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1 Introduction

In recent years many surprising results were discovered in the S-matrix of maximal super-

symmetric theories in 4 dimensions. These include new symmetries and structures [1–5],

representations [6–13] of tree-level amplitudes, and unexpected UV behaviour in loop per-

turbation theory [14–21]. Many of these advancements rely heavily on newly developed

on-shell methods such as recursion relations to construct tree amplitudes, and generalized

unitarity to obtain loop corrections by simply sewing tree amplitudes. More precisely, one

can now use either the CSW method [7, 8], which constructs general amplitudes from MHV

vertices, or the BCFW [9, 10] construction, which expresses an n-point amplitude as direct

products of lower point amplitudes, to efficiently construct tree amplitudes for either gauge
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or gravity theory. Modern unitarity methods [22–24] then allow one to construct loop am-

plitudes by expressing them in terms of a set of integrals that reproduces the cuts of the

amplitude. Tree amplitudes are then used to construct the coefficients of these integrals.

The major unsatisfactory aspects in these current approaches is their reliance on 4

dimensional spinor-helicity formalism [25–30], while many interesting questions are inher-

ently D dimensional. For example in the study of divergences in maximal supersymmetric

theories, one usually encounters various bounds (at given loop level) on the dimension at

which the first potential divergence should appear [14–16, 31, 32]. To study this bound one

is required to compute the divergences of the D dimensional theory. On the other hand

even in QCD one loop amplitudes, D dimensional tree amplitudes are useful for obtaining

rational terms when using unitarity methods [33–38]. Therefore a spinor helicity formalism

similar to 4 dimensions will be helpful for these purposes.

Since physical degrees of freedom are completely determined by its super Poincaré

quantum numbers, the power of spinor helicity formalism is then to represent these quan-

tum numbers covariantly using unconstrained variables. There has been recent progress in

constructing general D6=4 spinor helicity formalism [39] and for D=10 [40], though the vari-

ables are constrained. Here we focus on 6 dimensions where the spinor-helicity formalism is

very similar to 4 dimensions, as recently demonstrated by Cheung and O’Connell [41]. The

idea is to start in 6 dimensions where the Lorentz group SO(5,1) has the covering group

SU∗(4). The vector forms an antisymmetric representation of SU∗(4), and the on-shell

condition is naturally solved by introducing SU∗(4) spinors, PAB = λAaλB
a , PAB = λ̃ȧ

Aλ̃Bȧ.

The indices a, ȧ transform under the 6 dimensions little group SO(4)≃SU(2)× SU(2). In

fact, these spinors can be viewed as (half)part of the spinor representation of the six di-

mensional conformal group SO∗(8), i.e. they are twistors [42]. In this light, their property

of being solutions to the massless constraint follows directly from twistors being solutions

to conformal constraints.

In this paper we will introduce Grassmann variables along with the spinors to form an

on-shell superspace. As we will demonstrate, the Yang-Mills field strength is in the (1
2 , 1

2)

representation of the little group. Since for maximal N=(1,1) theory the full multiplet

should be contained in a single superfield, the non-chiral nature of the field strength then

implies a non-chiral on-shell superspace. These Grassmann variables are the fermionic

pieces of the spinor representation(supertwistors) of the six dimensional superconformal

group OSp∗(8|2N). Since the supertwistors are self-conjugate, we covariantly truncate these

variables using the SU(2)×SU(2) R indices. Compared to 4 dimensions whose twistor is not

self-conjugate, one simply takes the chiral twistor at the loss of manifest parity symmetry,

here it is replaced by the loss of R symmetry. Being non-chiral has the advantage of

representing the amplitudes in a more symmetric fashion, instead of viewing the amplitudes

from the MHV (or MHV) point of view.1

This unification of MHV and MHV amplitudes in this superspace hints at 4 dimensional

off-shell superspace which must be non-chiral. In fact the splitting of R-indices, when

1More precisely, from the view point of self dual (or anti-self dual) super Yang-Mills, which is naturally

expressed in terms of chiral superspace [43, 44].
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reduced to 4 dimensions, is similar to the 4 dimension projective superspace described

in [45]. We will see that our 4-point amplitude using 6 dimensions spinors shares the

same form with that recently derived in 4 dimensions projective superspace [46]. The fact

that one may understand 4 dimensions off-shell superspace from 6 dimensions on-shell is

similar to the usual story of viewing the conformal group SO(2,4) as the Lorentz group in

6 dimensions acting on the projective (modding out the scale) light-cone (p2 = 0). The

theory on the light-cone is four dimensional and off-shell.

We begin with a discussion of 6 dimensional spinors similar to Cheung and O’Connell.

In section 3 we introduce Grassmann variables in the spirit of Ferber [29, 30] and construct

the N=2 superspace. In section 4 we obtain the super amplitudes by simply supersym-

metrizing the 3, 4 and 5-point amplitudes derived in [41]. In section 5 we rederive the

previous result using BCFW. Finally we show the application of this approach to loop

amplitudes by reproducing the one-loop four-point structure of maximal SYM in D dimen-

sions [47].

2 6 dimensional on-shell spinors

We review the 6 dimensional spinor-helicity formalism recently developed by Cheung and

O’Connell [41]. We will present it in parallel with the familiar 4 dimensional results. In 6

dimensions Minkowski space the covering group is, SO(5,1)≃SU∗(4). The vector is in the

anti-symmetric representation of SU∗(4), and the scalar product of two vectors is defined

as a contraction with the SU∗(4) invariant tensor ǫABCD. For simplicity we drop the ∗

from now on. For a null vector one has

6D : pµ = pAB, p2 = 0 → ǫABCDpABpCD = 0 → pAB = λAaλB
a, (2.1)

where the spinors λA
a are pseudo real, A is the SU(4) index and a, ȧ are the SU(2) indices.2

The bi-spinor form of the momentum solves the on-shell constraint since there are no 4

component totally anti-symmetric tensors in SU(2). One can also represent the momentum

in the anti-fundamental representation:

pAB =
1

2
ǫABCDpCD = λ̃A

ḃλ̃
Bḃ

, λA
a λ̃Aȧ = 0. (2.2)

One can also understand this solution by counting components. A null vector in 6 dimen-

sions has 5 components including a scale factor, meanwhile λAa has 4× 2 = 8 components

and the SU(2) invariance removes 3 of them. Since the definition of little group is the

transformation group that leaves the null momentum invariant, the SU(2) indices on the

spinors correspond to the 6 dimensions little group SO(4)≃SU(2)×SU(2).

This is similar to 4 dimensions on-shell momentum which has 3 components. We write

the 4 dimensional real momentum in terms of spinors

4D : pαα̇ = λαλ̃α̇. (2.3)

2One can work in other signatures, in the Wick rotated SO(3,3) the covering group would be SL(4), a, ȧ

transform under SL(2) and the spinors are real.
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With λα being complex and λ̃α̇ = ±λ̄α̇ in Minkowski space, one also has 4 −
1 = 3 components, where the 1 is from the invariance of pαα̇ under U(1) rotation

λα → eiθλα, λ̃α̇ → e−iθλ̃α̇.

Note that in arbitrary dimensions, one can always represent an on-shell momentum

in bi-spinor form by first finding the solutions to the Dirac equation. These solutions can

then be used to construct the null momenta. However since the solution of the Dirac

equation is non-covariant, this approach will be less useful for analytic analysis of the

amplitudes. An important distinction for the above (4)6 dimensional discussion, is that

the spinors “automatically” satisfy the Dirac equation, they are unconstrained variables.

This matching between massless degrees of freedom and the moding of the little group

from the spinors only exists in 3,4 and 6 dimensions. A demonstration of this difficulty

can be seen in the recent 10 dimensional twistor construction à la Berkovits [40]. There

the 10 dimensional null vector is constructed using a pure spinor λ and a Weyl spinor

π, pµ = λγµπ. There is also a gauge invariance δπ = (γµνλ)Ωµν which gives the correct

counting for an on-shell momentum, 22+32-45=9.3 However the gauge group is SO(10)

which is larger than the little group SO(8), which results in residual gauge invariance in

the components of the supertwistor field.

These 6 dimensional spinors are half of the 6 dimensional twistor. This twistor is in the

irreducible spinor representation of the 6 dimensional conformal group SO(6,2)=SO(8)*,

an 8 dimensional chiral spinor which is composed of a 6 dimensional chiral and anti-chiral

spinor [42]. The λAa and λ̃Aȧ are part of the chiral and anti-chiral twistor, which is equiva-

lent representations due to triality, respectively. Since it is pseudoreal, the twistor and it’s

equivalent complex conjugate form a SU(2) doublet. This SU(2) then becomes the SU(2)

little group for the 6 dimensional spinors. Even though in this paper we are interested in

the N=(1,1) theory which is non-conformal, it is still useful to analyse scattering ampli-

tudes of non-conformal massless theories in twistor space. A well known example is the

study of Yang-Mills amplitudes using 4 dimensional twistors. Note that one anticipates this

understanding of 6 dimensional spinor helicity in terms of twistors will play an important

role for the analysis of the (2,0) theory which is expected to be superconformal.

Lorentz invariants are constructed by contracting the SU(4) indices:

ǫABCD(λ̃1)Aȧ(λ̃2)Bḃ
(λ̃3)Cċ(λ̃4)Dḋ

= [1ȧ2ḃ
3ċ4ḋ

]

ǫABCD(λ1)
A

a(λ2)
B

b(λ3)
C

c(λ4)
D

d = 〈1a2b3c4d〉,
(λi)

A
a (λ̃j)Aȧ = 〈ia|jȧ] → det(〈ia|jȧ]) = −2pi · pj

〈λa|6p1 6p2 6p3|λb〉 = λA
a (p1)AB(p2)

BC(p3)CDλD
b

[λ̃ȧ|6p1 6p2 6p3 6p4|λb〉 = λ̃Aȧ(p1)
AB(p2)BC(p3)

CD(p4)DEλE
b .

Note that a chiral and an anti-chiral spinor can only be contracted with an even number

of momenta. These spinors can be expressed in terms of momenta in a non-covariant way.

Furthermore, when the momenta are restricted to a 4 dimensions subspace, all of the above

Lorentz invariants can be rewritten in terms of 4 dimensional spinors. We demonstrate

these properties in appendix A. In light of the proliferation of indices, we make a brief list:

3There are 22 degrees of freedom for a pure spinor.
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• A,B,C . . . are SU(4) indices of the 6 dimensional Lorentz group

• a, b, . . . , ȧ, ḃ, . . . , are the SU(2)×SU(2) little group indices

• I, J,K, . . . are the R-symmetry indices

• i, j, k, . . . labels the external line

• µ, ν, . . . are the spacetime index in any dimensions

• α, β, . . . α̇, β̇, . . . are 4D SL(2,C) indices

In 4 dimensions the polarization vectors are written as

4D : (ǫµ
+)

ββ̇
=

λ̃
β̇
κβ

λακα
=

|λ̃]〈κ|
〈λκ〉 , (ǫµ

−)
ββ̇

=
λβκ̃

β̇

λ̃α̇κ̃α̇

=
|λ〉[κ̃|
[λ̃|κ̃]

, (2.4)

where κ is the spinor for an arbitrary null vector kαα̇ with k · p 6= 0. Similarly in

6 dimensions4

6D : (ǫµ
aȧ)

AB ≡ λ[A
aκ

B]
c

κD
cλ̃D

ȧ
=

|[Aλa〉〈κc
B]|

〈κc|λȧ]
=

|[Aλa〉(6k|λȧ])

det〈κ|λ]

B]

(ǫµaȧ)AB ≡ λ̃Aȧκ̃B
ċ

λD aκ̃D
ċ

=
|[Aλ̃ȧ][κ̃ċB]|

[κ̃ċ|λa〉 =
|[Aλ̃ȧ]( 6k|λa〉)B]

det[κ̃|λ〉 . (2.5)

Again κAα is the spinor for some reference null momenta kAB , and ǫµ
aȧ(ǫµ)

bḃ
= CabCȧḃ

,

where Cab = C
ȧḃ

=

(

0 −i

i 0

)

. The determinant in the denominator occurs over the little

group indices. Note that the polarization vectors transform in the (1
2 ,12) representation of

the little group. In both cases, one can easily show the polarization vectors satisfy pµǫµ = 0,

and an arbitrary redefinition of the reference spinor translates into a gauge transformation.

The field strength Fµν = pµǫν − pνǫµ also has a simple expression in terms of spinors.

In 4 dimensions, using the definition of ǫ in (2.4) the field strength naturally separates into

a chiral and anti-chiral piece:

Fµν = F
αα̇ββ̇

= C
α̇β̇

fαβ + Cαβ f̃
α̇β̇

→ fαβ = λαλβ, f̃
α̇β̇

= λ̃α̇λ̃
β̇
.

Using (2.5) for 6 dimensions one obtains

Fµν = (FAB,CD)aȧ ∼ (ǫABCEλE
aλ̃Dȧ + ǫDBCEλE

aλ̃Aȧ − ǫABDEλE
aλ̃Cȧ − ǫDACEλE

aλ̃Bȧ).

(2.6)

One can contract the field strength with the SU(4) invariant tensor ǫ to obtain the follow-

ing quantities

(FAB
CD)aȧ = ǫABEF FEFCD = 0,

(FE
D)aȧ = ǫEABC(FABCD)aȧ = λE

aλ̃Dȧ. (2.7)

The last expression will be the one that appears naturally in amplitudes.

4The object 1
[iȧ|jb〉

is defined as the inverse matrix ([iȧ|jb〉)
−1 = [iȧ|jb〉

sij
.
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3 6 dimensions N=(1,1) superspace

Since both the polarization vector and the field strength appear as (1
2 ,12) tensors in SU(2)×

SU(2), this implies that the on-shell superspace must be non-chiral as well. Note that the

chiral N=(1,0) super Yang-Mills and the mysterious N=(2,0) theory use chiral on-shell

superspaces; however the former is not maximal5 and the later does not contain a vector

gauge field.

Recent constructions of the S-matrix for maximal gauge and gravity theories make use

of 4 dimensional supertwistor space. Here we construct the 6 dimensional N=2 on-shell

superspace in similar fashion, i.e. by introducing Grassmann variables ηI
a,

6 where I is the R

index and a is the little group index, one can arrive at the usual superspace by contracting

the little group indices with the spinors. In 4 dimensions I = 1, 2, 3, 4 and the little group

is U(1), under which the Grassmann variables transform as ηI → e−iθηI , η̄I → eiθη̄I . The

relation to the usual superspace can be seen with the help of the spinors

4D : θIα = λαηI , θ̄Jα̇ = λ̃α̇η̄J .

Note that in a sense one contracts with respect to the little group.

One can do similar for 6 dimensions. Maximal super Yang-Mills in 6 dimensions

has N=(1,1) supersymmetry with R-symmetry group USp(2)×USp(2)=SU(2)×SU(2). We

introduce ηaI and η̃ȧI′ where the I, I ′ are the SU(2)R symmetry indices. Note that η and

η̃ are complex and independent. They are the fermionic part of the chiral and anti-chiral

supertwistor; the spinor representation of OSp∗(8|2). The full 6 dimension superspace

variables are then

6D : qAI = λA
a ηaI , q̃AI′ = λ̃ȧ

Aη̃ȧI′ .

In 4 dimensions maximal super Yang-Mills (as well as gravity), one can express the full

amplitude using either chiral or anti-chiral superspace, i.e. only half of the full superspace,

since this is enough to contain all physical degrees of freedom. This is due to the self-CPT

conjugate nature of the physical spectrum. In 6 dimensions we have similar result. However

since the supertwistors are self-conjugate, only half of the degrees of freedoms for ηaI and

η̃ȧI′are independent. Therefore to construct our on-shell superspace we need to truncate

the η, η̃s. Since we wish to use the little group index to label our states, we will truncate

using the R-indices.

Note that this situation is equivalent to the issue of trying to construct off-shell N>

1 superspace, where chiral constraints usually lead to field equations. One of the well

known examples is the N=2 harmonic superspace [49] in 4 dimensions. Here one introduces

harmonic variables u±
I to parameterize the SU(2)/U(1) coset. These variables are then

used to separate the θ variables into two separate sets (θ+
α = u+

I θI
α, θ̄+

α̇ = u+I θ̄Iα̇) and

+ → −. Then the prepotential, which contains the physical gauge field, depends only on a

subspace (the “analytic superspace”) which only includes θ+, θ̄+. The harmonic variables

5For non-maximal theories, the on-shell states cannot be contained in a single on-shell superfield.
6These η variables appear in a similar fashion as with the 4 dimensional N=4 theory. We refer to [48]

for a detailed discussion of its properties.
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A− +A

Figure 1. The weight space diagram for 4D N=4 super Yang-Mills

can be viewed as providing a linear combination of the R-symmetry index, and therefore

separating the supercharges into subsets.7

Therefore we can use the two harmonics coming from our SU(2)×SU(2) R symme-

try to construct our half superspace, i.e. we choose our subspace to include only qA+ =

u+
I qAI , q̃+

A = ũ+I′ q̃AI′. This is a consistent truncation if {DA−,DB−} = {D̃A
−, D̃B

−} =

{DA−, D̃B
−} = 0 so that one can consistently impose DA−φ = D̃A

−φ = 0. This is true since

{DAI ,DBJ} = CIJ∂AB , {D̃A
I′ , D̃

B
J ′} = CI′J ′∂AB,

where CIJ is antisymmetric. Thus we will construct the on-shell superamplitude as a

function of only qA+, q̃+
A or equivalently η+

a , η̃+
ȧ

M = M(p, η+
a , η̃+

ȧ ).

From now on we drop the + for simplicity.8

The group theoretical interpretation of the ηs is that they are the raising and lowering

generators defined on the weight space of the little group [39]. For example, in 4-dimensions

the physical states can be conveniently written as states in the weight space of the U(1)

little group figure(1). A self-CPT spectrum then means that one has enough susy, and

therefore enough ηs, to reach all the physical states. Note that the lowering generators,

represented by η̄s, are absent. The fact that we began with A− reflects the fact that the

on-shell superspace is a chiral superspace. In 6-dimensions the states now lie in the weight

space of SU(2)×SU(2), figure(2). Using the 4 ηa, η̃ȧs, one can begin with the scalar and

reach all the other physical states.

For future reference we define the following fermionic delta functions

δ8

(

∑

i

qi

)

=



ǫABCDδ

(

∑

i

qA
i

)

δ





∑

j

qB
j



 δ

(

∑

k

qC
k

)

δ

(

∑

l

qD
l

)





×



ǫEFGHδ

(

∑

i

q̃iE

)

δ





∑

j

q̃jF



 δ

(

∑

k

q̃kG

)

δ

(

∑

l

q̃lH

)





= δ4

(

∑

i

qM
i

)

δ4





∑

j

q̃jM



 ,

7Of course these new bosonic R-coordinates also provide the infinite auxiliary fields that are necessary

to close the susy algebra off-shell. Different choices (or a subset) of these coordinates represent different

off-shell formulations, for example there is also the N=2 projective superspace [50, 51].
8R-symmetry is not really manifest since we do not integrate over the harmonics.
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A A

AA

Figure 2. The weight space diagram for 6D N=2 super Yang-Mills. Note that the gauginos are

complex and there are two independent complex scalar field.

where the sum is over external legs. Notice the YM field strength appears as

∫

d(η1)a

∫

d(η̃1)ȧδ

(

∑

i

qA
i

)

δ





∑

j

q̃jB



 = (λ1)
A
a (λ̃1)Bȧ = (FA

B)aȧ. (3.1)

In this form it is then straight forward to supersymmetrize Cheung and O’Connell’s result.

Before going on to the super on-shell amplitudes, we would like to comment on the

relationship to 4 dimensions off-shell superspace. For our purpose the precise nature of the

harmonics u and ũ which paremeterize the double coset SU(2)
U(1) × SU(2)

U(1) , is irrelevant for on-

shell amplitudes. However, this R-coset space appears to be very similar to the projective

superspace recently proposed for N=4 super Yang-Mills [46], this superspace is based on

the supercoset OSp(4|4)
OSp(2|2)2

. If one uses the covering group, then the R-space part becomes

SO(4)

SO(2)2
→ SU(2)

U(1)
× SU(2)

U(1)
.

As we will see in the next section, the 4-point tree amplitude written in 6 dimensions has

the same form as the 4-point amplitude derived in [46], in which the R-space parameters

were evaluated at 0 anyway. The fact that the 6-dimensional on-shell amplitude shares the

same form as the 4 dimensional off-shell is not surprising since on-shell in 6 dimensions

simply restricts to the 6 dimensional lightcone. Projecting out the scale (projective light-

cone) one has a 4 dimensional space where the vectors are not constrained to be null. The

fact that one can extrapolate the 4 dimensional amplitude from a higher dimension on-shell

counterpart is of great convenience. Recent advances in the evaluation of the S-matrix,

which are usually only valid on-shell,9 can then be used to analyse 4 dimensional off-

shell amplitudes which may give implications to an off-shell action, which is still lacking.

Another application would be to use these off-shell amplitudes as an alternative to the

recently proposed IR regularization scheme for N=4 super Yang-Mills [52].

9For example the use of BCFW relies on the fact that the complex deformation only produces simple

poles. If one looks at the off-shell amplitude, the shift will in general produce double poles. This will lead

to residues that do not factorize into two tree amplitudes as the usual BCFW.
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4 Amplitudes in superspace

4.1 4-point amplitude

We begin with the 4-point amplitude since the supersymmetrization is relatively straight-

forward. The 4-point amplitude for 6 dimensional Yang-Mills is

6D : M4 =
−i < 1a2b3c4d > [1ȧ2ḃ

3ċ4ḋ
]

st

=
−iǫABCD(λ1)

A
a (λ2)

B
b (λ3)

C
c (λ4)

D
d ǫEFGH(λ̃1)Eȧ(λ̃2)F ḃ

(λ̃3)Gċ(λ̃4)Hḋ

st
.

Rewriting this in terms of field strengths using (2.7),

6D : M4 =
−iǫABCDǫEFGH(F1)

A
E(F2)

B
F (F3)

C
G(F4)

D
H

st
. (4.1)

It is instructive to compare to the 4 dimensional result,

4D : M4 =
i〈12〉4

〈12〉〈23〉〈34〉〈41〉 →
i(f1)

αβ(f2)αβ(f̃3)
α̇β̇(f̃4)α̇β̇

st
. (4.2)

Note that the difference with 6 dimensions is simply the way the field strengths con-

tracts their Lorentz indices. Again this is because the field strengths in 4 dimensions are

(anti)chiral.

From (4.1) one can deduce the supersymmetric form:

6D susy : M4 =

[
∫

(dηa
i )

∫

(dη̃jȧ)

]4 δ6(
∑

p)δ4(
∑

q)δ4(
∑

q̃)

st
, (4.3)

where i, j, ·· of the integration measure can be any of the external legs. Note that the little

group indices are carried by the integration measure; different choice of measure repre-

sents different helicity configuration. The Yang-Mills amplitude corresponds to choosing
∏4

i=1 dηiadη̃iȧ as the integration measure. This is also the case in 4 dimensions, where the

on-shell super amplitude is

4D susy : M4 =

∫

[

4
∏

I=1

(dηI
i )

]2
δ4(
∑

λαη)δ4(
∑

λαη)

〈12〉〈23〉〈34〉〈41〉 . (4.4)

Note the integration measure transforms under the U(1) little group.

One can compare (4.3) to the 4-point N=4 amplitude derived in [46]

4D projective : M4 =

∫

dπ32
i

δ4(
∑

π̄aα̇)δ4(
∑

πa′α)

st
φ(1)φ(2)φ(3)φ(4), (4.5)

where φ is the scalar field strength and πs are the conjugate supermomenta of the 8

fermionic coordinates of OSp(4|4)
OSp(2|2)2

. Note that the bosonic Yang-Mills field strength also

appears in similar fashion:

6D susy :

∫

d(η1)a

∫

d(η̃1)ȧ(q1)
A(q̃1B) = (FA

B)aȧ ↔ πa′απb′βφ
∣

∣ = ηa′b′fαβ. (4.6)
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4.2 3-point amplitude

The 3-point amplitude vanishes on-shell in real Minkowski space, however it is non trivial in

complex momentum space. Since our aim is to use BCFW as a systematic way of generating

higher point amplitudes, we will proceed to compute it with complex momenta. Amplitudes

should be written in terms of Lorentz invariants, however for the 3-point amplitude one has

the problem of vanishing Lorentz invariants due to kinematic constraints: p2
i = 0,

∑3
i=1 pi =

0 → (pi ·pj) = 0. In 4 dimensions this is solved by using complex momenta or going to split

signature with real momenta, then λ and λ̃ are no longer related and one can set either

〈ij〉 or [ij] to zero but not both. In 6 dimensions one has

pi · pj = 0 → (λi)
Aa(λi)

B
a (λ̄j)

ȧ
A(λ̄j)Bȧ = det〈ia|jȧ] = 0.

i.e.the 2×2 matrix 〈1a|2ȧ] has rank 1. Therefore Cheung and O’Connell solved this by

introducing SU(2) spinor variables for these bi-spinor matrices 〈i|j]aȧ = uiaũjȧ.
10 To define

their inverse, due to their presence in the denominator for the polarization vectors (2.5),

one introduces variables wja defined by uawb − ubwa = Cab. This definition defines wja up

to a shift wja → wja + bjuja. This ambiguity can be partially removed by requiring

wa
1λA

1a + wa
2λA

2a + wa
3λA

3a = 0.

Then wa
i are defined up to shifts with b1 +b2 +b3 = 0. Even though there is still ambiguity,

this will help us determine the full amplitude by requiring invariance under this shift.

The 3-pt Yang-Mills amplitude is given as

6D M3 = ΓabcΓ̃ȧḃċ
= (u1u2w3 + u1w2u3 + w1u2u3)abc(ũ1ũ2w̃3 + ũ1w̃2ũ3 + w̃1ũ2ũ3)ȧḃċ

.

To motivate the structure of the corresponding super amplitude, we cast the 3 point

amplitude into the BCFW construction. Through BCFW, the 4-point amplitude can be

constructed by sewing two 3-point amplitudes and integrating away 4 ηs that carry the

helicities of the propagator. Since the resulting 4-point amplitude has 8 fermionic delta

functions, this requires the 3-point amplitudes to carry a total of 12 delta functions. Indeed

in 4 dimensions, one is required to sew an MHV and an MHV amplitude. Since MHV has

8 delta functions in the anti-chiral η̄, one Fourier transforms it into ηs and results in a

form that has only 4 delta functions, a total of 12. As discussed previously, in 6 dimensions

there is no difference between MHV and MHV, while the number of ηs to integrate remains

the same. This leads to the conclusion that the 6 dimensions 3-point amplitude should be

given with 6 delta functions and one has the following result:

6D susy : M3 =

[
∫

(dηa
i )

∫

(dη̃jȧ)

]3
[

δ
(

∑

qA
)

δ
(

∑

q̃A

)]2
δ
(

∑

wbηb

)

δ
(

∑

w̃ḃη̃ḃ

)

.

(4.7)

To confirm this is true choose a specific piece of the integration measure, integrating

ηa
1ηb

2η
c
3η̃

ȧ
1 η̃ḃ

2η̃
ċ
3. The combination of the form [ηa

1ηb
2η̃

ȧ
1 η̃ḃ

2]η̃
ċ
3η

c
3 gives11

〈1a|2ḃ
]〈2b|1ȧ]w3cw̃3ċ = ũ1ȧũ2ḃ

u1au2bw3cw̃3ċ,

10We give their definitions and properties in appendix B.
11The brackets denote which of the ηs are coming from the δ(q)s.
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which would be one term in the YM expansion. Similarly if one integrates ηa
2ηb

2η
c
1η̃

ȧ
1 η̃ḃ

2η̃
ċ
3

this gives

u1c(ũ1ȧũ2ḃ
w̃3ċ + ũ1ȧw̃2ḃ

ũ3ċ + w̃1ȧũ2ḃ
ũ3ċ).

This is the amplitude for two gauginos and one gauge boson (g1, λ̃2, λ̃3). Again this am-

plitude is invariant under the b shift.

4.3 5-point amplitude

The 5-point amplitude written in terms of field strengths and momenta is:

6D : M5 ∼ 1

s12s23s34s45s51

{

FA
1 B(6p2 6p3 6p4 6p5)A

B (F2 · F3 · F4 · F5) (4.8)

+
3

10
[(6p2 6p3 6p4 6p5) − ( 6p2 6p5 6p4 6p3)]A

B[FA
1 DFC

2 B(F3 · F4 · F5)
D

C ]

+
3

10
[(6p2 6p3 6p4 6p5) − ( 6p2 6p5 6p4 6p3)]

A
B[FC

1 AFB
2 D(F3 · F4 · F5)

D
C ]

+
1

10
[(6p5 6p1 6p2 6p3) − ( 6p5 6p3 6p2 6p1)]A

B[FA
3 DFC

5 B(F1 · F2 · F4)
D

C ]

+
1

10
[(6p5 6p1 6p2 6p3) − ( 6p5 6p3 6p2 6p1)]

A
B[FC

3 AFB
5 D(F1 · F2 · F4)

D
C ] + cyclic

}

,

where (6p2 6p3 6p4 6p5)A
E ≡ p2ABpBC

3 p4CDpDE
5 , and I have dropped the SU(2) indices. Super

symmetrizing we have:

6D susy : M5 =
δ4(
∑

q)δ4(
∑

q̃)

s12s23s34s45s51

{

q1(6p2 6p3 6p4 6p5)q̃1 (4.9)

+
3

10
q1 [( 6p2 6p3 6p4 6p5) − ( 6p2 6p5 6p4 6p3)] q̃2 +

3

10
q̃1 [(6p2 6p3 6p4 6p5) − (6p2 6p5 6p4 6p3)] q2

+
1

10
q3 [( 6p5 6p1 6p2 6p3) − ( 6p5 6p3 6p2 6p1)] q̃5 +

1

10
q̃3 [(6p5 6p1 6p2 6p3) − (6p5 6p3 6p2 6p1)] q5 + cyclic

}

,

where q1(6p2 6p3 6p4 6p5)q̃1 = qM
1 (6p2 6p3 6p4 6p5)M

N q̃1N .

5 BCFW construction

Here we give a short introduction to the BCFW construction and show how to obtain

our 4-point result from the 3-point. We begin by shifting the momenta of two arbitrary

external lines, say 1 and 2, by a vector q:

p̂1 = p1 + zq, p̂2 = p2 − zq.

We require the vector q to satisfy

q2 = q · p1 = q · p2 = 0,
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so that the deformed momenta remain on-shell, p̂2
1 = p̂2

2 = 0. This can be done by choosing

q to be related to the polarization of line 1, q ∼ ǫ1, and choosing λ2 as the reference spinor

µ. However the polarization vector has additional little group index. One remedies this by

contracting it with an auxiliary parameter xαα̇ [41]

qAB = xaȧ

∣

∣
[A1a

] [

2ċ
B]
∣

∣

〈2c|1ȧ]
.

Then the requirement of q2 = 0 implies det xaȧ = 0, i.e, xaȧ = xax̃ȧ. Since the amplitude is

a rational function of momentum, this deformation will result in a complex function with

only simple poles. The poles are the propagators in the denominator and are simple since

P̂ 2
1j = (p̂1 + · · ·pj)

2 = P 2
1j + z2q · P1j → z1j = −

P 2
1j

2q · P1j
,

where P1j represents the sum of momentum on one side of the propagator. Note that if

the shifted lines are either not included or both included, one will not develop a pole and

the corresponding graphs do not contribute.

If the complex amplitude vanishes as z → ∞, then it is uniquely determined by

it’s residues:

A(z) =
∑

j

c1j

z − z1j
.

Our physical amplitude then corresponds to A(0) = −∑j
c1j

z1j
. The sum is understood

as summing different ways of separating the amplitude in two halves with the propagator

producing the pole. The residues c1j take the form

c1j = −ÂL × ÂR
1

2q · P1j

∣

∣

∣

∣

∣z=
P2
1j

2q·P1j

, (5.1)

and therefore

A(0) =
∑

j

ÂL(p̂1, · · ·, pj,−P̂1j)
1

P 2
1j

ÂR(P̂1j , ··, p̂2)

∣

∣

∣

∣

∣z=
P2
1j

2q·P1j

.

Since both p̂1, p̂2 are on-shell and P̂1j is also on-shell when the shift is evaluated at the

pole, each function on either side of the propagator becomes itself an on-shell amplitude of

lower points. Thus BCFW expresses an n point amplitude in terms of lower point on-shell

amplitudes with two of their external momenta deformed.

An important ingredient is the fact that A(z) vanishes as z → ∞, this is true for

maximal supersymmetric theories in 4 dimensions and general pure gauge and gravity

theories [48, 53–56]. Since the 3 and 4-point amplitudes have only delta functions in the

numerator, if one shifts in a way that preserves the (super)momentum conservation relation,

the amplitudes automatically vanishes at large z. Indeed we define our super symmetric

shifts to satisfy these conditions as we show in appendix C. For higher point amplitudes the

numerator will have, besides the (super)momentum conservation delta functions, individual
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P K

Figure 3. The 4-point amplitude in the BCFW formalism. This is the only graph contributing if

one chooses 1 and 2 as the shifted legs.

6pis and qis. The reason why one might produce more zs in the numerator than the purely

Yang-Mills case, is the integration of η2
1 or η2

2 which correspond to non-vector reference

lines. From the form of the shifted q1̂, q2̂ in (C.3), one can see that integrating η2
1 or η2

2

will not produce z2 terms. Therefore non-vector reference lines will only produce shifts in

qis that are at most linear in z, which is the same degree as purely Yang-Mills. Thus we

conclude that in principle the supersymmetric theory should vanish at large z if the Yang-

Mills theory vanishes. Note that our argument is similar to the on-shell supersymmetric

Ward identity used in [48].

5.1 BCFW for 4-point

Now let us compute the 4-point amplitude. Choosing 1 and 2 as the shifted leg, the only

graph that will be contributing will be the t channel graph figure(3)

Then the BCFW for super Yang-Mills is written as

[∫

dηa
P

∫

dη̃ȧ
P

][∫

dηPa

∫

dη̃P ȧ

]

[

δ

(

∑

L

qA

)

δ

(

∑

L

q̃A

)]2[

δ

(

∑

L

wb
nηnb

)

δ

(

∑

L

w̃ḃ
nη̃

nḃ

)]

i

t

[

δ

(

∑

R

qB

)

δ

(

∑

R

q̃B

)]2 [

δ

(

∑

R

wc
nηnc

)

δ

(

∑

R

w̃ċ
nη̃nċ

)]

,

where the ηp integrals essentially keep track of the helicity in the propagator. The fermionic

delta functions are explicitly

δ

(

∑

L

qA

)

= δ(λAa
1̂

η1̂a + λAa
4 η4a + λAa

P ηPa),

δ

(

∑

R

qA

)

= δ(λAa
2̂

η2̂a + λAa
3 η3a − λAa

P ηPa)

δ

(

∑

L

wb
iηib

)

= δ(wb
1̂
η1̂b + wb

4η4b + wb
P ηPb),

δ

(

∑

R

wb
iηib

)

= δ(wb
2̂
η2̂b + wb

3η3b + wb
KηPb). (5.2)
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Figure 4. The 5-point amplitude in the BCFW formalism. Now there are two graphs contributing

if one chooses 1 and 2 as the shifted legs.

The spinors λK (λP ) is defined from pK = −p̂2−p3 (pP = −p̂1−p4) which are on-shell due

to the shift. One then integrates over the ηP s. There are three different ways of picking

up two ηP s from

δ

(

∑

R

wb
iηib

)

δ

(

∑

L

wc
jηjc

)

δ2(λAa
1̂

η1̂a + λAa
4 η4a + λAa

P ηPa)δ
2(λBd

2̂
η2̂d + λBd

3 η3d − λBd
P ηPd)

= δ2





∑

full

qA



 δ

(

∑

R

wa
i ηia

)

δ

(

∑

L

wb
jηjb

)

δ2(λBc
2̂

η2̂c + λBc
3 η3c − λBc

P ηPc).

One can either choose both ηP from δw, one from δw and one from δqA and finally taking

both from δqA. The last two way give vanishing results since they produce terms propor-

tional to a λA
P . These terms contract with either p2̂ + p3 or (λ̃2̂ · η̃2̂ + λ̃3 · η̃3)A, which

vanish either due to momentum conservation or the fermionic delta function. Therefore

integrating over ηP gives

i

t
δ4

(

4
∑

i=1

qA

)

δ4





4
∑

j=1

q̃A



wd
P w̃

Kḋ
wKdw̃

ḋ
P =

−i

st
δ4

(

4
∑

i=1

qA

)

δ4





4
∑

j=1

q̃A





where in the last line we’ve used wd
P w̃

Kḋ
wKdw̃

ḋ
P = −1

s
, we will demonstrate this in ap-

pendix B.

5.2 BCFW for 5-point

There are two contributions to the 5-point amplitude as shown in figure(4). Now the crucial

point is that the auxiliary parameter x, x̃ introduced by the shift should cancel out in the

end. This should be automatic since the xs inter the BCFW with zs, good large z behaviour

then automatically ensures they drop out in the end. Explicitly showing this will produce

a final result that is in a compact form. In the Yang-Mills computation, these parameters

cancel after combining the two graphs D1,D2. In principle the BCFW for super amplitude

should be parallel to the Yang-Mills calculation, since the only difference is the integrating

of the ηP s that carry the degrees of freedom in the propagator. Here we will follow suit

and compute the two graphs separately, after performing the integration we will show that

the result has the same form as Yang-Mills and therefore the cancellation goes through

accordingly and one can read off the supersymmetric result straight forwardly.
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D1. We compute

D1 =
i

s51ŝ23s34

∫

d4ηP δ4

(

∑

R

qA

)

δ4

(

∑

R

q̃A

)

×
[

δ

(

∑

L

qB

)

δ

(

∑

L

q̃B

)]2

δ

(

∑

L

wη

)

δ

(

∑

L

w̃η̃

)

=
i

s51φs34
(q · p5)δ

4





∑

full

qA



 δ4





∑

full

q̃A





∫

d4ηP

×
[

δ

(

∑

L

qB

)

δ

(

∑

L

q̃B

)]2

δ

(

∑

L

wη

)

δ

(

∑

L

w̃η̃

)

, (5.3)

where

ŝ23 = 2p̂2 · p3 =
φ

q · p5
, φ = s23q · p5 + s51q · p3. (5.4)

We’ve used that z is evaluated at the pole z = − s51
2q·p5

= − s51s12
[x̃|p5p2|x〉

for this graph.

Now we do the ηp integral. One observes that there must be at least one ηp coming

from the w delta function, therefore the integrand becomes

(wk · λA
k )(w̃k · λ̃kB)(λ̃1̂A · η̃1̂ + λ̃5A · η̃5)(λ

B
1̂
· η1̂ + λB

5 · η5)

= −(ũ1̂ · η̃1̂ − ũ5 · η̃5)(u1̂ · η1̂ − u5 · η5), (5.5)

where we used the fact that [i|j〉 on the three point vertex can be rewritten in terms of u

and w. Then we need to get rid of us. Note that

(q · p5) =
xaxȧ

s12
[5ċ|1̂a〉〈2b|5ċ]〈2b|1̂ȧ] =

xaxȧ

s12
ũċ

5u1̂a〈2b|5ċ]〈2b|1̂ȧ]. (5.6)

Putting (5.5), (5.6) together, D1 becomes12

D1 ∼ i

s51φs34s2
12

(

〈x|6p2 6p5|1̂ȧ]η̃
ȧ
1̂
− s12〈x|5ḃ]η̃5ḃ

)(

[x̃|6p2 6p5|1̂c〉ηc
1̂
− s12[x̃|5d〉η5d

)

, (5.7)

where ∼ means dropping delta functions. Putting in the definition of the shifted quanti-

ties (C.3), one has

D1 ∼ i

s51φs34s
2
12

(5.8)

×
[

〈x|6p2 6p5|1] · η̃1−z〈x|6p2 6p5|x̃][2ḃ|x〉η̃2ḃ/s12+z〈x|2ċ]〈x|6p2 6p5|2ċ]x̃
ȧη̃1ȧ/s12−s12〈x|5ḋ]η̃5ḋ

]

×
[

[x̃|6p2 6p5|1〉 · η1−z[x̃|6p2 6p5|x〉[x̃|2b〉η2b/s12+z[x̃|2b〉[x̃|6p2 6p5|2b〉xaη1a/s12−s12[x̃|5d〉η5d

]

.

Using [x̃|6p2|x̃] = x̃ȧx̃ḃ[1[ȧ|6p2|1ḃ]] = 0 and substituting the value of z, one then arrives at

D1 =
iδ4(

∑

full q
A)δ4(

∑

full q̃B)

s51φs34s2
12

[

〈x|6p2 6p5|1] · η̃1 + [2ḃ|x〉η̃2ḃ
s51 − s12〈x|5ḋ]η̃5ḋ

]

×
[

[x̃|6p2 6p5|1〉 · η1 + [x̃|2b〉η2bs51 − s12[x̃|5d〉ηd
5

]

.

(5.9)

12We give the derivation of (5.7) and (5.11) in detail in appendix D.
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D2. For the second graph, we compute:

D2 =
i(q · p3)

s23φs45
δ4





∑

full

qA



 δ4





∑

full

q̃B





×
∫

d4ηP

[

δ

(

∑

L

qB

)

δ

(

∑

L

q̃B

)]2

δ

(

∑

L

wη

)

δ

(

∑

L

w̃η̃

)

. (5.10)

After integrating ηp, D2 is proportional to (q · p3)(−ũ2̂ · η̃2̂ + ũ3 · η̃3)(u2̂ · η2̂ − u3 · η3),

which again we would need to combine in order to covert the u, ũ. We begin with

(q · p3) = −xaxȧ

s12
〈1a|6p3 6p2|1ȧ] = −xaxȧ

s12
〈1a|6p3 6p̂2|1ȧ]

= −xaxȧ

s12
(ũ3 · [3|1a〉)(u2̂ · 〈2̂|1ȧ]) =

−xaxȧ

s12
ũ2̂ċ[2̂

ċ|1a〉u2̂b〈2̂b|1ȧ],

where we’ve used ũ3 · [3| = ũ2̂ · [2̂|. Again using uiũj = 〈i|j], D2 becomes

D2 ∼ i

s23φs45s12

[

[x̃|6p3|2̂ȧ]η̃
ȧ
2̂

+ [x̃|6p2|3ȧ]η̃
ȧ
3

]

[

〈x|6p3|2̂b〉ηb
2̂

+ 〈x|6p2|3b〉ηb
3

]

.

(5.11)

Again using the form of the shifted quantities (C.3):

i

s23φs45s12

[

−[x̃|6p3|2ḋ]η̃2ḋ − z[x̃|6p3 6p2|x〉x̃ḃη̃1ḃ/s12 − z[x̃|6p3|x̃]〈x|2ȧ]η̃2ȧ/s12 + [x̃|6p2|3ḋ]η̃
ḋ
3

]

×
[

−〈x|6p3|2d〉η2̂d − z〈x|6p3 6p2|x̃]xbη1b/s12 − z〈x|6p3|x〉[x̃|2a〉η2a/s12 + 〈x|6p2|3b〉ηb
3

]

=
i

s23φs45s12

(

[x̃|6p3|2ḋ]η̃2ḋ
+ s23x

bη1b + [x̃|6p2|3ḋ]η̃3ḋ

)

×
(

〈x|6p3|2d〉η2d + s23x
bη1b + 〈x|6p2|3b〉η3b

)

, (5.12)

Combining (5.9) and (5.12) we see that we’ve reproduced part of the result of Yang-

Mills in [41], more precisely eq. (7.6) and (7.5). One can see the remaining part comes

from the fermionic delta function δ4(
∑

full q
A)δ4(

∑

full q̃B), if one chooses the purely

Yang-Mills measure dη1adη2bdη3cdη4ddη5e and dη̃1ȧdη̃2ḃ
dη̃3ċdη̃4ḋ

dη̃5ė. Therefore the re-

maining calculation resembles Yang-Mills case with the Schouten identity replaced by

qE(ǫABCDqAqBqCqD) = 0, i.e. the totally antisymmetric 5 index tensor vanishes if

A = 1, ··, 4. The result is (4.10).

6 One-loop 4-point

To show the power of this on-shell superspace, here we compute the one-loop 4-point

amplitude for 6 dimensions maximal super Yang-Mills. It was shown in D dimensions

maximal super Yang-Mills that the two-particle cut for the one-loop 4-point amplitude has

the following relation [47]

∑

s1,s2

Atree(k
s2
2 , 1, 2,−ks1

1 )Atree(−ks2
2 , 3, 4, ks1

1 ) = −stAtree(1, 2, 3, 4)
1

(p1 − k1)2(p3 − k2)2
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k

k

1

2

Figure 5. Two-particle cut for one-loop 4-point amplitude.

where s1, s2 labes the internal states and are summed over. We now reproduce this relation

in 6 dimensions. Using superspace to sum the internal states:
∑

s1,s2

Atree(k
s2
2 , 1, 2,−ks1

1 )Atree(−ks2
2 , 3, 4, ks1

1 )

=

∫

d2ηk1

∫

d2ηk2

∫

d2η̃k2

∫

d2η̃k2

δ4(
∑

R qA)δ4(
∑

R q̃A)

(p1 − k1)2s

δ4(
∑

L qB)δ4(
∑

L q̃B)

s(p3 − k2)2

=

∫

d2ηk1

∫

d2ηk2

∫

d2η̃k2

∫

d2η̃k2

δ4(
∑

full q
A)δ4(

∑

full q̃A)

(p1 − k1)2s

δ4(
∑

L qB)δ4(
∑

L q̃B)

s(p3 − k2)2

=
δ4(
∑

full q
A)δ4(

∑

full q̃A)

(p1 − k1)2s

(k1 · k2)
2

s(p3 − k2)2
= −stAtree(1, 2, 3, 4)

1

(p1 − k1)2(p3 − k2)2

where we used k1 − k2 = p1 + p2.

7 Conclusion

In this paper we present an on-shell superspace for maximal supersymmetric on-shell am-

plitudes in 6 dimensions. Combined with unitarity methods, one can efficiently study

quantum corrections for 6D gauge and gravity theories. For example, this has potential

application for studying the UV divergences of maximal supergravity at 4 loop where the

critical dimension for finiteness is 5.5 [14–16]. This can also be used to study the N=4

theory near D=4 in the context of AdS/CFT. For non supersymmetric theories, one can

also use these 6 dimensions tree amplitudes for constructing loop amplitudes using unitar-

ity methods. The particles across the cuts are 6 dimensions and therefore may produce

non-vanishing rational terms that were undetected using 4 dimensions tree amplitudes.

One then sets the external lines to be in the 4 dimensions subspace in the end. The 6

dimensional spinors constructed here should also be useful in representing the S-matrix for

the N=(2,0) theory.

The other important feature is its close relation to 4 dimensions N=4 off-shell su-

perspace. Being off-shell in 4 dimensions, this should provide a more suitable space to

study the recently discovered dual superconformal symmetry [1–5], which is broken by

IR singularities.
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A 6D spinors

A.1 6 dimensional spinors in terms of momenta

One of the interesting applications of the results presented here is to compute D dimensional

cuts for the 4 dimensional theory. For this purpose, it is convenient to have a dictionary

from which our 6 dimensional Lorentz invariants, written in terms of spinors variables, can

be rewritten in terms of 6 dimensional momenta.

Since a 6 dimensional vector is in the anti-symmetric representation of SU(4), the off-

diagonal block of this 4×4 matrix is then 4 dimensional. To make contact with the usual

4 dimensional notations we parameterize this off-diagonal 2×2 block by σ matrices

Σµ
(6)AB

=

(

0 (σµ)α α̇

−(σµT )α̇
α 0

)

, Σ̃AB
(6)µ =

(

0 (σµ)α
α̇

−(σT
µ )α̇ α 0

)

, for µ = 0, 1, 2, 3

(A.1)

the σ matrices are defined as usual: σ0 =

(

−1 0

0 −1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. Note that the above matrices are equivalent to the 4 dimensional gamma ma-

trices in the Weyl representation, i.e. Σµ
(6) = γµ

(4) =

(

0 (σµ)α α̇

(σ̄µ)α̇
α 0

)

for µ = 0, 1, 2, 3.

One also has

Σ5
(6)AB =

(

iCαβ 0

0 iC α̇β̇

)

, Σ6
(6)AB =

(

Cαβ 0

0 C α̇β̇

)

.

Now we explicitly solve the Dirac equation with generic 6 dimensional on-

shell momenta;

6kABλB
a =

(

δα
β(k6 + ik5) kµσµ

αα̇

kµσ̄µβ̇β (k6 − ik5)δ
β̇

α̇

)(

λβ

λα̇

)

a

= 0, µ = 0, 1, 2, 3. (A.2)

We have split the 6 dimensions SU(4) spinor in half, λA = (λα, λα̇), since it is desirable

to stay as close to the well known 4 dimensional spinor as possible. The solution has

been constructed by Boels [39], here we summarize the results. One start by writting

(kµ

(4)
= k0, k1, k2, k3) in terms of two spinors

k(4)αα̇ = kαkα̇ +
k2
(4)

2q · kqαqα̇ (A.3)
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where qαα̇ is again an arbitrary null vector with q · k 6= 0. One sees that kα, kα̇, are the

4 dimensional spinors associated to the shifted 4 dimensional momenta. Then the solution

to the Dirac equation is a 4 × 2 matrix reflecting the two dimensional space of solution.

λA
a =

(

(k6 − ik5)
qα

〈qk〉 kα

kα̇ (k6 + ik5)
qα̇

[qk]

)

(A.4)

and similarly

λ̃Aȧ =

(

(k6 + ik5)
qα

〈qk〉 kα

kα̇ (k6 − ik5)
qα̇

[qk]

)

(A.5)

Again since the 4 dimensional spinor inner products can be expressed in terms of momenta,

all our Lorentz invariants can be expressed in terms of momenta. If one constructs higher-

point amplitude through BCFW construction, sometimes it might be preferable not to

factorize out all the shifted variables. This would then leave behind SU(2) spinors wa, w̃ȧ.

We properly define these SU(2) spinors in appendix B, so their dependence on momentum

can be easily derived from the above spinors.

A.2 6 dimensional spinors in terms of 4 dimensions

Suppose all external momenta lie in a 4 dimensions subspace, one should then be able to

extract the 4 dimensional amplitude from our 6 dimensional result. Setting k6 = k5 = 0

the above solutions become

λA
1 =

(

0

kα̇

)

, λA
2 =

(

kα

0

)

λ̃A1 =

(

0

kα̇

)

, λ̃A2 =

(

kα

0

)

. (A.6)

This leads to the usual form of 4 dimensional massless momentum

6kAB =

(

0 kαkα̇

−kα̇kα 0

)

. (A.7)

Note the solutions have definite U(1) helicity. Therefore when the external momenta lie

in a 4 dimensional subspace, the connection between 6 dimensions and 4 dimensions little

group is now clear: the usual 4 dimensions U(1) helicity group lies in the diagonal subgroup

of the 6 dimensions SU(2)×SU(2). One can now relabel the SU(2) indices a, ȧ as ± which

represents ±1
2 under the U(1) helicity group, i.e. ηa → η±, η̃ȧ → η̃±.

Another way of viewing this is through the supersymmetric theory. Taking the diagonal

subgroup means that in the weight space one projects all states along the diagonal axes as

shown in figure 6. The action of ηa, η̃ȧ are then projected on this diagonal line and become

raising and lowering operators of the U(1) helicity by 1
2 . We then have the following

identification:

A− ∼ η−η̃−, A+ ∼ η+η̃+, φ ∼ η+η̃−, η−η̃+ (real), η+η−, η̃−η̃+ (complex)

λ̄ ∼ η−, η̃−, λ ∼ η+, η̃+. (A.8)

Now we rewrite all 6 dimensional invariants in terms of 4 dimensional ones
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A A

A
A

Figure 6. Dimensional reduction of the six dimensional on-shell states. The weight space of the

U(1) little group in four dimensions is the diagonal U(1) in the wieght space of six dimensional

little group.

i)

〈ia|jḃ
] = (λi)

A
a(λ̃j)Aḃ

=

(

[ij] 0

0 −〈ij〉

)

, [iȧ|jb〉 = (λ̃i)Aȧ(λj)
A

b =

(

−[ij] 0

0 〈ij〉

)

→ 〈i−|j−] = −[i−|j−〉 = [ij]; −〈i+|j+] = [i+|j+〉 = 〈ij〉,
(A.9)

where as usual [ij] = (λ̃i)
α̇(λ̃j)α̇, 〈ij〉 = (λi)

α(λj)α.

ii)

〈iajbkcld〉 → 〈i+j+k−l−〉 = −〈ij〉[kl], 〈i+j−k+l−〉 = +〈ik〉[jl] · · ·
[iȧjḃ

kċlḋ] → [i+j+k−l−] = −〈ij〉[kl], [i+j−k+l−] = +〈ik〉[jl] · · ·
(A.10)

We demonstrate this with an example, we will derive the known 4 dimensional

(A−
1 , A+

2 , λ3, λ̄4) amplitude from our 6 dimensional 4-point super amplitude. The 4 di-

mensional result is

4D : M(A−
1 , A+

2 , λ3, λ̄4) =
〈14〉3〈13〉

〈12〉〈23〉〈34〉〈41〉 = −〈14〉2[24][23]
st

(A.11)

We start instead with the 6 dimensional super amplitude:

6D : M =

[

(
∑4

n=1 qM )(
∑4

n=1 q̃M)
]4

st
. (A.12)

To extract A−
1 , A+

2 , λ3, λ̄4 one chooses dη1−dη̃1−dη2+dη̃2+dη3+dη4− as integration measure.

However, it is obvious there are too many η̃ left unintegrated. To introduce additional

integration measure and not interfere with the helicity structure, one has only two choices
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dη̃3+dη̃3− or dη̃4+dη̃4−. These two are equivalent up to momentum conservation. Choosing

the latter and performing the integration one has

〈1+2−3−4+〉[1+|6p4|2−]

st
=

〈1+2−3−4+〉[1+|4+〉〈4−|2−]

st

=
〈14〉2[23][42]

st
(A.13)

where we have used the results in (A.9).

B SU(2) Spinors for 3,4-point calculation

Here we present some of the definitions that are useful in the derivations. For the 3-point

amplitude, since the Lorentz invariants 〈i|j] have rank 1, they can be rewritten in terms

of SU(2) spinors

〈1a|2ḃ
] = u1aũ2ḃ

, 〈2a|1ḃ
] = −u2aũ1ḃ

〈2a|3ḃ
] = u2aũ3ḃ

, 〈1a|3ḃ
] = −u1aũ3ḃ

〈3a|1ḃ
] = u3aũ1ḃ

, 〈3a|2ḃ
] = −u3aũ2ḃ

(B.1)

From momentum conservation,

λ1 × (p1 + p2 + p3) = 0 → 〈1a|2ḃ][2
ḃ
|A + 〈1a|3ċ][3ċ|A = 0 → ũċ

2[2ċ| = ũċ
3[3ċ| = ũċ

1[1ċ| (B.2)

We will now use these results to demonstrate wK ·wP = −s12.
13 As shown in [41] one

can use the shift degree of freedom to fix

wK · uP = wP · uK = w̃K · ũP = w̃P · ũK = 0.

From definition ua
P wb

K − ub
P wa

K = ǫab, one can deduce

(ua
P wb

K − ub
P wa

K)(uaP wbK − ubP waK) = 2 → (uK · uP ) =
1

(wK · wP )
.

Therefore we can instead compute uK · uP . We begin by considering the following object:

〈1̂a|p4p2̂|1̂ȧ] = u1̂aũ
ḋ
4[4ḋ

|p2̂|1̂ȧ]

= u1̂aũ
ḋ
1̂
[1̂ḋ|p2̂|1̂ȧ] = u1̂aũ1̂ȧs12. (B.3)

Where we’ve used s1̂2̂ = s12. On the other hand one can also deduce

〈1̂a|p4p2̂|1̂ȧ] = u1aũ
ḋ
P [P

ḋ
|p2̂|1̂ȧ] = iu1̂aũ

ḋ
P [K

ḋ
|p2̂|1̂ȧ]

= iu1̂a(ũP · ũK)ub
2̂
〈2̂b|1̂ȧ] = iu1̂a(ũP · ũK)ub

K〈Kb|1̂ȧ]

= −u1̂aũ1̂ȧ(ũP · ũK)2 (B.4)

13This derivation was based on private communication with Donal O’Connell.
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Combining eq. (B.3) and (B.4) and combining the anti-chiral piece we arrive at

(ũP · ũK) =
√
−s12 → (wK · wP )(w̃K · w̃P ) = − 1

s12

To express these SU(2) spinors in terms of 4D spinor, one start with 〈ia|jḃ
] =

(

0 0

0 −〈ij〉

)

, [iȧ|jb〉 =

(

0 0

0 〈ij〉

)

. Using (B.1) and the definition of w, one has

(wi)a =

(

1/Ni

biNi

)

(w̃i)ȧ =

(

1/Ñi

b̃iÑi

)

where the definitions of Ni are given in [41], we list them here for convenience:14

N2 =
〈23〉
〈31〉N1, N3 =

〈23〉
〈12〉N1, Ñ1 = −〈12〉〈31〉

〈23〉N1
, Ñ2 = −〈12〉

N1
, Ñ3 = −〈31〉

N1

The ws are defined up to an overall scale N1 and shift parameter bi. Since all the ampli-

tudes derived are invariant under the b shift and w, w̃s come in pairs, the final result is

independent of these ambiguities.

C Supersymmetric shift

Here we discuss the complex shift that is necessary for the BCFW construction. Taking

1, 2 as the reference lines, we have p̂1̂ = p1 + zq, p̂2̂ = p2 − zq with

qAB = xax̃ȧ(ǫAB
1 )aȧ = xax̃ȧ λ

[A
1aλ

B]
2b

[1ȧ|2b〉
=

|[Ax〉[x̃|2b〉λB]
2b

s12

where |x〉 = xa|1a〉 and |x̃] = x̃ȧ|1ȧ]. This shift can be understood as the following shift in

the spinor variable of the reference lines

λA
1̂a

= λA
1a + zxa[x̃|2b〉λA

2b/s12

λA
2̂a

= λA
2a + z|Ax〉[x̃|2a〉/s12

λ̃A1̂ȧ = λ̃A1ȧ + zx̃ȧ〈x|2ċ]λ̃A2ċ/s12

λ̃A2̂ȧ = λ̃A2ȧ + z|Ax̃]〈x|2ȧ]/s12 (C.1)

To maintain super momentum conservation, one also shifts the Grassmann variables:

η1̂a = η1a + zxa[x̃|2b〉η2b/s12

η2̂a = η2a + z[x̃|2a〉xbη1b/s12

η̃1̂ȧ = η̃1ȧ + zx̃ȧ[2
ḃ|x〉η̃2ḃ

/s12

η̃2̂ȧ = η̃2ȧ + z[2ȧ|x〉x̃ḃη̃1ḃ
/s12. (C.2)

14With signs appropriate for our convention.
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Therefore we have

(λA
1̂
· η1̂) = (λA

1 · η1) − z|Ax〉[x̃|2b〉η2b/s12 + z[x̃|2b〉λA
2bx

aη1a/s12

(λA
2̂
· η2̂) = (λA

2 · η2) + zλaA
2 [x̃|2a〉xbη1b/s12 + z|Ax〉[x̃|2a〉η2a/s12

(λ̃1̂A · η̃1̂) = (λ̃1A · η̃1) − z|Ax̃][2ḃ|x〉η̃2ḃ
/s12 + z〈x|2ċ]λ̃2ċAx̃ȧη̃1ȧ/s12

(λ̃2̂A · η̃2̂) = (λ̃2A · η̃2) + λ̃ȧ
2Az[2ȧ|x〉x̃ḃη̃1ḃ

/s12 + z|Ax̃]〈x|2ȧ]η̃2ȧ/s12 (C.3)

Note that (λA
1̂
· η1̂) + (λA

2̂
· η2̂) = (λA

1 · η1) + (λA
2 · η2) which is necessary for super momen-

tum conservation.

There is a physical meaning to the parameters xa and x̃ȧ. In the original Yang-Mills

calculation, the idea is that even though the shift is defined using the polarization vector

of the the 1st leg, the result should not depend on its polarization state [41]. xa and x̃ȧ are

arbitrary parameters that parameterize this ambiguity, and the statement that the final

result is independent of the polarization state translates into independence of xa, x̃ȧ. In the

supersymmetric case, the first leg may not be a vector. However one still uses the spinors

of the first leg to construct polarization vector, which carries an SU(2) little group index.

Again the final result should not depend on its state, thus one contracts the SU(2) index of

the first spinor to parameterize this dependence, and in the end the final result should again

be independent of it. Note that this implies the following: in the super amplitude whenever

one has a free SU(2) index of the first leg, usually contracted with an η1(or η̃1), this implies

that it will be contracted with an x (or x̃). One can view these additional xα, x̃α̇ as sitting

in the terms in the integration measure which contains free SU(2) index of the first leg.

D 5-point

Here we give some details on the derivation of (5.7) and (5.11):

− i

s51φs34

xaxȧ

s12

[

u1̂a〈2b|1̂ȧ](ũ1̂ · η̃1̂ − ũ5 · η̃5)
]

[

ũċ
5〈2b|5ċ](u1̂ · η1̂ − u5 · η5)

]

= − ixaxȧ

s51φs34s12

[

u1̂a〈2b|1̂ȧ]ũ1̂ · η̃1̂ − 〈2b|1̂ȧ]〈1̂a|5ḋ
]η̃ḋ

5

] [

〈2b|5ċ]〈1̂d|5ċ]ηd
1̂
− ũċ

5〈2b|5ċ]u5 · η5

]

(D.1)

Now we need to get rid of u1̂ũ1̂. We use:

u1̂aũ1̂ȧ = u1̂bũ1̂ȧδ
b
a = u1̂bũ1̂ȧ〈1̂b|Pḃ](〈1̂a|Pḃ])

−1

= −u5bũ1̂ȧ〈5b|Pḃ]〈1̂s|P ḃ]/s1P = − [1̂ȧ|6p5 6pP |1̂a〉
s1̂P

where pP is an arbitrary null vector. The result:

D1 ∼ i

s51φs34

xaxȧ

s12

[

〈2b|1̂ȧ]
[1̂ċ|6p5 6pP |1̂a〉

s1̂P

η̃ċ
1̂
+ 〈2b|1̂ȧ]〈1̂a|5ḋ]η̃

ḋ
5

]

[

〈1̂d|6p5|2b〉ηd
1̂

+ 〈5d|6p1|2b〉ηd
5

]

=
i

s51φs34s2
12

(

〈x|6p2 6p5|1̂ċ]η̃
ċ
1̂
+ s12〈x|5ḋ

]η̃ḋ
5

)(

[x̃|6p2 6p5|1̂d〉ηd
1̂

+ s12[x̃|5d〉ηd
5

)
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where we’ve chosen pP = p2̂. Similarly for D2

i

s23φs45

xaxȧ

s12
ũ2̂ċ[2̂

ċ|1a〉u2̂b〈2̂b|1ȧ](ũ2̂ · η̃2̂ − ũ3 · η̃3)(u2̂ · η2̂ − u3 · η3)

=
i

s23φs45

xaxȧ

s12

[

〈3b|1ȧ]〈3b|2̂ḋ
]η̃ḋ

2̂
+ 〈2̂b|1ȧ]〈2̂b|3ḋ

]η̃ḋ
3

] [

[3ċ|1a〉〈2̂d|3ċ]η
d
2̂

+ [2ċ|1a〉〈3d|2̂ċ]η
d
3

]

=
i

s23φs45s12

[

[x̃|6p3|2̂ḋ
]η̃ḋ

2̂
+ [x̃|6p2|3ḋ

]η̃ḋ
3

] [

〈x|6p3|2̂b〉ηb
2̂
+ 〈x|6p2|3b〉ηb

3

]
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