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ABSTRACT This paper presents a novel model family that we call SUPERVEGAN, for the problem of video

enhancement for low bitrate streams by simultaneous video super resolution and removal of compression

artifacts from low bitrates (e.g. 250Kbps). Our strategy is fully end-to-end, but we upsample and tackle

the problem in two main stages. The first stage deals with removal of streaming compression artifacts

and performs a partial upsampling, and the second stage performs the final upsampling and adds detail

generatively. We also use a novel progressive training strategy for video together with the use of perceptual

metrics. Our experiments shown resilience to training bitrate and we show how to derive real-time models.

We also introduce a novel bitrate equivalency test that enables the assessment of howmuch a model improves

streams with respect to bitrate. We demonstrate efficacy on two publicly available HD datasets, LIVE-

NFLX-II and Tears of Steel (TOS). We compare against a range of baselines and encoders and our results

demonstrate our models achieve a perceptual equivalence which is up to two times over the input bitrate.

In particular our 4X upsampling outperforms baseline methods on the LPIPS perceptual metric, and our 2X

upsampling model also outperforms baselines on traditional metrics such as PSNR.

INDEX TERMS Video super resolution, artifact removal, video enhancement.

I. INTRODUCTION

Two important computer vision problems that benefit from

the ability of Generative Adversarial Networks (GANs) to

work with little input data are: 1) Video Super Resolu-

tion (VSR) and 2) Video Enhancement (VE) such as when the

video has gained artifacts, lost sharpness or color depth from

high levels of compression. Of these problems, VSR has been

studied more widely.

We tackle both of these problems jointly and concen-

trate on the problem of dealing with high resolution video

(≥720p) that is sent live at high framerates (e.g. 30 fps) and

at low bitrates (e.g. ≤250Kbps). Low bandwidth conditions

are more common than they may appear and occur for both

mobile and WiFi connections outdoors and at home. Con-

strained bandwidth affects live video transmission where no

advance encoding or buffering is possible and is accentuated

by the spread of IoT devices, home security cameras, video

conferencing and streaming cameras from mobile devices.

Video is already the most ubiquitous type of data transmitted
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approving it for publication was Yun Zhang .

with IP video currently using over 82% of the overall global

IP traffic, and with the average internet household expected

to have generated over 117.8 gigabytes of Internet traffic per

month in 2020 [1].

In this work, we develop deep learning models for the joint

VSR and VE problem, as well as evaluation methodologies

to allow the generation of high resolution and high quality

videos that originally been affected by video compression.

In particular, we focus on GAN-based models and demon-

strate how they can be successfully applied to the problem

of joint video super resolution and artifact removal for videos

compressed at low bitrates. In addition, we leverage advances

in VSR such as Dynamic Upsampling Filters [3] that extract

temporal information without explicit motion modeling,

which can be challenging for highly compressed videos. Our

main contributions are: I) The tackling of the streaming video

enhancement problem by combining super resolution and

artifact removal within an end to end network. II) A family

of GAN-based models (SUPERVEGANs) for the streaming

video enhancement task, including high-performing real-time

models. III) Adaptation of progressive training to explicitly

address artifact removal and generation of fine details and
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IV) A novel bitrate equivalency test to quantify the effective

perceptual gain that a model achieves at different bitrates with

both user and image metrics.

Related works are presented in Sec. II. We introduce our

model SUPERVEGAN in Sec. III before presenting our

bitrate equivalency study in Sec. IV. Experiments and results

are in Sec. V and conclusions are in Sec. VI.

II. RELATED ART

The literature in video and image processing is vast. Here we

review works that learn to enhance video, or that are precur-

sors to such. Since to the best of our knowledge there are no

works that focus on video enhancement that do simultane-

ous video super resolution and compression artifact removal,

we discuss works that target video super resolution only or

video enhancement only.

Video super resolution (VSR) increases the resolution

of lower resolution videos to higher resolved ones. From

forensics to medical imaging to live video streaming or high

definition displays, the numerous applications of VSR merit

its high interest. Recent works using deep learning have

proposed a variety of models for VSR [3]–[9]. A first take

for video super resolution could be to treat every frame as

independent and super resolve with an image based method,

e.g. [6], [10]. But some indications exist that show it is better

to treat video as a temporal signal. In [5] a CNN produces

video super resolutionwith explicit motion compensation and

demonstrates better metric results using PSNR over doing

super resolution a frame at a time. In the case of [3], a network

with two paths one for generating upsampling filters dynam-

ically and one that computes a residual image, converge to

produce higher resolution output from a small window of

video frames. That work does not require explicit motion

compensation and offers an end to end solution to VSR. In the

case of [8], a recurrent architecture is proposed to improve

temporal consistency. Recent work on GAN architectures for

VSR [9], [11], [12], has started to show further performance

gains. The appeal of GANs for this task is primarily given

by their ability to use reduced image input and generate

realistic outputs [13], [14]. In [9], a GAN is proposed that

uses a spatio-temporal discriminator and a back and forth loss

function for temporal consistency improvement. As with [8],

explicit estimation of motion compensation is used. Many of

the above models use networks that compute flow explicitly,

while this may benefit super resolution, dealing with motion

when compression artifacts are present, calls for a different

strategy.

Video Enhancement (VE) is a more generic task requiring

spatial and temporal effect to improve detail beyond resolu-

tion alone. Video compression results in spatial and tempo-

ral artifacts which include blocking, ringing and flickering

artifacts. It may also involve color changes from reduced

color depth as bitrate reduces. Various works have focused on

VE before the popularity of deep networks. For deblocking,

some earlier works concerned with creating specific filters to

use for correction [15], or to adaptively produce filters [16].

Later, deep learning methods for VE emerged. In [17], a deep

network within a Kalman filter framework recursively aims

to remove lossy compression artifacts. In [18], the model

works to interpolate frames and do video enhancement via the

integration of optic flow and interpolation kernels. In [19],

authors investigated various aspects of VE. The tasks of

VSR, deblocking compression artifacts and frame interpola-

tion are tackled via a task-specific optic flow estimation. In

EDVR [20] the authors presented a method that achieves state

of the art results for video super resolution and video restora-

tion by using a PCD (Pyramid, Cascading and Deformable)

alignment module and a temporal and spatial attention mod-

ule. Another relevant work is MFQE2 [21]. In that work,

the authors show that it is possible to enhance the qual-

ity of compressed videos by detecting PQF’s (Peak Quality

Frames) and use them to improve the quality of neighboring

non-PQF frames.

Other works have looked at end-to-end encoding as a

way to remove intermediate steps e.g. [22]–[25]. However we

argue there is appeal if a method can work in tandem with

existing standards like H264 that are widespread, hardware

implemented, and for which many existing streaming tech-

nologies are tuned for.

Combining super resolution and deblocking in a joint

task has important benefits for bandwidth reduction and

detail preservation. Our proposed solution follows a

straight-forward strategy: a smaller video can use less band-

width and convey detail better during motion. And if detail

can be recovered as part of being upsampled and deblocked,

it will measure better than a video that is compressed with

existing encoders at the same bandwidth at the original

resolution. Our approach can be seen as one that aims to

find a balance in the perception-distortion space [26], where

perceptual and direct metrics are used to generate video

output.

III. SUPERVEGAN

A. PROBLEM FORMULATION AND NETWORK

ARCHITECTURE

The goal of our model is to enhance quality of a video

compressed at a low bitrate by jointly performing video super

resolution and artifact removal (see Fig. 1). In other words,

given a set of 2N + 1 consecutive frames X̃ = Xt−N :t+N of

sizeH ×W that belong to a low resolution video compressed

at bitrate b, the goal is to generate a single high-resolution

frame Ŷt of size rH × rW that will belong to a video of a

higher bitrate b′ (see Sec. IV on how we determine b′):

Ŷt = Gr (Xt−N :t+N ), (1)

where Gr is our SUPERVEGAN generator model for an

upsampling rate r ; t is a current time step.

Since there is a compromise to be made based on target

resolution and available bitrate b, we designed two versions of

our network, SUPERVEGAN-4 (G4) and SUPERVEGAN-

2 (G2). SUPERVEGAN-4 performs 4x upsampling with

respect to the input and SUPERVEGAN-2 performs 2x
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FIGURE 1. From a low bitrate (250Kbps) and low resolution (320 × 180px) input video, our method reduces artifacts and achieves high resolution
(1280 × 720px) (left), compared with the original video compressed at the same bitrate with H264 (right). Image is taken from [2].

FIGURE 2. The SUPERVEGAN-4 generator architecture that jointly performs video super resolution and artifact removal. Dashed path is
only used during the progressive training and not needed during inference. Stage A performs 2x upsampling and artifact removal by
applying the 2x DUF filters as in Eq. 4 and then adding the 2x residual RA as in Eq. 3. The temporal reduction layers reduce the temporal
dimension to 1 by use of 3D convolutions with no padding in the temporal dimension. The 2x layers are split in two consecutive blocks,
one block for computing the DUF filters and one for computing the residual. stage B adds sharpness and details by predicting a residual
RB that is added to the bicubicly upsampled output of stage A (see Eq. 2). The 1 Level U-Net from this stage is used for increasing the
receptive field. A more detailed diagram is presented in Fig. 4.

upsampling. In our experimental results (see Sec. V-F) we

demonstrate efficacy of such strategy: at lower bitrates it is

better to use the 4x upsamplingmodel, while at higher bitrates

it is better to use the 2x upsampling model.

In the remainder of this section we describe our genericGr
and we will highlight whenever there are differences between

G2 and G4.

1) GENERATOR WITH 2 STAGES

One of our contributions lies in the novel generator that

contains 2 stages. In the first stage, we aim to reconstruct the

original image as best as possible. We remove compression

artifacts and reconstruct details by extracting information

from multiple adjacent frames. In the second stage, we aim

to synthesize missing details that cannot be recovered from

the inputs alone. We do this by training this stage with an

additional adversarial loss. For simplicity, we will refer to

them as Stage A and Stage B correspondingly and we call

the outputs of these stages Ŷ At and Ŷ Bt respectively. The final

enhanced image Ŷt is then:

Ŷt = Ŷ Bt = �BIC(Ŷ
A
t ) + RB (2)

where �BIC is a 2x bicubic upsampling and RB is a residual

with high frequency details generated by Stage B in target

resolution rH × rW . The generator for the SUPERVEGAN-

4 is depicted in Fig. 2. Note, while overall architecture for

SUPERVEGAN-2 and SUPERVEGAN-4 is the same, imple-

mentation details (number of layers/filters) differ – our goal

was to design networks that would have comparable running

time. For more details on their differences see Sec. V-A.

2) STAGE A: DETAIL RECONSTRUCTION

This stage reconstructs the ground truth image in half resolu-

tion by removing artifacts and by extracting information from

multiple input frames in a local spatio-temporal neighbor-

hood. It is important to note that this stage only reconstructs

details and does not hallucinate them as it is only trained with

an MSE loss against the half-resolution ground-truth image.

In this stage we generate an intermediate image Ŷ At in half

the target resolution that is artifact free. To achieve this, we

leverage Dynamic Upsampling Filters [3]:

Ŷ At = UXt + RA,

UXt = �F (F,Xt )
(3)

where UXt is an upsampled frame Xt , �F is an image upsam-

pling function that applies dynamic filters F to the image Xt ,

and RA is a residual image generated at Stage A. Networks
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generating F and RA take Xt−N :t+N as input and share most

of their parameters and computations.

The filter branch predicts in total r̃2 HW filters (one for

each output pixel). The filter size we use is 5 × 5 as in the

original paper [3]. Here, r̃ = r/2 since in this stage we

upsample to half the target resolution. Hence, for the case of

SUPERVEGAN-4, there are 4HW upsampling filters and for

the case of SUPERVEGAN-2 however, there are only HW

filters (i.e. one filter per pixel). In case of SUPERVEGAN-4

the filters are applied as follows:

UXt (yr̃ + v, xr̃ + u)

=

2∑

j=−2

2∑

i=−2

F
y,x,v,u

r̃
(j+ 2, i+ 2)Xt (y+ j, x + i) (4)

where u, v ∈ {0, 1} are the offsets of the superresolved

pixels corresponding to the pixel with coordinates x, y in the

low-resolution input image. Since we perform 2x upsampling

at this stage, each input pixel is mapped to 4 output pixels.

Our 2x DUF layers predict four 5 × 5 dynamic filters F for

each input pixel. Therefore, i, j ∈ {−2,−1, 0, 1, 2} are offsets

into a 5 × 5 filter F where the center pixel has coordinates

(0, 0). During training (see Sec. III-B), we enforce MSE loss

only; this allows preserving the original content andminimize

distortion caused by artifacts. To extract temporal information

from the given 2N + 1 low resolution compressed frames,

in the beginning we use a temporal reduction block – a series

of 3D convolutions to reduce the temporal dimension from

2N + 1 to 1.

3) STAGE B: ENHANCING DETAILS

The goal of this stage is to synthesize realistic looking details

that have been lost completely and cannot be reconstructed

from the inputs alone. This is achieved by training this stage

using two additional losses apart from the MSE loss: an

adversarial loss and a perceptual loss. In this stage, we gener-

ate a residual image RB in rH × rW resolution that is added

to the bicubicly upsampled output from Stage A to form the

final image Ŷt , as shown in Eq. 2; see Sec. III-C for details.

The architecture of this stage is simple: we add more layers

on top of the feature output from Stage A. Having a small

U-Net allows us to increase the receptive field for generating

high fidelity details.

We want to emphasize the difference between Stages A

and B. Even though they are similar in architecture (both

performing upsampling and add residual on top), due to

different optimization they focus on different parts of the

distortion-perception tradeoff: Stage A focuses on reducing

distortion, while Stage B focuses on enhancing perceptual

quality. For a qualitative comparison of the outputs of the two

stages, see Fig. 12 and for a quantitative analysis, see Sec. V-F

B. PROGRESSIVE TRAINING

SUPERVEGAN’s generator Gr is trained in 3 phases. In the

first phase, we only train Stage A targeting artifact removal

for both G2 and G4 and 2x upsampling only for G4. MSE

FIGURE 3. Our training system diagram. In phase 1, only MSE loss for
stage A is being enforced. In phases 2 and 3, all losses are being
enforced: MSE loss for stage A and MSE loss, perceptual loss, and
adversarial loss for stage B; see sections III-B and III-C for more details.

loss is enforced on Ŷ At . Layers that only belong to Stage

B remain untrained. A diagram of our training system is

depicted in Fig. 3.

In the second phase, we also enable Stage B. We gradually

blend in output from Stage B with output from Stage A:

Ŷ ABt = (1 − α)�NN(Ŷ
A
t ) + αŶ Bt (5)

where Ŷ ABt is a blending between Ŷ At and Ŷ Bt , �NN is a

2x upsampling with nearest neighbor and α is a blending

parameter that gradually changes from 0 to 1 over the training

epochs of this phase. Note, that at inference, we set α = 1,

hence in the essence Ŷt == Ŷ Bt , as it is indicated in Eq. 2

During this phase we also enable our discriminator. Since

the discriminator is not used during the first phase, it does

not need to have blended layers. The discriminator is com-

posed of a series of convolutional downsampling blocks and

a fully-connected layer at the end, refer to Sec.V-A for details.

In the third and final phase, we set α = 1 and simply

stabilize the network (both generator and discriminator). For

both second and third phases, we enforce MSE, perceptual,

and adversarial losses on Ŷ ABt and MSE loss on Ŷ At .

C. LOSSES FOR DISTORTION AND PERCEPTION

Recent works have highlighted the importance of metrics

that are tuned for a perceptual index [27]. On the other

hand traditional distortion metrics like MSE help preserve

the general detail of the image without adding unnatural

elements. Our architecture provides a structure to combine

both metrics. We enforce the MSE loss on both Ŷ At and Ŷ ABt .

Whereas, the perceptual and adversarial losses are only

enforced on the Ŷ ABt .

We optimize our network with respect to 4 components of

our loss function: pixel-wise MSE loss LMSE , adversarial loss

LG and perceptual loss LP:

Ltotal = LMSE (Y
A
t , Ŷ At ) + LMSE (Yt , Ŷ

AB
t )

+λGLG(Yt , Ŷ
AB
t ) + λPLP(Yt , Ŷ

AB
t ) (6)

VOLUME 9, 2021 91163



S. S. Andrei et al.: SUPERVEGAN: Super Resolution Video Enhancement GAN for Perceptually Improving Low Bitrate Streams

FIGURE 4. Detailed architecture of the SUPERVEGAN-4 generator. Unless specified, Conv2D blocks have 128 output channels, 3 × 3 kernel, and 1 × 1
stride. Conv3D block also has 128 output channels and stride 1 × 1 × 1. Temporal reduction block and residual block are depicted in Fig. 5.

where Yt is the ground truth frame and Y At is a 2x down-

sampled version of it. Given a ground truth image Y and

an output image Ŷ , our MSE and perceptual losses are

defined as:

LMSE (Y , Ŷ ) =
∑

i∈Q(Y (i) − Ŷ (i))2

LP(Y , Ŷ ) = ||8VGG(Y ) − 8VGG(Ŷ )||2 (7)

whereQ represents the image domain. Our perceptual loss LP
is in line with other works [9], [10], so 8VGG are conv54 fea-

tures from pretrained VGG-19.

We use standard adversarial loss [28], where D is the

output from discriminator and LD is a loss for discriminator

used in last two training phases:

LG = − log(D(Ŷ )),

LD = − log(D(Y )) − log(1 − D(Ŷ )). (8)

The combination of losses for perception and distortion

along with the SUPERVEGAN architecture and progressive

training results in a model that achieves video enhancement

by joint super resolution and artifact removal.

IV. BITRATE EQUIVALENCY

As we discussed earlier, the goal of SUPERVEGAN is to

take a video compressed at low bitrate b and produce an

enhanced video that is now perceptually equivalent to a video

compressed at a (hopefully) higher bitrate b′. Here we want

to answer the question ‘‘Howmuch bitrate improvement does

a model provide?’’ and quantify the difference between b and

b′.We consider two different approaches – one based on exist-

ing metrics and another one based on subjective evaluation

by users. In addition, this allows us to evaluate which metrics

matches user perception the most for this task.

A. ACCORDING TO METRICS

For simplicity, here we describe how to evaluate

SUPERVEGAN-4 using PSNR metric w.r.t bitrate. This

approach can be applied to any other model that enhances

videos and using any other metric (in Sec. V-G we use PSNR

and LPIPS).

We calculate PSNR on the output of SUPERVEGAN-4

and on high-resolution videos compressed by H264. For

SUPERVEGAN-4, we run inference on a set of low-

resolution videos compressed at different bitrates b in range

from 150Kbps to 2000Kbps. Similarly, for H264, we com-

press the same videos but at high resolution at different

bitrates in range from 150Kbps to 4000Kbps. Then, for both

SUPERVEGAN-4 and H264 we build rate-distortion curves

(see Fig. 7 as an example). Finally, for a given input bitrate

b, we note the PSNR value for SUPERVEGAN-4 and find at

which bitrate H264 gets the same value. This bitrate repre-

sents the equivalent bitrate b′ according to PSNR.

B. ACCORDING TO PEOPLE

Video quality is ultimately a subjective assessment that cur-

rent best metrics are still unable to capture appropriately.

To better understand the gains achieved by a perceptual

enhancer deep model (e.g., SUPERVEGAN-4), we use Ama-

zon Mechanical Turk.

Our goal is to get users’ answer to the question: What is

the compression bit rate at which the original full resolution

source appears equivalent to the model’s output? Similarly

as we have done when using metrics, we ran our model

(e.g., SUPERVEGAN-4) on videos compressed at different

bitrates b in range from 150Kbps to 2000Kbps. For each

produced video, we generated a set of pairs with a corre-

sponding high-resolution video compressed with H264 at

bitrates ranging from 75Kbps to 4000Kbps (we call them

reference bitrates). For each pair, we ask users a question:

Which video do you prefer based on its quality? Finally, for

each bitrate b we find the reference bitrate for which 50%

of users prefer output of our model, and 50% of users prefer

videos compressed at reference bitrate. This is our equivalent

bitrate b′.

91164 VOLUME 9, 2021



S. S. Andrei et al.: SUPERVEGAN: Super Resolution Video Enhancement GAN for Perceptually Improving Low Bitrate Streams

V. EXPERIMENTAL RESULTS

A. IMPLEMENTATION DETAILS

1) DATASETS

For training and validation, we have collected 42 high quality

videos from where we randomly sampled 25000 frames; all

the frames have been donwsampleld to 1280×720 resolution.

For testing, we use 8 clips (1317 frames total) from the

Tears of Steel (TOS) video [2] and the quality of experience

database LIVE-NFLX-II dataset [29] which contains 15 clips

(11146 frames total). To support cross comparison with other

works, in Table 1 we provide the details of the exact scenes

used from the (TOS) video [2].

TABLE 1. TOS scenes used in evaluation.

2) BITRATES

To generate low-resolution compressed training input to

our model, we used the bilinear method to downsample

all the frames and then encoded them with GStreamer

implementation of H264. We only set the bitrate param-

eter of the encoder and leave default values for all other

parameters. For training the SUPERVEGAN-4, frames were

4 times downsampled and encoded at 250Kbps, and for

the SUPERVEGAN-2 frames were 2 times downsampled

and encoded at 750Kbps. For inference, we used variety of

bitrates in range from 75Kbps to 2000Kbps. We want to

emphasize that our framework does not exclusively depend

on a particular encoder. Other encoders such as H265,

VP8 and VP9, can be used instead for training and then for

inference. Also note that for encoding we use a target bitrate

instead of fixing for a specific encoder coefficient. This effec-

tively allows the network to learn a range of encoding coef-

ficients as the bitrate will affect different scenes differently.

See Sec. V-F for an evaluation of bitrate training resilience.

3) TRAINING

We trained our model on 96 × 96 image patches that are

randomly selected from low-resolution compressed images.

Our final model takes as input a temporal window of 5

low-resolution frames to generate a single high resolution

image corresponding to the center input frame. We train our

network for 400 epochs in total: 100 epochs for the first phase,

100 epochs for the second phase and 200 epochs for the third

phase.

4) ARCHITECTURE Of SUPERVEGANS

Detailed architecture of generator for SUPERVEGAN-4

is presented in Fig. 4 and Fig. 5. Architecture of

FIGURE 5. Architecture of temporal reduction block and residual block
used in the SUPERVEGAN-4. Conv2D blocks use 3 × 3 kernel with 1 × 1
stride, Conv3D blocks use 1 × 1 × 1 stride.

FIGURE 6. Detailed architecture of the discriminator used for adversarial
training.

SUPERVEGAN-2 is almost identical to the architecture of

SUPERVEGAN-4. Since in SUPERVEGAN-2 we only per-

form 2x upsampling w.r.t. the input, our Stage A does not

perform any upsampling and its purpose is purely to remove

artifacts from the input image. Therefore, we only have one

filter for every pixel. Also, for performance considerations

and because our input is now twice as large in width and

height, we use an extra 3D convolution with stride 2 in the

spatial dimension in the very beginning before the temporal

reduction block. This way, most of the computation will be

performed at half the resolution of the input and therefore,

our SUPERVEGAN-2 runs at approximately the same speed

as SUPERVEGAN-4. We use the same architecture of dis-

criminator for training all of our models; refer to Fig. 6 for

details.

5) METRICS

We adopt metrics used in other works: PSNR and LPIPS.

PSNR is the most common metric used for assessing image

quality. But it does not fully capture the perceptual qual-
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TABLE 2. Comparison of SUPERVEGAN-4 and other methods on LIVE-NFLX-II dataset [29] compressed at 250Kbps. Per video breakdown of LPIPS ×10
(lower is better) and PSNR. Best model is in bold, second best is underlined.

FIGURE 7. Rate-distortion curves with LIVE-NFLX-II dataset [29] at multiple bitrates. Images are best seen in digital version.

ity of the image. We use LPIPS [30], which is better cor-

related with how humans perceive images. We conduced

user studies to confirm the performance of our models and

to validate our metric choice of mainly targeting LPIPS

(see Sec. V-F).

B. COMPARISON WITH STATE OF THE ART

In this section we compare our SUPERVEGAN-4 and

SUPERVEGAN-2 models against DUF [3], EDVR [20],

MFQE2 [21], ESRGAN [31], TecoGAN [9] and H264.

From [3] we chose DUF-16L since it most closely matches

our generators size in terms of running time. Since DUF,

EDVR, TecoGAN and ESRGAN target super resolution only,

we have retrained themwith our data to achieve simultaneous

super resolution and artifact removal. 4x models (DUF-16

4x, TecoGAN, EDVR, and ESRGAN) were trained with

data compressed at 250Kbps, while DUF-16 2x was trained

with data compressed at 750Kbps. DUF and EDVR models

are optimized for distortion, while TecoGAN and ESRGAN

optimize for both distortion and perception and are more

comparable to our model. We target LPIPS but for easier

cross-comparison with other works we also provide results

for PSNR.

First, we evaluate the models on videos compressed at

250Kbps and 750Kbps. For 250Kbps we use 4x upsampling

and for 750Kbps we use 2x upsampling. For both LIVE-
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FIGURE 8. Rate-distortion curves with TOS dataset [2] at multiple bitrates. Images are best seen in digital version.

NFLX-II and TOS datasets SUPERVEGAN outperforms

other approaches on LPIPS, both for 4x upsampling with

input compressed at 250Kbps (Table 2 and Table 3) and 2x

upsampling (Table 4 and Table 5). We provide qualitative

examples in Fig. 14. In Fig. 15 we provide context images

for the crops used in Fig. 14.

Second, we evaluate our model on videos compressed at

different bitrates (Fig. 7 and Fig. 8). We can see that our

SUPERVEGAN-4 outperforms all other methods on LPIPS

in low bitrates. At the same time, our SUPERVEGAN-

2 achieves the best performance in higher bitrates (greater

than approx. 0.01 bpp) for LPIPS and PSNR.

C. PERCEPTION-DISTORTION PLANE

We have also evaluated SUPERVEGAN-4 using RMSE,

which measures distortion, and Perceptual Index (PI), which

measures perceptual quality without a reference. Perceptual

Index is defined as a combination of Ma’s score [32] and

NIQE [33]:

Perceptual Index(Ŷ ) =
1

2
(10 − MA(Ŷ )) + NIQE(Ŷ ). (9)

A lower PI represents a better perceptual quality, while

a lower RMSE represents a smaller distortion. Results

of evaluation are presented in Fig. 9. When comparing

SUPERVEGAN-4 to other approaches (Fig. 9a), we can

observe from the plot that EDVR and 4x-DUF perform

the best with regards to RMSE, while ESRGAN achieves

the best PI. SUPERVEGAN-4 and TecoGAN strike a bal-

ance between RMSE and PI: both significantly improve PI

over EDVR/4x-DUF while remaining close in RMSE; sim-

ilarly, SUPERVEGAN-4 and TecoGAN achieve much bet-

ter RMSE than ESRGAN. SUPERVEGAN-4 and TecoGAN

have comparable results: SUPERVEGAN-4 has marginally

better RMSE while TecoGAN has marginally better PI.

This demonstrates that SUPERVEGAN-4 strikes a bal-

ance and belongs to the Pareto front within this graph

of the perception-distortion tradeoff. Furthermore, visual

results comparing SUPERVEGAN-4 vs TecoGAN and ESR-

GAN are provided in the video supplementary materials.

TABLE 3. Comparison of SUPERVEGAN-4 and other methods on TOS
dataset [2] compressed at 250Kbps. Per-video breakdown of LPIPS ×10
and PSNR metrics.

Meanwhile, SUPERVEGAN-2 outperforms other methods in

RMSE and is comparable to TecoGAN and ESRGAN in PI

(Fig. 9a).

D. FAST SUPERVEGAN

We used an evolutionary strategies search (1,1)-ES [34],

parallelized and within a Pareto front pool to explore

hyperparameters of our network. The Pareto front used

LPIPS and PSNR. After several hundred proposed architec-

tures, we computed Pearson correlation coefficients of every

parameter with PSNR, LPIPS and execution time per frame

for those architectures. This guided the design to choose

hyper parameters like number of filters in each layer ‘‘F’’
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TABLE 4. Comparison of SUPERVEGAN-2 and other methods on LIVE-NFLX-II dataset [29] compressed at 750Kbps. Per-video breakdown of LPIPS ×10
and PSNR metrics. The 2x methods, SUPERVEGAN-2 and 2x DUF-16L, were also trained with input encoded at 750Kbps.

FIGURE 9. Perception-distortion plane for TOS dataset [2] for the SUPERVEGAN-4 (9a) and the SUPERVEGAN-2 (9b).

(see Fig. 10) with high positive correlation for compute time

and low correlation with the metrics. This insight allowed

us to develop a fast SUPERVEGAN that runs in 30.4ms per

frame at 1280 × 720px on an NVIDIA V100 GPU with

minimal degradation in quality. For comparison, the not yet

optimized for speed SUPERVEGAN-4 runs in 138ms per

frame.We have computed processing time for all the methods

and summarized results in Table 6. Performance is averaged

over 100 frames on a single NVIDIA V100 GPU.

E. USING H265 TO ENCODE INPUT

Our model is universal with respect to codec. On the main

paper we have used H264 as the encoder to evaluate with.

This is based on the overwhelming availability of hard-

ware accelerated implementations as well as software infras-

tructure dedicated to H264. As an additional test we here

consider the case of using H265, which is a more recent

encoder, as the input for SUPERVEGAN. In Fig. 11 results

of processing input that has been encoded with H265 are

presented. As we can see SUPERVEGAN improves over

H265 especially at lower bitrates for LPIPS and interest-

ingly SUPERVEGAN-2 with H265 input is much better

for PSNR too.

F. SUPERVEGAN ANALYSIS

1) ABLATION FOR SUPERVEGAN-4

Our baseline model is GNO_PROG which is a SUPERVE-

GAN trained in a non-progressive manner with all the losses

according to Eq. 6. We also analyze the impact of keeping

an MSE loss for Stage A in the second and third phases of

training; thus we remove this loss and get another variant

of our model GNO_MSE_A Our full model is SUPERVEGAN
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TABLE 5. Comparison of SUPERVEGAN-2 and other methods on TOS
dataset [2] compressed at 750Kbps. Per-video breakdown of LPIPS ×10
and PSNR metrics. The 2x methods, SUPERVEGAN-2 and 2x DUF-16L, were
also trained with input encoded at 750Kbps.

FIGURE 10. Top: Pareto front of SUPERVEGAN variations. Cyan=initial
seeds, Red=pareto front, Green=others. Bottom: correlation coefficients
of every hyper-parameter searched with PSNR, LPIPS and time
respectively.

which includes both progressive training and keeps MSE loss

for Stage A throughout the whole training. From Tables 2

and 3 we can observe that for both LIVE-NFLX-II and TOS

datasets SUPERVEGAN outperforms both, GNO_PROG and

GNO_MSE_A.

TABLE 6. Runtime evaluation.

2) SUPERVEGAN DISSECTION

Here we look at validating the effect of the architectural com-

ponents in our models. In order to do so, we compare encoded

input to our model with the output after Stage A and the final

output of SUPERVEGAN, which is equivalent to the output

of Stage B. Note, that in order to conduct quantitative and

qualitative evaluation and match ground-truth 1280 × 720px

resolution, inputs and outputs of Stage A were upsampled

with bicubic to match the ground-truth resolution.

In Fig. 12 we present a qualitative comparison of 250Kbps

encoded input to our model, output after Stage A and out-

put of the full model for SUPERVEGAN-4. As we can

see, the network outputs images that qualitatively exhibit

significantly less compression artifacts after the Stage A

(Fig. 12b) and sharpness and higher details after the Stage

B (Fig. 12c). This can also be verified by looking at

the metrics in Table 7 where we see improvement (lower

LPIPS) as the frame is processed through the network.

However, PSNR value drops at Stage B in the case of

SUPERVEGAN-4. This can be explained by the fact that

PSNR favors blurry images over the images with slightly

misplaced fine details, even though the latter ones look more

visually pleasing. However, in the case of SUPERVEGAN-2,

there is an improvement in PSNR as well as in LPIPS

at both stages.

3) TRAINING FOR DIFFERENT BITRATES

We have conducted an experiment to see what is the effect of

training bitrate on inference performance. For this purpose,

we have trained SUPERVEGAN-2 and SUPERVEGAN-

4 models on data encoded at 250Kbps, 500Kbps, 750Kbps

and 1000Kbps each. Note that we do not set a specific

QP value in our encoder settings like in MFQE 2.0 [21].

Instead, we specify a target bitrate. This ensures a bigger

variety of compression artifacts in the training data which

depends on the amount of high-frequency details and amount

of motion in a particular scene. In Fig. 13 we plot the mean,

min and max LPIPS value for our networks trained at the

aforementioned bitrates. It can be seen that the training bitrate

does have a small effect on the network performance but in

high bitrates, the advantage of the SUPERVEGAN-2 over the
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FIGURE 11. Rate-distortion curves for videos encoded with H265 on the LIVE-NFLX-II dataset. Images are best seen in digital version.

FIGURE 12. Relevance of components in SUPERVEGAN-4. After the stage
A (Fig. 12b) block artifacts are removed and image is 2x upsampled. After
the stage B (Fig. 12c) the image is upsampled to 4x; sharpness and fine
details are added.

SUPERVEGAN-4 network comes mostly from the fact that it

is 2x and not because of the bitrate it was trained on, since at

high bitrates, even the worst performing SUPERVEGAN-2

model is better than the best performing SUPERVEGAN-4

model.

G. RESULTS OF BITRATE EQUIVALENCY STUDY

Here we describe details of the study and discuss obtained

results.

1) ACCORDING TO PEOPLE

We have conducted studies on 2 datasets (TOS and

LIVE-NFLX-II) and 2 models (SUPERVEGAN-4 and

SUPERVEGAN-2). In total, we showed 5221 decision pairs

to MTurkers and collected 44,258 responses. Given that we

TABLE 7. Evaluation of different stages of SUPERVEGAN-4 and
SUPERVEGAN-2. In this setting, we calculate the metrics on the input,
the output of our models after stage A, and the final output (equivalent to
the output of stage B).

FIGURE 13. Effect of training SUPERVEGAN-2 and SUPERVEGAN-4 at
different bitrates. For each model, we plot the mean, min and max of
several versions of the model that were trained on data encoded at 250,
500, 750 and 1000 Kbps.

are interested in what users’ video quality experience is,

we did not ask people to focus on details or small crops

but on the whole scene as they would normally experience.

We positioned two videos next to each other, but placement

of variants was done randomly to minimize positional bias.

Only MTurkers with screen resolution ≥ 1280× 800px were

allowed. In addition, in order to match this resolution we

have cropped videos spatially, so that users could watch them

without downsampling.

Example of how we estimate bitrate equivalency is illus-

trated in Fig. 16. Distribution of MTurkers’ votes is presented

in Fig. 16a. MTurkers were asked to compare output from the
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FIGURE 14. Qualitative comparison of 4x upsampling models, except MFQE2.0 and H264 which are non-upsampling methods. Input at 250Kbps
and ground truth at full resolution and uncompressed. Images are taken from tears of steel (TOS) [2] and LIVE-NFLX-II [29]; see fig. 15 for
context images.

FIGURE 15. Context images from where crops are used in fig. 14. Format: dataset, video, frame number, (center x, center y). All crops are
150 × 150px.

SUPERVEGAN-4 with input video compressed at 350Kbps

and high-resolution videos compressedwithH264 at different

bitrates. We can observe that at bitrates below 1000Kbps,

MTurkers prefer output of the SUPERVEGAN-4, while at
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FIGURE 16. Estimating bitrate equivalency. Fig. 16a presents a distribution of MTurkers votes when shown output of SUPERVEGAN-4 with input
compressed at 350Kbps and high-resolution videos compressed with H264 at different bitrates. In the fig. 16b we demonstrate how we convert
these votes into equivalent bitrate.

FIGURE 17. Bitrate equivalency studies for LIVE-NFLX-II dataset. For 720p and for low bitrates before about 1.5Mbps, SUPERVEGAN models show better
perceived bitrate over the H264 baseline. See sec. V-G for details.

1000Kbps and above users prefer videos compressed with

H264. We take this vote distribution and calculate the equiv-

alent bitrate as depicted in Fig. 16b.

Results on LIVE-NFLX-II are presented in Fig. 17 and

results on TOS are in Fig. 18. From Fig. 18a we can

observe that on the LIVE-NFLX-II dataset SUPERVEGAN-

4 at least doubles the perceptually equivalent bitrate for input

encoded at lower bitrates, e.g. output of SUPERVEGAN-4 at

350Kbps input corresponds to 790Kbps H264 encoded video.

Similarly, on the TOS dataset SUPERVEGAN-4 achieves

1.5x improvement at 350Kbps (see Fig. 18a). Mean-

while, SUPERVEGAN-2 performs the best in higher range

of bitrates up to 1.5Mbps. At 1Mbps, SUPERVEGAN-2

achieves 1.34x and 1.2x improvement for LIVE-NFLX-II and

TOS correspondingly. In the highest range of bitrates (above

1.5Mbps), and where SUPERVEGAN is not intended for,

users prefer videos encoded with H264.

2) ACCORDING TO METRICS

From the data plots in Fig. 7 and Fig. 8 we have calculated

equivalent bitrates for SUPERVEGAN-4 on LIVE-NFLX-II

and TOS datasets for all the metrics (PSNR and LPIPS) as

described in Sec. IV-A. Results are presented in Fig. 17b and

Fig. 18b, where we also added results from the corresponding

MTurk study. We can observe that: i) LPIPS is by a large

margin closest to the MTurker’s opinions which validates
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FIGURE 18. Bitrate equivalency studies for TOS dataset. For 720p and for low bitrates before about 1.5Mbps, SUPERVEGAN models show better
perceived bitrate over the H264 baseline. See sec. V-G for details.

our choice for LPIPS as our main target metric, and ii) that

existingmetrics, including LPIPS, have a gap to cover to fully

represent real user perception.

To better illustrate the proposed method, video results are

provided as supplementary material.

VI. CONCLUSION

In this paper, we tackle the problems of video enhancement,

video super resolution and artifact removal as a joint problem.

Specifically aiming at live non-buffered streaming, we pro-

posed a novel model family that incorporates the adversarial

nature of GANs, the benefits of progressive training tuned

for video enhancement and that leverages Dynamic Upsam-

pling Filters. We proposed a bitrate equivalency process to

better assess model output with real people and with existing

metrics. The SUPERVEGAN architecture is shown to out-

perform related methods for a range of low and high bitrates.

In particular the 4X upsampling model already outperforms

state of the art methods on the LPIPS perceptual metric and

the 2X upsampling model outperforms baselines also on the

PSNR metric. SUPERVEGAN models can work with dif-

ferent encoding methods and the fast-SUPERVEGAN model

runs at 32fps at 1280×720px on an NVIDIAV100 GPUwith

minimal degradation in quality. Overall, generative video

enhancement methods that allow to recover detail under

restricted bandwidth conditions benefit the increasing variety

and deployment of video streaming devices.
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