
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 7, JULY 1987 785

Superviews: Virtual Integration of Multiple Databases

AMIHAI MOTRO

Abstract-An important advantage of a database system is that it

provides each application with a custom view of the data. The issue

addressedin this paper is how to provide such custom views to appli-

cations that access multiple databases. The paper describes a formal

method that generates such superviews, in an interactive process of

schema editing operations. A mapping of the superview into the indi-

vidual databases is derived from the editing process, and is stored to-

gether with the superview as a virtual database. When this database is

interrogated, the mapping is used to decompose each query into a set

of queries against the individual databases, and recompose the answers

to form an answer to the original query. As this process is transparent

to the user, virtual databases may be regarded as a more general type

of databases. A prototype database system, that allows users to con-

struct virtual databases and interrogate them, has been developed.

Index Terns-Database, database integration, database view, mul-

tidatabase environment, query mapping, superview, virtual database.

A N important advantage of a database is that it is a
global source of data, that can satisfy all the data re-

quirements of a given set of applications. Instead of a
multitude of separate files (that between them may have
overlapping or irrelevant data), a database provides each

application with a single, integrated view of all the data
it requires. Eventually, however, applications may evolve
that are no longer satisfiable from a single database, their

data extending over two or more databases. These appli-
cations must now "shuttle" between the individual da-
tabases, storing their intermediate data in separate files.
Obviously, such applications cannot benefit from this im-

portant advantage of a single global view of their data. In
many respects, this multidatabase situation is similar to
the multifile situation before the invention of databases.
In fact, so firm is the belief that a single database should
be able to satisfy all the needs of every application, that

many databases management systems do not even have
provisions for accessing more than one database at a time,
posing further difficulties for multidatabase applications.

The obvious solution for this multiple database situa-
tion, is to consolidate them into a single new database. In
practice, however, this solution is acceptable in only a
few cases. Because it is costly, it is justified only when
the new data requirements are considered permanent, and
the number of multidatabase applications is substantial and

Manuscript received December 28, 1984; revised July 31, 1986. This
work was supported in part by an Amoco Foundation Engineering Faculty
Grant.

The author is with the Department of Computer Science, University of
Southern California, Los Angeles, CA 90089.

IEEE Log Number 8714553.

expected to grow. Also, it may be desirable to maintain
the independence of the individual databases. When some
of these databases are provided by external sources, con-
solidation is simply impossible.

An alternative solution is to develop data manipulation
languages, that can access more than one database at a
time. This was the approach taken by Litwin in the design
of MALPHA [I], which is an extension of ALPHA [2] to
allow manipulation of collections of relational databases.
MALPHA queries can access and combine data from dif-
ferent databases to form a single answer.

In this paper we advocate yet a different approach to
multidatabase situations. We introduce the concept of a

virtual database, as a database that has a schema, but no
data that populate this schema. Instead, a mapping is

available from this schema into schemas of other data-
bases. In other words, while actual databases are
c schema, data > pairs, virtual databases are
c schema, mapping > pairs. For an application that can-
not be satisfied from a single database, a virtual database
should be created. It will integrate the schemas of the rel-
evant databases (or portions thereof) into a single global
schema (called a superview), that will accommodate the
new application.

In principle, the superview approach and the multida-

tabase language approach are not entirely different, as
each MALPHA query reflects a view that integrates the
individual databases. But while the MALPHA view is

pertinent to one query only (and disappears when it ter-
minates), superviews are more permanent: they are stored
in virtual databases, and may even be combined to create

higher-level superviews. With respect to permanency, su-
perviews are somewhere between the query-generated
views of MALPHA and physical consolidation.

Our approach here involves two separate tools: a virtual
database generator, and a virtual query processor.

The virtual database generator is an interactive pro-
gram that generates a virtual database, from the schemas
of existing databases, and statements in a schema integra-
tion language that are provided by the user. These state-

ments define the schema of the virtual database (the su-
perview), in terms of the schemas of the existing
databases.' The integration statements also define a map-
ping from the final superview into the initial databases.
When this interactive process terminates, the virtual da-

'Therefore, the schema integration language may be regarded as the
counterpart of the data definition language, which is for defining actual
databases.

0098-5589/87/0700-0785$01.00 O 1987 IEEE

786 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 7, JULY 1987

tabase generator stores this mapping, together with the

superview, as a new virtual database.
The virtual query processor handles queries against,ac-

tual databases in the usual way. To handle queries against
virtual databases, it employs the mapping to decompose
each.query into a set of queries against the individual da-
tabases. These queries are then resubmitted against the
individual databases, and the answers are recomposed to
form an answer to the original query. Consequently, the
effect is as if a single global database is actually available.
Note that, since virtual databases can be integrated to form
new virtual databases, queries submitted to the individual
databases may require further translation, until they yield

queries against the actual databases.
The construction of the superview may introduce integ-

rity constraints. For example, if two personnel databases
with age information are integrated, the age values must
agree for each employee that appears in both databases.

Such constraints are checked at the time of query pro-

cessing; if they exist and are violated, they only cause
failure when an attempt is made to interpret a relevant

query -
An important goal of this paper is to discuss the issues

of database integration within a formal framework. To-

wards this goal, we develop an abstract model, that at-
tempts to capture formally the principles involved in the
constructing and interrogation of virtual databases, while

neglecting some of the more pragmatic, albeit important,
issues. The model has two parts: a database model (with
access operators), and an integration language. The da-

tabase model is based on the functional approach. It in-

corporates important database concepts, such as classes,
types, domains, keys, attribute relationships, and gener-
alization relationships. To simplify the analysis, both the
access operators and the integration language are based
on small sets of primitives. In practice, however, a greater

variety of more powerful operators may be introduced.

A. Related Research

Two multidatabase system currently under develop-
ment are Multibase [3]-[5] and ADDS [6]. Both systems
are designed to integrate heterogeneous databases (Mul-

tibase will handle relational and network databases and
simple files; ADDS will handle relational, network, and
hierarchical databases). In both systems integration is

achieved through a global schema that is mapped onto the
schemas of the existing databases (Multibase uses the

functional model as its unifying data model; ADDS uses
an extended relational model). Users are then allowed to
present queries against this global schema, and the system
responds with answers composed of data retrieved from

the individual databases. Thus, both Multibase and ADDS
solve the multiple database problem with a virtual data-
base that effectively integrates the individuals databases.

Yet, our approach is different in several respects from the

approaches taken in these other systems. To integrate the
individual databases, Multibase and ADDS employ a spe-

cial data definition language (DDL), in which the global

schema and its relationships to the individual schemas are
specified. Here, we develop a set of schema restructuring
operators. To integrate individual databases, an appro-

priate sequence of these operators is applied to their sche-
mas. In addition, both Multibase and ADDS are expected
to yield substantial software systems, and in both systems
integration will require expert programming. Therefore,
these systems will probably be suitable for stable envi-
ronments and long-range applications. In contradistinc-

tion, our approach here is to design a compact integration
tool that will be a simple extension of current database
systems, and will allow the creation of quick global views,
in an interactive schema editing process. Partial results of
our research were reported in [7] and [8].

We have already mentioned the solution of physical

consolidation of multiple databases. The topic of physical
restructuring of files and databases (also called data trans-
lation, or data conversion) received much attention in the

1970's, and several systems to translate data and convert
utility programs were developed (for example, [9]-[14]).
Although these systems perform physical restructuring,

they employ translation procedures and conversion oper-
ators that are often relevant to our problem here.

A common database design technique is to obtain first

individual views for the various applications, and then ap-
ply an integration procedure that will combine these par-

tial views into a single global schema (for example, [15]-
[18]). While these procedures do not address the issues of
actual integration (for example, data consistency, query
translation), their schema synthesis procedures are also

relevant to our problem here.
Obviously, external views [19] are one type of virtual

databases: rather than integrate a number of databases,
they transform a single one. Therefore, the same tools and
techniques developed for schema integration could be used

for generating external views. In some sense, construc-
tion of a superview is the inverse process of construction
of external views: given two or more logical schemas, a

superview is a larger schema, that has the given schemas
as external views.

B. Overview of this Paper

The next two sections are devoted to the abstract model.
Section I1 defines the database model (and the access op-
erators), and Section I11 defines the integration language.

An example superview is constructed in Section IV, which
also describes how the mapping from the superview into

the individual databases is derived. Section V describes

and demonstrates the query translation process. Section
VI concludes with a brief summary and discussion of re-
maining issues.

11. AN ABSTRACT MODEL OF DATABASES

At the basis of the database model used here is a func-
tional approach, which has received considerable atten-

tion since first described by Sibley and Kerschberg [20]
(for example, [21]-[23]). While the details of these func-

tional models may differ, they all employ the notions of

MOTRO: SUPERVIEWS: VIRTUAL INTEGRATION OF MULTIPLE DATABASES 787

data domains and attribute functions: domains are sets of

data values, functions assign the values of one domain to
values of another domain as their attributes. The model

defined here distinguishes between two types of func-
tions: attribute and generalization. These correspond to
the aggregation and generalization relationships proposed
by Smith and Smith [24], and incorporated into the Se-

mantic Data Model by Hammer' and Mcleod [25]. Gen-
eralization relationships become necessary, when two in-

dependent schemas are to be considered together. We see
several advantages in the functional approach; in partic-
ular, it overcomes some of the acknowledged limitations
of the relational model and it provides a formal frame-

work in which both the relational model and the network
model may be subsumed. A brief description follows; for

further details see [26].

A. The Database

A database is a collection 9 of named classes such that
1) Two relations att and gen are defined on 9. Their

intersection is empty, and their union has irreflexive tran-

sitive closure.
2) Each class S E 9 has a domain dom (S) of values.
3) Each class S E 9 has a type: type(S) = { TI T att

s 1.
4) Each class S E 9 has a key, which is a subset of its

type: K G type (S), K key S.
5) For every two classes S, T E 9 such that T att S,

there is a function

6) For every two classes S, T E 9 such that T gen S,
there is an injection

7) For every two classes S, T E 9:

S att T, T gen R =, S att R, fRs = iRT fTs

S gen T, T gen R =, S gen R, iRS = iRT 0 iTS

8) If (TI , - . ,Tk) key S and fST,:S -+ T (i = 1,
. . . , k) are the functions that support that att relation-

ships, then

is an injection.
9) For every two classes S, T E 9 :

K key S, S gen T =, K key T

The first statement establishes among the classes of 9
an attribute relationship, by which one class becomes an

attribute of another class, and a generalization relation-
ship, by which one class becomes a generalization of an-
other class. It requires that the same class if not both an

attribute and a generalization of another class, and that

there is no chain of related classes (by either att or gen),
that begins and ends in the same class. The next three
statements associate with each class of 9 a domain, a

type, and a key. The type is defined as the set of all the
"outgoing" attributes; the key is a designated subset of
the type. Classes that do not have any attributes are called

primitive classes. Thus, primitive classes have empty
types.

The fifth and the sixth statements establish the actual

relationships between the values in the domains of related
classes: the att relationships are supported with func-
tions, and the gen relationships are supported with one-

to-one functions. For example, if NAME and PERSON are
two database classes such that NAME aft PERSON, then there
is a function from dom (PERSON) into dom (NAME), that

assigns each person a name. And, if STUDENT is another
database class such that PERSON gen STUDENT, then there
is an injection from dom (STUDENT) into dom (PERSON),

that identifies each student as a unique person.
The seventh statement establishes the inheritance of at-

tributes over generalizations, and the transitivity of gen-

eralizations. As an example, consider again the relation-
ships NAME att PERSON and PERSON gen STUDENT. The
inheritance requirement assures that also NAME att STU-

DENT, and that the name of a student is the same as the
name of the person, who is a generalization of this stu-

dent. Similarly, consider the relationships PERSON gen
STUDENT and STUDENT gen PHD-STUDENT. The transitivity

requirement assures that also PERSON gen PHD-STUDENT,
and that a Ph.D. student is generalized to the same per-

son, whether by a direct generalization, or through an in-
termediate generalization class.

The last two statements establish properties of keys.
For many applications it is necessary that every value in
a domain is uniquely identifiable by a combination of its
primitive attributes. This is especially important for the

purpose of integrating two different databases, so that
when their two populations are consolidated, identical
values can be recognized as such. Keys also convey im-

portant semantic information about their classes. Two
classes that are keyed on the same attributes, can be as-

sumed to be populated with "comparable" values. We

shall use this information in the schema operations that
integrate classes from different databases. The eighth
statement requires that keys are supported by injections.

For examples, if the classes (TI, . . . , Tk) are the key of
S, then a combination (x, , . . ,xk) of values from these
classes determines at most one value of S. Assuming that
every person has a different Personal Identification Num-
ber, the class PIN is a possible key for PERSON. The ninth

statement guarantees that a key of a given class is also a

key of every class that is generalized by the given class.
For example, if PIN key PERSON and PERSON gen STUDENT,
then also PIN key STUDENT. Note that the function from

STUDENT to PIN is the composition of two injections, and
is therefore an injection.

Keys are not necessarily simple (constituting a single

788 LEEE TRANSACTIONS ON SOFTWARE ENGINEERLNG, VOL. SE-13, NO. 7, JULY 1987

class), or primitive. However, by composing keys, every FACULTY

value of a nonprimitive class can be identified by a com-
bination of primitive values. Keys are not necessarily

\ YDENT
unique, and a class may have several different keys (how-

/ \
ever, for simplicity, our examples will feature only pri-

RANK PIN NAME G PA
mary keys). Fig. 1. Database on Faculty and Students

For example, consider the classes FACULTY, STUDENT,
PERSON, PIN, NAME, RANK, and GPA with the att and gen
relationships B. The Access Operators

We distinguish between a query language, in which re-

PIN att FACULTY NAME att STUDENT trieval requests are formulated, and access operators, that
actually retrieve data from the database. For a query lan-

PIN att STUDENT NAME att PERSON guage, an algebraic language similar to DAPLEX [21.],

PIN att PERSON GPA aft STUDENT will be suitable. The following query, to list the names of
students who received the grade A in the course CS100,

RANK att FACULTY PERSON gen FACULTY gives a flavor of DAPLEX (the schema of this database

NAME att FACULTY ' PERSON gen STUDENT is shown in Fig. 2):

In this example, PIN, NAME, RANK, and GPA are primitive for each ENROLLMENT

classes. FACULTY, STUDENT, and PERSON are nonprimi- such that COURSE(ENROLLMENT) = 'CS 100'

tive. The nonempty types are and GRADE(ENROLLMENT) = 'A'
print NAME(STUDENT(ENROLLMENT)).

~ ~ ~ ~ (F A C U L T Y) = (PIN, NAME, RANK)

~ Y ~ ~ (S T U D E N T) = (PIN, NAME, GPA)

 FACU PERSON) = (PIN, NAME)

Assume that persons are identified by a Personal Identi-
fication Number. The key relationships in this example
are

PIN key PERSON

PIN key STUDENT

PIN key FACULTY

For brevity of notation, we shall use S = (TI, . . . ,
2, Tk + ,, . . . , T,) to describe a situation where type (S)
= (TI, . , T,) and (TI, . , Tk) key S. Graphic rep-
resentations of database schemas are very helpful. The
following representation will be used in this paper. Each
database class is represented by a node. If T att S, there
is a directed edge from node S to node T: S -+ T. If T gen
S, there is a directed edge (with a double arrowhead) from
node S to node T: S - T. However, if T gen R and S
att T, then S att R is suppressed in the graphic represen-
tation. Similarly, if S gen T and T gen R, then S gen R is
suppressed (these are the inheritance and transitivity dis-
cussed above. For conciseness they will also be sup-
pressed in all future specifications of databases). Graphs
that represent databases do not have cycles or parallel
edges. The graphic representation of the above example
is given in Fig. 1.

We assume that such a query language is implemented
with only a small set of primitive access operators. The
set of access operators considered here consists of three
operators. Given the name of any class, a domain operator
simply returns the values in the domain of this class. Let
T att S. Given a value s E dom (S), a function operator
returns the value t E dom (T), that is assigned to the value
s for the attribute T. Given a value t E dom (T), an in-

verse operator returns all the values { s l , . . . , s,) in
dom (S), that have t as their value for attribute T. The
notation for the access operations is as follows:

domain: {S) = dom(S)
function: T(S = s) = fST(s)
inverse: {S(T = t)) = f s;! (t)

The previous DAPLEX query can now be translated
into the following Algol-like procedure, that accesses the
database with domain and function operators,

for each x in {ENROLLMENT) do
begin

if COURSE(ENROLLMENT =x) = 'CS 100'
and GRADE(ENROLLMENT =x) = 'A'
then do
begin

y: = STUDENT(ENROLLMENT =x) ;

print NAME(STUDENT = y)

end
end.

MOTRO: SUPERVIEWS: VIRTUAL INTEGRATION OF MULTIPLE DATABASES 7 89

PIN NAME COURSE GRADE

Fig. 2. Database on Enrollments

Or by using inverse operators:

for each x in {ENROLLMENT(COURSE = 'CS 100'))
intersect {ENROLLMENT(GRAE= 'A')) do
begin

y: = STUDENT(ENROLLMENT =x);
print NAME(STUDENT =y)

end.

111. THE INTEGRATION LANGUAGE

In this section we describe a small set of operators that
integrate or modify database schemas. With each operator
there is an associated set of constraints that must be sat-
isfied by the values that populate the individual schemas.
In the current implementation these constraints are
checked only upon interrogation. We begin by introduc-
ing three primitive operators (meet, join, and fold), that
manipulate the generalization hierarchy, a renaming op-
erator (rename) for changing the names of classes, and
two composite operators (combine and connect) that can
be implemented with primitive operators.'

A. Meet

The meet operator produces a common generalization
of two classes. A common generalization is possible only
when the two classes have a common key. As an example,
consider again the classes FACULTY = (F-IN, NAME, RANK)

and STUDENT = (PIN, NAME, GPA). The meet of FACULTY

and STUDENT is the class PERSON = (FTJ, NAME). Its do-
main includes all the values that are either in FACULTY or
in STUDENT. This operation is based on the existence of a
common key PIN.

Formally, assume that S and Tare nonprimitive classes
not related by gen. Assume there exists K E type (S) fl
type (T) that maintains K key S and K key T. The oper-
ator meet S and T into U adds a new class U, the meet
of S and T, and the relationships U gen S, U gen T, and
Ri att U (i = 1 , - , n) . The type of U is therefore given
by type (U) = type (S) fl type (T). The new class is
populated with the union of the domains of S and T:
dorn (U) = dorn (S) U dorn (T). A graphic represen-
tation of meet is shown in Fig. 3. In this figure, the com-
mon attributes are represented by R, , a . . , R,. The attri-

'meet and join are named for their Boolean algebra counterparts. In par-
ticular, join should not be confused with the similarity named relational
algebra operator.

Fig. 3. The meet Operator

butes that distinguish S and T are represented by PI,
, PI and Q, , . . , Q,,,, respectively. The injections

from dorn (S) and dorn (T) into dorn (U) are defined as
identities. The functions from dorn (U) into the domains
of R,, . . , Rn are defined to preserve inheritance (i.e.,
values of both dorn (S) and dorn (T) are mapped into the
same values in dom(Ri), either directly or through
dorn (U)). The latter functions require a consistency con-
straint: values in dom (S) or dom (T) that have the same
key, must agree over their shared attributes. Formally,
denote by f,, . . . , f, and g,, . . . , gn the attribute func-
tions from S and T, respectively, into R,, . , R,. Let K
= (Rt; . . , Rk). Define functions f and g as follows:

g:dom(T) + d o m (~ ,) x . . X d o m (~ ~)

g(x) = (g,(x) 9 . . . , g k (x))

Then, vy E f (dom(S)) fl g(dom(T)) :

B. Join

meet creates a class, whose type is the intersection of
both types, and whose domain is the union of both do-
main. Another class that may be created under the same
circumstances is the dual class, whose type is the union
of both types, and whose domain is the intersection of
both domains. As an example, consider again the classes
FACULTY and STUDENT. Their meet is the class PERSON,

whose domain includes all those that are either FACULTY

or STUDENT. The join of STUDENT and FACULTY is the class
ASSISTANT = (PIJ, NAME, GPA, RANK). Its domain in-
cludes all those that are both FACULTY or STUDENT. While
PERSON generalizes both FACULTY and STUDENT, ASSIS-

TANT is generalized by both FACULTY and STUDENT.

Formally, assume S and T maintain the same conditions
as before. The operator join S and T into U adds a new
class U, the join of S and T, and the relationships S gen
U, T gen U, Ri att U (i = 1, , n) , Pi att U (i =

1 , . . - , l) a n d Q i a t t U (i = 1;. ,m). Thetypeof U
is therefore given by type (U) = type (S) U type (T).
Thedomain of Uis dom(U) = dom(S) fl dom(T). A
graphic representation of join is shown in Fig. 4. The

790 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13. NO. 7, JULY 1987

injections from dom (U) into dom (S) and dom (T) are
be abbreviated connect. Formally, assume S and T are

defined as identities. The functions from dom(U) into
nonprimitive classes not related by gen, type(T) c

the domains of R, , . ,R,, P I , . - ;. . ,PI, and
type (S). The composite operator connect S to T is de-

Q,, . . . , Q, are defined to preserve inheritance. Again,
fined as follows:

the same consistency constraint is required. meet S and T into U
fold T into U

C. Fold rename U to T

S

meet and join add a generalization class. fold allows a
generalization class to absorb a more specific class. With
fold, the class STUDENT may be absorbed by the more
general class PERSON, with the distinguishing STUDENT at-
tributes carried over to PERSON. Nonstudents are assigned
a special null value, called [not-applicable], for these at-
tributes.

Formally, assume S and Tare two nonprimitive classes
such that T gen S. The operator fold S into T removes the
class Sand replaces it with Tin all relationships. A graphic
representation of fold is shown in Fig. 5. Functions and
injections that had dom (S) as their domain are modified
to have dom(T) as their new domain, using the previous
injection from dom (S) into dom (T) (and [not-applica-

7

Note that, while combine and connect were described
as composite operators, in future discussions they will be
treated as primitive operators. In addition, the operator
combine is extended to apply also to two primitive
classes. Every two primitive classes S and T may be com-
bined into a new primitive class U. The domain of U is
the union of the domains of S and T, and functions that
previously had either domain for their range, are modified
to have the new domain for their range.

meet, join, fold, combine, and connect are operators
that manipulate the generalization hierarchy of databases.
The next two operators, aggregate and telescope, allow
modifications to the attribute hierarchy.

QI . . . Qm PI . . . Pn

Fig. 5 . The fold Operator .

ble 1 for values in dom (T) , but not in the image of this F, Aggregate
injection). Using the same injection, functions and injec-

The operator aggregate creates an intermediate class,
tions that had dam (S) as their range, are modified to have

between a given class and a designated subset of its attri-
dom (T) as their new range.

butes. Formally, assume S is a nonprimitive class,

PI . . . PI QI . . . Qm P I . . . PI Q I . . . Qm

Fig. 4 . 'The join Operator another class, a meet followed by a fold can make the
former a generalization of the latter. This sequence will

D. Rename

In the course of schema integration, it will sometimes
be necessary to rename a class. The operator rename S
to T assigns the new name T to the class S.

E. Combine and Connect

With meet, the similarity between two related classes
may be expressed. when two classes have identical types,
complete overlap may be achieved with a combination of
meet and two folds. This sequence will be abbreviated
combine. Formallv. assume S and T are nonprirnitive
classes not related gen, and type (S) = type (T) . The
composite operator combine S and T into U is defined as
follows :

meet S and T into U
fold S into U
fold T into U

When the type of one class is contained in the type of

'[not-applicable], and other null values, are discussed further in Section
v.

 type(^) = (T,;. . . , T,, T,+,, . . , T,). The operator
aggregate (T,, . . , T,) of S into T adds a new class T
and the relationship T att S. Also, every relationship T
att S is replaced with 6 att T (i = 1, - - , m). A graphic
representation of aggregate is shown in Fig. 6. The do-
main of Tis populated with new values, that are tuples of
values from the aggregated domains: dom(T) =

((fsT,, ,ATm) 1 s E S). The function that supports the
relationship between S and T is defined by fST (x) =

(fsn(x) , . . , fSTm (x)). The functions from dom (T)
onto dom () (i = 1, . . , m) are simple projections.

G. Telescope

While aggregate extends the attribute hierarchy, tele-
scope performs the inverse: it removes a class by assign-
ing its attributes directly to its ancestor class. Formally,
assume T is a nonprimitive class, type(T) = (T,,

. , T,), and is an attribute of only one class S. The
operator telescope T into S removes the class T and the
relationship T att S, replacing the relationships T att T
with T att S (i' = 1, . , n). A graphic representation
of telescope is shown in Fig. 7. The functions that sup-

MOTRO: SUPERVIEWS: VIRTUAL INTEGRATION OF MULTIPLE DATABASES 79 1

Fig. 6. The aggregate Operator

Fig. 7. The telescope Operator

port the new attribute relationships are simple composi-
tions:fSZ(x) = f m (f S T (x)) (i = 1;-. ,n) .

With aggregate and telescope, an attribute may be re-
located on the schema. Consider FACULTY =

(NAME, RANK, DEPARTMENT) and DEPARTMENT =

(D-NAME , COLLEGE, ADDRESS). By telescoping DEPART-

MENT into FACULTY, and then aggregating D-NAME and
COLLEGE back into DEPARTMENT, the attribute ADDRESS is
relocated from DEPARTMENT to FACULTY.

aggregate may be used to normalize the schema into a
form, in which the non-key attributes of each class are
fully dependent on the key. If a class exists with some
attributes that are dependent on a subset of its key, these
attributes, together with the subkey, are aggregated into
an interim class. For example, consider the class ENROLL-

MENT = (STUDENT-NO, STUDENT-NAME, COURSE-NO,
COURSE-TITLE, GRADE). The key of ENROLLMENT is both
STUDENT-NO and COURSE-NO, but only GRADE depends on
both; STUDENT-NAME depends only on STUDENT-NO, and
COURSE-TITLE depends only on COURSE-NO. Using aggre-

gate twice, the following normal form schema may be
obtained: STUDENT = (STUDENT-NO,STUDENT-NAME),

COURSE = (COURSE-NO, COURSE-TITLE), and ENROLL-

MENT = (STUDENT, COURSE, GRADE).
As a third example, consider the classes ACCOUNT =

(ACC-NO, NAME, BALANCE) and TRANSACTION =

(TRANS-NO, ACC-NO, AMOUNT). By aggregating ACC-NO

into an interim class under TRANSACTION, which is then
combined with ACCOUNT (both have a common key ACC-
NO), a re-traction of TRANSACTION to ACCOUNT is ob-
tained: AC-COUNT is left unchanged, but TRANSACTION is
modified to TRANSACTION = (TRANS-NO,

ACCOUNT, AMOUNT), which is more accurate, since each
transaction has its own account, rather than its own ac-
count number. Like normalization, retraction may be ap-
plied wherever possible to improve the representation.

(Note that if ACC-NO were a key of both ACCOUNT and
TRANSACTION, a meet of these two classes would have
been more appropriate, since there is evidence that these

classes have strong semantic similarity.)
All the previous operators merely transformed given

structures to comparable structures. The last two opera-

tors (add and delete) are different, in that they allow cur-

rent structures to be extended or reduced.

H. Add

In general, the addition of a new class (with its attribute
relationships) to an existing database should be consid-
ered an augmentation of this database by another data-

base, and not a restructuring operation. In many cases,
however, a given class has an attribute which is implied,
but not specified. For example, a class CAR in the database
of a Ford car dealer may not include the attribute MAKE.

Adding this attribute (with a single value 'Ford' for all
cars) does not qualify as augmentation by another data-

base, but will prove important when databases of different
car dealers have to be integrated. Formally, assume S is
a nonprimitive class. The operator add P (x) to S adds a
primitive class P with a singleton domain { x) , and a re-
lationship P att S with a constantfunction from dom (S)
onto dom (P).

Whenever identical structures from two databases are

combined, loss of information may result. Consider two
library databases, both with a class BOOK =

(BOOK-NO , TITLE, AUTHOR). If these classes are combined,
the information on where each book is shelved would be
lost. Using add, this implied knowledge can be added to
each class as a new attribute LIBRARY, yielding: BOOK =
(BOOK-NO, LIBRARY, TITLE, AUTHOR). These classes can
now be combined safely. Note that the attribute LIBRARY

was also added to the key of BOOK (this is done with a
special declarative statement add T to key of S). Without
this addition, the two classes would not comply with the
integrity constraint required by meet.

I. Delete

To remove portions of the database which are not rel-
evant to the application, a delete operator is defined. As-

sume S is a nonprimitive class, and T att S, but T $
key@). The operator delete T from S removes the rela-
tionship T att S. If T is no longer an attribute of any other
class, it too is removed together with all its out-going re-
lationships. Each of its attibutes is in turn examined, to
see if it is still an attribute of any other class, and so on.

If T is part of the key of S, then its deletion would have
serious semantic implications. In particular, values in the
domain of the new class S, that were previously differ-
entiated only by their key value, could no longer be iden-
tified. For example, deleting COURSE-NO from ENROLL-

MENT = (COURSE-NO, STUDENT-NO, GRADE) Creates
(STUDENT-NO, GRADE), a class whose meaning is unclear.

In general, aggregate, telescope, add, and delete may
be used to iron-out structural differences between two
given schemas, so that better overlapping may be
achieved.

A virtual database is constructed by editing the schemas
of individual databases (actual or virtual), with the oper-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 7. JULY 1987

THESIS

/I\
PHD-ADVISOR PHD-STUDENT TITLE

Fig. 8. Database on PhD Theses

ators described in the previous section. When this process

terminates, two products are available: a superview (the
schema of the virtual database), and a mapping of the su-
perview into the initial schemas (the "data" of the virtual

database). The derivation of the superview and the map-
ping are described in this section.

A. Constructing the Superview

The purpose of the integration process is to identify
similar structures in the individual schemas. It is conve-

nient to think of the initial schemas as a single (discon-
nected) schema; each integration step then restructures
the current version of the schema into the next version.

The integration process requires knowledge of the
meaning of the different classes. For example, two prim-
itive classes from two databases may be combined, only

if they model the same real world concept. Thus, two
classes describing Personal Identification Numbers may
probably be combined, but the employee number in two

different organizations may reflect two independent se-
quencing~ without any global meaning. The latter case
does not create problems, unless these classes participate

in keys; in this case, identical values (i.e., the same em-
ployee in both organizations) would not be recognized as
such. We illustrate the integration technique with an ex-

ample.
Assume the previous database on faculty and students,

as described in Fig. 1, and a second database, that de-

scribes the different Ph.D. theses currently under devel-
opment. Each thesis is a combination of a Ph.D. student,
a faculty advisor (both identified by PIN), and a title (that

identifies the thesis). This database has four classes and
three attribute relationships, as follows (a graphic repre-
sentation is shown in Fig. 8):

TITLE att THESIS

PHD-ADVISOR att THESIS

PHD-ADVISOR att THESIS

The integration of these databases will be done in three

steps. The first group of statements is aimed at restruc-
turing the second database to appear more like the first
database (the resulting schema is shown in Fig. 9):

aggregate (PHD-ADVISOR) of THESIS into T
rename PHD-ADVISOR to PlN l

rename T to PHD-ADVISOR

aggregate (PHD-STUDENT) of THESIS into T
rename PHD-STUDENT to PIN^

rename T to PHD-STUDENT

combine PINI and PIN^ into PIN'

meet PHD-ADVISOR and PHD-STUDENT into PERSON'

THESIS

Fig. 9. After the First Group of Statements

FACULTY STUDENT PHD-ADVISOR PHD-STUDENT TITLE

RANK PIN NAME GPA

Fig. 10. After the Second Group of Statements

The value [not-available] is a null value that is used
whenever an attribute is applicable, but the particular
value that applies is not known.4 Next, we link the two

databases at the primitive level, and then combine their
two PERSON classes (the resulting schema is shown in Fig.
10):

1) combine PIN and PIN' into PIN

2) combine N A M E B ~ ~ NAME' into NAME

3) combine PERSON and PERSON' into PERSON

Finally, we insert FACULTY and STUDENT as general-
izations of PHD-ADVISOR and PHD-STUDENT, respectively
(the final schema is shown in Fig. 11):

1) connect PHD-ADVISOR to FACULTY

2) connect PHD-ADVISOR to STUDENT

Note that, as PHD-STUDENT does not have any attributes
in addition to those of STUDENT, it is possible to add to

each of the constant attribute LEVEL, with [not-available]
for STUDENT and 'phd' for PHD-STUDENT, and them fold

them into one class (similarly for PHD-ADVISOR and FAC-

ULTY).

B. Constructing the Mapping

The mapping of the superview into the initial databases
may be constructed in various ways. Our method is to

associate with each class of the final superview an expres-

sion that denotes the origins of this class, in terms of
classes of the initial databases. This expression is ob-

tained incrementally during the integration process, as

each operator updates the expressions associated with the
classes it modifies. The expressions associated with the
classes of the initial databases are the names of the classes

themselves. The expressions associated with the classes
of the final superview constitute the mapping.

9) add ~ ~ ~ ~ ' ([n ~ t - a ~ a i l a b l e]) to PERSON' 4 ~ u l l values are discussed in Section V.

MOTRO: SUPERVIEWS: VIRTUAL INTEGRATION OF MULTIPLE DATABASES 793

THESIS

/I\
PHD-ADVISOR PHD-STUDENT TITLE

RANK PIN NAME GPA

Fig. 1 1. The Final Superview

Assume an integration process in which k integration
operators had already been applied. Let R, S, and T be
classes with associated expressions a , 0 , and y, respec-
tively. Assume the next integration step is meet S and T

into Q. The expression associated with the new class Q
is (a A O)k + ,. Assume the next integration step is delete
R from Q. The expression associated with Q is updated
to ((a A O)k+, - ~) k + ~ . And so on. The complete no-
tation is shown below.

operation

meet s and T into g
join s and T into Q

fold s into T

rename s to T

combine s and T into Q

connect S to T

aggregate (T ~ , . . . , T,) of S into T

telescope T into S

add ~ (z) to S

delete T from s

updated class

Q
Q
T

T

Q

, Q
T

S

S

S

associated expression

a + T.

a-O

As an example, assume the classes SUPPLIER and cus-
TOMER are first generalized to ASSOCIATE, and then the at-
tribute TEL-NO is deleted from ASSOCIATE. The expression
associated with the final class ASSOCIATE is ((SUPPLIER A

CUSTOMER))I - TEL-NO)2.

Our translation strategy is as follows. When an access
operator is submitted to a superview, it is translated over
each of the integration operators that were involved in the
derivation of the superview classes that it addresses. The
order of the translations is the reverse of the order in which
the integration operators were applied, as indicated by the
expressions associated with these classes. This process
yields access operators that can be submitted to the actual
databases. The answers are then passed back in the re-
verse direction, until an answer to the original access op-
erator is formed. This recursive process of query decom-
position and answer recomposition involves only primitive
translations: translations of access operators over single
integration operators.

A. Combining Answers to Access Operators

Each primitive translation decomposes a given access
operator into one or more access operators; eventually,

their answers will be recomposed to provide an answer to
the given access operator. Answers to domain operators
will usually be combined with standard set operations. The
recomposition of answers to function and inverse opera-
tors is discussed below.

When a function operator T(S = s) is submitted to a

database, several situations may occur:
1) T is not an attribute of S.
2) T is an attribute of S, but s is not in dom(S).
3) T is an attribute of S, and s is in dom(S), but, for

some reason, the value fsT (s) is undefined.
' 4) T is an attribute of S, s is in dom(S), and the value

fsT (s) is defined.
Thus, each successive situation is more "successful"

than the preceding one. To handle these situations, we
extend the definition of the function operator, to include
three kinds of null values, called [not-applicable], [not-
found], and [not-available] , as follows:

T(S = s)

/ [not-applicable 1, if T 6 type (S)

[not-jound] , if s 6 dom(S)

[not-available 1, if fST (s) is undefined

I ST (s), otherwise.

Recall that the null values [not-applicable] and [not-
available] were introduced earlier as values of attribute
functions, following certain restructuring operations.
Therefore, fsT (s) may evaluate to a null value. Also, if s
is a null value, we define T(S = s) = s.

Assume now a simple case when this operator is sub-
mitted to two independent databases. Each answer could
be any of the above four alternatives. When the answers
are identical, it is obvious how they should be combined.
When the answers are different, we adopt the answer that
is more "successful." As an example, assume a query
regarding the AGE of a certain PERSON is submitted to two
databases. When one answer is an actual AGE value, and
the other answer is [not-found], then the combined an-
swer is the AGE value; [not-available] and [not-found] are
combined to [not-available], and so on. Finally, there is
the case when the two databases return two non-null AGE

values that are different. This is a case of inconsistency,
and a fourth null value, [not-consistent], is returned. As-
sume a and b are two different values. The definition of
this answer-combining operation, called best-value and
denoted v , is tabulated below.

[n - ap] [n - f dl [n - av] In - co] a b

[n - f d] [n - f d] [n - a v] In-co]. a b
In - av] [n - av] [n - av] [n - co] a b

[n - co] In - co] [n - coj [n - col [n - co] [n - co]

a a a [n - eo] a [n - CO]

b b b [n - eo] In - co] b

Consider now an inverse operator {S(T = t)) is sub-
mitted to a database. The are three possible situations:

794 lEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13. N O . 7. J U L Y 1987

1) T is not an attribute of S.
2) T is an attribute of S, but t is not in dom(T).
3) T is attribute of S, and t is in dom(T) .
Again, each successive situation is more "successful"

than the preceding one. We extend the definition of the
inverse operator, as follows:

i
[not-applicable 1, if T $ type (S)

{ s (T = t)) = [not-found], if t $ dom(T)

Ifs;!(t), 'i otherwise.

Note that f s;! (t) may be the empty set (the empty set is
not a null value). If t is a null value, we define { S (T =

t)) = t.
Answers to inverse operators are combined as follows.

If both answers are sets, then the answer is their union.
Otherwise, the answer that is more "successful" is

adopted. Assume A and B are two different sets of values.
The definition of this answer-combining operation, called
best-set and denoted u, is tabulated below.

. . . .

1 . : 1 ; A

B A U B A lUBl B

B. Primitil9c Trarzslation Rules

We have described three access operators and ten in-
tegration operators. consequently, there are thirty differ-

ent cases (rules) of primitive translation. We shall de-
scribe only some of them here. For a complete analysis
see [26].

To explain the primitive translations, we assume that a
database is given, and is restructured with a single inte-
gration step into a new database. In translating access op-

erators that are submitted to the new database, only op-
erators that involve classes that were affected by the

restructuring need to be considered; other operators may
be passed to the old database without modification.

We begin by describing the translations necessary after
the restructuring operation meet S and T i n t o Q . Let R
be any attribute of Q. In the new database, three access
operations may need translation: a domain operator on Q,

afunction operator from Q into R , and an inverse operator
from R into Q. The domain of Q is constructed from the
union of the domains of S and T. To translate R (Q = x),

we submit R (S = x) and R (T = x) to the old database.
Recall that each answer could be either an actual value,
or one of the null values: [not-applicable], [not-found],

[not-available 1 . If the answers are different actual values,
they are combined to [not-consistent]; otherwise, they are
combined to the more successful answer. To translate

{ Q (R = y)) , wesubmit { S (R = y)) and { T (R = y)) .
If both answers are sets, they are combined to their union;
otherwise, they are combined to the more successful an-
swer. 'These translations are summarized in the following

rules:

For example, assume PERSON is the meet of STUDENT and
FACULTY. The answer to the domain operator {PERSON)

is the union of the answers to {STUDENT} and {FACULTY) ;

the answer to thefunction operator NAME(PERSON = X) is

the best-value of the answers to NAME(STUDENT = X) and
NAME(FACULTY = x); and the answer to inverse operator
{PERSON(NAME = y)) is the best-set of the answers to

{STUDENT(NAME = y)) and {FACULTY(NAME = y)) .

The translations required after c o m b i n e S and T i n t o
Q are very similar to those described for meet, except that

here it is possible for the new class Q also to be the range
of an attribute function. Let P be any class in the new
database, such that Q att P. The function operator Q (P
= x) and the inverse operator { P (Q = y)) are translated
as follows:

As an example, assume the class BOOK-NO-I (which is an
attribute of the class BOOK-I) and the class BOOK-NO.?

(which is an attribute of the class BOOK-?) are combined

into the class BOOK-NO (which is now an attribute of both
BOOK- I and BOOK-2). The inverse operator {BOOK- I (BOOK-

NO = y)) is answered with {BOOK-I(BOOK-NO-I = y)) u

{BOOK-1 (BOOK-NO-2 = y)) .
Next, we describe the translations necessary after the

restructuring operation t e l e s c o p e T i n t o S. For clarity, let

Q denote the class S in the new database. Let P and R be

any classes in the new database, such that Q att P and R
att Q . In the new database, five access operations may

need translation: a domain operator on Q, a function op-
erator from P into Q, an inverse operator from Q into P ,
afunction operator from Q into R, and an inverse operator

from R into Q. Because the domain of a class does not
change after t e l e s c o p e , the first three operators are trans-
lated into similar operators with the old class S . The trans-

lation of the other two operators depends on whether R
was a direct attribute of S. If so, these operators are trans-
lated into similar operators with the old class S. Other-

wise, if R was an attribute of T, these operators are trans-
lated in two steps. The function operator R (Q = x) is
translated as follows:

And the inverse operator { Q (R = y))

Z := { T (R = y))

~ , E Z {Q(T = z))

These translations are abbreviated R (T (S = x)) and

{ S(T (R = y))) , respectively. Note that, instead of test-

ing whether R was an attribute of S or an attribute of T,
it is possible to attempt both translations. For example,
to translate the function operator R (Q = x) , both R (S =

MOTRO: SUPERVIEWS: VIRTUAL INTEGRATION OF MULTIPLE DATABASES 795

X) and R(T(S = x)) are submitted. As one of these op-
erators must evaluate to [not-applicable], the other an-
swer will be adopted. Similarly for the inverse operator.
Hence the following translation rules:

R(Q = x) = R(S = x) v R(T(S = x))

{Q(R = Y)) = {R(S = Y)) u {S(T(R = Y)))

As an example, consider ENROLLMENT = (STUDENT,
COURSE, GRADE) and STUDENT = (PIN, NAME,
GPA), and assume STUDENT is telescoped into ENROLL-

MENT, yielding the class ENROLLMENT'. TO translate the
function operator NAME(ENROLLMENT' = x), both
NAME(ENROLLMENT = X) and NAME(STUDENT (
ENROLLMENT' = x)) are submitted. As the former will
return [not-applicable], the answer to the latter will be

adopted.
Finally, we examine the translations necessary after add

T(t) to S. Again, let Q denote the class S in the new da-
tabase, and let P and R be any classes in the new database,
such that Q att P and R att Q. Again, five access opera-
tions may need translation: a domain operator on Q, a
function operator from P into Q, an inverse operator from
Q and P, afunction operator from Q into R, and an inverse
operator from R into Q. Again, because the domain of a
class does not change after add, the first three operators
are translated into similar operators with the old class S.
The translation of the other two operators depends on

whether R is the new attribute T. If not, these operators
are translated into similar operators with the old class S.
Otherwise, R = T, and

R(Q = x) = if x E {S) then t else [not-found]

{Q<R = t>> = {S)

C. The Global Translation Procedure

To translate an access operator that is submitted to a
superview, the primitive translations rules are incomo-
rated into a global translation procedure. To simpli , the
description of this procedure, we shall assul~ke there is a
separate translation procedure for each access operator.
Each translation procedure consists of a driving routine
and one decomposition-recomposition routine for each
translation rule. In practice, many routines are identified.

For global translation, all the primitive translation rules
are transcribed, to replace names of classes with the ap-
propriate expressions. For example, Let a , 0 , and y de-

note expressions. The primitive translation rules of meet
are transcribed to

Similarly, the given access operator is transcribed to
replace its classes with their associated expressions. An
access operator will specify either one expression (a do-
main operator) or two expressions (a function or an in-

verse operator). If there are two expressions, the "later"
expression would be the subject of the next tran~lation.~

The process begins in the driving routine. It analyzes

the subject expression in the access operator, identifies
the translation rule that applies, and calls the appropriate
decomposition-recomposition routine. The decomposi-

tion-recomposition routine determines the acbess opera-
tors necessary for the translation, calls the driving routine
for each, and recomposes the answers to an answer that it
finally returns to the driving routine. Therefore, global
translation is a recursive process.

For example, consider a function operator a (0 = x) ,
where 0 is the subject expression, and assume that 0 =

ol : 02 (i.e.; the class described by 0 was formed in a tel-
escope operation). The driving routine calls the decom-
position-recomposition routine that handles this particular
rule. The latter routine decomposes this operator into

a (0, = x) and a(P2 (0 I = x)), and calls the driving
routine for each of these two operators. When the results
arrive, they are combined with best-value, and this an-
swer is returned to the driving routine. If a were the sub-
ject expression in the given access operator, and, for ex-
ample, a = a, + a2 (i.e., the class desciibed by a was
formed in an add operation, after the telescope opera-
tion), then one of the add decomposition-recomposition
routines would have been called. The latter routine would
have translated a, + aq (O = X) into al (0 = x) , and
would have submitted it to the driving routine.

D. An Example

As an example of a translation process, assume two
bibliographic databases. One database stores articles, as
follows:

A-TITLE att ARTICLE

A-AUTHOR att ARTICLE

JOURNAL att ARTICLE

VOL-NO att ARTICLE

A-TITLE key ARTICLE

The other database stores books:

B-TITLE att BOOK

B-AUTHOR att BOOK

PUBLISHER att BOOK

YEAR att BOOK

B-TITLE key BOOK

Articles and books are both items of literature, each with
a title and an author. To integrate these databases we 1)

S~eca l l that expressions reflect the integration steps that were applied,
and the positions of these integration steps in the complete sequence of
integration operations. Thus, given two expressions, it is possible to de-
termine which was modified last.

796 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13, NO. 7, JULY 1987

combine the primitive classes A-TITLE and B-TITLE into TI-

TLE, 2) combine the primitive classes A-AUTHOR and B-

AUTHOR into AUTHOR, and 3) generalize BOOK and ARTICLE

into a common class ITEM. The final superview is as fol-
lows (recall that inherited attribute and key relationships
are omitted):

TITLE att ITEM

AUTHOR att ITEM

VOL-NO aft ARTICLE

PUBLISHER att BOOK

YEAR att BOOK

TITLE key ITEM

ITEM gen ARTICLE

ITEM gCkl BOOK

The mapping of this superview into the actual databases
is represented by the following expressions (primitive
expressions are omitted):

ITEM: (ARTICLE A BOOK)^

AUTHOR: (A-AUTHOR 0 B- AUTHOR)^

Consider now a query against this virtual database about
all the titles of items authored by one 'Charl A. Tan'. A
procedure that executes this query is

for each x in {ITEM(AUTHOR = 'Charl A. Tan')) do
print TITLE(1TEM =x) .

First, the inverse operator {ITEM(AUTHOR =

'Charl A. Tan')) must be translated into access operators
that will be submitted to the actual databases. As the
expression associated with ITEM reflects a later integration
step, it is handled first:

{ITEM(AUTHOR = 'Charl A. Tan'))
= {ARTICLE(AUTHOR = 'Charl A. Tan'))

U
{BOOK(AUTHOR = 'Charl A. Tan'))

= {ARTICLE(A-AUTHOR = 'Char1 A. Tan'))

U
{ARTICLE(B-AUTHOR = 'Charl A. Tan'))

U
{BOOK(A-AUTHOR = 'Char1 A. Tan'))

U
{BOOK(B-AUTHOR = 'Char1 A. Tan'))

These four requests are submitted to the actual databases.
The second and the third would return [not-applicable],
which will be ignored by the respective best-set opera-
tion:

= {ARTICLE(A-AUTHOR = 'Charl A. Tan'))

U
[not applicable]

U
[not-applicable]

U
{BOOK(B-AUTHOR = . 'Charl A. Tan'))

= {ARTICLE(A-AUTHOR = 'Charl A. Tan'))

U
{BOOK(B-AUTHOR = 'Charl A. Tan'))

For each value x in the result, the function operator
TITLE(ITEM = X) is now applied. This operator is trans-
lated as follows:

TITLE(ITEM = X)
= TITLE(ARTICLE = X)

v
TITLE(BOOK = X)

= A-TITLE(ARTICLE = X) V B-TITLE(ARTICLE = X)
v
A-TITLE(BOOK = X) V B-TITLE(BOOK = X)

= A-TITLE(ARTICLE = X) V [not-applicable]
v
[not-applicable] V B-TITLE(BOOK = X)

= A-TITLE(ARTICLE = X)
v
B-TITLE(BOOK = X)

Thus, the final answer is a list of titles of articles and

books. Note that, if a certain manuscript appears as both
an article and a book, it will be listed only once.

It important to realize' that all nonprimitive database
values are communicated outside their databases as exter-
nal representations (i.e., structured keys). In our exam-
ple, the values x (delivered by the individual databases in

response to the first round of requests, and used by the
superview in the second round of requests) are actually
titles of articles and books.

VI. CONCLUSION

We have described a method for the effective integra-
tion of multiple databases, through the use of virtual da-
tabases. The schema of a virtual database is a superview
which is obtained in a process of schema editing; the data
of a virtual database is a mapping which is derived from

the editing process. The database system employs this
mapping in-a query translation process, which is designed
to make the existence of virtual databases transparent.

Our virtual databases store mappings instead of con-
ventional descriptive data. Indeed, these mappings may
be regarded as a more general form of data. Furthermore,

one many define data as any process that produces de-
scriptions, and databases as repositories of such data pro-
cesses. A data process may be simple data, but may also
involve retrieval from other databases, as well as com-

putation. An example of a database system that allows a
data type that corresponds to retrieval commands, can be
found in 1271.

MOTRO: SUPERVIEWS: VIRTUAL INTEGRATION OF MULTIPLE DATABASES 797

A. Experimentation

To establish the feasibility of the methods described in
this paper, and to obtain feedback on their promise, a

small prototype of a virtual database system was imple-
mented (using the programming language Lisp), and ex-
amples, similar to those described here, were tested. The

system consists of several components. They allow the
user to: 1) define a new actual database, 2) load a new
actual database, 3) query an actual database, 4) define a
new virtual database, and 5) query a virtual database. In
general, the prototype achieved its purpose, as it demon-
strated feasibility, and exposed several inadequacies (later
corrected) in the definitions of the operators and in the
translation procedures.

Admittedly, the different components of our model (the
database model, the access language, and the integration
language) are all of modest detail. This abstract approach
enabled us to concentrate on the basic problems and treat
them in a formal way. In an actual system, various prag-
matic issues must be considered, and additional features
must be added. It is intended that the principles described
here would guide this larger implementation. Three im-
portant issues that still remain to be investigated are dis-
cussed below.

B. Update of Virtual Databases

We have focused our attention on the construction and
interrogation of virtual databases, and the possibility of

updating virtual databases has not been considered. While
this issue requires additional research, we estimate that
most virtual updates may be performed satisfactorily, and
we sketch here a possible approach for incorporating up-
date operations into our model.

In general, our approach for translating update opera-
tors parallels the approach described in Section V for
translating access operators. First, a set of update opera-
tors should be adopted. Then, primitive translation rules

would be determined for each possible situation. Finally,
the primitive rules would be incorporated into a global
translation procedure. We illustrate this approach by
means of two simple examples.

Assume T at t S, and consider this update operator to
modify the current functional value T(S = x) to y:

T(S = x) + y

As an example, consider an update request to modify
NAME(PERSON = X) to y . This request would simply be
translated into two parallel requests to update both STU-

DENT(PERSON = X) and FACULTY(PERSON = X) to this new
value. The original update request would be considered
successful, if a t least one of the actual updates completes
successfully.

Consider now this operator to insert a new value x into
the domain of S:

may then be modified with the previous operator. Con-
sider now a request to insert a new value into the domain
of a virtual class, such as PERSON. The new value would
be inserted into the domains of both STUDENT and FAC-

ULTY, with [not-available] values for the attributes of
PERSON, and [not-applicable] values for the distinguishing
attributes of STUDENT and FACULTY. The interpretation of
these null values should be that the corresponding "stu-
dent" or "faculty" is not a valid member of this domain,
only an "occupant." Future queries on STUDENT or FAC-
ULTY should ignore any "occupants" of these domains.
Future queries on PERSON will be answered correctly.

C. Data Incompatability

The first step of an integration process is to combine
pairs of primitive classes from the two databases. Because
the combine operator generates a class whose domain is
the union of the domains of the given classes, it can only
be applied to classes that are entirely compatible in their
semantics and in the format of their values.

In practice, in may be desirable to connect two data-
bases over primitive classes that are not entirely compat-
ible. There are various kinds of incompatibility of prim-
itive classes, and we give here three examples: 1) Both
databases include a class GRADE; but while in dne data-
base its values are numbers in the range 0-100, in the
other database its values are letters in the range
{A,B,C,D,F} . 2) Both databases include a class ZIP; but
while in one database its values are five-digit zip codes,
in the other database its values are extended nine-digit zip
codes. 3) In one database there is a class FULL-NAME whose
values are combinations of first and last names; while in
the other database this information is stored in two sepa-
rate classes FIRST-NAME and LAST-NAME.

Many kinds of incompatibility may be handled by gen-
eralizing combine to a more powerful operator. While the
domain of the unifying class created by combine is the
union of the given domains, the new operator would allow
the creation of a unifying class, whose domain would be
mapped onto the domains of the given classes. For ex-

ample, in the case of GRADE, any of the two domains could
be selected as the unifying domain, and mappings would
be defined from this domain onto the two individual do-
mains. When a query about a particular grade is evaluated
in both databases, one database will return a letter grade,
and the other will return a number grade. These values

would first be converted according to the mappings, and
then combined with the best-value operator.

D. Integration of Heterogeneous Databases

One of the assumptions in this paper was that all data-
bases are organized according to the same database model.

In practice, however, the databases that need to be inte-
grated may be organized according to different database

models.
S + x This problem of integrating heterogeneous databases is

This operator also inserts [not-available] as the values x considerably more complex. The solution we propose is
has for each attribute in type(S). These initial null values to transform the heterogeneous case to the homogeneous

798 lEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO. 7. JULY 1987

case, by translating the schemas of all the existing data-
bases into our database model (a similar approach was
taken in Multibase).

As already mentioned, our functional database model
can express the principal structures of both the relational

model (i.e., relations) and the network model (i.e., CO-
DASYL sets), as well as some others. Thus, in principle,
it should be possible to translate databases from these
models into the functional model (for more details, see
[26]). In practice, considering the numerous features of
actual database models, the conversion of databases from
one model to another is a complex task of engineering.

[I] W. Litwin, "MALPHA: A relational multidatabase manipulation lan-
guage," in Proc. IEEE Comput. Soc. First Int. Conf. Data Eng., Los
Angeles, CA, Apr. 24-27, 1984, pp. 86-93.

121 E. F. Codd, "A database sublanguage based on the relational calcu-
lus," in Proc. ACM-SIGFIDET Workshop Data Description, Access
and Control, San Diego, CA, Nov. 1971, pp. 35-68.

131 J. M. Smith, P. A. Bernstein, U. Dayal, N. Goodman, T. Landers.
K. W. T. Lin, and E. Wong, "Multibase-Integrating heterogeneous
distributed database systems," in Proc. AFIPS Nat. Comput. Conf.,
Chicago, IL, May 4-7, pp. 487-499.

[4] T. A. Landers and R. L. Rosenberg, "An overview of multibase,"
in Distributed Databases, H. J. Schneider, Ed. Amsterdam, The
Netherlands: North-Holland, 1982.

151 U. Dayal and H. Hwang, "View definition and generalization for
database integration of a multidatabase system," IEEE Trans. Sofr-
ware Eng., vol. SE-10, pp. 628-644, Nov. 1984.

161 Y. Breitbart. P. L. Olson, and G. R. Thompson, "Database integra-
tion in a distributed heterogeneous database system," in Proc. Second
Int. Conf. Data Eng., Los Angeles, CA, Feb. 5-7, 1986, pp. 301-

310.
[7] A. Motro and P. Buneman, "Constructing superviews," in Proc.

ACM-SIGMOD Inr. Conf. Management of Data, Ann Arbor, MI, Apr.
29-May 1, 1981, pp. 56-64.

[8] A. Motro, "Interrogating superviews," in Proc. ICOD-2, Second Int.
Conf. Databases, Cambridge, England, Aug. 30-Sept. 3, 1983, pp.
107-126.

[9] A. G. Merten and J. P. Fry, "A data description language approach
to file translation," in Proc. ACM SIGFIDET Workshop Data De-
scription, Access and Control, Ann Arbor, MI, May 1974.

1101 J. A. Ramirez, N. A. Rin, and N. S. Prywes, "Automatic conversion
of data conversion programs using a data description language," in
Proc. ACM-SIGFIDET Workshop Dara Description, Access and Con-
trol, Ann Arbor, MI, May 1974.

[I I] B. C. Housel, "A unified approach to program and data conversion,"
in Proc. Third Int. Conf. Very Large Data Bases, Tokyo, Japan, Oct.
6-8, 1977, pp. 327-335.

1121 R. W. Taylor, J. P. Fry, B. Schneiderman, D. C. P. Smith, and S.
Y. W. Su, "Database program conversion: A framework for re-
search," in Proc. Fifrh Inr. Conf. Very Large Data Bases, Rio de
Janeiro, Brazil, Oct. 3-5, pp. 299-312.

1131 N. C. Shu, B. C. Housel, and V. Y. Lum, "CONVERT: A high level
translation definition language for data conversion," Commun. ACM,
vol. 18, no. 10, pp. 557-567, Oct. 1975.

1141 N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y.
Lum, "EXPRESS: A data extraction, processing and restructuring
system," ACM Trans. Database Sysr., vol. 2, no. 2, pp. 134-174,
June 1977.

1151 R. ElMasri and G. Wiederhold, "Data model integration using the
srructural model," in Proc. ACM-SIGMOD Int. Conf. Managemenr
ofData, Boston, MA, May 29-June 1, 1979, pp. 319-326.

1161 S. Navathe and S. Gadgil, "A methodology for view integration in
logical database design," in Proc. Eighth Inr. Conf. Very Large Data
Bases, Mexico City, Mexico, Sept. 8-10, 1982, pp. 142-152.

(171 R. ElMasri and S. Navathe, "Object integration in logical database
design," in Proc. IEEE Comput. Soc. First Int. Conf. Data Eng.,

Los Angeles, CA, Apr. 24-27, 1984, pp. 426-433.
[I81 M. V. Mannino, "Matching techniques in global schema design," in

Proc. IEEE Compur. Soc. First Int. Conf. Data Eng.. Los Angeles.
CA, Apr. 24-27, 1984, pp. 418-425.

1191 J. D. Ullman, Principles of Database Systems. Rockville, MD:
Computer Science Press, 1982, pp. 6-8.

[20] E. H. Sibley and L. Kerschberg, "Data architecture and data model
considerations," in Proc. AFIPS Nat. Comput. Conf., Dallas, TX,
June 13-16, 1977, pp. 85-96.

1211 D. W. Shipman, "The functional data model and the data language
DAPLEX," ACM Trans. Database Sysr., vol. 6, no. 1, pp. 140-173,
Mar. 1981.

1221 P. Buneman and R. E. Frankel, "FQL-A functional query lan-
guage," in Proc. ACM-SIGMOD Int. Conf. Management of Dara,
Boston, MA, May 29-June 1, 1979, pp. 52-57.

1231 S. B. Yao, V. E. Waddle, and B. C. Housel, "View modeling and
integration using the function data model," IEEE Trans. Sofrware
Eng., vol. SE-8, pp. 544-553, Nov. 1982.

[24] J. M. Smith and D. C. P. Smith, "Database abstractions: Aggrega-
tion and generalization," ACM Trans. Database Syst., vol. 2, no. 2,
pp. 105-133. June 1977.

1251 M. Hammer and D. McLeod, "Database description with SDM: A
semantic database model," ACM Trans. Database Syst., vol. 6, no.
3, pp. 351-386, Sept. 1981.

1261 A. Motro, "Virtual merging of databases," Ph.D. dissertation, Dep.
Comput. and Inform. Sci., Univ. Pennsylvania, 1981.

[27] M. Stonebraker, E. Anderson, E. Hanson, and B. Rubinstein. "QUEL
as a data type," in Proc. ACM-SIGMOD Int. Conf. Management of
Data, Boston, MA, June 18-21, 1984, pp. 208-214.

Amihai Motro received the B.Sc. degree in math-
ematical sciences from Tel Aviv University, Tel
Aviv, Israel, in 1972, the M.Sc. degree in com-
puter science from the Hebrew University in Je-
rusalem, Israel, in 1976, and the Ph.D. degree in
computer and information science from the Uni-
versity of Pennsylvania, Philadelphia, in 198 1 .

Since 1981 he has been an Assistant Professor
in the Department of Computer Science at the
University of Southern California, Los Angeles.
His main research area is data management; in

particular intelligent user interfaces to databases, knowledgeable data man-
agement, and integration of databases. He is also interested in operating
systems, and has worked for several years as a systems programmer.

Dr. Motro is a member of the Association for Computing Machinery and
the IEEE Computer Society.

