchi [26], with unique
spatiotemporal topology predicted recently [27], have only
very recently observed experimentally [28].

Fuelled by a combination of advances in ultrafast lasers
or THz emitters and in our ability to control the spatiotem-
poral structure of light [29, 30] together with the introduc-
tion of new experimental and theoretical pulse characteriza-
tion methods [31, 32], TLPs are attracting growing attention.
Indeed, TLPs exhibit their complex topological structure with
vector singularities and interact with matter through coupling
to toroidal and anapole localized modes [33–35]. Generation
of TLPs in the optical and THz parts of the spectrum now
paves the way towards new forms of spectroscopy, sensitive to
toroidal and anapole excitations, and new information transfer
schemes.

In this paper, we report that the Hellwarth and Nouchi
pulses, are, in fact, the simplest example of an extended family
of pulses that we will call supertoroidal light pulses (STLPs).
We will show that supertoroidal light pulses introduced here
exhibit complex topological structures that can be controlled
by a single numerical parameter. The STLP display skyrmion-
like arrangements of the transient electromagnetic fields orga-
nized in a fractal-like, self-affine manner, while the Poynting

vector of the pulses feature singularities linked to the multiple
energy backflow zones.

Results

Supertoroidal electromagnetic pulses – Following Zi-
olkowski, localized finite-energy pulses can be obtained
as superpositions of “electromagnetic directed-energy pulse
trains” [36]. A special case of the localized finite-energy
pulses was investigated by Hellwarth and Nouchi [26], who
found the closed-form expression describing a single-cycle fi-
nite energy electromagnetic excitation with toroidal topology
obtained from a scalar generating function f(r, t) that satis-

fies the wave equation (∇2 − 1
c2

∂2

∂t2
)f (r, t) = 0, where r =

(r, θ, z) are cylindrical coordinates, t is time, c = 1/
√
ε0µ0 is

the speed of light, and the ε0 and µ0 are the permittivity and
permeability of medium. Then, the exact solution of f(r, t)
can be given by the modified power spectrum method [26, 36],
as f(r, t) = f0/ [(q1 + iτ)(s+ q2)

α
], where f0 is a normal-

izing constant, s = r2/(q1+ iτ)− iσ, τ = z− ct, σ = z+ ct,
q1 and q2 are parameters with dimensions of length and act
as effective wavelength and Rayleigh range under the parax-
ial limit, while α is a real dimensionless parameter that must
satisfy α ≥ 1 to ensure finite energy solutions. Next, trans-
verse electric (TE) and transverse magnetic (TM) solutions are
readily obtained by using Hertz potentials. The electromag-
netic fields for the TE solution can be derived by the potential

A(r, t) = µ0∇ × ẑf(r, t) as E(r, t) = −µ0
∂
∂t
∇ × A and

H(r, t) = ∇ × (∇ ×A) [26, 36]. Finally assuming α = 1,
the electromagnetic fields of the TLP are described by [26]:

Eθ = −4if0

√

µ0

ε0

r(q1 + q2 − 2ict)

[r2 + (q1 + iτ) (q2 − iσ)]
3 (1)

Hr = 4if0
r(q2 − q1 − 2iz)

[r2 + (q1 + iτ) (q2 − iσ)]
3 (2)

Hz = −4f0
r2 − (q1 + iτ) (q2 − iσ)

[r2 + (q1 + iτ) (q2 − iσ)]
3 (3)

where the electric field Eθ is azimuthally polarized with no
longitudinal or radial components, whereas the magnetic field
is oriented along the radial and longitudinal directions, Hr and
Hz , with no azimuthal component. Equations (1-3) derived by
Hellwarth and Nouchi for α = 1 show the simplest example
of TLPs. Here we explore the general solution for values of
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Figure 1 From toroidal to supertoroidal light pulses: a,b, Isosurfaces for the electric fields of (a) the fundamental TLP Re[Eθ(r, t)], and

(b) a STLP Re[E
(α)
θ

(r, t)] of α = 5, at amplitude levels of E = ±0.1 and the Rayleigh range of q2 = 100q1, at different times of t = 0,
±q2/(4c), and ±q2/(2c). x-z cross-sections of the instantaneous electric field at y = 0. The insets in (a) and (b) are schematics of spatial
topological structures of magnetic vector fields at focus (t = 0) for the fundamental TLP and STLP, respectively. The gray dots and rings
mark the distribution of singularities in magnetic field, large purple arrows mark the direction of magnetic field vector, and the smaller
coloured arrows show the skyrmionic structures in magnetic field.

α ≥ 1. In the TE case, electric and magnetic fields are given by (see detailed derivation in Supplementary Information):

E
(α)
θ = −2αif0

√

µ0

ε0

{

(α+ 1)r(q1 + iτ)
α−1

(q1 + q2 − 2ict)

[r2 + (q1 + iτ) (q2 − iσ)]
α+2 − (α− 1)r(q1 + iτ)

α−2

[r2 + (q1 + iτ) (q2 − iσ)]
α+1

}

(4)

H(α)
r = 2αif0

{

(α+ 1)r(q1 + iτ)
α−1

(q2 − q1 − 2iz)

[r2 + (q1 + iτ) (q2 − iσ)]
α+2 − (α− 1)r(q1 + iτ)

α−2

[r2 + (q1 + iτ) (q2 − iσ)]
α+1

}

(5)

H(α)
z = −4αf0

{

(q1 + iτ)
α−1 [

r2 − α (q1 + iτ) (q2 − iσ)
]

[r2 + (q1 + iτ) (q2 − iσ)]
α+2 +

(α− 1)(q1 + iτ)
α−2

(q2 − iσ)

[r2 + (q1 + iτ) (q2 − iσ)]
α+1

}

(6)

For α = 1, the electromagnetic fields in Eqs. (4-6) are re-
duced to that of the fundamental TLP Eqs. (1-3). Moreover,
the real and imaginary parts of equations (4-6), simultaneity
fulfill Maxwell equations and therefore represent real electro-
magnetic pulses (see Supplementary Materials).

While propagating in free space toroidal and supertoroidal
pulses exhibit self-focusing. Figure 1 shows the evolution
of the fundamental (α = 1) TLP and STLP (α = 5) upon
propagation through the focal point. In the former case, the
pulse is single-cycle at focus (z = 0) becoming 1 1

2 -cycle at

the boundaries of Rayleigh range z = ±q2/2 (Fig. 1a). On
the other hand, STLPs with α > 1 (Fig. 1b, α = 5) exhibit
a substantially more complex spatiotemporal evolution where
the pulse is being reshaped multiple times upon propagation

(See Video 1 and Video 2 in Supplementary Materials for the
dynamic evolution of the fundamental TLP and STLPs).

Electric field singularities – Figure 2 comparatively shows
the instantaneous electric fields for the TE single-cycle funda-
mental TLP and STLP (α = 5) with q2 = 20q1 at the focus
(t = 0). In all cases, the electric field vanishes on the z-axis
(r = 0; see the vertical solid black lines in Figs. 2a and 2b)
owing to the azimuthal polarization and also in the z = 0
plane (see the horizontal solid black lines in Figs. 2a and 2b)
due to the odd symmetry of Eqs. Eqs. (1,4) with respect to
z. For the fundamental TLP, the electric field vanishes on two
spherical shells (indicated by the solid circles in Fig. 2a) on
the positive and negative z-axis, respectively. This behavior
can be more clearly observed in the transverse distributions
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Figure 2 Electric field topology of toroidal and supertoroidal light pulses: a,b, The isoline plots of the electric field in the x-z plane for

(a) the fundamental TLP, Re[Eθ(r, t = 0)], and (b) the STLP of α = 5, Re[E
(α=5)
θ

(r, t = 0)], in logarithmic scale. Solid black lines indicate
the zeros of the electric field. Dashed lines marked as a1-a3 and b1-b3 indicate the z-levels of the cross-sections on the right panels
correspondingly. Panels a1-a3 and b1-b3 present isoline plots of the electric field and arrow plots of the electric field direction in the x-y
plane, in logarithmic scale. Solid black lines and black dots mark the points and areas, where the electric field vanishes. Blue and red arrows
indicate the two opposite azimuthal directions of the electric fields. Unit for coordinates: q1.

at three different propagation distances, z = q1, 5q1, 35q1, of
Figs. 2a1-2a3. In accordance to Figs. 2a1 and 2a3, the elec-
tric field at z positions close to and away from the center of
the pulse (cross-sections a1 and a3) rotates counter-clockwise
forming a vortex around the center singularity along the prop-
agation axis. However, at a distance of z = 5q1 from its center
(Figs. 2a2), the electric field vanishes on a circular boundary,
which corresponds to a spherical region inside which the elec-
tric field is oriented along the clockwise direction, whereas
outside this region the electric field remains oriented in the
opposite (counter-clockwise) direction (see cross-section a3).
For the STLP case, a more complex matryoshka-like structure
emerges with multiple nested singularity shells, replacing the
single shell of the fundamental TLP, as Fig. 2b shows. The
electric field configuration close the singularity shells can be
examined in detail at transverse planes at z = q1, 5q1, 35q1
(Figs. 2b1-b3). In this case, at transverse planes close to
z = 0, the electric field changes orientation from counter-
clockwise close to r = 0 to clockwise away from the z-axis
(see Fig. 2b1). On the other hand, on transverse planes close
to z = 5q1 (see Fig. 2b2), two singular rings (correspond-
ing to the two singular shells) emerge as a cross-sections of

the multi-layer singularity shell structure, separating space in
three different regions, in which the electric field direction
alternates between counter-clockwise (r/q1 < 7), to clock-
wise (7 < r/q1 < 15), and again to counter-clockwise
(r/q1 > 15).

In general, the pulse of higher order of α is accompanied
by a more complex multi-layer singular-shell structure, see
the dynamic evolution versus the order index in Video 3 in
Supplementary Materials. Although the above results of elec-
tric fields are instantaneous at t = 0, we note that the multi
layer shall structure propagation of supertoroidal light pulse
is retained during propagation, see such dynamic process in
Video 4 in Supplementary Materials.

Magnetic field singularities – The magnetic field of STLPs
has both radial and longitudinal components, H = Hr r̂ +
Hz ẑ, which lead to a topological structure more complex than
the one exhibited by the electric field. Figure 3 comparatively
shows the instantaneous magnetic fields for the TLP and the
STLP of α = 5. For the fundamental TLP (Fig. 3a), the
magnetic field has ten different vector singularities on the x-
z plane, including four saddle points [the longitudinal field
component pointing towards (away from) and the radial com-
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Figure 3 Magnetic field topology of toroidal and supertoroidal light pulses: a,b, Isoline and arrow plots of the magnetic fields in the
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ponent away from (toward) the singularity] on z-axis and six
vortex rings [the surrounding vector distribution forming a
vortex loop] away from the z-axis. We note that we only con-
sider the singularities existed at an area containing 99.9% of
the energy of the pulse. While the singularity existed at the
region far away from the pulse center with nearly zero en-
ergy can be neglected. A zoom-in of the field structure around
these singularities can be seen in Fig. 3a1. For the three off-
axis singularities located at the x > 0 half space, two of them
(at z > 0 and z < 0) are accompanied by counter-clockwise
rotating vortices, whereas the third one (at z = 0) by a clock-
wise rotating vortex. Owing to the cylindrical symmetry of
the pulse, the off-axis singularities correspond in essence to
singularity rings. Such an example is shown in Fig. 3a2,
which presents the magnetic field on the transverse plane at
z = 0. Here, the magnetic field points toward the positive
(negative) z-axis inside (outside) the circular region resulting
in the formation of a toroidal vortex winding around the singu-
larity ring. For the STLP (Fig. 3b), more vector singularities

are unveiled in the magnetic field with six saddle points on
z-axis and six off-axis singularities. A zoom-in of the field
structure around these singularities can be seen in Fig. 3b1.
The orientation of the magnetic field around the on-axis sad-
dle points is alternating between “longitudinal-toward radial-
outward point” and “adial-toward longitudinal-outward”, sim-
ilarly to the on-axis singularities of the TLP. Moreover, the
off-axis singularities at z = 0 become now saddle points con-
tributing to the singularity ring in the z = 0 plane. The re-
maining off-axis singularities are accompanied by clockwise
and counterclockwise magnetic field configurations at x > 0
and x < 0, respectively as shown Fig. 3b2.

Skyrmionic structure in magnetic field – A topological
feature of particular interest here is the skyrmionic struc-
ture observed in the magnetic field configuration of STLPs.
The skyrmion is a topologically protected quasiparticle in
condensed matter with a hedgehog-like vectorial field, that
gradually changes orientation as one moves away from the
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skyrmion centre [21–23]. Recently skyrmion-like configua-
tions have been reported in electromagnetism, including
skyrmion modes in surface plasmon polaritons [17] and the
spin field of focused beams [8, 19]. Here we observe the
skymrion field configurations in the magnetic field of prop-
agating STLPs.

The topological properties of a skyrmionic configuration
can be characterized by the skyrmion number s, which can
be separated into a polarity p and vorticity number m [23].
The polarity represents the direction of the vector field, down
(up) at r = 0 and up (down) at r → ∞ for p = 1 (p = −1),
the vorticity controls the distribution of the transverse field
components, and another initial phase γ should be added for
determining the helical vector distribution, see Methods for
details. For the m = 1 skyrmion, the cases of γ = 0 and
γ = π are classified as Néel-type, and the cases of γ = ±π/2
are classified as Bloch-type. The case for m = −1 is classi-
fied as anti-skyrmion.

Here the vector forming skyrmionic structure is defined by
the normalized magnetic field H = H/|H| of the STLP.
Two examples of two skyrmionic structures in the fundamen-
tal TLP are shown in Figs. 3c1 (p = m = 1, γ = π) and
3c2 (p = m = 1, γ = 0) occurres at the two transverse planes
marked by purple dashed lines c1 and c2, which are both Néel-
type skyrmionic structures, where the vector changes its direc-
tion from “down” at the centre to “up” away from the centre.
In the case of the STLPs with more complex topology, it is
possible to observe more skyrmionic structures. The STLP
pulse (α = 5) exhibits not only the clockwise (p = m =
1, γ = π) and counter-clockwise (p = m = 1, γ = 0) Néel-
type skyrmionic structures (Fig. 3c3 and 3c4), but also those
with p = −1,m = 1, γ = π and p = −1,m = 1, γ = 0, in
Fig. 3c6-c6.

In general, as the value of α increases, toroidal pulses
show an increasingly complex magnetic field pattern with
skyrmionic structures of multiple types, see Video 3 in Sup-
plementary Materials. We also note that the topology of the
STLP is maintained during propagation, see Video 4 in Sup-
plementary Materials.

Energy backflow and Poynting vector singularities – The
singularities of the electric and magnetic fields are linked to
the complex topological behavior for the energy flow as rep-
resented by the Poynting vector S = E × H. An interesting
effect for the fundamental TLP is the presence of energy back-
flow: the Poynting vector at certain regions is oriented against
the prorogation direction (blue arrows in Fig. 4a) [27]. Such
energy backflow effects have been predicted and discussed in
the context of singular superpositions of waves [1, 37], super-
oscillatory light fields [9, 38], and plasmonic nanostructures
[39]. The Poynting vector map reveals a complex multi-layer
energy backflow structure, as shown in Fig. 4b. The energy
flow vanishes at the positions of the electric and magnetic sin-
gularities and inherits their multi-layer matryoshka-like struc-
ture. Poynting vector vanishes at z = 0 plane, along the
z-axis, and on the dual-layer matryoshka-like singular shells
(marked by the black bold lines in Fig. 4b). Importantly, en-
ergy backflow occurs at areas of relatively low energy den-
sity, and, hence, STLP as a whole still propagates forward.
For the temporal evolution of the energy flow of the pulse see
Videos 3 & 4 in Supplementary Materials.

Fractal patterns hidden in electromagnetic fields – As the
order α of the pulse increases (see Video 3 in Supplementary
Material), the topological features of the STLP appear to be
organized in a hierarchical, fractal-like fashion. A character-
istic case of the STLP of α = 20 is presented in (Fig. 5). For
the electric field, the matryoshka-like singular shells involve
an increasing number of layers as one examines the pulse at
finer length scales, forming a self-similar pattern that seems
infinitely repeated. For the magnetic field, the saddle and vor-
tex points are distributed along the propagation axis and in
two planes crossing the pulse centre, respectively. The dis-
tribution of singularities becomes increasingly dense as one
approaches the centre of the pulse, resulting in a self-similar
pattern. A similar pattern can be seen for the Poynting vector
map (see Videos 3 & 4 in Supplementary Materials).

Fine-scale features of skyrmionic structures – The fractal-
like pattern of vectorial magnetic field of a high-order STLPs
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Figure 5 Fractal-like pattern in electromagnetic field of supertoroidal pulses: a, The isoline plot of the electric field in the x-z plane for

the STLP of α = 20, Re[E
(α=20)
θ

(r, t = 0)], in logarithmic scale. Solid black lines indicate the zeros of the electric field. Panel a1 presents
the zoom-in of the region highlighted by blue in (a). b, Isoline and arrow plot of the logarithm of the magnetic field in the x-z plane for the
STLP of α = 20. Black dots indicate the zeros of the magnetic field with red arrows correspondingly marking the saddle or vortex style of
the vector singularities. Panel b1 presents the zoom-in of the region highlighted by blue in (b). Fine-scale features of skyrmionic
structures: c1-c4, The skyrmionic distributions of magnetic field at several transverse planes marked by dashed lines c1-c4 in (b1). d1-d4,
the distribution of normalized magnetic field and its absolute value versus x for the skyrmionic structures in (c1-c4). Insets illustrate the
fine-scale features at the regions highlighted by gray bands. Unit for coordinates: q1.

results in skyrmionic configurations with with features chang-
ing much faster than the effective wavelength q1. Figures 5c1-
c4 show the four skyrmionic structures of the high-order
STLP (α = 20) at the four transverse planes marked by the
dashed lines in Fig. 5b1 at positions of z/q1 = 14, 10, 6, 3.5,
correspondingly. The four skyrmionic structures have two
different topologies with topological numbers of (p,m, γ) =
(1, 1, π), for c1 and c3, and (−1, 1, 0), for c2 and c4. In addi-
tion, they exhibit an effect of “spin reversal”, where the num-
ber reversals is given by p̄ = 1

2π [β(r)]
r=∞

r=0 , e.g. p̄ = 1, 2, 3, 4
for the skyrmionic structures in Figs. 5c1-c4, respectively.
Each reversal corresponds to a sign change of Hz , which takes
place over areas much smaller than the effective wavelength
of the pulse (q1). The full width at half maximum of these ar-
eas for the four skyrmionic structures is 1/6, 1/10, 1/30, 1/50
of the effective wavelength, respectively. Conclusively, the

sign reversals become increasingly rapid in transverse planes
closer to the pulse center (z = 0), see Figs. 5d1-d4. Simi-
larly, increasing the value of α leads to increasingly sharper
singularities. Notably, in contrast to the fundamental TLP, the
skyrmionic configurations in STLP occur at areas of higher
energy density, and thus we expect that they could be observed
experimentally.

The topological structure of the STLP is directly related to
the distribution of on-axis saddle-points in its magnetic field.
Indeed, the latter mark the intersection of the E-field singular
shells with the z-axis, which in turn results in the emergence
of different skyrmionic magnetic field patterns (see Fig. 5 and
Videos 3 & 4). The number and position of on-axis magnetic
field saddle points is defined by the supertoroidal parameter
α. This is illustrated in Fig. 6a, where we plot the number of
on-axis H-field singularities as a function of alpha for a STLP
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Figure 6 Evolution of on-axis singularity distribution versus
supertoroidal order: a,b, The number (a) and positions (b) of
on-axis saddle-singularities of the magnetic field of the STLP
(q2 = 20q1) within the range of z ∈ [0, 80q1], versus α. The blue
dashed line marks where the number of singularities decreases.

with q2 = 20q1. The number of singularities is generally in-
creasing with increasing α apart for values around α = 5.6
(marked by blue dashed line in Fig. 6). Moreover, the number
of singularities increases in a ladder-like fashion, where only
specific values of alpha lead to additional singularities. The
origin of this behaviour can be traced to changes in the pulse
structure as α increases (see Fig. 6b). For specific values of
α, additional singularities appear away from the pulse center
(z = 0) and then move slowly towards it. On the other hand,
the irregular behavior at α = 5.6 is a result of two singularities
disappearing (see blue dashed line in Fig. 6b).

Discussion

STLPs exhibit complex and unique topological structure.
The electric field exhibits a matryoshka-like configuration of
singularity shells, which divide the STLP into “nested” re-
gions with opposite azimuthal polarization. The maagnetic
field exhibits multi-texture skyrmionic structures at various
transverse planes of a single pulse, related to the distribution
of multiple saddle and vortex singularities. The instantaneous
Poynting vector field exhibits multiple singularities with re-
gions of energy backflow. The singularities of the STLP ap-
pear to be hierarchically organized resulting in self-similar,
fractal-like patterns for higher-order pulses.

In conclusion, to the best of out knowledge, STLPs are
so far the only known example of free-space propagating
skyrmionic field configurations. Their structure contains
sharp singularities of interest for super-resolution metrology
and microscopy, optical information encoding, optical trap-
ping and particle acceleration.

Methods

Solving the supertoroidal pulses – The first step is to solve
the scalar generating function f(r, t) that satisfies the wave

equation (∇2 − 1
c2

∂2

∂t2
)f (r, t) = 0, where r = (r, θ, z)

are cylindrical coordinates, t is time, c = 1/
√
ε0µ0 is the

speed of light, and the ε0 and µ0 are the permittivity and per-
meability of medium. The exact solution of f(r, t) can be
given by the modified power spectrum method as f(r, t) =
f0/ [(q1 + iτ)(s+ q2)

α
], where f0 is a normalizing constant,

s = r2/(q1 + iτ) − iσ, τ = z − ct, σ = z + ct, q1 and q2
are parameters with dimensions of length and act as effective
wavelength and Rayleigh range under the paraxial limit, while
α is a real dimensionless parameter that must satisfy α ≥ 1
to ensure finite energy solutions. The next step is constructing
the Hertz potential. For fulfilling the toroidal symmetric and
azimuthally polarized structure, the Hertz potential should be
constructed as A(r, t) = µ0∇× ẑf(r, t). Then, the exact so-
lutions of solutions of transverse electric (TE) and transverse
magnetic (TM) modes are readily obtained by using Hertz po-
tential. The electromagnetic fields for the TE solution can

be derived by the potential as E(r, t) = −µ0
∂
∂t
∇ × A and

H(r, t) = ∇ × (∇ ×A) [26, 36], see Supplementary Infor-
mation for more detailed derivations.

Characterizing topology of skyrmion – The topological
properties of a skyrmionic configuration can be characterized
by the skyrmion number defined by [23]:

s =
1

4π

∫∫

n ·
(

∂n

∂x
× ∂n

∂y

)

dxdy (7)

that is an integer counting how many times the vector
n(x, y) = n(r cos θ, r sin θ) wraps around the unit sphere.
For mapping to the unit sphere, the vector can be given by
n = (cosα(θ) sinβ(r), sinα(θ) sinβ(r), cosβ(r)). Also,
The skyrmion number can be separated into two integers:

s =
1

4π

∫

∞

0

dr

∫ 2π

0

dϕ
dβ(r)

dr

dα(θ)

dθ
sinβ(r)

=
1

4π
[cosβ(r)]r=∞

r=0 [α(θ)]θ=2π
θ=0 = p ·m (8)

the polarity, p = 1
2 [cosβ(r)]

r=∞

r=0 , represents the direction
of the vector field, down (up) at r = 0 and up (down) at
r → ∞ for p = 1 (p = −1). The vorticity number,
m = 1

2π [α(θ)]
θ=2π
θ=0 , controls the distribution of the transverse

field components. In the case of a helical distribution, an ini-
tial phase γ should be added, α(θ) = mθ + γ. For the m = 1
skyrmion, the cases of γ = 0 and γ = π are classified as Néel-
type, and the cases of γ = ±π/2 are classified as Bloch-type.
The case for m = −1 is classified as anti-skyrmion.
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larization möbius strips,” Science 347, 964–966 (2015).

[15] Thomas Bauer, Martin Neugebauer, Gerd Leuchs, and Peter
Banzer, “Optical polarization möbius strips and points of purely
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Figures

Figure 1

From toroidal to supertoroidal light pulses. (See Manuscript �le for full �gure legend)



Figure 2

Electric �eld topology of toroidal and supertoroidal light pulses. (See Manuscript �le for full �gure legend)



Figure 3

Magnetic �eld topology of toroidal and supertoroidal light pulses. (See Manuscript �le for full �gure
legend)

Figure 4



Poynting vector topology of toroidal and supertoroidal light pulses. (See Manuscript �le for full �gure
legend)

Figure 5

Fractal-like pattern in electromagnetic �eld of supertoroidal pulses. (See Manuscript �le for full �gure
legend)



Figure 6

Evolution of on-axis singularity distribution versus supertoroidal order. (See Manuscript �le for full �gure
legend)
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