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The aim of the paper is to use acoustic emissions to study the effect of 
electrospun nylon 6,6 Nanofibrous mat on carbon-epoxy composites 
during Double Cantilever beam (DCB) tests. In order to recognize the 
effect of the nanofibres and to detect different damage mechanisms, k-
means clustering of acoustic emission signals applied to rise time, count, 
energy, duration and amplitude of the events is used. Supervised neural 
network (NN) is then applied to verify clustered signals. Results showed 
that clustered acoustic emission signals are a reliable tool to detect 
different damage mechanisms; neural network showed the method has a 
99% of accuracy. 
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1. INTRODUCTION 

 
Since the early 1960s, carbon fibre composites have 
been used because of their high strength and stiffness, 
high resistance to corrosion and fatigue coupled with 
low weight in comparison with traditional materials [1].  

Delamination is one of the critical failure modes for 
composite structures, which may lead to the separation 
of plies and eventually to the failure of the component; 
it is therefore necessary to strengthen the interlaminar 
fracture toughness for highly reliable composite 
materials and structures. As some of the authors have 
already demonstrated, interleaving small diameter fibres 
between one or more interfaces improves strength, 
toughness and delamination resistance of composites 
without reducing the in-plane properties or adding 
weight [2-7]. 

An important aspect when designing for composite 
components is the knowledge of failure mechanisms, 
and acoustic emissions (AE) have been already 
successfully applied for the purpose [8-14]. The main 
advantages of AE are their real-time operation and the 
capability to distinguish damage mechanisms. AE 
signals can be analysed in time, frequency, and time-
frequency domains. Time domain analysis, which is the 
most common analysing method for AE, uses certain 
features extracted from signals such as amplitude, 
energy, count, rise time and duration, as shown in 
Figure 1. 

Some researchers analysed different types of failure 
modes using Acoustic Emission in composites by 
supervised and non-supervised methods [16-27]. In 
supervised learning the categories, data is assigned to be 
known before computation. So they are used to teach 

the method the parameters significant for those Clusters. 
In unsupervised learning datasets are assigned to 
segments, without the clusters being known. 

 
Fig.1. Acoustic emission feature [15] 

As mentioned before, one of the main advantages of 
using AE is that they are capable of recognizing 
different damage mechanisms. 

De Oliveira et al. [18] used artificial neural networks 
with acoustic emission signals gathered from cross-ply 
glass-fibre/polyester laminate under tensile test, and 
identified damage sequence from the modal nature of 
the AE waves. 

Refahi et al. [20] studied the effect of different fibre 
orientation in Double Cantilever Beam (DCB) tests of 
glass/polyester composites using non-supervised 
methods (principal component analysis and fuzzy c-
means) to classify AE signals gathered from tests, 
showing good agreement between clusters and failure 
mechanisms. By frequency analysis of acoustic 
emission signals, it has been found that the lowest 
frequency range is related to the matrix cracking (100-
250 kHz) and the highest to the fibre failure (400-500 
kHz). Also, the debonding frequency range was 
between matrix cracking and fibre failure (250-350 
kHz). 

McCrory et al. [27] investigated the use of AE to 
locate and classify the type of damage occurring in 
carbon fibre panel during buckling comparing Artificial 
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Neural Network (ANN), Unsupervised Waveform 
Clustering (UWC) and Corrected Measured Amplitude 
Ratio (MAR) techniques. They showed that a cross-
correlation between techniques has the potential to be 
the key to developing a reliable Structural Health 
Monitoring (SHM) system. 

Present paper uses non-supervised clustering k-means 
and supervised pattern recognition neural network (NN) 
techniques applied on the features of acoustic emission 
signals to discriminate different kinds of failure 
mechanisms. AE here considered have been recorded 
during the experimental campaign performed in [2]: DBC 
tests on carbon fibre reinforced plastic (CFRP) laminates 
with and without nanofibrous interleaving. Aim of the 
study is to investigate and explain the effect of 
interleaving polymeric nanofibers into CFRPs. 

To date only few works have been conducted on the 
topic. Kostopoulos et al [28] investigated the influence 
of carbon nanofibers and/or piezoelectric particles on 
the fracture behaviour of carbon fibre reinforced 
polymer laminates using AE. Chen et al. [29] showed 
that it is possible to use the nanofibers themselves as 
sensor for AE for structural health monitoring purposes. 

Present paper has the double purpose of (i) 
demonstrating the feasibility of AE as powerful and 
reliable structural health monitoring technique for 
composite material, and (ii) investigating the mechanical 
effect that a nanofibrous interleave has on the behaviour 
of CFRP laminates subjected to DCB loads. 

 
2. MATERIALS AND METHODS 

 
DCB tests have been performed on 20–plies woven 
prepreg carbon fibre\epoxy resin samples. Two different 
configurations were considered: (i) specimens made 
only with prepreg (henceforth named “Virgin” 
configuration), and (ii) specimens in which a 
nanofibrous layer made of Nylon 6,6 electrospun 
nanofibers has been interleaved in the pre-delaminated 
interface (henceforth named “Nanomodified” 
configuration) for delamination reinforcement. During 
the tests force-displacement curves and acoustic 
emissions were recorded. Mechanical parameters have 
been used in [2] to prove the effectiveness of the 
nanoreinforcement. In this paper AE features such as 
count, rise time, energy and amplitude, are used for 
investigating failure mechanisms. For a more detailed 
description of the experiments, reader is referred to [2]. 
Two data analysis techniques have been employed here: 
unsupervised k-means clustering and supervised 
artificial neural network. 

 
a.   Unsupervised K-means clustering algorithm 
 
Data clustering method is the recognition method for 
discriminating the similarity and dissimilarity of data. In 
k-means method, k is the number of clusters that the 
data are classified in. K-means is one of the 
classification methods based on the similarity that 
simultaneously shows the minimum distance to the 
centre of each cluster with the highest similarity. Each 
cluster is known by a point called centre: it is that point 
which sum of distances from all signals in that cluster is 

minimized. In this paper, Euclidean distance was used 
to cluster the signals of acoustic emission.  

 
b.   Supervised Artificial Neural Network (ANN) 

 
ANNs are an alternative to congenital programmed 
computing and take inspiration from brain neural 
network. An ANN mimics the structure and 
functionality of a biological nervous system, and it runs 
a parallel distributed processing made of computation. It 
is capable of taking decision based on incomplete, 
noisy, and messy information, and can generalize rules 
from those cases it is trained for, applying these rules to 
new stimuli. Neural network architecture is a promising 
implicit modelling scheme based on learning a set of 
factors (weights), aimed at replacing the traditional 
explicit constitutive equations used to describe material 
behaviour [30]. 

 
3. RESULTS AND DISCUSSION 

 
Mechanical results in [2] showed that virgin laminates 
exhibited a 12.3% higher maximum load than the 
nanomodified ones, while nanomodified specimens 
showed 23.2% and 4.9% increase in energy absorbed 
and GIC compared to virgin specimens respectively. 

Figure 2 shows the cumulative of acoustic energy and 
the mechanical results. Whenever the crack propagates, 
force drops and AE energy rises. Furthermore Figure 2 
shows that in a nanomodified interface, the energy of 
each AE event is smaller than the energy of each event 
released by the virgin interface and it is because of the 
nanolayer which absorbs the energy. 

hanical results in [2] showed in that virgin laminates 
exhibited a 12.3% higher maximum load than the 
nanomodified ones, while nanomodified specimens 
showed 23.2% and 4.9% increase on energy absorbed 
and GIC compared to virgin specimens respectively 

Figure 2 shows the cumulative of acoustic energy 
and the mechanical results. Whenever the crack 
propagates, force drops and AE energy rises. 
Furthermore Figure 2 shows that in a nanomodified 
interface, the energy of each single AE event is smaller 
than the energy of each single AE event released by the 
virgin interface. 

 
Fig.2. Force and AE cum energy versus Displacement (a) 
virgin and (b) nanomodified 

The curves also show that AEs are very sensitive to 
crack propagation and, therefore, are a robust tool to 
monitor the condition of structure under load. 
 
c.   AE data clustering 

 
Acoustic emission signals acquired during DCB tests 
are clustered using k-means algorithm. Rise time, count, 
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energy, amplitude and duration are used as inputs for 
the k-means algorithm, and should be first normalized, 
meaning that they have to be mapped to the range from 
zero to one by using equation (1) [31]: 

min

max max

X X
AE normal

X X
−

=
−

 (1) 

where X is a generic AE parameter and Xmin and Xmax 
its minimum and maximum value respectively. 

The classes of the algorithm represent the damage 
mechanisms, and therefore k, the number of classes, is 
set to 3: matrix cracking, fibre breakage and 
delamination. The failure mechanisms detected from 
acoustic emission signals in reference virgin and 
nanomodified specimens are presented in Table 1 and 
Table 2 respectively.  
Table 1. Different ranges of acoustic emission feature by k-
means for Virgin reference specimen 

 Amplitude 
(dB) 

Dura-
tion 
(µs) 

Energy 
 

Count 
(number) 

Rise Time 
(µs) 

Class 1: 
Matrix 
Cracking 

56-68 204-3200 10-116 25-433 1-227 

Class 2: 
Delaminati
on 

68-81 298-3184 13-189 34-379 1-220 

Claass 3: 
Fiber 
Breackage 

79-91 476-9800 68-3766 62-1898 1-281 

 
Table 2. Different ranges of acoustic emission feature by k-
means for nanomodified reference specimens 

 Amplitude 
(dB) 

Dura-
tion 
(µs) 

Energy Count 
(number) 

Rise Time 
(µs) 

Class 1: 
Matrix 
Cracking 

60-71 228-
16200 10-48 27-167 1-200 

Class 2: 
Delaminati
on 

71-84 268-1732 22-170 43-233 1-208 

Claass 3: 
Fiber 
Breackage 

83-92 631-5670 113-3573 75-695 1-243 

 
Tables 1 and 2 give individually useful information 

on the failure modes of the laminates, but also, combined, 
represent a useful tool to investigate the effect of the 
nanointerleave into the laminates. Tables show that the 
acoustic events in virgin composite, for all the three 
failure modes, are longer than those in nanomodified 
sample, due to the crack arresting mechanism played by 
the nanofibers. During the tests, in virgin samples the 
crack propagates for longer steps than the nanomodified 
specimens, because of the resistance offered by the 
nanointerleave. For the better clarification of the duration, 
for both virgin and nanomodified specimen, these 
parameter are plotted in Fig. 3. 

Comparing Table 1 and Table 2 also suggests that 
the range count of signals registered for virgin 
specimens is more than the double of the events than 
those registered for nanomodified specimens, 

suggesting that nanofibers not only reduce the 
propagation step but also reduce the total number of 
steps. 

 

Figure 3: Duration vs. number of counts (a) virgin and (b) 
nanomodified 

Figure 4 shows the ranges of AE energy versus 
amplitude for both (a) virgin and (b) nanomodified 
specimens.  

 
Figure 4: Amplitude vs. Energy of: (a) virgin and (b) 
Nanomodified 

Figure shows that the lowest amounts of amplitude 
and energy are related to the matrix cracking, the 
moderate values to delamination, and the highest 
amount to fibre breakage, showing good agreement with 
results of other studies [32,33]. 

 
d.   Supervised AE clustering by neural network 

 
In this section, the results from k-means algorithm were 
investigated by NN as a pattern recognition technique. 
By analysing the data recorded during the DCB tests, 
the failure mechanisms in the composite can be 
predicted. By using acoustic emission signals with the 
NN, the relationship between different damage modes 
of composite and signals can be investigated. Input data 
includes normalized AE features such as rise-time, 
count, energy, duration and amplitude and output are 
associated classes to each signal. 

By employing NN method, the input data and results are 
linked to each other with a connection weight. The weights 
are assigned to other input parameters to predict the 
unknown results. Matlab NN toolbox was used for solving 
the pattern recognition classification problem.  

In this method three sections are involved: training, 
validation and testing. The training part is based on finding 
the relationship between input and output data [34]. 

Neural network solves a pattern-recognition 
classification problem by using a two-layer feed-forward 
network with sigmoid output neurons. The neuron is the 
simplest kind of node, and maps an input vector x ∈ ℜn to  a 
scalar output f (x;w, θ) via: 
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( )
1

; ,
n

i i
i

f x w w xθ θ
=

= +∑   (2) 

where θ are ‘bias’ and wi are ‘weights’ of the i-th 
variables in the input vector x which include n variables. 
We will focus mainly on a 3-layer feed-forward ANN, 
which consists of a hidden layer and an output layer as 
shown in Figure 5. The default number of hidden 
neurons is set to 10. The number of output neurons is set 
to 3, equal to the number of elements in the target 
vector, equal to the failure modes. 

 
Fig.5. Schematic artificial neural network with 5input 
variables, 10 hidden layers and 3 output layers 

The input vectors x and target vectors t is randomly 
divided into three sets: 
• 70% allocated for training set, used for computing the 

gradient and updating the network weights and biases; 
• 15% allocated for validation in generalizing and stopping 

training before over-fitting; 
• 15% allocated for a completely independent test of 

network generalization. 
As the weights and biases of the network are initialized, 

the network is ready for training. The training process of a 
neural network involves tuning the values of the weights and 
biases of the network to optimize network performance, as 
defined by the network performance function [35,36] 

The default performance function (ε) for feed-forward 
networks is defined as mean squared error between the 
network outputs f and the target outputs t. It is defined as 
follows [35]: 

( )21
2 k k

k
f tε = −∑   (3) 

All the three sets (training, validation and testing) were 
calculated, and shown in Figure 6. 

 
Fig.6. Performance plot: (a) Virgin and (b) Nanomodified 

Depending on the network architecture, there can be 
millions of network weights and biases which make network 
training very complicated and computationally challenging. 
The simplest optimization algorithm -gradient descent- is 
used in the present study. It updates the network weights and 
biases in the direction in which the performance function 
decreases most rapidly, the negative of the gradient. The 
gradient will become very small as the training reaches a 
minimum of the performance. The iteration of this algorithm 
can be written as [35]: 

1k k k kx x a g+ = −   (4) 
Where xk is a vector of current weights and biases, gk is 

the current gradient, and ak is the learning rate [40]. Figures 
7a and 7b show the variations of current gradient for virgin 
and nanomodified composites respectively. 

 
Fig.7. Training state plot: (a) Virgin and (b) Nanomodified 

Thereafter a set of test signals (test matrix) is applied 
for the evaluation of the trained network, which will 
again give the confusion matrix of final output (tested 
data). The level of neural network training can be 
determined by examining the results shown in confusion 
matrix [36,37]. Figures 8a and 8b show the confusion 
matrices of virgin and nanomodified data. Confusion 
matrix can determine the accuracy of clustering for all 
training, testing, and validation data. According to the 
results signals are classified in three classes: the green 
part shows the signals correctly classified by k-means 
algorithm. The network's outputs are almost perfect, as 
can be seen from the high numbers of correct responses 
in the green squares and the low numbers of incorrect 
responses in the red squares. The diagonal [35] cells 
show the number of cases that were correctly classified, 
and the off-diagonal cells show the misclassified ones. 
The blue cell in the bottom right depicts the total 
percent of correctly classified cases (in green) and the 
total percent of misclassified cases (in red). According 
to the results for virgin composites 656/659 signals are 
related to matrix cracking, 451/452 signals are related to 
delamination and all fibre breakage signals have been 
classified correctly. Therefore 99.7% of the signals have 
been correctly classified. For nanomodified composite 
all signals have been classified correctly. 

 
Fig.8. Confusion matrix: (a) Virgin and (b) Nanomodified 

Table 3 shows the Mean Squared Error (MSE) and 
percent of error (%E) calculated for both virgin and 
nanomodified samples. Mean square error is the average 
squared difference between outputs and targets. Lower 
values show a better accuracy as zero means no error. 
Percent error represents the fraction of samples that are 
misclassified. A value of 0 means no misclassification. 
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Table 3. Mean squared error and percent of error in Virgin 

 Samples MSE %E 
 Virgin Nano Virgin Nano Virgin Nano 
Training 964 422 1.57e-3 5.89e-4 0.20 0 
Validation 207 91 1.90e-3 6.34e-4 0.48 0 
Testing 207 91 3.37e-3 1.44e-3 0.48 0 

 
4. CONCLUSIONS 

 
This paper investigates the use of AE signals to monitor 
the fracture modes of composites with and without 
nanofibers, during a fracture mechanics test. 

Form the analysis of the results AE revealed that 
nanofibers are capable of mitigating the delamination by 
reducing the number crack steps and their length during 
the tests. 

The k-means algorithm, an unsupervised technique, 
has then be used to classify AE signals rose during the 
DCB tests to recognize failure mechanisms such as 
matrix cracking, delamination and fibre breakage. 
Different ranges of acoustic emission features for 
different damage mechanism of both types of virgin and 
nanomodified specimens are determined. Based on the 
results, the lowest amplitude and energy signals are 
related to matrix cracking, while the highest amplitude 
and energy refer to fibre breakage in both specimens. 
Then neural network was applied as a supervised 
method to display the percentages of the correct 
classification signals: remarkably both kinds of 
specimens show more than 99% of accuracy. 
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НАДГЛЕДАНА И НЕ-НАДГЛЕДАНА 
КЛАСИФИКАЦИЈА AE ПОДАТАКА НАНО 
МОДИФИКОВАНИХ CFRP ЗА ВРЕМЕ DCB 

ТЕСТИРАЊА 
 

Н. Фалахи, Г. Нардони, Х. Хеихари, Р. Палацети 
Х.Т. Јан, А. Цукели 

 
Циљ овог рада је коришћење емисије акустичних 
звукова за проучавање утицаја electrospun Најлона 
6.6 mat нано-влакана угљен-епоксидним компо–
зитима током испитивања дупле укљештене греде. 
Да би се препознали ефекти нано-влакана и открили 
различити механизми оштећења, K метода 
груписања акустичних сигнала која је примењена на 
пораст времена, енергију, трајањe и амплитуду 
догађаја је примењена. Надзором неуронске мреже 



FME Transactions VOL. 44, No 4, 2016 ▪ 421
 

која је након тога примењена се затим проверава 
груписање сигнала. Резултати су показали да 
груписани емитовани звучни сигнали су поуздани 

алат за детекцију различитих механизама оштећења; 
неуронска мрежа је показала да метод има 99 % 
тачности. 

 


