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Abstract

The thesis tackles the problem of uncovering hidden structures in high-dimensional data

in the presence of noise and non informative variables. It proposes a supervised and

an unsupervised mixture models that select the relevant variables and are robust to

measurement errors and outliers.

Within the class of unsupervised clustering models we extend variable selection to

the family of Student’s t mixture models. While t distributions are naturally robust to

noise and extreme events, sparsity is achieved by imposing regularization on the location

and dispersion parameters. An EM algorithm is implemented to return the maximum

likelihood estimate of the model parameters given the added penalty term. To further

asses the contribution of each variable we propose a resampling procedure that ranks the

variables according to their selection probability.

Supervised clustering is implemented in a Bayesian framework. The model assumes

a mixture of Lasso type regressions with t-distributed errors. While the Lasso represen-

tation of the normal linear model imposes regularization on the regression coefficient,

variable selection is explicitly modelled by a latent binary indicator variable. The model

relies on particle Markov chain Monte Carlo algorithm to approximate the posterior

distribution of the parameters of interest.

To highlight the properties and advantages of the proposed models, two real life

problems are considered. The first one requires us to identify subtypes of breast cancer

tumors by grouping patients based only on their gene expression levels when only few of

the thousands genes are informative. In the second case our aim is to cluster different

financial markets spanning several macro sectors and explain their trading performance

only on the basis of the observed statistical features of their price dynamics.
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Chapter 1

Introduction

The process of learning is a natural and vital part of the growth and development

of every person. On a larger scale, the pursuit of knowledge drives the progress of

every human civilization. In a modern knowledge-based society the advancement

of scientific disciplines relies on a rigorous learning process which can follow a

theoretical deduction approach or induction from observations.

In the same way a single person learns from their own life experiences, scientific

knowledge can be acquired by moving from the observation of a series of events to

the underlying principles that explain them. Statistical inference plays a pivotal

role in the inductive learning process. Given a dataset of observations, statistics

provides the theory and tools to draw inference about the general rule behind the

specific events recorded.

In the learning process that goes from the repeated observation of multiple phe-

nomena to the formulation of a general rule, clustering provides a rigorous method

to distinguish between the accidental specific features of each datapoint and the

essential common elements that characterize an homogeneous class of events. Con-

versely, while it allows us to group together similar samples, it highlights the critical

differences that separates one cluster from another.

Equally important, in order to achieve an accurate representation of the phe-

nomena, is to recognise, of all observed features, which are really relevant for the

understanding of the underlying general principles. In statistics this part of the
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learning process is formalized as a variable selection procedure. It allows us to re-

duce the dimensionality of the dataset that we want to model and ultimately yields

a more clear and parsimonious derivation of the general rule we are interested in.

Another important aspect of the learning process is to investigate the link

between two separate events where we presume there is a cause-effect relation.

Given a collection of paired independent and dependent datapoints, the primary

task of the clustering procedure is again to identify groups of similar samples. In

this case, the process of partitioning a heterogeneous population of explanatory

variables and the corresponding response variables takes the name of supervised

clustering. The variable selection procedure is still a critical step towards a better

understanding and a more accurate representation of the causality relation.

In the present thesis we will propose two separate probabilistic models, one

implementing an unsupervised clustering approach and the other implementing a

supervised clustering approach. We illustrate the validity of the statistical methods

we introduce by applying them to two diverse real life problems. In both cases we

will highlight the importance of being able to select only the relevant variables and

how this procedure improves the performance of the models and interpretation of

the results.

Before proceeding any further, we should stress the point that any learning

process, even the most rigorous and precise, has to be combined with a sound

interpretation of the results and intelligent elaboration of the information we ac-

quire. Whilst statistics is the epitome of the experimental learning process, we

need to be aware of the limits of the knowledge acquired from past experience, as

the chicken, who got to trust the farmer that saw feeding him day after day till he

got slaughtered, can testify (Russell, 1912).

1.1 Real Life Problems

To illustrate how the two clustering models we propose have a general validity

and are suitable to represent real data, we have chosen to investigate two real life

problems from two very distant application areas.
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In one case we start our analysis from the recorded gene expression levels of

a cohort of patients diagnosed with breast cancer. The aim of the study is to

assess whether we can identify separate subtypes of carcinoma. In particular, we

are interest in identifying which genes might be associated with the insurgency of

each subtype.

In the second case we intend to propose an alternative partition of the financial

markets that better suits a systematic investment approach. From the observation

of the price dynamics of each market we extract an array of explanatory variables.

We then compute for each market a measure of the performance of a simple sys-

tematic trading strategy, which is effectively the response variable we would like

to explain.

To fully appreciate the properties of the models we develop in this thesis, we

shall first discuss in detail the main features of each of the datasets that motivated

our work.

1.1.1 Clustering Microarray data and Gene Selection

Since the scientific breakthrough that allowed to decode human genome, over the

past decade rapid developments in genomic and other molecular research tech-

nologies have combined to produce a tremendous amount of information related

to molecular biology.

Microarray gene expressions studies are routinely carried out to measure the

transcription levels of an organism’s genes. Still, for the main part, the exact func-

tion of each gene is unknown and this challenge has led to the exponential growth

of bioinformatics. One of the many bioinformatics tasks is to learn from the differ-

ent gene expression levels observed in a population and improve the understanding

of the biological processes.

In the present thesis we will investigate the expression levels of genes from

patients diagnosed with breast cancer. The objective of the investigation is to

isolate naturally occurring groups of patients with similar gene expression patterns.

This learning process should lead to the discovery of molecular fingerprints that
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define subtypes of the disease with clinically distinct prognosis and requiring a

more targeted treatment.

We should also note that in microarray studies it is expected that not all the

gene expression measurements will necessarily contribute equally to the identifica-

tion of distinct sub-groups of samples. Even when real clusters exist and are well

separated, it is often the case that only a subset of genes will have expression lev-

els that significantly vary across groups. Failing to identify the truly informative

genes may yield inaccurate clustering results because the non-informative genes

will mask the underlying structure of the data.

In order to extract as much information as possible from the data and draw re-

liable inference about the biological implication of the results, we intend to propose

a model that responds to the specific challenges posed by the microarray records

we set out to analyze:

• Few Biological Samples

• Very High Dimensional Observations

• Non Informative Variables

• Extreme Observations/Heavy Tail Distribution

• Measurement Noise

A model that satisfies these requirements would put us in the position to pursue

more focused investigation on each cancer subtype. Moreover, once we have iden-

tified the informative genes, we can explore the relation between their over/under

expression and the specific pathology we observe. This insight will hopefully lead

to a more targeted and effective treatment.

1.1.2 The Need for Segmenting Financial Markets

In the financial literature it is common practice to group markets into macro sectors

based on the type and nature of the good exchanged. Practitioners operating in
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financial markets adhere to this convention and consider each sector as a separate

area of expertise. This approach is reasonable for fundamental investors who have

to be knowledgeable on the underlying factors driving demand/offer and have to

elaborate the relevant information as news become public.

A partition of the markets that mirrors the macro sectors is less obviously

suitable to systematic traders who take investment decisions based on algorithms

which depend only on the evolution of prices. Under these circumstances, devel-

oping and optimizing a quantitative strategy on a sector by sector basis seems

rather arbitrary. This is because the only input considered when engineering the

strategy is the time series of prices whose behaviour is not necessarily a function

of the sector. A clustering method which is more consistent with a systematic and

objective approach, should identify homogeneous clusters of markets that share

similar price dynamics characteristics.

Our approach starts by selecting, across all sectors, those major financial mar-

kets for which we have records spanning up to twenty years of trading. Under the

assumption that all the relevant information about a market can be extracted from

the historical prices, we then compute for each market the summary statistics that

measure the critical features of the distribution and the temporal dependence of

time series of returns.

The learning process can follow an unsupervised approach and, as for the gene

data analysis, propose a clustering model that differentiates between relevant and

irrelevant variables. By selecting only the statistics that really help to characterize

each market, we achieve a more accurate partition of the markets in homogeneous

clusters.

In a supervised learning framework, the same statistics of the price dynamics

can be seen as explanatory variables that can help us understand why the trading

performance is different across markets. When we apply the same basic trading

algorithm to every market, we observe that the risk-adjusted profit we obtain is

not consistent across markets. The supervised model we propose should be able to

regress the profitability of the trading algorithm on some of the features we record

for each market.
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Assuming we achieve a more accurate partition of the markets, we are in an

ideal position to develop a systematic trading strategy that better suits the markets

within each group. A strategy that has been optimized on a market by market

basis would likely be overfitted and would not have enough back testing data. If,

instead, we devise a trading algorithm that consistently performs on a group of

markets, we are bound to obtain a more robust and convincing result. At the same

time, the significant features that are responsible for driving the clustering process

give us an insight on the critical aspects of price dynamics that should be exploited

by the trading strategy.

In order to reach credible conclusions about how to partition markets and what

are the informative features of the price dynamics, we need a clustering method

which is able to address the following issues:

• Supervised Partitioning

• Small Number of Samples

• Fewer Observations than Explanatory Variables

• Non Informative Variables

• Outliers

• Measurement Noise

If we succeed in proposing a model whose performance is not hindered by these

issues, we will have increased confidence in the trading strategy that we develop

based on the outcome of clustering and variable selection process. By being able to

implement a more targeted strategy on each group of markets, we should achieve

better investment returns.

1.2 Contributions

In an effort to meet the very specific requirement of the two real life problems

we just presented, we review the existing literature on supervised and unsuper-

vised learning methods. Whilst we find that mixture models are a flexible and
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effective method to cluster a heterogeneous population, like the one we suspect

is represented in the two datasets, we did not find a specific model that would

exactly match our requirements. In order achieve a more fitting and stringent

representation we resolve to propose the following two new mixture models.

The first model we introduce to perform unsupervised clustering is a penalised

mixture of Student’s t distributions. Mixture models have been widely imple-

mented to describe high dimensional datasets, such is the case with microarray

data, because they can fairly easily fit a parametric density function for each com-

ponent irrespective of the number of datapoints. This property is essential in our

investigation given that the two datasets we model only have a small number of

samples. We assume Student’s t density components because they can achieve

slower exponential tail decay, thus yielding heavier tails and making the model

more robust to measurement noise and the extreme observations we noted in gene

and financial data.

While the majority of algorithms for unsupervised data partitioning use all

the variables that describes the objects to be clustered, we address the problem of

detecting clusters that only exist in a reduced number of dimensions by introducing

variable selection procedure to t mixture models. This procedure allows us to

automatically exclude from the model those genes and market returns statistics

that are not informative.

Maximum likelihood estimation approaches achieve variable selection by im-

posing penalty constraints on the likelihood which has the effect of shrinking some

parameters to common values. We propose a joint L1-norm penalty function act-

ing on the location and the dispersion parameter. In order to limit the possible

estimation bias introduced by the penalisation, we also implement an adaptive

weighting rule that reduces the bias on informative variables.

We suggest a data resampling procedure to quantify the contribution of each

variable to the clustering process. The advantage of such procedure is that we

can explicitly measure the relative importance of each feature we retain in the

model. This step enables us to rank the genes and the price dynamics statistics

according to their selection probability and suggests an ordering criteria for a
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more specific investigation of the informative variables. At the same time, the

resampling procedure improves model selection by making the inferential process

of discovering the true number of clusters more accurate.

As it is commonly done, given the complexity and high dimension of the mixture

representation, the only viable approach to estimate the unknown parameters of

the model is to implement an Expectation Maximization algorithm. In particular,

we need to derive an algorithm that takes into account the penalty term. Moreover,

the implementation code has to be optimized so that it can deal with data matrices

of the dimensions of gene dataset which is in the region of ten of thousands.

The second model we introduce to perform supervised clustering is a mixture

of Lasso regressions with t-errors. We consider the situation, such as is the case

with the financial data problem, where at each sample we observe an array of

explanatory variables and an associated response variable. The model is then

supposed to explain as accurately as possible the vector of the dependent variables

as a function of the design matrix.

We propose a model that expresses the dependent variable as a linear combi-

nation of the independent variables. The mixture structure we adopt, gives us the

extra flexibility to fit an heterogeneous population where we presume that differ-

ent regression curves might be needed to explain the different sub-populations. In

our investigation, it allows us to fit, for each cluster of market, a separate linear

combination of the relevant price dynamics statistics to explain the trading per-

formance. Following a Bayesian approach, we specify a hierarchical representation

of the mixture model where each response variable is marginally distributed as a

Gaussian distribution with mean equal to the linear predictor.

To make sure the model is robust to outliers that otherwise would bias the

estimation of the regression coefficients we introduce an auxiliary variable which

allows the regression errors to be t-distributed. To further filter out any measure-

ment noise that might be erroneously fitted by the regression curves, we specify a

convenient hierarchy of priors and hyperpriors that deliver a Lasso type estimate

of the regression coefficients. The effect of the regularization is to shrink the coef-

ficients towards zero and therefore limit the impact of the noisy datapoints, which

26



Introduction

otherwise would have too much weight especially in markets with a shorter history.

Since we also desire the clustering method to return a sparse solution, where

only the truly informative variables are retained, we introduce a latent indicator

vector that dictates which variables should be included and which variables should

be excluded from the model. As we do not have any strong prior belief about which

specific features of the price dynamics can influence the profitability of the trading

strategy, we hope the model can automatically identify the most important ones.

Given the hierarchical structure of the priors and given the extra auxiliary

variables we had to introduce in order to perform cluster assignment and variable

selection, the model becomes too complex and high-dimensional for an explicit esti-

mation of the unknown parameters. The only viable solution is to approximate the

posterior distribution of the quantities of interest by devising an efficient sampling

routine. We propose a Particle Markov chain Monte Carlo simulation procedure

that alternates a conditional Sequential Monte Carlo algorithm to sample from the

posterior of the clustering labels, with a Metropolised Gibbs sampler that updates

the other relevant parameters conditional on the proposed cluster assignment.

Both supervised and unsupervised models are first tested on simulated data

under multiple scenarios in order to verify that they possess the properties we

require: accuracy, parsimony, sparsity and robustness. We then fit the models

to the bioinformatics and financial datasets. The insightful and promising results

that both models returns, confirm that they are appropriate for the problems we

want to investigate.

1.3 Outline

The outline of the thesis is as follows.

In Chapter 2 we review the relevant literature discussing supervised and un-

supervised learning approaches. We highlight the prominent role that mixture

models have gained in recent years as an efficient and elegant method for cluster-

ing heterogeneous datasets. We illustrate how mixture models can be efficiently

fitted in a maximum likelihood or Bayesian framework and discuss what solutions
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have been explored to deliver a sparse solution.

In Chapter 3 we introduce a penalised mixture of Student’s t distributions

model in order to discover clusters that may exist in datasets that present noisy or

extreme observations. We illustrate how we can achieve accurate variable selection

by imposing an adaptive L1-norm penalty function acting on the location and the

dispersion parameter. A resampling procedure for model selection and variable

ranking has also been proposed. To efficiently fit the the model we implement

a modified EM algorithm that returns the maximum likelihood estimates of the

unknown mixture parameters. The clustering and variable selection accuracy is

assessed simulating several scenarios representative of real life situations.

In Chapter 4 we introduce, in a Bayesian framework, a mixture of Lasso regres-

sions with t-errors. We illustrate how the hierarchical structure of priors we chose

leads to a clustering model with the desired properties of robustness and sparsity.

The parameters of interest are effectively estimated by implementing a simulation

procedure that allow us to sample their posterior distribution. The performance

and sensitivity of the model is then tested on experimental data.

In Chapter 5 we apply the penalised mixture of t distributions to cluster a

cohort of patients diagnosed with breast cancer. The aim is to identify the subtypes

of breast carcinoma that have clinical relevance and isolate the informative genes

that show a distinct expression level pattern across clusters. By ranking the genes

according to their importance we also hope to facilitate the biological interpretation

of the results.

In Chapter 6 we implement both proposed models to find a reasonable partition

of financial markets. We base the clustering algorithm on a collection of statistics

that represent the main features of the price dynamics that characterize each mar-

ket. The objective is to identify a more appropriate systematic trading strategy

for each cluster and engineer an algorithm whose parameters can be calibrated on

groups of similar markets.

In Chapter 7 we summarize the findings of the thesis and suggest promising

routes for future work.
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Chapter 2

Mixture Models and Variable

Selection: A Review

2.1 Introduction

The challenge of studying real life datasets has raised the problem of formulat-

ing models able not only to deal with noisy observations and outliers but also to

identify and filter out all non essential information. In this chapter we review

the literature within supervised and unsupervised learning and give particular at-

tention to models that demonstrate robustness and admit sparse solution. We

highlight the properties of mixture models that make it a flexible and robust ap-

proach to discover hidden structure in the data. Both Maximum Likelihood (ML)

and Bayesian approaches to statistical inference are discussed and both will be

adopted throughout the thesis.

The outline of the chapter is as follows. In section 2.2 we introduce mixture

models in their general notation as these will be the models we are going to de-

velop and implement further in the thesis. In section 2.3 we discuss unsupervised

learning. After reviewing other non-model based clustering algorithms, we give

a more detailed interpretation of mixture models applied to cluster analysis. In

section 2.4 we focus our attention on the variable selection problem and review dif-

ferent approaches proposed in the Maximum Likelihood and Bayesian framework
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to solve it. In section 2.5 we discuss the role of linear models for regression and

classification in supervised learning and how they can improve their flexibility and

extend their reach in a mixture model framework. In section 2.6 we note how the

variable selection problem in the context by linear regression models.

2.2 Mixture Models

With ever increasing computing power and data storage capabilities, very large

scale scientific analyses are feasible in fields as diverse as physics, medicine or

finance. Statistical analysis is essential to process all the recorded samples and

machine learning methods can provide the tools to extrapolate information from

large datasets. Mixture models in particular can uncover hidden structure in the

data by identifying differences and similarities in distinct observations and clus-

tering them.

Finite mixture models have been studied since at least the work of Newcomb

(1886) and Pearson (1894), but only more recently their potential has been recog-

nised and exploited. This started with the work of Wolfe (1970) accelerating

following the books of Everitt and Hand (1981) and Titterington et al. (1985);

McLachlan and Peel (2000).

The success of mixture models can be explained by the fact that they provide

a flexible way to model complex probability distributions that would not be easily

described by simpler pdfs. They also provide a natural framework for statistical

modelling of heterogeneous population when data are thought to belong to one of

several possible classes, but whose individual class memberships are unavailable.

In its most general formulation, a mixture of distributions is just a convex

combination of other distributions. Given a vector of observations yi ∈ R
p for

i = 1, . . . , n, the probability distribution of y = (y1, . . . , yn) is said to follow a

mixture model if the density p(·) is:

p(y) =
K∑

k=1

wk fk(y) (2.1)
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where fk(·) for k = 1, . . . , K, with K ∈ {1, . . . , n}, are the component densities

defined on the real space such that
∫
Rp fk(u)du = 1. Note that even if we will

only consider parametric type densities, mixture models are flexible enough to

also cope with non-parametric functions. The non-negative mixing proportions

w = (wk, . . . , wK) satisfy the condition
∑K

k=1 wk = 1 for 0 ≤ wk ≤ 1.

By comprising either finite or infinite number of components, not necessarily

of the same family, mixture models can describe different features of the data.

This property makes them particularly suitable for density estimation and cluster

analysis.

For density estimation, mixture models provide a convenient semi-parametric

framework to approximate arbitrarily well any continuous distribution. By using

a sufficient number of Gaussians, and by adjusting their means and covariances

as well as their weights, almost any continuous density can be approximated with

arbitrary accuracy, see Escobar and West (1995); Roeder and Wasserman (1997);

Bishop (2007). For example, by letting the number of components grow to K = n,

the mixture becomes a nonparametric kernel estimator of the density, (McLachlan

and Peel, 2000).

Beside providing a framework for building more complex probability distribu-

tions, finite mixture models are used to model clusters of data. The key intuition is

that since the expressed features of samples from the same cluster are similar but

not identical, it is reasonable to assume the existence of a probability distribution

of features for each component. Samples from different clusters, on the other hand,

should be characterized by different features. It is then natural to represent the

combined population taken from all clusters as a mixture of distributions.

In light of this physical interpretation of mixture models, they have been exten-

sively applied to solve clustering problems, which comprise estimating the parame-

ters of the individual scaled components, estimating the classification probabilities

of the observed or future data points or simply assigning each observation to a

cluster of similar samples. These clustering properties make finite mixtures our

model of choice to investigate the real life problems we described in chapter 1.
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2.3 Unsupervised Learning

Unsupervised learning refers to the problem of trying to find hidden structure

in unlabelled data where there is no error or target values that can guide and

assess the learning process. This is the case of human breast cancer dataset we

are going to study in chapter 5, where we only have the gene expression level for

several patients and no information is available concerning the membership of the

samples to any predefined class. We specify unsupervised clustering to distinguish

it from semi-supervised approach that makes use of a small amount of supervision,

see Grira et al. (2004) and Zhu and Goldberg (2009) for a review. What we

are most interested in is discovering groups of similar objects, e.g. similar gene

expression profiles, and how finite mixture contribute to this process. We should

first briefly mention other existing methods competing with mixture models to

solve this problem.

Non-Model Based Algorithms

Cluster analysis broadly refers to all methods that aim to organise a collection of

objects into non-overlapping clusters, such that items within a cluster are more

similar to each other than they are to items of different clusters.

Not all clustering methods found in the literature need to assume a probabilistic

structure about the data, as for mixture models. Non-model based algorithms, like

partitioning and the hierarchical approach, are only required to choose a proper

metric to measure the degree of dissimilarity of each pair of items and use this

information to identify homogeneous clusters. The notion of similarity can be

expressed in many different ways, depending on the domain-specific assumptions,

for example Euclidean distance for interval scaled variables or simple matching

coefficient for nominal variables (Kaufman and Rousseeuw, 2005).

Hierarchical algorithms can be traced back to the work of Ward (1963) and

produce a hierarchical structure by progressively combining or dividing existing

groups. Agglomerative methods start with as many clusters as the number of

objects and then successively merges them until only one large cluster remains
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which is the whole data set. Divisive methods on the other hand follow the opposite

direction and start by considering the whole data set as one cluster and then split

up clusters until each object form is own cluster.

Partitioning algorithms specify an initial number of groups and iteratively re-

allocate observations between them until some equilibrium is attained. All algo-

rithms within this class abide to two requirements: that each group contains at

least one object and that each object belongs exactly to one group. Among the

best known partitioning algorithm is k-means, originally presented by MacQueen

(1967); see Kaufman and Rousseeuw (2005) for a review of other popular methods

.

2.3.1 Mixture Models for Cluster Analysis

In a more rigorous formulation, given n observations characterised by p features,

yi ∈ R
p for i = 1, . . . , n, the goal of a clustering procedure is then to partition the

n samples into coherent groups. Following (2.1), each of the K distinct clusters

is represented by a different density function, fk(·), for k = 1, . . . , K and the

p-dimensional vector yi is then just a random sample from a population with

probability density function:

p(yi) =
K∑

k=1

wk fk(yi) (2.2)

where w = (wk, . . . , wK) are as before the non-negative mixing proportions and

yi is thus assumed distributed according to either of the K density functions fk

with probability wk. Once the data have been observed the inferential goal is

then to estimate the weights and the parameters of the components’ densities and

possibly also the number of groups K. Under the assumption that n samples

are independent, the mixture model of the entire dataset yields a joint pdf for

y = (y1, . . . ,yn):

p(y) =
n∏

i=1

K∑

k=1

wk fk(yi) (2.3)
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This formulation allows mixture models to explicitly account for the experimen-

tal noise frequently encountered when analysing real data (Smolkin and Ghosh,

2003). It is, in theory, flexible enough to be able to use any parametric den-

sity function fk(yi|Θk) to describe the component distribution. It would also be

possible to adopt a non-parametric component density. However, by staying in

the parametric framework, one is able to keep the estimation problem reasonably

tractable.

Parametric Mixtures

Now we consider parametric mixtures. The joint density of y given parameters Ψ

is

p(y|Ψ) =
n∏

i=1

K∑

k=1

wk fk(yi|Θk) (2.4)

For each cluster k we now have a set of unknown parameters Ψk = (wk,Θk) which

includes the mixing coefficient wk and the parameter vector Θk that characterises

the density function of the component. Whilst any parametric density function

could be considered, in several instances (Pearson, 1894; Day, 1969; Wolfe, 1970;

McLachlan and Peel, 2000; He et al., 2006) it has been deemed satisfactory to

assume Gaussian components. A noticeable aspect is that only the location and

scale parameters need to be specified Θk = {µk,Σk}. On the other hand this

particular choice of probability distributions may not always fit adequately the

data we want to model. Depending on the observed characteristics of the data,

different alternative parametrisations have been considered such as skew normal

distribution in Lin et al. (2007) to compensate for asymmetry in data or normal

inverse Gaussian distribution in Karlis and Santourian (2009) to model skewed and

fat-tailed observations. The most frequent drawback that Gaussian components

still suffer is the lack of robustness in the presence of high measurement noise and

outliers. It can lead to an inflated number of detected clusters since additional

components are needed to capture the heavy tail distribution of some variables

(Peel and McLachlan, 2000; Liu and Rattray, 2010).
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The Student’s t distribution, as will be adopted in chapter 3, has already been

successfully used for robust model-based clustering in several studies involving

gene expression data (Liu and Rubin, 1995; Jiao and Zhang, 2008; Jiao, 2010).

The degrees of freedom parameter ν controls the exponential tail decay of the

Student’s t density which can be slower than a Gaussian distribution and yield

longer tails (Kotz and Nadarajah, 2004).

Even if estimating ν can be particularly problematic especially in a Bayesian

likelihood context, since it does not allow a closed form solution (Fernandez and

Steel, 1999), it can adjust the weight of extreme observations, being either genuine

outliers or sampling errors, therefore reducing the bias when estimating the location

and dispersion parameters (Peel and McLachlan, 2000; McLachlan et al., 2002).

Each of the K multivariate Student’s t densities components is then fully specified

by the set of unknown parameters Θk = {µk,Σk,νk} and have to be inferred

from the observed data y together with the number of clusters K and the mixing

coefficients.

Irrespective of the particular choice of parametrization, the estimation challenge

posed by finite mixture models has been the object of several studies since Pearson

(1894) approached this problem using the methods of moments. With the support

of increasing computational power Maximum Likelihood Estimation (MLE), via

the Expectation Maximisation (EM) algorithm (Dempster et al., 1977), and the

Bayesian approach via sampling based methods, e.g. Markov Chain Monte Carlo

(MCMC) following the papers by Metropolis et al. (1953); Hastings (1970), have

proved to be the most effective methods to estimate the parameters of a finite mix-

ture model. Since these are the two approaches that we followed and implemented

in the thesis, in the next sections we are going to give a general introduction and

more detailed review of existing literature on likelihood and Bayesian inference

applied to mixture models.
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2.3.2 Likelihood-Based Approach

In the MLE approach, the best estimate of Ψ is the one that yields the highest

value of (2.4) given y. Note that for many parametric families fk(·|Θ) the likelihood

function can become unbounded as, for example, would happen with a univariate

Gaussian component if we set the location parameter equal to one observation

and let the dispersion of that component tend to zero. This problem can be

avoided by constraining the variances of all components to be equal even though

this assumption is not always supported by evidence.

Notwithstanding this issue, in practise it is often easier to maximise the loga-

rithm of the likelihood function, L(Ψ), which allows a more tractable formulation

substituting a product with a sum. In regular situations the MLE estimate Ψ̂ is

then found by solving:

∂ logL(Ψ)/∂Ψ = 0 (2.5)

Unfortunately the derivative of the log-likelihood function with respect to mixing

proportions w and density parameters Θ is typically complicated and severely

multi-modal, rarely lending itself to mathematical treatment and analytical closed

form solutions or straightforward numerical optimisation. The standard procedure

for finding the MLE in almost all cases is the Expectation Maximization algorithm

introduced by Dempster et al. (1977) and described in details by McLachlan and

Krishnan (2008).

Missing Data Formulation

The model can be rewritten in a missing data framework, which facilitates param-

eter estimation (McLachlan and Peel, 2000). While one would not directly observe

from which component of the mixture yi has been sampled from, it is useful for

the inferential process to introduce a K-dimensional component indicator vector

zi = (zi,1, . . . , zi,K) to indicate its cluster membership, see Bishop (2007). The

collection of latent variables z = (z1, . . . , zn) together with the observed samples

y are usually referred to as the complete data set. Each zi is a binary variable
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defined for each sample yi as

zi,k =

{
1 if yi belongs to component k for k = 1, . . . , K

0 otherwise
(2.6)

Thus zi follows a multinomial distribution, zi ∼ M(1|w1, . . . , wK) which can be

interpreted as one draw on K categories with probabilities equal to the mixing

proportions w:

p(zi) = w
zi,1
1 w

zi,2
2 . . . (1− w1 − . . .− wK−1)

zi,K =
K∏

i=1

w
zi,k
i (2.7)

The conditional distribution of yi given zi,k = 1 is then the density function of the

k component fk(yi|µk,Σk, νk) or more explicitly for a mixture of t distributions:

p(yi|zi) =
K∏

k=1

fk(yi|µk,Σk, νk)
zi,k (2.8)

By the law of total probability, we know that the marginal distribution of y can

be obtained by summing the joint distribution of y and z over all possible states

of z. We note then that maximizing logL(Ψ) is equivalent to maximizing the log-

likelihood of the complete data set, logLc(Ψ) ,which we can derive by combining

(2.7) and (2.8). Under the assumption that the observations y1, . . . ,yn are i.i.d.

we obtain the explicit form:

log p(y, z|Ψ) =
n∑

i=1

K∑

k=1

zi,k {logwk + log fk(yi|µk,Σk, νk)} (2.9)

The logarithm now acts directly on the component density function allowing the

log-likelihood of each component k to be maximised independently and contribut-

ing to the MLE only if the latent variable zi,k = 1. Aside from the computational

problems associated with avoiding singularities in the likelihood surface, there may

be several reasonable local maxima which might give quite different estimates of

Ψ.
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The complete likelihood function of the missing observations, namely the group

identifiers, in conjunction with the observed data has a much more appealing form

that can be exploited by the Expectation Maximization algorithm; we will discuss

this in more detail in chapter 3. We now introduce the Bayesian approach to

estimation of the mixture models and discuss some of the methods found in the

literature.

2.3.3 Bayesian Approach

Whereas the MLE provides a point estimate of every parameter of the mixture

model, Bayesian methods treat Ψ as unknown quantities about which probability

statements can be made. Before observing the data y, the uncertainty is expressed

as a prior distribution which represents our knowledge or belief about the value

of the parameters. Having sampled the data, the prior belief is reviewed and a

posterior distribution π(Ψ|y) conditional on y is constructed. The essence of the

Bayesian inferential process is described by

π(Ψ|y) = p(y|Ψ) p(Ψ)

p(y)
(2.10)

where p(y) =
∫
Ψ
p(y|Ψ) p(Ψ) dΨ. Many quantities or probability distributions of

interest can be written as posterior expectations

E(φ(Ψ)|y) =
∫
φ(Ψ) π(Ψ|y) dΨ (2.11)

where φ : Ψ → R.

This procedure is valid generally, but when we follow the Bayesian inferential

process for mixture models, it is convenient, as we have seen for the MLE approach,

to adopt a missing data formulation. In the Bayesian approach we follow in chapter

4, ( see also Marin et al. (2005); Bishop (2007) ), the missing allocation variable zi

with zi ∈ {1, . . . , K} is now a categorical variable with probability mass function

p(zi = k|w, K) = wk (2.12)
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Given the vector of missing labels z = (z1, . . . , zn), Bayesian inference simply

considers each possible allocation of the dataset, attaches a posterior probability

to this allocation, and then constructs a posterior distribution for the parameter

set Ψ conditional on this allocation

π(Ψ|y) =
∑

z Lc(Ψ) p(z|Ψ) p(Ψ)∫ ∑
z Lc(Ψ) p(z|Ψ) p(Ψ)dΨ

(2.13)

where p(z|Ψ) is the conditional probability of z given Ψ and Lc(Ψ) denotes the

likelihood of the complete data set yc = (y, z).

To illustrate the concept we use K Gaussian components which are fully spec-

ified by the location and dispersion parameter Θ = {µ,Σ}. The posterior distri-

bution of the entire set of unknown parameters for the mixture model, assuming

we know K, is

π(w,Θ|y) ∝
(

n∏

i=1

K∑

k=1

wk fk(yi|µk,Σk)

)
p(w,Θ) (2.14)

where the choice of priors on w and Θ can be a contentious issue as noted by

Aitkin (2001) who reviewed different options. In this thesis we will be using weakly

informative priors about the mixture model parameters, including the number of

components K, that are justified by our knowledge of the problems at hand gained

from related studies, from alternative clustering methods or from relevant evidence.

As an illustrative example, Escobar and West (1995) assumed a mixtures of

Dirichlet processes where the prior of mixing coefficients is a symmetric Dirichlet

distribution:

w ∼ Dir(w|δ) (2.15)

and the symmetry is forced by fixing the same parameter δ for all components.

The prior on the location parameter is a Normal distribution

µk ∼ N (mk,Σk/(vk)) (2.16)
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and for the covariance matrix an Inverse Wishart distribution

Σk ∼ IW(ak, bk) (2.17)

where mk, vk, ak, bk are the hyperparameters necessary to specify the first level

priors and can themselves be object of second level priors.

In particular, as part of the cluster analysis, we are interested in the classifica-

tion probability of the observed data point yi which is given by

π(zi = k|y) =
∫
p(zi = k|y,w,Θ) π(w,Θ|y) dw dΘ (2.18)

Unfortunately (2.18) requires one to analytically calculate an intractable integral.

For the mixture models we have just illustrated, it is unfeasible to evaluate the

posterior distribution π(Ψ|y) or indeed to compute expectations of any function

with respect to this distribution. The dimensionality of the latent space can become

too high to work with analytically and the form of the posterior distribution can

be too complex, even for a convenient choice of prior, to allow expectations to be

computed explicitly. It is not surprising then that Bayesian inference on mixture

models has become a viable approach only following the development of stochastic

numerical approximation techniques such as Monte Carlo methods.

Identifiability

While we will adopt Bayesian mixture model especially for supervised learning, we

should be warned here that a Bayesian analysis present difficulties with the general

mixture model representation at both the exploration stage and the interpretation

stage, see Titterington et al. (1985); Celeux et al. (2000). Parameters can be non

identifiable since the likelihood

L(w,Θ) =
n∏

i=1

[w1 f (yi|Θ1) + · · ·+ wK f (yi|ΘK)] (2.19)
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is symmetric in the components 1, . . . , K, which means the likelihood is the same

for all permutations of the parameters.

If the prior distribution of the parameters is also invariant under permutations

of the parameters, as it would happen if we had no real prior information about the

components, then the posterior distribution will be similarly invariant, resulting

identical for each mixture component and showing up to K! modes, (Celeux et al.,

2000; Jasra et al., 2005).

Whilst this is usually not a problem for MLE via EM algorithm (McLachlan

and Peel, 2000), the switching of components labels compromises any inference

drawn from numeric approximation methods, such as the Monte Carlo method we

introduce next, which are based on ergodic average over samples from the posterior

distribution.

While an ordering constraint on mixing proportions or other component pa-

rameters can be imposed ex post, after the simulations have been completed, e.g.

Richardson and Green (1997), this approach does not always work and different

solutions like alternative identifiability constraints, relabelling algorithms and label

invariant loss functions have been proposed, see Jasra et al. (2005).

The label switching problem is less threatening in our study since we can use

prior knowledge derived from MLE results to guide the relabelling algorithm after

the simulation has run.

Monte Carlo Methods

Let π(·) be a probability density on X , we want to calculate the expectation w.r.t

π(·) of any suitably π−integrable function h(·) defined on X such that h : X → R.

The expectation is given by the integral

I(h) =

∫
h(x) π(x)dx (2.20)

Since it is often too complex to exactly evaluate (2.20) using analytical techniques,

we need to resort to approximation schemes either deterministic or stochastic in

nature.
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Deterministic algorithms are based on analytical approximations of the pos-

terior distribution. Therefore, the more complex the model becomes the higher

the need of simplifying assumption which will lead us further away from the exact

results, see Roberts et al. (1998); Figueiredo and Jain (2002).

Alternatively, the integral (2.20) can be approximated through stochastic tech-

niques such as Monte Carlo methods. This approach originated in the Los Alamos

laboratories and was proposed to answer several mathematical problems encoun-

tered by scientists while trying to build the atomic bomb, see Robert and Casella

(2011) for a historical account. The basic premise of Monte Carlo methods is to

perform approximations through the random generation of variates, ensuring that

such variates are distributed according to π(·). The perfect algorithm would sample

directly from the target distribution of interest, π(·) ; generate N values x1, . . . , xN

all i.i.d. ∼ π(·) to obtain the empirical estimate

π̂(x) =
1

N

N∑

j=1

δXj(x)

where δx0(x) is the Dirac delta mass at x0. The integral (2.20) is then approximated

by

IMC(h(x)) =

∫
h(x) π̂(x)dx =

1

N

N∑

j=1

h(Xj) (2.21)

The main advantage of Monte Carlo methods over standard approximation tech-

niques is that the variance of the approximation error decreases at a rate ofO(N−1)

regardless of the dimension of the space X .

Importance Sampling

In most practical situations, when the posterior π(Ψ) is complex and high-dimensional,

we might find it unfeasible to sample directly from a target distribution. In addi-

tion, especially in Bayesian statistics, the target distribution π(x) can often only
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be evaluated up to a normalization constant

π(x) =
p̃(x)

Zp

where p̃ : X → R
+ is known pointwise and the normalising constant

Zp =

∫
p̃(x) dx

might be unknown.

Importance Sampling (IS) (Marshall, 1956; Geweke, 1989; Robert and Casella,

2004), overcomes the problem of having to generate a set of i.i.d. values from π(x)

by drawing instead from an easier to sample importance density q(x) = q̃(x)/Zq

and weighting the samples so that they approximate the empirical measure p̃(x)

As long as the support of q(x) covers the support of π(x):

π(x) > 0 ⇒ q(x) > 0

by the Radon-Nykodym theorem, see Jacod and Protter (2004), the integral (2.20)

can be expressed in the form

I(h) =

∫
h(x)

π(x)

q(x)
q(x) dx

and the following identities hold true

π(x) =
ω(x) q(x)

Zp

,

Zp =

∫
ω(x) q(x) dx

where the unnormalized weight function ω(x) is the ratio of the target distribution

p̃(x) with respect to importance distribution q(x)

ω(x) =
p̃(x)

q(x)
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Having drawn N i.i.d. samples from q(x) we can compute the empirical measure

and estimate the value of the normalising constant

π̂(x) =
N∑

j=1

W j δXj(x)

Ẑp =
N∑

j=1

ω(Xj)

where W j are the normalised weights

W j =
ω(Xj)

∑N
l=1 ω(X

l)
.

Therefore, when we can not have a perfect Monte Carlo sampling, we can still

estimate the classification probabilities in (2.18) using the importance sampling

approximation

IIS(h(x)) =

∫
h(x) p̂(x)dx =

N∑

j=1

W j h(Xj)

IIS(h(x)) is an asymptotically consistent estimator of I(h(x)), the difference

is that, unlike IMC(h(x)), is biased for finite N unless the normalising constant is

known analytically in which case we can produce an unbiased estimator.

Given a function h(·) it would be relatively easy to derive q(x) such that the

asymptotic variance of IIS(h(x)) is minimised, but one cannot typically sample

from it. For importance sampling to perform well in practice, the sampling distri-

bution q(x) should not be small in regions where p(x) may be significant. The risk

otherwise is that h(x)p(x) might have a significant proportion of its mass concen-

trated over small regions of the X space with the consequence that few importance

weights {W j} will dominate all the others. This problem can not be solved by in-

creasing or reducing the number of samples N . Intuitively it seems sensible rather

to choose the proposal density q to be as close as possible to the target p̃ such

that the variance of the importance weights or equivalently the variance of Ẑp is
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minimised: ∫ (
p̃(x)

q(x)
− 1

)2

q(x) dx.

The limit of such approach is that if q is very close to p̃ it might also be equally

difficult to sample from, defying the purpose of the importance sampling.

Unfortunately, the optimal importance density is often unknown and, as the

system dimension become very large, IS may fail because the weights collapse, as

discussed by (Bickel et al., 2008; Bengtsson et al., 2008).

In similar situations a viable alternative is provided by the Markov Chain Monte

Carlo (MCMC) methods which scales well with the dimensionality of the sample

space, see Gelfand and Smith (1990). Via the construction of an ergodic Markov

Chain that is irreducible and associated with an invariant probability distribution

p, MCMC methods generate a random sample x1, . . . ,xN suitable for simulation

purposes, from the approximation of the integrals under p to the exploration of the

support of p. We will refer to MCMC methods in chapter 4 and we defer till then

to give a more detailed review of how it can be implemented to conduct inference

on mixture models.

2.4 Variable Selection in Unsupervised Learning

In the previous sections we have introduced the general settings for solving clus-

tering problems with mixture models. Here we focus our attention on a practical

problem associated to studying high-dimensional datasets as the gene and finan-

cial datasets we want to investigate in this thesis. The aim is to look at existing

methods that can help us identify the truly informative variables and improve the

accuracy of the results.

The development and refinement of efficient ML and Bayesian estimation algo-

rithms has contributed decisively to the success of finite mixture models of recent

years. Nonetheless, despite their flexibility and model parsimony, high-dimensional

datasets still pose a particularly difficult clustering problem to solve especially

when not all the features recorded are useful to group observations correctly.
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The datasets we want to investigate, are characterized by a number of observa-

tions which is a lot smaller than the number of variables, n << p. While our main

goal is to cluster the n objects into K homogeneous groups, we are also interested

in identifying the 1 ≤ m ≤ p features that are really informative for the clustering

process. Being able to select only the m variables that show a significantly differ-

ent distribution across clusters means that the remaining q = p−m variables can

be excluded from the model. An effective variable selection procedure can signifi-

cantly improve the clustering accuracy of the algorithm which could otherwise be

mislead by the noise introduced by the non informative variables.

At the same time, a clustering algorithm that delivers a parsimonious solution

that only uses few discriminant variables will facilitate the interpretation of the

results. Having fewer variables in the model make it easier to see the responsibility

of a specific feature in characterizing certain clusters and help us focus our research.

This process would be more straightforward in a supervised framework where we

can infer from the loading factors which variables are more relevant.

To better appreciate the importance of variable selection in unsupervised clus-

tering, consider the case of DNA microarray studies, (Eisen et al., 1998; Golub

et al., 1999). The typical DNA microarray dataset has only a limited number of

observations, say few hundreds, while the number of genes can be in the order of

tens of thousands. The ideal unsupervised learning procedure then should help

us to identify the different cluster of patients and simultaneously isolate the genes

responsible. If we note an overexpression of a particular gene in a specific group

of patients, we can conjecture that that gene might be linked to the insurgency of

whatever pathology is present in that group.

Variable Selection in Non-Model Based Methods

Before discussing all the different approaches to variable selection via mixture

models we review some significant variable selection approaches implemented in

non-model based clustering methods. One popular method is to associate each

variable with a binary variable that indicates its inclusion or exclusion and have
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an ad hoc algorithm to search through the space of all possible combinations for

the best sparse solution. Since the size of this space is exponential in the number

of features, it is usually impractical to explore all combinations and so heuristic

non-exhaustive methods have to be adopted. The drawback is that one generally

loses any guarantee of finally identifying the correct subset of informative variables,

assuming one exists at some point. To minimize this risk Fowlkes et al. (1988) and

Fraiman et al. (2006) proposed a forward selection algorithm for sparse hierarchical

and partitioning clustering respectively. Other top-down and bottom-up hierar-

chical approaches to uncover clusters in multiple, possibly overlapping subspaces

of the multidimensional dataset, are reviewed by Parsons et al. (2004).

In a different approach, described by McLachlan et al. (2002), univariate models

are fitted on each variable and only a small subset of variables that pass some

significance threshold are retained. One noticeable shortcoming of this method is

that it does not assess the joint effect of multiple variables. As a result, it might end

up throwing away potentially valuable features, which are not useful for clustering

individually but may yield an improvement when considered in conjunction with

others.

Variable selection can also be achieved by assigning, to each feature, a weight

which represents the value of the information it conveys towards the identification

of clusters. Gnanadesikan et al. (1995); Friedman and Meulman (2004); Steinley

and Brusco (2008) discuss several different weighting rules all based on a distance

metric, while Witten and Tibshirani (2010) more recently refined a method that

yields a sparse solution for k-means partitioning.

Other authors, like Fodor (2002); Ghosh and Chinnaiyan (2002), have devised

different dimension reduction techniques that perform a transformation of the data

and project them on a lower dimensional space. Principal component analysis, for

example, will use the Euclidean distance between features profiles to produce linear

combinations of the variables and so reduce the dimensionality of the problem. The

main drawback is that the results are often difficult to interpret except when most

of the coefficients of the linear combination are negligent.
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2.4.1 Penalised Mixture Models

Within the mixture model literature, most of the research on feature selection

pertains to supervised learning, both from a classification and regression point of

view. Only more recently there has been an increasing interest from an unsuper-

vised learning perspective. Here we focus our attention on the Maximum Penalised

Likelihood Estimation (MPLE) which we will extend in chapter 3 to a robust class

of mixture components. We then give a more detailed review of some significant

examples and more recent contributions on this subject.

The fundamental intuition justifying variable selection in mixture models is that

only the informative features are expected to show a markedly distinct distribution

in a different cluster. Whereas, noise variables are represented as being sampled

from one single common distribution that would not suggest any partitioning of the

data. In the maximum likelihood estimation framework, model fitting and variable

selection are realised simultaneously by imposing a convenient penalisation on the

likelihood function. The approach proposed for mixture models by Pan and Shen

(2007); Xie et al. (2008a); Wang and Zhu (2008) follows and adapts the original

idea described by Tibshirani (1996); Fan and Li (2001) who used it in supervised

learning to regularize regression’s coefficients.

The key intuition is that the added penalty term forces the MLE estimates

to shrink the component density relevant parameters and the variables whose pa-

rameters’ values fall below a chosen threshold are considered non informative. In

practice, a variable can be excluded from the model without prejudice when its

parameters estimated values are the same across all clusters such that it does not

convey any useful information to discriminate between clusters.

Generalising the different versions found in literature the penalised log-likelihood

function is

logLp(Ψ) = logL(Ψ)− hλ(Θ)
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which, expanding for the K components, yield

logLp(Ψ) =
n∑

j=1

[
log

(
K∑

k=1

wk fk(yj|Θk)

)]
− hλ(Θ1, . . . ,Θk) (2.22)

where the penalty term hλ(·) is a function of the relevant components density

parameters and depends on the penalisation factor λ. Besides being very effective

in achieving a sparse solution, the formulation of (2.22) naturally fits within the

EM framework without compromising the performance of the algorithm.

Penalised Gaussian Mixture Models

In the literature discussing the penalised likelihood approach applied to model-

based cluster analysis, Gaussians mixture models have attracted most of the at-

tention. It is thus not surprising that the most recent studies use this family of

distributions to illustrate their proposed contributions to this area of research.

In their article Pan and Shen (2007) assume a Gaussian mixture model and

introduce an L1−norm penalty function to exclude non-informative variables by

regularising the location parameter of each component:

hλ(µ) = λ
K∑

k=1

p∑

d=1

|µk,d|

The penalty grows proportionally to the product of the regularisation parameter

λ and |µ|. Assuming the data has been previously centered, the term −hλ(µ)
forces the MLE process to shrink the estimated location parameter towards the

common mean 0. An estimate different from zero would only be justified by a more

than proportional increase in the log-likelihood term logL(Ψ). Those variables

whose location parameter do not resist the shrinkage and collapse to 0 across all

components, will not be relevant to identify the clusters and are effectively excluded

from the model.

The choice of an appropriate value for λ is critical since it controls the amount

of the shrinkage and ultimately sets the threshold below which variables are filtered
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out. A common heuristic approach fits a series of models for different values of

λ and then chose the best model according to the Bayesian Information Criterion

(BIC), Schwarz (1978).

Adaptive Penalty Function

As a result of the shrinkage forced by λ, it has been noted that regularisation intro-

duces an estimation bias of the parameters even for genuinely informative variables.

Confronted with a similar problem in fitting regressions, Zou (2006) proposed an

adaptive version of the standard LASSO originally presented by Tibshirani (1996).

The strategy consists in imposing less penalisation on large coefficients using adap-

tive weights. Wang and Zhu (2008); Xie et al. (2008a) have followed this solution

and suggested an adaptive version of the penalty function applied to mixture mod-

els:

hλ(Θ) = λ

K∑

k=1

p∑

d=1

ωk,d |µk,d|

where the penalty weights ω scale with the importance of the variable. The general

rule adopted makes the weights inversely proportional to the absolute value of

location parameter ω = 1/|µk,d|v, where v > 0 modulates how quickly the shrinkage

is removed as µk,d gets larger.

L∞−Penalty Function

Instead of dealing with each of the cluster specific means individually, Wang and

Zhu (2008) rather propose an L∞-norm penalty function that treats µk,d for k =

1, . . . , K as interdependent groups, since they pertain to the same variable d. The

penalty function they implement is

hλ(Θ) = λ

p∑

d=1

wd max
k

(|µ1,d|, . . . , |µk,d|, . . . , |µK,d|) (2.23)

where max(|µ1,d|, . . . , |µK,d|) = ‖(µ1,d, . . . , µK,d)‖∞ and ωd is the adaptive weight

wd = 1/maxk |µk,d|v. The L∞-norm penalty guarantees that the estimated location
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parameters of d will be zero for all clusters simultaneously if the maximum absolute

value of µk,d for k = 1, . . . , K is shrunken to zero. When that happens the variable

is excluded.

Grouped Penalization

The merits of grouping together multiple parameters arising from the same variable

before imposing penalisation have also been recognised by Xie et al. (2008b) who

proposed a penalty function that explicitly encourages all of the µ1,d, . . . , µK,d to be

exactly 0 at the same time. The approach described there is general, but assuming

for illustration purposes an L2-norm penalty function we have:

hλ(Θ) = λ
√
K

p∑

d=1

‖µ.,d‖ (2.24)

with ‖µ.d‖ =
√∑K

k=1 µ
2
k,d. When most of the clusters’ estimated location param-

eter appear to be close to zero, the quadratic mean will be less than a certain

threshold and all µk,d for k = 1, . . . , K will be set equal to 0 thus making the

variable d uninformative. In the same paper Xie et al. (2008b) also discuss an

horizontal grouping where multiple variables are aggregated together based on any

previous knowledge that might justify their joint inclusion or exclusion from the

model. Assuming the p variables and their corresponding location parameters have

been partitioned in M groups of possibly different dimension dim(µm
i ) = pm with

∑M
m=1 pm = p, the grouped horizontal penalty function suggested by the authors

is:

hλ(Θ) = λ

K∑

k=1

M∑

m=1

√
pm ‖µm

k ‖ (2.25)

Hence if the weighted quadratic mean of the estimated location parameters of the

variables in group m is small enough all elements of µm
k will be shrunken to exactly

zero.
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Variance Penalisation

In a different paper Xie et al. (2008a) followed the approach suggested by Pan

and Shen (2007) and extended regularisation to the dispersion parameter. For a

mixture of Gaussian components Θk = {µk,Σk}, assuming features are indepen-

dently expressed, i.e. a diagonal covariance matrix Σk = diag(σ2
k,1, . . . , σ

2
k,p), they

proposed two schemes:

Scheme I: hλ(Θ) = λ

K∑

k=1

p∑

d=1

|σ2
k,d − 1| (2.26)

Scheme II: hλ(Θ) = λ

K∑

k=1

p∑

d=1

| log σ2
k,d| (2.27)

Except for the linear or logarithm transformation of the estimated standard devia-

tion parameter, the schemes are equivalent as they both apply a L1-norm penalty

function that forces σk,d to shrink towards 1. The intuition again is that once the

data have been standardised, setting σk,d equal to 1 for all components k = 1, . . . , K

implies that the variable d irrelevant for clustering.

Pairwise Penalisation

The procedures seen so far select a variable if it is informative to separate at least

one pair of clusters and remove it only when it has the same distribution across

all clusters. Guo et al. (2010) discuss a method to identify which variables are

discriminative for which pairs of clusters. They propose a pairwise fusion penalty

function that penalises the distance between every pair of cluster centers. The

shrinkage in this case pushes the centroids of non-separable clusters towards each

other until eventually they collapse to the same value. In fact the pairwise penalty

function is

hλ(Θ) = λ

p∑

d=1

∑

1≤k<k′≤K

ω
(d)
k,k′ |µk,d − µk′,d|
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where ω
(d)
k,k′ = |µ̃k,d − µ̃k′,d|−1 is the adaptive weight with µ̃k,d being the estimate

of µk,d without penalisation. The data do not need to be centered and it is the

difference between means that gets shrunk towards zero, not the means themselves.

If µ̃k,d = µ̃k′,d then the variable d is not considered to be informative for separating

cluster k and cluster k′ but it might still be included in the model if it is informative

to separate other clusters.

2.4.2 Bayesian Variable selection

Compared to Maximum Penalised Likelihood Estimation the Bayesian implemen-

tation of feature selection is more flexible but computationally more demanding.

Even in the presence of high-dimensional datasets Bayesian methods can naturally

address the problem of simultaneously selecting informative variables, uncovering

the cluster structure of the observations and propose class prediction for future

observations.

The Bayesian paradigm offers a coherent framework to overcome the major

shortcomings of non-model based clustering algorithms like the k-means approach,

(Bishop, 2007). Typically partitioning or hierarchical methods use greedy deter-

ministic search procedures, which can be stuck at local minimum, and presume the

existence of a single best subset of clustering variables. In practice, however, there

may be several equally good subsets that define the true cluster structure. The

Bayesian approach on the other hand offers a probabilistic criterion for assessing

the uncertainty associated with model estimation and variable selection.

Principal Component Analysis

Liu et al. (2003) were among the first authors that were confronted with this

problem and tried a Bayesian approach to standard dimension reduction. The

authors proposed to perform a preliminary principal component analysis (PCA) or

correspondence analysis (CA) to reduce dimensions, and then fit Gaussian mixtures

to the data projected to the several major PCA or CA directions. The method

combines the reparametrisation of the covariance matrix described by Banfield
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and Raftery (1993) with a formal Bayesian modelling. The authors implement a

Metropolis-Hastings algorithm to sample over the discrete space of possible subsets

of the principal components. The advantage of this type of full Bayesian models

is its ability to treat all involved variables in a coherent framework, to combine

different sources of information, and to reveal subtle patterns by properly averaging

out noise.

Sparsity Inducing Priors

To handle the problem of selecting only the informative features among the pro-

hibitively vast number of variable subsets, an often adopted approach has been

to introduce a latent p-dimensional binary vector γ = (0, 1)p. Each element γd

for d = 1, . . . , p indicates whether the dth variable is informative in which case it

assumes a value 1 or 0 otherwise. By explicitly modelling γ it is possible to make

informed inference on joint and marginal posterior distributions of the variables. A

suitable prior for the selection indicator is the Bernoulli distribution which, under

the assumption that the elements of γ are independent, yields

p(γ) =

p∏

d=1

φγd (1− φ)1−γd

where the hyperparameter φ can be interpreted as the proportion of variables

expected a priori to be informative.

Based on the binary latent indicator several models have been considered for

their different advantages. Using a Gaussian mixture model, Tadesse et al. (2005)

explored the idea presented by Law et al. (2004) and proposed a diagonal co-

variance matrix which implies each variable is independent from the others. In

line with the key intuition exploited by the MPLE, all the irrelevant variables

are thought to have been sampled from a common distribution and show similar

expression patterns regardless of cluster membership. Assuming that I(γ′) is the

index of the variables identified as informative, i.e. that should be included in

the model, with I(γ′′) indicating the complementary set of variables that favour a
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single multivariate normal density, the likelihood function is then rewritten as

p(yi|zi = k) = N (yi I(γ′)|µk I(γ′),Σk I(γ′))N (yi I(γ′′)|µk I(γ′′),Σk I(γ′′)).

A later study by Raftery and Dean (2006) tried to relax the assumption of

complete independence between informative and non informative variables and as-

sumed that the irrelevant variables could still be regressed on the relevant variables.

Their modelling enforced the dependency link between the two types of variables.

In this case three sets of variables are defined: I(γ′) the set of variables already

selected, I(γ′′) the set of variables to be evaluated for inclusion or exclusion and

I(γ′′′) the remaining excluded variables. The hierarchical representation of the

likelihood yields:

p(yi|zi = k) = p(yi I(γ′)|zi) p(yi I(γ′′)|yi I(γ′)) p(yi I(γ′′′)|yi I(γ′), yi I(γ′′)).

Following the same route Maugis et al. (2009) suggested a further improvement

on the model and allow the irrelevant variables to be explained by only some of the

relevant variables. The reviewed model accounts for the possibility that some of

the uninformative features are independent of all the relevant variables while the

remaining features are linked by some extent to some of the relevant variables. The

set of informative variables is denoted by I(γ′) while its complement set contains

the irrelevant variables and can be split into subset I(γ′′), comprising the redundant

variables that can be explained according to a linear regression on I(γ
′∗) ⊂ I(γ′),

and into subset I(γ′′′) comprising the remaining non informative and independent

variables.

p(yi|zi = k) = p(yi I(γ′)|zi) p(yi I(γ′′)|yi I(γ′∗))N (yi I(γ′′′)|µk I(γ′′′),Σk I(γ′′′)).

The estimated distance between clusters’ means, in the spirit of LASSO pe-

nalisation, is the focus of the study by Yau and Holmes (2011). A hierarchical

Bayesian nonparametric mixture model is proposed to deal with situations where

there is uncertainty about the clustering relevance of the variables. The hierarchi-
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cal structure provides a flexible framework that can accommodate the hypothesis

that some variable are informative only to separate specific clusters, while the non-

parametric prior allows us to treat the number of mixtures as unknown. In order

to induce sparsity, it is assumed that the standardised distance between any pair

of clusters k and k′ should have a Gaussian prior

(µk,d − µk′,d)√
2σ2

d

∼ N (0, λd) (2.28)

where λ is the shrinkage parameter vector that forces the cluster means towards a

common location in a way that encourages sparsity. The relative importance and

contribution towards clustering of each covariate can be gauged from the posterior

distribution of p(λd|y).

Model Selection

All methods we have just mentioned refer to the latent binary indicator vector γ

to recast the variable selection problem as one of model selection and addresses it

using approximate Bayes factors. In Raftery and Dean (2006), for example, the

two models compared are: the one that assumes that the set of variables I(γ′′)

does not provide further useful information once I(γ′) has been observed, and the

other competing model that assumes I(γ′′) does add more useful information for

the identification of the clusters.

The criteria followed to choose among the competing models consist in favour-

ing the one that maximises the ratio of posterior to prior odds. When it is difficult

to analytically evaluate the integrated likelihoods, the Bayes factors are approxi-

mated by the difference between the Bayesian Information Criteria BIC of the two

models, see Schwarz (1978).

Subspace Clustering

Following a slightly different approach Hoff (2006) tried to reformulate, in a Bayesian

framework, the subspace clustering method suggested by Friedman and Meulman
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(2004). The main motivation for the model-based subspace clustering method is

that only a small number of the attributes differentiate groups of observations, and

among these attributes, only some will differ between any two particular clusters.

The cluster specific means, µk, are modelled as a shift from the population wide

mean µk = µ + rk × δ with rk ∈ {0, 1}p, δk ∈ R
p and the distribution of the

shifts {(ri, δi) : i = 1, . . . , n} are assumed to follow a Pólya urn scheme. Using this

representation the differences between any two given clusters can be summarised

by a difference in only a subset of the attribute means, with the subset depending

on the pair of clusters being compared.

2.5 Supervised Learning

So far we have discussed the role of mixture models as part of an unsupervised

learning process and we focused our attention on recent studies performing cluster

analysis with variable selection. Here we review the most significant literary con-

tributions that show how the flexibility of mixture models can also be exploited in

supervised learning.

The supervised learning process involves observing the training dataset Dn =

(xi, yi)
n
i=1 where yi ∈ R and xi ∈ R

p, and proposing a rule that describes the

dependency of set of response variables y on the corresponding input variables x.

In classification problems, the response variables are typically discrete class labels

and the objective is to estimate the posterior probability of class membership of

each observation so that it can be assigned to one of the finite number of cate-

gories. Regression problems are usually characterized by continuous real response

variables. The objective of the regression modelling can be to explain the observed

data, by finding the curve that best describes the relationship between input and

response variables, or to make reasonable inference by predicting what should be

the expected output when we are presented with previously unseen values of x.

We first introduce the Gaussian and the logistic linear regression models as an

example of viable methods to solve regression and classification problems respec-

tively. We then discuss how these simple models can respond to the challenges of
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more complex and high dimensional data by adopting a mixture structure. Since

both the Gaussian and the logistic linear regression models belong to the com-

prehensive class of Generalized Linear Models (GLM) we start by reviewing the

essential aspects of GLMs and introducing the necessary notation.

The Regression Model

In its most simple formulation, a supervised learning process aims to construct the

regression function m(·) that links a random variable Y ∈ R to the explanatory

variable X ∈ R according to the model

Y = m(X) + ǫ

where ǫ is the additive stochastic component that usually reflects the fact that Y

might also depend on other quantities that are neither controlled nor observed.

We can interpret ǫ as an unobservable random error and assume that it follows

a Gaussian distribution with E(ǫ) = 0 and Var(ǫ) = σ2 independently of the

explanatory variable X.

From a probabilistic perspective, the observed response is only one out of many

possible outcomes that we could have observed under identical circumstances, and

we describe the possible values in terms of a probability distribution. Considering

D = (X, Y ) as being sampled from an unknown distribution FX,Y , under the

previous assumptions about ǫ, we can still assume that the conditional distribution

of Y given X is a normal distribution:

Y |X ∼ N (m(X), σ2).

The intuition then is that the regression function m(x) can be defined as the con-

ditional expectation E(Y |X = x) =
∫
y fY (y|x) dy. In practice, the distribution of

y does not have to be necessarily Gaussian, but as long as it is part of the exponen-

tial family, the regression model can be seen as a specific case of the Genaralized

Linear Models.
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2.5.1 Generalized Linear Model

Generalized linear models were introduced by Nelder and Wedderburn (1972) as a

way of unifying various other statistical models, including linear regression, logistic

regression and Poisson regression. In a GLM, each outcome of the dependent

variables, Y , is assumed to be generated from a particular distribution in the

exponential family which encompass a large range of probability distributions such

as the normal, binomial, Poisson, gamma and inverse Gaussian, among others.

Each observation yi for i = {1, . . . , n} that has been sampled from a distribution

in the exponential family has the following probability density function

f(yi) = exp

{
yi θi − b(θi)

ai(φ)
+ c(yi, φ)

}

where θi and φ are parameters and ai(φ), b(θi) and c(yi, φ) are known functions

that characterize each special distribution. In all models we consider here the

function ai(φ) has the form ai(φ) = φ/pi, where pi is a known prior weight, usually

1. The parameters θi and φ are essentially location and scale parameters and it

can be shown that if Yi has a distribution in the exponential family then it has

mean and variance

E(Yi) = µi = b′(θi)

Var(Yi) = σi = b′′(θi) ai(φ)

where b′(θi) and b
′′(θi) are the first and second derivatives of b(θi).

The link Function

In a GLM, it is assumed that

ηi = g(µi)

= x′
iβ
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where xi is the vector of covariates or explanatory variables on the ith response

yi and β is a vector of unknown regression coefficients. The one-to-one continu-

ous differentiable transformation g(·) is a monotonic function known as the link

function. The quantity ηi is called the linear predictor because it is expressed as a

linear combination of the unknown parameters β and incorporates the information

about the independent variables into the model.

Since the link function defines the relationship between the linear predictor and

the mean of the distribution function, the systematic component of the regression

model can be found as

µi = g−1(x′
i β)

which does not have to be necessarily linear in the parameters since the linear

predictor is transformed by the nonlinear function g−1(·). This allows the model

to have more complex analytical and computational properties than a simple linear

regression models could have.

Furthermore, when setting the canonical parameter θ = η, see Hastie and

Tibshirani (1990), the canonical link function express θ in terms of µ and maps

whatever specific density function we have chosen to its canonical GLM form. As

we see next the identity is the canonical link function for the normal distribution

while the logit is the canonical link function for the binomial distribution.

Normal Linear Regression

A simple, very important example of a generalized linear model is the normal

linear regression, see for example (Nelder and Wedderburn, 1972; Hastie and Tib-

shirani, 1990; Figueiredo, 2000). The model treats the responses yi as independent

realizations of Gaussian random variables

Yi ∼ N (µi, σi). (2.29)

Assuming the observed data Dn = (xi, yi)
n
i=1, where yi ∈ R and xi ∈ R

p, are i.i.d.

samples, the Normal Linear model can be derived from the GLM by taking the
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identity function as its canonical link function

ηi = x
′

i β = µi (2.30)

which implies a mean function

µi = x
′

i β. (2.31)

which shows how the mean µi depends linearly on the parameters β and on the

covariates x. The explicit formulation of the Normal linear regression model yields

E(yi|xi) = β0 + β1 xi,2 + . . .+ βp xi,p (2.32)

where the first component of xi vector is taken to be 1 and the corresponding first

component of the coefficient vector β is relabelled β0; in this case β0 is known as

the intercept term.

Logistic Regression Model

The logistic regression model is another specific case of GLM whose natural appli-

cation is in classification problems, Hastie and Tibshirani (1990); McLachlan and

Peel (2000); Bishop (2007). Logistic regression in fact is a common method for

analysing the effect of a vector of covariates on the number of successes in a series

of Ni independent Bernoulli trials.

Let us assume that Dn = (xi, yi)
n
i=1 yi is a realization of a random variable

Yi ∈ {0, . . . , Ni}. If the Ni observations in each group are independent, and they

all have the same probability πi of being a success, i.e. having the attribute of

interest, then the distribution of Yi is binomial with parameters πi and Ni:

Yi ∼ B(Ni, πi).

The corresponding canonical parameter that links it to the exponential family is

the logit of πi

θi = log

(
πi

1− πi

)
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which yields the mean function µi = b′(θi) = Ni πi. The logit function, which

maps probabilities from the range (0, 1) to the entire real line, is the canonical link

function for a binomial distribution

ηi = x
′

i β = log

(
πi

1− πi

)
= log

(
µi

Ni − µi

)

or equivalently

πi =
exp(x′

i β)

1 + exp(x′

i β)

From a practical point of view it is important to note that the Bernoulli dis-

tribution for the individual zero-one data or the binomial distribution for grouped

data consisting of counts of successes in each group are equivalent approaches, in

the sense that they lead to exactly the same likelihood function and therefore the

same estimates and standard errors.

While parametric models such as linear regression remain the most popular

techniques in data modelling, they are often too rigid to model general nonlinear

patterns hidden in a high-dimensional data space. In response to that demand, a

procedure for multivariate regression that is applicable to high dimensional data

and retains the flexibility of nonparametric methods is reviewed in the next section.

2.5.2 Mixture of Regressions

There exist many areas where heterogeneous populations of covariates are found

and studied (Goldfeld and Quandt, 1973; Quandt and Ramsey, 1978; Friedman,

1991; Figueiredo, 2000; Hurn et al., 2010). In similar circumstances, if the ob-

jective of the study is to classify observations, the focus of the learning process

is on identifying the homogeneous subpopulations. If, instead, the objective is

to explain the data and make prediction, the focus is rather on finding the most

appropriate rule for each subpopulation. In both cases it is possible to extend the

mixture model approach that we have seen implemented in unsupervised learning

to the supervised learning process. Mixture of regressions provide a flexible tool to

investigative the relationship between input and response variables coming from
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several unknown latent components.

Mixture of Linear Regressions

Let us assume that for the observed dataset Dn = (xi, yi)
n
i=1 there are K possible

regression curves and let z with zi ∈ {1, . . . , K} be a latent class variable with

p(zi = k|xi) = wk for k = 1, . . . , K. Given zi = k the observed quantity yi depends

on a vector of covariates xi in a linear way according to the kth rule:

yi = x
′
i βk + ǫi,k

where the parameters Θk = (βk, σk) vary among a set of K possible values with

probabilities w1, . . . , wK . In other words, assuming a normal distribution on the

perturbation, it is possible to model the joint density of yi and x as Gaussian

mixture which also allows to express the conditional distribution of yi given x as

a mixture of normal distributions

p(yi|xi) =
K∑

k=1

wk N (x′ βk, σ
2
k).

The Gaussian Mixture of regressions in this case has the tight and parsimonious

structure of a parametric model, yet it still retains the flexibility of a nonparametric

method. In figure 2.5.2 we see an example of a mixture of three 1−dimensional

regression curves.

Mixture of Logistic Regressions

Following the same approach, we can solve the problem of classifying an heteroge-

neous population by using the simple logistic regression model as a component of

a mixture of logistic regressions, see Bishop (2007); Hurn et al. (2010).

An obvious extension of the binomial conditional probability for the response
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Mixture of Linear Regressions

Figure 2.1: Mixture of three linear regression curves with different mixing propor-
tions

variable yi yields

p(yi = 1|x) =
K∑

k=1

wk

[
exp(x′ βk)

1 + exp(x′ βk)

]

where the parameter πi,k that describe the probability of success within each com-

ponent is postulated to depend on the explanatory variables according to the equa-

tion

log

(
πi,k

1− πi,k

)
= x′

i βk.

Estimation Procedures

It is straightforward to extend the maximum likelihood or the Bayesian approach

we have discussed for unsupervised mixture models to the estimation process of

the mixtures of regression and logistic models’ parameters.

The standard method of obtaining maximum likelihood (ML) estimates is still
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the expectation maximization (EM) algorithm, see Wedel and DeSarbo (1995).

In the Bayesian approach independent normal priors are usually proposed for

the regression coefficients βk, see Hurn et al. (2010). The choice of a standard

conjugate prior for βk together with inverse gamma prior on the scale parameter

σk and a Dirichlet prior on the mixing proportion wk would allow us to use a Gibbs

sampler, but other choices are equally acceptable since they can be implemented

via alternative MCMC methods.

The ordinary Least Squares Estimator (LSE), instead, is peculiar to the super-

vised learning framework. The LSE estimates of the regression coefficients, β̂, are

found by minimizing the square difference between the observed response yi and

the response ŷi suggested by the regression rule. While the LSE has minimum vari-

ance among unbiased estimators and is an efficient estimator if the error is normal

it is also extremely sensitive to outliers and the heavy tailed error distribution.

2.6 Variable Selection in Supervised Learning

The practical utility of variable selection is well recognised in regression and clas-

sification models, see for older and more recent example (Tibshirani, 1996; George

and Mcculloch, 1997; Tipping, 2001; Khalili and Chen, 2007; Hans, 2009; Fahrmeir

et al., 2009; Lee et al., 2010; Schäfer and Chopin, 2011). Often, there are many co-

variates of interest whose contributions to the response variable might be small in

same instances or null in others. To enhance the parsimony of the model without

compromising its accuracy, it is common practice to include only the important

covariates in the model.

In a mixture models framework, the underlying idea is that a single set of

regression coefficients across all observations may be inadequate and potentially

misleading if the observations arise from a number of unknown groups in which

the coefficients differ (Wedel and DeSarbo, 1995).

Most of the variable selection methods discussed in supervised learning litera-

ture stem from the same intuitions behind the variable selection methods we have

presented in section 2.4. Here we review some significant examples applied to mix-
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ture of regression models, spanning Penalised Maximum Likelihood and Bayesian

sparsity-inducing priors approaches.

To formalize the problem in general terms, let us assume that the recorded

dataset Dn = (xi, yi)
n
i=1 with yi ∈ R and xi ∈ R

p has been sampled from an het-

erogeneous population. It is fair to assume that there are K possible regression

curves which describe the data and that each curve depends upon a different col-

lection of the variables 1, . . . , p. We will write γk as the p-dimensional vector of

zeros and ones which denote whether or not variable d ∈ {1, . . . , p} is retained by

the kth regression curve.

When the explanatory variable xd is not significant, the corresponding esti-

mated regression coefficient βd is often close to, but not equal to 0. Thus this

covariate would typically not be excluded from the model. To avoid this prob-

lem, we may explore several submodels based on different subsets of variables and

compare them according to an information criteria such as the Akaike criterion,

(Akaike, 1973), or the Bayes criterion, (Schwarz, 1978). However, the computa-

tional burden of these approaches is computationally intensive and very expensive

as the number of covariates and components in the mixture model increases.

Penalised Maximum Likelihood Approach

Unlike the subset selection methods, a penalised maximum likelihood approach

can be used to tackle variable selection problems in reasonably high-dimensional

datasets.

The original idea was proposed and applied to a simple normal linear regression

by Tibshirani (1996). In his work variable selection was performed by choosing

only the largest coefficients in absolute value and setting the rest to 0. For some

choice of λ ∈ R
+ the regression coefficient βd was forced to collapses to 0 if |β̂d| < λ

where the estimate β̂ are found minimizing:

n∑

i=1

(yi − x′
i β)

2
+ λβ2

66



Mixture Models and Variable Selection: A Review

The intuition of adding to the likelihood function a penalty term that depends

on the size of the regression coefficients, logLp(Ψ) = logL(Ψ) − hλ(β), can nat-

urally be extended to a mixture of regressions, see Khalili and Chen (2007). The

penalisation can also be made dependent on class membership defining the penalty

function

hλ(β) =
K∑

k=1

wk

{
p∑

d=1

hλk
(βk,d)

}

where the hλk
(βk,d) values are nonnegative and nondecreasing functions in |βk,d|.

By maximizing the penalised log-likelihood logLp(Ψ) there is a positive chance of

having some estimated values of β equalling 0 and thus of automatically selecting

a submodel.

Different form of penalty functions have been presented and discussed in the

literature. Besides the LASSO which is convex and thus advantageous for numer-

ical computation, other functions have been considered in order to reduce bias

on larger coefficients and compromising between sparsity and continuity, see for

examples Khalili and Chen (2007); Fan and Li (2001); Law et al. (2004). The

properties that characterize each alternative form of hλk
(·) are different degrees of

unbiasedness, sparsity, continuity.

In all cases the penalty functions are designed to be dependent on the size of

the regression coefficients and the mixture structure and also share the noticeable

advantage that can fit very well with the EM framework.

Bayesian Approach

The key feature of the Bayesian approach is that as well as offering good gener-

alisation performance, the inferred predictors are exceedingly sparse in that they

contain relatively few non-zero coefficients parameters β. The majority of param-

eters are automatically set to zero during the learning process, giving a procedure

that is extremely effective at discerning those variables which are relevant for mak-

ing good predictions.

In a fully probabilistic framework it is possible to introduce a prior over the
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model weights governed by a set of hyperparameters. Sparsity is achieved because

for higher dimensional dataset we usually find that the posterior distributions of

many of the weights are heavily peaked around zero.

A popular choice, see Tipping (2001), is to define a zero-mean Gaussian prior

distribution over β:

p(β|α) =
p∏

d=0

N (βd|0, α−1
d ) (2.33)

where α is a p+ 1 dimensional vector of hyperparameters each one independently

controlling the strength of the prior on the associated input variable. To fully spec-

ify the hierarchical structure, a Gamma prior is proposed for the hyperparameter:

p(α) =

p∏

d=0

Ga(α−1
d |a, b). (2.34)

This approach allows us to produce a smoother and at the same time less

complex regression function.

Explicit Bayesian variable selection is commonly based on spike and slab priors

for regression coefficients (George and Mcculloch, 1997; Tadesse et al., 2005; Kim

et al., 2006; Schäfer and Chopin, 2011). For variable selection in this case we

specifically refer to inclusion or exclusion of covariates xd with linear effects xd β
k
d

as part of the linear predictor x′ βk.

These priors take the form of a finite mixture distribution with two compo-

nents where one component (the spike) is centered at 0 and shows little variance

compared to the second component (the slab) which has considerably larger vari-

ance. Spike-and-slab priors can easily be extended to variable selection for random

intercept model and lead a two component mixture prior for βd :

p(βd|γd,θ) = (1− γd)pspike(βd|θ) + γd pslab(βd|θ) (2.35)

We assume that βd are independent a priori conditional on the hyperparameters

γd and θ.
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Chapter 3

Penalised Mixtures of Student’s t

Distributions

3.1 Introduction

In chapter 1 we have described the real life problems we intend to investigate

and declared our research objective, that is to make inference about the cluster

membership of each observation and identify the subset of relevant features. As

we reviewed the literature on unsupervised learning methods delivering a sparse

clustering solution, in chapter 2, we found that mixture models are particularly well

suited to model high dimensional heterogeneous data and that penalised likelihood

is a valid variable selection procedure for this class of models.

Following on this promising approach, in this chapter we propose a penalised

mixture of Student’s t distributions model that simultaneously (a) identifies the

informative variable and ranks them by importance, and (b) discovers clusters

that may exist in the datasets when considering the selected features only. As

observed before, the use of group-specific distributions having longer tails results

in robust clustering assignment that are less prone to be affected by extreme or

unusual observations, and facilitates the discovery of the true underlying number

of clusters. Variable selection is achieved by imposing an adaptive L1-norm penalty

function acting on the location and the dispersion parameter. Moreover, the data
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resampling procedure we introduce, allows us to quantify the contribution of each

feature to the clustering process, thus providing a natural metric for ranking the

features, and improves on the selection of the true number of clusters.

The chapter is organised as follows. In section 3.2 we discuss the benefits of

robust modelling and introduce the proposed penalised finite mixture of Student’s

t distributions. In section 3.3 we exploit the hierarchical representation of the

mixture models and derive a specific EM algorithm to estimate the unknown pa-

rameters of the model. In section 3.4 we illustrate the model selection problem and

present a resampling procedure that, when combined with the standard Bayesian

information criteria, enhances the model selection accuracy. In section 3.5 using

experimental data, we asses how well the proposed methodology performs under

different demanding scenarios. We analyse its clustering and variable selection

accuracy in comparison with two competing algorithms and illustrate in which

situations our model is expected to perform better. We also verify that the re-

sampling procedure can effectively improve model selection and discuss how it can

offer an insight on the relative importance of each selected variable.

3.2 The Model

As we noted in chapter 2, despite the popularity of mixture models based on

Gaussian components, this particular choice of probability distributions may not

always be ideal.

Robust Modelling

The assumption that the observed data have a normal distribution, has played a

critical part in statistical literature since the development of this discipline and has

been the preferred framework for most of the classical methods in supervised and

unsupervised learning. The central limit theorem is a valid theoretical argument

for assuming a normal distribution, but it is also quite convenient in practice that

Gaussian density function allows explicit tractable formulae to be derived in several

optimization problems such as maximum likelihood.
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Often probabilistic models based on the Gaussian distribution are able to ac-

curately describe the majority of the observations, but perform poorly when some

observations follow a different pattern or no pattern at all. The reality is that,

while the behaviour of many datasets appear to be rather normal, this is held only

approximately. There might still be a small proportion of observations which are

outliers, such that while the observed distribution has a normal shape in the cen-

tral region, the tails are fatter than we expect a normal distribution to have. The

consequence is that, when the data are assumed to be normally distributed but

their actual distribution has heavy tails, then estimates based on the maximum

likelihood principle might not be the best estimate and have unnecessarily large

variance, if the tails are symmetric, or may have very large bias, if the tails are

asymmetric.

In the presence of high measurement noise, a mixture model that assumes

Gaussian components may suffer from a lack of robustness against outliers, as

we experienced with microarray data. In similar situations, the model might be

misled to fit spurious clusters in order to capture the heavy tail distributions that

characterise certain groups and thus suggest an inflated number of detected clusters

(Qu and Xu, 2004; He et al., 2006; Liu and Rattray, 2010).

The robust approach to statistical modelling and data analysis aims at deriving

methods that produce reliable parameter estimates, not only when the data follow

a given distribution exactly, but also when this happens only approximately in

the sense just described above. More precisely, if the data contain no outliers, the

robust method gives approximately the same results as the classical method. On

the other hand, if a small proportion of outliers are present, the robust method

returns the same results as the classical method applied on the bulk of the data

with the outliers removed.

Mixture of Multivariate Student’s t distributions

As an alternative to normally distributed components, Student t distributions have

been successfully used for robust model-based clustering in several application

71



Penalised Mixtures of Student’s t Distributions

domains, including the analysis of gene expression data (Liu and Rubin, 1995;

Peel and McLachlan, 2000; Jiao and Zhang, 2008; Jiao, 2010).

The Student’s t density function can achieve slower exponential tail decay, thus

yielding heavier tails which makes it more robust to outliers or sampling errors.

By reducing the weight assigned to extreme observations, we are able to estimate

more accurately the location and dispersion parameters and improve the clustering

performance of the mixture model, see Peel and McLachlan (2000) for mixtures of

t and Lin et al. (2007) for mixture of skew t implementation.

In its canonical form, the density function of a p-dimensional random variable

following a Student’s t distribution is:

St(y|µ,Σ, ν) = Γ((ν + p)/2)|Σ|−1/2

Γ(ν/2)(πν)p/2{1 + δ(y|µ, Σ)/ν}(ν+p)/2
, (3.1)

where Γ(·) is the gamma function and δ(y|µ,Σ) = (y − µ)TΣ−1(y − µ) is the

Mahalanobis squared distance. The set of unknown parameters Θ includes the

p-dimensional location vector µ, a p × p covariance matrix Σ and the degrees

of freedom parameter ν. In the following discussion we will assume a diagonal

covariance matrix, Σ = diag(σ2
1, . . . , σ

2
p) with σ = {σ1, . . . , σp} the p-dimensional

vector of standard deviations. This assumption simplifies the computations and

makes the proposed algorithm scale to very high dimensional settings without

hindering its ability to select the truly informative variables, (Xie et al., 2008a, for

instance).

For a more comprehensive discussion and less canonical representation of the

multivariate Student’s t distribution we refer the reader to the book of Kotz and

Nadarajah (2004). Here, we explicitly derive only the log-likelihood function,

which will be extensively used in the following discussion. Given a collection of

p-dimensional t distributed samples y = (y1, . . . ,yn), the log-likelihood function
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is

log L(Θ) =
n∑

i=1

logSt(yi|µ,Σ, ν)

= −1

2
n p log(πν) + n [log Γ(ν +

p

2
)− log Γ(

ν

2
)]− 1

2
n p log |Σ|

−1

2
n (ν + p) log (ν)− 1

2
(ν + p)

n∑

i=1

log [ν + δ(yi|µ,Σ)]

Using the standard mixture model notation, where fk is the Student’s t density

function of the k-th component and Θk = {µk,Σk, νk} the associated density

parameters, the robust model we propose yields

p(y) =
K∑

k=1

wk fk(y|µk,Σk, νk) (3.2)

and the corresponding log-likelihood is

logL(Ψ) =
n∑

i=1

[
log

(
K∑

k=1

wk fk(yi|µk,Σk, νk)

)]
(3.3)

where the set of all unknown parameters Ψ includes Θ = (Θ1, . . . ,ΘK) and w =

(w1, . . . , wK).

3.2.1 Variable Selection through Penalized Log Likelihood

Other than the presence of measurement errors and outliers, we mentioned in

chapter 2 that another potential obstacle to standard clustering algorithms is posed

by the fact that not all the recorded features will necessarily contribute equally

to the identification of distinct sub-populations. Even when real clusters exist

and are well separated, it is often the case that only a subset of variables will

show a significantly different distribution across groups. Failing to identify the

truly informative variables may yield inaccurate clustering results since the non-

informative variables will mask the underlying structure of the data.

In order to reduce the misleading effect that noisy non-informative variables
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might have on the clustering performance of our model, we resolve to implement a

variable selection approach that suits the mixture of distributions framework. Even

if the penalised likelihood methodology has originally been proposed to regularize

coefficients in regression problems, this approach has recently been implemented

with success in several unsupervised mixture models, as noted in section 2.4.1.

Nonetheless, most of the literature so far has considered only the standard case

of Gaussian components. We then propose to extend the penalised likelihood

approach to robust models and perform variable selection in the context of mixtures

of Student’s t distributions.

Before describing the solution in detail, let us review the general settings, using

the previously introduced notation. In chapter 2, we assumed that only 1 ≤ m ≤ p

variables have been generated by distinct density functions and therefore suggested

that only those variables are informative and should contribute to the clustering

process. The remaining q = p−m variables which are considered non informative,

should then be excluded from the model.

Under such circumstances, we can effectively perform variable selection by im-

posing some form of regularization on the most relevant parameters that charac-

terize the density functions of each one of the K components. In practice, a sparse

clustering solution is achieved by adding a penalty term to the log-likelihood func-

tion (3.3) before it is maximized to find the best estimates of Ψ:

logL(Ψ) =
n∑

i=1

[
log

(
K∑

k=1

wk fk(yi|µk,Σk, νk)

)]
− hλ(Θ1, . . . ,ΘK) (3.4)

where h(·) is a penalty function that depends on the parameters of the mixture

components as well as on a regularisation parameter vector λ.

Once we have adopted a penalised maximum likelihood approach, choosing a

suitable penalty function becomes a critical decision. We have seen in section 2.4.1

that several different options have been suggested by different studies. In this the-

sis, we propose a joint adaptive penalty function that combines the contribution of

different studies (Pan and Shen, 2007; Xie et al., 2008a), and enforces simultaneous
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regularization of the location and dispersion parameter

hλ = λµ

K∑

k=1

p∑

d=1

ω
(µ)
k,d |µk,d|+ λσ

K∑

k=1

p∑

d=1

ω
(σ)
k,d | log σ2

k,d| (3.5)

where λ = (λµ, λσ). In other words, the log-likelihood of the model is penalised

proportionally to the absolute values of µ and logσ2, where λµ ∈ R
+ and λσ ∈ R

+

are the regularisation parameters for mean vector and covariance matrix, respec-

tively.

The intuition behind (3.5) is that the non-informative variables can be de-

scribed by one general distribution which is valid for all the samples irrespective

of their cluster membership. Under this assumption and given that the data have

been previously standardized, for every d ∈ {1, . . . , p}, any deviation of the esti-

mated values of µk,d from 0 and σ2
k,d from 1 in one particular cluster will be inter-

preted as noise. Only the informative variables justify increasing the complexity

of the model by demanding distinct parameters in different clusters. Therefore,

the likelihood of the model will only depend on the cluster assignment of those

variables whose location and dispersion parameter resist the shrinkage across all

components and do not collapse to 0 and 1 respectively.

On the other hand, the remaining variables, whose parameters have collapsed

towards the population average, will yield the same likelihood in every cluster.

Since the contribution of the non-informative variables to the likelihood of the

model is independent of the proposed clustering, they will not be able to influence

the assignment of the observations to any particular group.

Note that, since ML estimation with the L1-norm penalty function has been

proved to produce biased estimates of large parameters (Zou, 2006), to attack this

problem we implement an adaptive versions of penalty function. While λµ and λσ,

which control the module of the shrinkage, are set generally, adaptive weights are

used for penalising different coefficients. The strategy consists in applying some

penalisation weights such that the parameters of the densities corresponding to the

informative variables receive less shrinkage. The rule we opt to follow sets each
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weight ω
(µ)
k,d = 1/|µk,d| and ω(σ)

k,d = 1/| log σk,d| respectively.
As a final remark, it should also be pointed out that the penalties imposed on

µ and Σ in (3.5) are additive and independent. While they could be implemented

separately, we will let the model selection procedure indicate whether one or both

jointly are necessary to identify non informative variables.

3.2.2 Hierarchical Representation

Having defined a suitable penalty function (3.5), we can estimate the unknown pa-

rameters of the model Ψ by maximizing the penalised log-likelihood function (3.4).

While the optimization problem is computationally difficult because it requires to

maximize the log of the sum over all the density functions, a more convenient

formulation is possible in a missing data framework, as we have seen in section

2.3.2.

A K-dimensional component-label vector zi = (zi,1, . . . , zi,K) is introduced to

indicate the cluster membership of yi for i = (1, . . . , n). With probability wk, the

value of zi,k is one if the observation yi belongs to component k and zero otherwise.

Then zi follows a multinomial distribution with parameters (w1, . . . , wK). In (2.9)

we have shown that by introducing latent variables z we are able to derive a

hierarchical representation of the mixture model where the log-likelihood function

factorises into a sum of logs, and can be more easily maximised.

Since we know that, conditional on zi,k = 1, the marginal distribution of yi is

fk, we can exploit the fact that the Student’s t distribution itself admits a hierar-

chical representation and further simplify the log likelihood function of the model.

Note, in fact, that the same distribution law of fk can be obtained integrating an

infinite number of Gaussian distribution whose precision scales proportionally to

a gamma distributed variable ui (Bishop, 2007). Considering the precision fac-

tor u = (u1, . . . , un) as another latent variable, the complete data set becomes
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yc = {y, z,u} and the hierarchical structure of the mixture model

zi ∼ M(1|w1, w2, . . . , wK)

ui|zi,k = 1 ∼ Ga
(νk
2
,
νk
2

)

yi|ui, zi,k = 1 ∼ N
(
µk,

Σk

ui

)

leads to a more tractable penalised log-likelihood function which can be factorized

as

logLp(Ψ) = l1(w) + l2(ν) + l3(µ,Σ)− hλ(Θ) (3.6)

where

l1(w) =
n∑

i=1

K∑

k=1

zi,k logwi

l2(ν) =
n∑

i=1

K∑

k=1

zi,k{− log Γ(
νk
2
) +

1

2
log Γ(

νk
2
)

+
νk
2
(log ui − ui)− log ui}

l3(µ,Σ) =
n∑

i=1

K∑

k=1

zi,k{−
p

2
log(2π) +

p

2
log(ui)−

1

2
log |Σk|

− 1

2
ui (yi − µk)

TΣ−1
k (yi − µk)}

and hλ(Θ) is as given in (3.5).

We should remark that in (3.6) we have been able to break down the log-

likelihood of the complete data set yc into a sum of different terms, each one

depending on different parameters. More precisely l1(w) corresponds to the multi-

nomial distribution of the latent variable z which depends on the mixing weights

w, the second term l2(ν) is the log of the gamma distribution of the scaling factor

u expressed as a function of the degrees of freedom ν and finally l3(µ,Σ) is the

log of the distribution of the sampled data, which is Gaussian for a given value of

the two latent variables.

Taking advantage of this convenient hierarchical representation of a mixture of
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Student’s t distributions we can derive a specific EM algorithm that can efficiently

find the MLE of the model.

3.3 The EM Algorithm

We have suggested that a mixture of Student’s t distributions (3.2) is a more suit-

able model to robustly perform cluster analysis on real life data. We later proposed

a penalty function (3.4) to enforce shrinkage on the relevant parameters in order

to perform variable selection. To then find the best estimate of the unknown pa-

rameters Ψ = (w,Θ), we derived a more tractable hierarchical representation of

the model in (3.6) that we now need to maximize. As commonly done in simi-

lar settings, we propose an expectation-maximization algorithm (Dempster et al.,

1977; McLachlan and Krishnan, 2008). Whilst a closed form solution for mixture

models would be otherwise prohibitive given such high dimensional problem, the

EM algorithm provides a computationally efficient methods for finding the MLE

of the unknown parameters.

The aim of the EM algorithm is to explore the entire parameters space to

find the values that maximizes the complete data density function (3.6). Starting

from a randomly proposed value Ψ0, at each iteration t, the algorithm first evalu-

ates the expectation of the penalised log-likelihood function of the complete data

conditional on Ψ(t−1) and then returns the updated MLE estimate Ψt. By alter-

nating the expectation and maximization steps, Dempster et al. (1977) demon-

strated that the algorithm is bound to increase the log-likelihood of the model

logLp(yc|Ψt) ≥ logLp(yc|Ψt−1), until convergence.

As a preliminary remark, note that the penalisation we impose on the likelihood

function does not alter the standard expectation step, since no latent variables is

penalised directly. The maximisation step, instead, has to be modified to accom-

modate for the constraints imposed by the penalty function on the location and

dispersion parameters.

The conditional expectation of the complete data taken with respect to the
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posterior probability of the latent variables is

Qp(Ψ|Ψ(t−1)) = EΨ(t−1){logLc(Ψ)|y} − hλ(Θ) (3.7)

where EΨ(k−1){logLc(Ψ)|y} is the conditional expectation of the log-likelihood. It

can be noted that the penalisation term hλ(Θ) does not depend on any latent

variable and it is a constant under the expectation. Using the hierarchical rep-

resentation of the mixture of Student’s t distributions in (3.6), the conditional

expectation of the log-likelihood can be decomposed as

Qp(Ψ|Ψ(t−1)) = EΨ(t−1){log l1,c(w)}+ EΨ(t){log l2,c(ν)}+ EΨ(t){log l3,c(µ,Σ)} − hλ(Θ)

= Q1(w|Ψ(t−1)) +Q2(ν|Ψ(t−1)) +Q3(µ,Σ|Ψ(t−1))− hλ(Θ)

(3.8)

Since all terms are additive and depend on different parameters, we can maximize

each contribution independently in order to maximize Qp.

3.3.1 The E Step

In the E-step, at the tth iteration, the expected values of the latent variables are

derived from their conditional posterior distribution given Ψ(t−1).

The first conditional expectation term, Q1(w|Ψ(t−1)), corresponds to sum of the

log of the multinomial distribution over all values of z weighted by the posterior

probability of z conditional on y and Ψ(k).

Q1(w|Ψ(t−1)) = EΨ(t−1)

{
n∑

i

K∑

k

zi,k logwk

}
=

n∑

i

K∑

k

EΨ(t−1)(zi,k) logwk

where the conditional expectation of the indicator variable zi,k is:

EΨ(t−1) (zi,k|yi) = zi,k fk(zi,k|yi,Ψ(t−1))

=
w

(t−1)
k fk(yi|µ(t−1)

k ,Σ
(t−1)
k , ν

(t−1)
k )

f(yi|Ψ(t−1))
≡ τ

(t)
i,k .

(3.9)
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Similarly, the expected value of the other latent variables we introduced in (3.7)

can be computed explicitly from their conditional posterior distribution. Since the

conditional distribution of the scaling factor ui is the gamma distribution, its

conditional expected value is:

EΨ(t−1) (ui|yi, zi,k = 1) =
ν
(t−1)
k + p

ν
(t−1)
k + δ(yi|µ(t)

k , Σ
(t)
k )

≡ u
(t)
i,k. (3.10)

Finally, the conditional expected value of the log precision factor, log ui, is

EΨ(t−1) (log ui|yi, zi,k = 1) = log u
(t)
i,k +

{
ψ

(
ν
(t−1)
k + p

2

)
− log

(
ν
(t−1)
k + p

2

)}

(3.11)

where ψ is the digamma distribution ψ(s) = {∂Γ(s)/∂s}/Γ(s).
The latent variables can now be replaced in (3.8) with their expected values

(3.9), (3.10), (3.11) and obtain

Q1(w|Ψ(t−1)) =
n∑

i=1

K∑

k=1

τ
(t)
i,k logwk

Q2(ν|Ψ(k)) =
n∑

i=1

K∑

k=1

τ
(t)
i,k Q2,k(νk|Ψ(t−1))

Q3(µ,Σ|Ψ(t−1)) =
n∑

i=1

K∑

k=1

τ
(t)
i,k Q3,k(µk Σk|Ψ(t−1))

where the complete expression for Q2,k(νk|Ψ(t−1)) and Q3,k(µk, Σk|Ψ(t−1)) are

given in the Appendix section 3.A.1.

3.3.2 The M Step

In the M-step the updated estimate of Ψ is found by maximising (3.7) given Ψ(t−1)

and given the expected values of the latent variables computed in the E-step, that

is

Ψ(t) = argmax
ψ

Qp(Ψ|Ψ(t−1)) (3.12)
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If the solution Ψt exists, then the following inequality holds true:

Qp(Ψ
(t)|Ψ(t−1)) ≥ Qp(Ψ|Ψ(t−1))

which also implies logLp(Ψ
t) ≥ logLp(Ψ

t−1), as shown by Dempster et al. (1977).

This conclusion guarantees that iterating the EM algorithm the updated estimates

of Ψ will eventually converge to the penalised MLE.

Since all terms in (3.8) are additive and depend on different parameters, we

can solve (3.12) by maximising each term separately. The new estimated value of

w is the root of the derivative of Q1(w|Ψ(t−1)) with respect to w

∂

∂w

{
n∑

i=1

K∑

k=1

τ
(t)
i,k logwk

}
= 0.

Using a Lagrange multiplier to enforce the constraint
∑K

k=1wk = 1, the update for

wi is

w
(t)
k =

n∑

i=1

τ
(t)
i,k /n.

The estimated mixing weights are then proportional to the responsibility of each

component, that is the relative frequency of observations assigned to that compo-

nent.

The term Q2(ν|Ψ(t−1)) is a function of the degrees of freedom. No closed form

solution is available for the first derivative with respect to νk

∂

∂νk

{
n∑

i=1

τ
(t)
i,k Q2j(νk|Ψ(t−1))

}
= 0

Nonetheless, as we can see from its explicit formulation in appendix 3.A.2, the

first derivative is still a function smooth enough to have a straightforward numer-

ical solution that can be found by any standard optimisation algorithm. In our

implementation, we use the PORT routines in the R package nlminb.
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Updating Step for µ

The third term Q3(µ,Σ|Ψ(k−1)) is the only one depending on parameters that

are subject to regularisation. In this case we set up a constrained maximisation

problem that takes into consideration the relevant penalty term. Here we report

the essential steps that lead to the updating algorithms for µ and σ, we refer the

interested reader to section 3.A.3 and 3.A.4 in the appendix for a full account and

proof of how the algorithms are derived.

First, an update for the penalised mean vector µ is obtained by finding the

maximum of
n∑

i=1

K∑

k=1

τ
(t)
i,k Q3,k(µk|Ψ(t−1))− λµ

K∑

k=1

p∑

d=1

|µk,d|.

Despite this being differentiable with respect to µk,d only when µk,d 6= 0, we can

still set the derivative to zero and solve:

n∑

i=1

τ
(t)
i,k

u
(t)
i,k

σ2
k,d

(yi,d − µk,d)− λµ sign (µk,d) = 0 (3.13)

while for the singular case where µk,d = 0 the following inequality holds true:

∑n
i=1 |τ

(t)
i,k u

(t)
i,kyi,d|

σ2
k,d

≤ λµ. (3.14)

Combining (3.13) and (3.14) the updating algorithm for µk becomes

µ
(t)
k = sign(µ̃

(t)
k )

(
|µ̃(t)

k | − λµ∑n
i=1 τ

(t)
i,k u

(t)
i,k

Σ
(t)
k

)

+

where it can be seen that the unpenalised MLE of the mean, that is

µ̃
(t)
k =

∑n
i=1 τ

(t)
i,ku

(t)
i,kyi∑n

i=1 τ
(t)
i,ku

(t)
i,k

is shrunk towards zero by an amount that increases with λµ and is proportional to
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the variance scaled by the precision factor. When λµ is sufficiently large

∑n
i=1 |τi,k ui,k yi,d|

σk,d

≤ λµ

then µk,d collapses to zero thus making the dth variable uninformative.

For completeness we shall add that when we adopt, as we do in later imple-

mentation, the adaptive version of the penalty function (3.5) with weight ω
(µ)
k,d , the

updating algorithm for µk,d becomes

µ
(t)
k,d = sign(µ̃

(t)
k,d)

(
|µ̃(t)

k,d| −
λµ ω

(µ)
k,d σ

(t)
k,d∑n

i=1 τ
(t)
i,k u

(t)
i,k

)

+

Updating Step for Σ

In an analogous way, the update for Σ is found by maximizing:

n∑

i=1

K∑

k=1

τ
(t)
i,k Q3,k(Σk|Ψ(t−1))− λσ

K∑

k=1

p∑

d=1

| log σ2
k,d|

for Σk which is differentiable everywhere except for σk,d = 1. When σk,d 6= 1 its

derivative with respect to σk,d is

n∑

i=1

τ
(t)
i,k

(
− 1

2 σ2
k,d

+
u
(t)
i,k(yi,d − µk,d)

2

2 σ4
k,d

)
−
λσ sign (log σ2

k,d)

σ2
k,d

(3.15)

while for σk,d = 1 we have

∣∣∣∣∣

n∑

i=1

τ
(t)
i,k

(
−1

2
+
u
(t)
i,k(yi,d − µk,d)

2

2

)∣∣∣∣∣ ≤ λσ. (3.16)

The final update is obtained combining (3.15) and (3.16), which gives the following

updates for σ
2(t)
k ,

σ
2(t)
k =

[
σ̃

2(t)
k

1 + λσ sign(ck − bk)/bk
− 1

]
sign(|bk − ck| − λσ)+ + 1
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where σ̃
2(t)
k = ctk/b

t
k is the unpenalized maximum likelihood estimate of the stan-

dard deviation with

b
(t)
k =

n∑

i=1

τ
(t)
i,k /2, c

(t)
k =

n∑

i=1

τ
(t)
i,k u

(t)
i,k(yi − µ

(t)
k )2/2

It can be noted that, when λσ is sufficiently large

|bk − ck,d| ≤ λ

then σk,d is set to be one, effectively identifying the dth variables noise and therefore

non informative.

In this case too, since we use adaptive weights ω
(σ)
k,d to reduce the estimation

bias introduced by the penalisation, we need to modify the updating algorithm for

σ
2(t)
k,d accordingly

σ
2(t)
k,d =

[
σ̃
2(t)
k,d

1 + λσ ω
(σ)
k,d sign( ck,d − bk)/bk

− 1

]
sign(|bk − ck,d| − λσ ω

(σ)
k,d )+ + 1.

All the main steps of the EM algorithm we have discussed are summarized in

the Algorithm 3.1.
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Algorithm 3.1 Expectation Maximization Algorithm

To find the MLE estimate Ψ that maximize the log likelihood of the penalised

mixture of Student’s t components logLp(Ψ).

Initialize: At t = 1, Choose an initial setting for the parameters Ψ0

E Step: Evaluate the conditional expectation of the penalised log likelihood given

Ψt−1:

Qp(w|Ψ(t−1)) = EΨ(t−1){logLc(Ψ)|y} − hλ(Θ)

M Step: Update estimates of Ψ:

Ψ(t) = argmax
ψ

Qp(Ψ|Ψ(t−1))

Check Convergence: If | logL(t)
p − logL

(t−1)
p | > 1 return to E Step.

3.4 Model Selection

The EM algorithm we have described in the previous section allows us to efficiently

search the parameter space to find the MLE of Ψ, but takes K and λ as user-set

parameters. Choosing the number of mixture components and the right level of

penalisation is a critical decision that ultimately effects the quality of the inference

we can draw from the model.

The clustering accuracy is clearly affected by the number of clusters that we

assume are present in the data. Setting a too low or too high value K, would force

the algorithm to either aggregate different groups or separate similar observations

respectively. The penalty vector, on the other hand, controls the variable selection

process since a variable is retained as informative only if its density parameters are

above a deterministic threshold which is a function of λ = (λµ, λσ). For any given

level of the regularisation there will be a set of selected variables, Sλ ⊆ {1, . . . , p}
having cardinality m, which is an estimate of the true structure of the data.

Both the optimal number of mixture components and level of penalisation can
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be found by exploring a finite number of solutions and adopt a model selection

criteria to choose the best. One approach to model selection is to pick the candidate

model with the highest probability given the data. This idea can be formalised

inside a Bayesian framework, involving prior probabilities on candidate models

along with prior densities on all parameter vectors in the models. The Bayesian

procedure requires to select that model which is a posteriori most likely. The

best solution can be identified by calculating the posterior probability of each

alternative model and selecting the one with the biggest posterior probability.

The Bayesian information criterion (BIC) of Schwarz (1978) approximates the

Bayesian posterior probability of the model. It takes the form of a penalised log-

likelihood function where the penalty is equal to the logarithm of the sample size

times the number of estimated parameters in the model.

In our penalised likelihood framework, we use the modified version proposed of

the BIC, as suggested by (Pan and Shen, 2007),

BIC = −2 log Lp(Ψ) + r log(n)

where n is the number of samples and r = g − 1 + 2 g m + g − q is the effective

number of parameters once the q = p−m non-informative variables are excluded

from the model. The modification is introduced to favour the more parsimonious

models that can be found through penalisation.

The Akaike information Criterion (AIC) (Akaike, 1973)

AIC = −2 log Lp(Ψ) + 2 r

is an alternative criterion that conforms to the same principle of the BIC, but does

not take into consideration the number of observations n. Based on preliminary

tests, we found that the BIC and AIC do not give significantly different indications,

and therefore we adopted the BIC as sole criterion.

However, both criteria do not always lead to the correct choice of the best model

(Baek and McLachlan, 2011). In our experience, when m is very small compared
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to p and when the densities are fat tailed we find that information based criteria

still prefer models which are too complex as some degree of over-fitting still takes

place.

3.4.1 Resampling Strategies for Stability Selection

To overcome some of the shortcomings of the BIC, we propose a subsampling ap-

proach which is similar to the stability selection procedure originally developed for

variable selection in penalised regressions models by Meinshausen and Bühlmann

(2010). This procedure enhances the model selection, but also provides a way to

rank the selected variables.

Initially we assume that the number of mixture components is fixed. For a

given K, we are interested in selecting an optimal set of informative variables,

which should be ranked in decreasing order of importance. We search for a value

of λ that minimises the modified BIC criterion, and call this optimal value λ∗.

This search can be carried out using a grid of candidate points. Then, B sub-

samples of the data are randomly drawn, {y(b)}Bb=1, all having size [n/2]. For

each random sub-sample y(b), we fit the penalised mixture model using the EM

algorithm with the given number of components K and regularisation λ∗. The set

of variables selected in each sub-sample is called S
(b)
λ∗ . An indicator variable Id(S

(b)
λ∗ )

is introduced which equals 1 if the variable d has been flagged as informative for

y(b), and zero otherwise. The selection probability for gene d is then estimated as

π̂d =

∑B
b=1 Id(S

(b)
λ∗ )

B
, d = 1, 2, . . . , p. (3.17)

It can be noted that, whereas a single model fit obtained with the EM algorithm

using the whole data set would only provide a binary indicator labelling each

variable as informative or not, the selection probabilities provide a useful metric

to assess the relative importance of each feature both for clustering as well as for

ranking purposes. All the variables having a sufficiently high selection probability

are then deemed informative. A threshold on π̂d could be selected to control the

number of false positives, as in Meinshausen and Bühlmann (2010), although little

87



Penalised Mixtures of Student’s t Distributions

theoretical developments are available yet.

Apart from enabling to rank variables, the resampling approach provides the

means to improve upon the model selection process. In order to estimate the

correct number of mixture components, K, it is common routine to compare a

series of models, each one having an increasing number of components, say from 2

to Kmax, and select the model with the smallest BIC. However, when the ratio of

non-informative over informative variables is high, we have found that the modified

BIC still tends to overestimate the number of clusters. We address this issue by

proposing the following two-step procedure. For each one of the kmax − 1 models

being compared, we carry out the subsampling procedure as described above, and

collect in a set of cardinality m̃ the informative variables selected by all models

over all subsamples. In a second step, we re-fit all competing models, but instead

of using all the p features, we use only the m̃ informative features, where m̃ is

usually much smaller than p. The best model is the one that minimises the BIC,

as usual. By initially removing the non-informative variables, and therefore the

amount of noise, this simple approach reduces the bias towards selecting more

complex models, and improves upon the selection of the number of components,

as shown in Section 3.5.

3.5 Experimental Results

Having presented the main properties of the penalised Student’s t mixture model

and having described the EM algorithm to estimate the unknown parameters, we

now want to assess how well the model performs in practice, using simulated data.

We first verify that the model selection procedure introduced in section 3.4 can

effectively help us to identify the correct number of clusters K and the appropriate

level of penalisation (λµ, λσ). Moreover, we illustrate how, in the typical noisy

scenario, the proposed resampling technique can improve the BIC driven model

selection process.

We then focus our attention on the actual clustering and variable selection

performance of the model. We simulate several different scenarios and compare
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the accuracy of the model against popular competing clustering algorithms.

Finally, to stress test the model, we simulate settings close to the real life

problems such as those presented in chapter 1, and find that the results are in line

with our expectations.

Data Simulation Procedures

In the following discussion we consider several different scenarios and for each

scenario we generate multiple datasets which are randomly sampled from a mixture

of multivariate Student’s t distributions, as described by the following generative

model:

y ∼
K∑

k=1

wk fk(µk,Σk, νk).

Each dataset y is an (n× p) matrix withm informative variables whose parameters

are different in distinct components and q = p−m non-informative variables that

share the same parameters across all components.

The exact settings of each scenario depend on the particular aspect of the model

we want to test at that point. In all cases, though, to be as close as possible to real

life situations, the sample size is kept relatively small, n << p, and the number

of uninformative variables is always taken to be much higher than the informative

variables, m << q.

Performance Measures

The mixture model is evaluated in each scenario for its clustering and variable

selection accuracy. For this purpose we employ three performance indicators.

Once the EM algorithm has converged, we assign each observation yi to the

cluster with the highest posterior probability τi,k. The clustering performance, is

then evaluated using the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985).

This index measures the proximity between any two alternative partitions of the

samples, and we use it to establish how close the estimated clusters assignments

are from the ground truth, where a value 0 denotes random assignment and 1
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perfect matching.

We assess the accuracy of the model in identifying the informative variables by

computing the sensitivity index

Sens =
# true positive

( # true positive + # false negative)

which is the ratio of the informative variables that have been correctly selected

by the algorithm (true positives) over the total number of informative variables.

Alternatively we can quote the False Negative Rate (FNR) which is defined as

FNR = 1− Sens.

Similarly, in order to measure how well the model is able to exclude all the

uninformative variables, we compute the specificity index

Spec =
# true negative

( # false positive + # true negative)

which is the ratio between the number of negative variables that have been excluded

from the model over the total number of non informative variables. The False

Positive Rate (FPR) would give us the same information and it is simply defined

as FPR = 1− Spec

Competing Models

In the various scenarios considered, we compare the performance of the penalised t-

Student mixture model (PTM) against competing clustering methods such as those

we reviewed in section 2.4.1. This approach allows us to better appreciate the

peculiar properties of the proposed model.

Since we are interested in justifying the adopted joint L1-norm penalty function,

it seems obvious, first of all, to consider the alternative models: PTMµ that penalises

only the mean parameter, PTMσ that penalises only the variance and TM that does

not perform any variable selection.

To highlight the benefit of robust modelling, we benchmark the performance

of the penalised mixture of Student’s t distribution against a penalised mixture of
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Gaussian distributions (PGM) as originally implemented by Xie et al. (2008a). For

symmetry we consider the Gaussian version of the different penalisation options:

PGMµ, PGMσ and GM.

Since both PTM and PGM follow a model-based clustering approach, in some

scenarios, for completeness, we also evaluate the sparse K-means algorithm (PKM)

(Witten and Tibshirani, 2010), which uses a lasso-type penalty to select the rele-

vant variables and obtain a sparse partitioning clustering.

3.5.1 Variable Selection Demonstration

We shall begin the discussion of the experimental results, by illustrating the pro-

cedure we implement in order to find the optimal level of penalisation λµ and λσ.

As mentioned earlier, we will fit a series of models using different combination of

λµ and λσ and chose the most promising model according to the modified Bayesian

Information Criterion (Pan and Shen, 2007).

For the moment, we assume perfect insight into the number of components

and run the EM algorithm with the right value K fixed. The exact details of the

remaining simulation settings are described in section 3.5.5, scenario 1 and scenario

2. They have been chosen such that they are representative of two extreme opposite

situations: one where variables are sampled from a t distribution with high degrees

of freedom, the other where variables are sampled from a t distribution with low

degrees of freedom.

Figure 3.1 and 3.2 show the results of the grid search over all possible combina-

tions of λµ and λσ for values ranging between 0 and 20. The contour plots confirm

that the minimum BIC point on the grid corresponds also to the minimum variable

selection error, TOTE = (FPR+ FNR), that is the optimal point where the false neg-

atives and false positives rates are lowest. Not surprisingly then, the combination

of λµ and λσ that minimizes the BIC index is also the best model that achieves the

highest percentage of correct clustering assignment, Right.

Figure 3.2, in particular, confirms that the proposed penalised mixture of t

distributions can fit better the heavy tailed data and has a significantly higher
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likelihood than the penalised Gaussian mixture. Note how the contour plots on

the right column, PTMµ,σ, have brighter colours, i.e. dominate the plots on the left

column, PGMµ,σ. This result can be explained by the fact that a better variable

selection ultimately leads to an higher clustering accuracy.
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Figure 3.1: Scenario 1. Model selection with sample data generated from high degrees of
freedom t mixture. Each quadrant represents the grid of the combinations of λµ and λσ. In
the top row of plots the crosses indicate the lowest BIC level achieved by the different penalty
functions: black cross for the best joint penalty combination λµ and λσ, red cross for the best
single λµ penalisation, i.e. keeping λσ = 0, and blue cross for the best λσ. In the middle row
we report the total variable selection error, TOTE = (FPR + FNR). The bottom row shows the
percentage of observations that have been assigned to the correct cluster, Right. Observing the
alignment of the crosses from top to bottom plot, it is evident that the minimum BIC point
corresponds also the minimum variable selection error and indicates the model with the highest
clustering accuracy.
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Figure 3.2: Scenario 2, Model selection when variables are sampled from a t mixture with
low degrees of freedom. Note how the clearly more vivid colours of the plots in the right column
indicate a significant outperformance of PTM relatively to PGM. A lower BIC and lower variable
selection error, TOTE, correspond to a considerable higher clustering accuracy, RIGHT. We should
also point out that the guidance offered by the BIC is still reliable for PTM, but less so for
PGM, in this case the lowest BIC point does not correspond to the highest percentage of correct
assignment.
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ROC curves

We have shown how variable selection improves the clustering performance in the

presence of noisy non informative data. Here we illustrate how we have been able

to correctly identify the informative variables by maximizing the true positive ratio

TPR and minimizing the error of retaining non informative variables, false positive

ratio FPR.

In Figure 3.3 and 3.4 we show separate Receiver Operating Characteristic

(ROC) curves generated by gradually increasing the level of penalisation λµ and

λσ imposed on the location and dispersion parameter respectively. In the first

scenario, Figure 3.3, we simulate data sampled from a mixture of approximately

Gaussian distributions. We observe that the performance of the two models, PGM

and PTM, is fairly similar and quite accurate. We notice that, as we increase the

level of penalisation, the ratio of false positives variables drops much faster than

the true positive variables. We are able to effectively filter out the noise without

degrading the signal.

In the second scenario, Figure 3.4, data have been sampled from a mixture of

long tail t distributions. In this case separating the noise from the informative

variables is more difficult. Nonetheless we observe a noticeable overperformance

of the PTM model as it can sustain an higher TPR while penalisation is increased.

The results are justified by the fact that PTM can recognise and filter out the non

informative ones better than the Gaussian mixture models can. In particular we

should highlight how the performance of PGM is less robust and more disperse with

few instances of below par results.

For completeness we should mention that in extreme scenarios, where σ pa-

rameters of the different components are very similar while the noise variables

have a very long tail, both models fail to accurately isolate the truly informative

variables. In Figure 3.5, we observe that even if PTM shows a slightly better per-

formance, it still erroneously excludes the informative variables before excluding

the noise ones. The reason is that when fitting the mixture of distributions, both

models find spurious clusters in the very long tailed noise variables while the signal
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Figure 3.3: ROC curves from Scenario 1 where noise variables have high degrees of freedom. No
noticeable difference between the two models, PGM and PTM, they both can correctly identify the
non informative variables without penalising the informative variables too. The slightly better
performance of PTM is due to its robustness to noise.

in the informative variables is very low. In this limit case the informative vari-

ables are dropped by the model before the noise ones and the ROC curves become

convex.
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Figure 3.4: ROC curves from Scenario 2. All variables are generated from long tailed Student’s
t density functions. The advantage of the penalized Student’s t Mixture, PTM, is more significant.
The penalty imposed by PGM on µ does not always help to isolate the non-informative variables
and therefore tend to exclude the same proportion of informative and noise variables.

3.5.2 Subsampling Strategy for Variable Selection

Stability selection is an effective subsampling method that can address the problem

of proper regularization and help us improve the variable selection process. It

stresses the robustness of the proposed model by performing, for a significant

number of iterations, a random subsampling of the observations and refitting the

model. The relative importance of each variable is gauged by analyzing its selection
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Figure 3.5: ROC curves in extreme Scenario where σ parameters of the different components
are very similar while the noise variables have a very long tail. In this case both models are mislead
to believe there is more signal in the noise variable and spuriously isolate different clusters in the
non informative variables. The informative variables are penalised more than the noise variables.

frequency and using this information we refine the variable selection process. While

bootstrapping would allow for sampling with replacement it behaves very similarly

as noted by Meinshausen and Bühlmann (2010).

To illustrate the point, we generate multiple random datasets from a mixture of

multivariate Student’s t distributions. Each dataset contains n = 200 observations

and for each observation we have m = 20 informative variables sampled from a

mixture of three clusters, {A,B,C}, with mixing proportions: {wA = 0.3, wB =
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0.2, wC = 0.5}. The exact parameters of the t Student density functions that

generate the informative variables are: ΘA = {µA = −3, σA = 3, νA = 5},
ΘB = {µB = 4, σB = 4, νB = 6} and ΘC = {µC = 6, σC = 2, νC = 8}. The

q = 2000 non-informative variables, instead, have been sampled from a single fairly

long tailed t distribution: ΘQ = {µQ = 0, σQ = 1, νQ = 4}.
In this instance, for each level of penalisation λ between 0 and 14, we iterate

100 times the random subsampling of size [n/2] and fix the probability selection

threshold at π̃ = 0.7, as suggested by Meinshausen and Bühlmann (2010)

In Figure 3.6 we can appreciate the impact of higher penalty on the selection

probability of the non informative variables. The plots shows that the selection

probability of the non informative variables quickly drops as we increase λ. The

informative variables, on the other hand, are retained by almost every subsample

iteration, even as we impose a stronger penalization.

In Figure 3.7, we slice the stability paths at the optimal level of penalisation λ∗µ

and λ∗σ as indicated by the BIC criterion. We can see there that the informative

variables, the first 20 variables of each sampled observation, are very clearly sepa-

rated from the rest of non informative variables. The hard threshold line identifies

exactly the variables that should be retained.

A more accurate variable selection process, invariably leads to a more accurate

clustering performance as we can see from table 3.1. The adjusted rand index

increases because we have been able to further improve the specificity of the model

and exclude more noisy variables.

Resampling ARI Sens Spec

No 93 (5) 100 (1) 87 (8)
Yes 98 (2) 100 (0) 99 (1)

Table 3.1: Clustering and variable selection performance. The resampling routine
improves the specificity of the variable selection process and consequently achieves
a better clustering accuracy.
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Figure 3.6: Stability Paths. Effect of increasing penalisation λ on the selection
probability of each variable. Only the informative variable are constantly selected
in every subsample iteration. Note that the range of penalisation has been rescaled
between 0 (no penalisation) and 1 (maximum penalisation). Red dotted line cor-
responds to the selection probability threshold.

3.5.3 Model Selection: Number of Clusters

In the previous section, we have illustrated how we are able to select the informative

variables by finding an optimal combination of λµ and λσ, and also shown that a

straightforward resampling strategy can make the selection process more robust

and improve the performance of the model. Here we describe the procedure we

follow to identify the number of clusters in the sampled data. In this case too,

we find evidence that stability selection can significantly help us to find the right

answer.

We generate a single dataset using the same simulation settings of the previous

section, that is we sample from mixture of three long tailed Student’s t distribu-

tions. We then fit a different model for each tested value K = 2, . . . , 5 where for

100



Penalised Mixtures of Student’s t Distributions

Figure 3.7: A different way of slicing the stability paths that shows how the first
20 variables, the only ones informative, are always selected in every random sub-
sampling. For a reasonably high selection threshold, π̃ = 0.7 the right variables
are selected.

each K we still perform a separate grid search to identify the best level of penali-

sation. Note anyway that, as we can see in Figure 3.8, the optimal combination of

λ∗µ and λ∗σ is generally stable and does not depend on the number of clusters.

For each model we compute the log-likelihood LLIK, the AIC and BIC score,

which are reported in table 3.2. The results show that, in this case, all three

criteria agree and correctly indicate K = 3 as the most likely hypothesis.

# Clusters λµ λσ LLIK AIC BIC

2 6 8 -571156 1142513 1142842
3 6 10 -571113 1142409 1142709
4 8 10 -571150 1142474 1142761
5 10 10 -571137 1142456 1142756

Table 3.2: Model Selection. Log likelihood, Akaike and Bayesian Information
score of each of the fitted model for K = 2, . . . , 5. Note that the true number of
components is three.
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Figure 3.8: Model Selection: BIC contour plots for all combinations of penalisation
λµ and λσ, under different assumptions about the number of clusters, K = 2, . . . , 5.

3.5.4 Resampling Strategy for Model Selection

In this section we want to illustrate how the subsampling strategy can contribute

to increase the model selection accuracy.

To produce a stronger evidence of the relative difference between the two meth-

ods, we need to simulate slightly more realistic scenarios where the overlap between

the components is higher and the tails of the distributions are longer. As before,

the dataset contains n = 200 observations and each observation is made of m = 20

informative variables sampled from a mixture of three clusters,{A,B,C}, with

mixing proportions: {wA = 0.3, wB = 0.2, wC = 0.5}. The density functions

that generate the informative variables have now lower degrees of freedom and

are centered closer together: ΘA = {µA = −3, σA = 3, νA = 3}, ΘB = {µB =

0, σB = 4, νB = 3} and ΘC = {µC = 3, σC = 2, νC = 3}. The q = 200 non-

informative variables are sampled from a single fairly long tailed t distribution:
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ΘQ = {µQ = 0, σQ = 1, νD = 3}. The level of penalisation λ, as before, ranges

between 0 and 14. The subsampling routine is iterated 100 times, using n/2 ob-

servations each time, and only the variables whose selection probability is above

π̃ = 0.7 are retained.

In tables 3.3 and 3.4 we report the results of the simulation using the two

different methodologies, one which does not execute a subsampling routine and

one which does. We can see that, in the first case, the guidance provided by the

BIC criteria is misleading because it suggests an higher number of components

than there are in reality. In the second case, by implementing a more accurate

variable selection procedure using the resampling routine, we are able to exclude

all the noise variables and unmask the true structure of the data. In fact, this time,

the BIC index correctly identifies K = 3 as the best model. Note also how the

clustering performance greatly benefits from the resampling step as demonstrated

by the better ARI score.

# Clusters λµ λσ LLIK AIC BIC ARI Sens Spec

2 8 8 -570310 1140923 1141421 61 100 95
3 14 8 -569606 1139729 1140580 86 100 93
4 14 8 -569109 1138986 1140253 75 100 86
5 12 10 -569246 1139083 1140056 75 100 90

Table 3.3: No Bootstrap. We test all possible assumptions , K = 2, . . . , 5, and
perform a BIC grid search to find optimal level of penalisation, column λµ and λσ.
Looking at the log likelihood and BIC score of all models, we would be mislead to
believe that the K = 5 is the most likely model while a mixture of three clusters
is the true representation. Note in fatc how the Rand Index is highest at K = 3.

3.5.5 Penalised t Mixture Vs Penalised Gaussian Mixture

In this section we analyze the performance of the proposed mixture of Student’s

t model implementing adaptive L1-norm penalization either on mean parameters,

PTMµ, on variance, PTMσ, or jointly on µ and σ, PTMµ,σ. To better appreciate the spe-

cific qualities of the penalised t mixture we benchmark their performance against

penalised Gaussian mixture models PGMµ, PGMσ and PGMµ,σ as implemented by Pan
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# Clusters λµ λσ LLIK AIC BIC ARI Sens Spec

2 8 8 -3906 7979 8253 61 100 100
3 14 8 -3662 7575 7988 99 100 100
4 14 8 -3619 7573 8124 95 100 100
5 12 10 -3574 7567 8256 71 100 100

Table 3.4: With Boostrap. Maintaining the same level of penalisation, we now
run the boostrap routine which helps us to eliminate any residual variable selection
error, column Sens and Spec. The BIC criteria now correctly identifies K = 3 as
the most likely model which also achieves almost perfect clustering performance.

and Shen (2007) and Xie et al. (2008a). To remark the importance of variable

selection, we also report the results of the unpenalised mixtures of Gaussians, GM,

and mixtures of t, TM, as described by McLachlan and Peel (2000).

Looking at the results, we find that, in scenario 1, penalized Gaussian and tmix-

tures models perform similarly, which is a reasonable conclusion since the marginal

densities of informative and non-informative variables belong to the Gaussian fam-

ily. In scenario 2, we find evidence that t mixtures significantly overperforms

Gaussians models as the clusters’ densities deviate from normality. The differ-

ence is explained by a more accurate variable selection of the t mixture. This

is evident also in scenario 3 where all the components of the mixture have ap-

proximately Gaussian density but PGMµ,σ still underperforms PTMµ,σ because the

non-informative variables are t distributed with long tails. In scenario 4 we gener-

ate a bigger data sample where the number of variables is significantly higher than

the number of observations with only a small percentage of informative variables.

We find confirmation of the previous results and note that PTMµ,σ is able to select

only the useful variables because it can fit better their long-tail distributions.

Simulation Scenarios

For the benefit of the visual representation of the results, we assume throughout

that there are only two components, K = 2, nominally A and B having the same

mixing proportion wA = wB = 1/2. The different scenarios are then generated

using different settings for the components’ densities Θ.
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In the first instance we vary the degrees of freedom, ν, as we investigate how

the clustering performance responds to changes in the tail shape of the variables’

distribution. We consider two opposite scenarios.

Scenario 1: High Degrees of Freedom. We assume ν = 40 so that the density

of the simulated variables approximates the Gaussian density. We generate n = 200

samples each one with only two informative variables, m = 2, coming from either

cluster A which has parameters ΘA = {µA = −2, σA = 3, νA = 40} or cluster

B which has parameters ΘB = {µB = 4, σB = 4, νB = 40}. The remaining

variables, q = 98, are not useful for clustering and are sampled from a single

distribution with parameters Θq = {µq = 0, σq = 1, νq = 40}. In Figure 3.9 we

show the scatterplot of the sampled informative variables and the 3D surface of

the mixing density functions.

y1

y
2

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10

−5

0

5

10 −10

−5

0

5

10

0.005

0.010

0.015

Figure 3.9: Scenario 1: High degrees of freedom. The two components of the
mixture, A in red and B in green, are approximately Gaussian. The scatterplot
shows the observed values of the informative variables for one sampled dataset
of 200 observations. The contour plot shows the theoretical density function of
the bivariate distribution for the parameters ΘA and ΘB chosen to have some
probability of overlapping in the tails.
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Scenario 2: Low Degrees of Freedom. We assume that the density function

of all variables is leptokurtic with fatter tails than a Gaussian. We generate n =

200 observations with only two informative variables, m = 2, sampled from the

mixture of component A with parameters ΘA = {µA = −3, σA = 2, νA = 10}
and component B with parameter ΘB = {µB = 4, σB = 4, νB = 6}. The

remaining q = 98 variables have all been generated from the same distribution.

Θq = {µq = 0, σq = 1, νq = 4}. In Figure 3.10 we can see from the plot of the

two densities that they are more peaked and concentrated around their center but

with more extreme realisations.
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Figure 3.10: Scenario 2: Low degrees of freedom. The bulk of the sampled points
in the scatterplot are more concentrated with some outliers.

Scenario 3: Only non-informative variables have low degrees of freedom.

We assume that the two informative variables, m = 2, are sampled from a mixture

of t distributions with high degrees of freedom. Whereas the non informative

variables are significantly more q = 200 and are sampled from one single heavy

tailed t distribution. In Figure 3.11 we can see that the two clusters are normally

distributed around their center given our choice of parameters vectorsΘA = {µA =
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−3, σA = 2, νA = 40} and ΘB = {µB = 4, σB = 4, νB = 40}. The density of the

q = 200 noise variables instead has low degrees of freedom Θq = {µq = 0, σq =

1, νq = 4}.
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Figure 3.11: Scenario 3: In this scenario we have only a limited number of ob-
servations, n = 100, while the non informative variable are q = 200. As can be
seen from the plots the two components are fairly well separated and have high
degrees of freedom which make them approximately normal. The non informative
variables, not plotted here, have instead very long tails.

Scenario 4: Limited number of high dimensional observations. We gener-

ate a more realistic data sample where the number of noise variables is very high

q = 2000 with only a small fraction of informative variables m = 20, a ratio of 1

to 100. We sample only few observations n = 100 to stress the ability of the algo-

rithms to reconstruct the original clusters with limited information. The mixing

components and the noise generating distribution are all multivariate t Student

with fat tails. For component A the parameter vector is ΘA = {µA = −2, σA =

3, νA = 10}, for component B is ΘB = {µB = 4, σB = 2, νB = 12} and for non

informative variables is Θq = {µq = 0, σq = 1, νq = 5}.
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Simulation Results

For each one of the scenarios describe above, we generated over 100 randomly sam-

pled datasets. On each dataset we iterate the EM algorithm 20 times using different

sets of initial parameters Ψ0. The results of all the simulations are summarized in

Tables 3.5, 3.6, 3.7 and 3.8 for scenario 1, 2, 3 and 4 respectively. Figure 3.12, 3.13

and 3.14 refer to the first three scenario and visualize the clustering performance

over one single sample.

Table 3.5 refers to scenario 1 where mixture components and noise variables

both have approximate normal density function, i.e. high degrees of freedom.

In this situation we expect Gaussian and t mixture models to perform similarly.

This is in fact the case as we can see from the score in column ARI. Equivalent

penalization models have comparable results with a slight advantage for t mixtures

which can be explained with the robustness of this family of distributions.

From the analysis of the results it emerges that the variable selection signif-

icantly improves the clustering performance and that the joint penalization of µ

and σ achieves the best results. Both PGMµ,σ and PTMµ,σ penalise exactly all the

noise variables without any error as Sens and Spec are 100 at the same time. The

overlapping probability of the two components, as was evident from the scatterplot

in Figure 3.9, is the only limit to the perfect assignment of all the observations

and is within expectations.

Figure 3.12 shows one sampled dataset under scenario 1 where the performance

of PGMµ,σ and PTMµ,σ is expected to be very similar. By construction only the two

first variables are useful for clustering, y1 and y2, and they are correctly selected by

both models. The colour coding is proportional to the posterior or responsibility

of each component and shows how the uncertainty is bigger at the border where

the two densities mix. The accuracy is quite high with no real differences between

the two models. The inferred parameters Θ are also quite close to the true values

of the original density function. The t mixture in particular estimates correctly

also the degrees of freedom.

Table 3.6 refers to scenario 2 where both mixture components and noise vari-
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Model ARI Sens Spec

GM 3 (3) 100 (0) 0 (0)
PGMµ 1 (1) 0 (0) 100 (0)
PGMσ 17 (13) 100 (0) 29 (35)
PGMµ,σ 71 (13) 100 (0) 100 (0)

TM 7 (9) 100 (0) 0 (0)
PTMµ 19 (9) 100 (0) 25 (22)
PTMσ 19 (10) 99 (1) 28 (44)
PTMµ,σ 72 (13) 100 (0) 100 (0)

Table 3.5: Scenario 1, Summary results of different mixture models when informa-
tive and noise variables have approximatively normal density function. Top and
bottom half report the performance of different Gaussian and Student’s t mixtures
respectively: with no penalisation GM and TM, with µ penalisation PGMµ, PTMµ, with
σ penalisation PGMσ, PTMσ and joint µ and σ penalisation PGMµ,σ, PTMµ,σ. For each
model we report the average score over the 100 random samples and in brackets
the standard deviation of the results.

ables follow a t density function with low degrees of freedom. In this case the

Gaussian mixture models underperform t models because they can not properly

select the informative variables. PGMµ penalises all the variables including those

that are informative, Sens = 0. Instead PGMσ does not penalises enough the pa-

rameter σ of the informative variables and tries to fit the model using also the

noise variables Spec = 33.

The t mixture models, instead, give fairly good results in all simulations pre-

sented here, with the penalised models showing an higher clustering performance.

In this scenario, the regularization of the mean seems to be fairly effective even

by itself since PTMµ correctly identifies all the noise variable, with only few false

negatives.

Figure 3.13 refers to scenario 2 where we expect PTMµ,σ to overperform PGMµ,σ.

The presence of t distributed noise variables induce PGMµ,σ to cluster observations

using non-informative variables. By attempting to fit the noise variables it can

not identify the original components nor estimate their true parameter values Θ.

PTMµ,σ instead, having selected the informative variables, y1 and y2, can infer quite

accurately the true density function of each component and therefore achieves an
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PGM, Misclassified 13 %
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Figure 3.12: Scenario 1. Visualisation of cluster assignment performance of the
penalised mixture of Gaussian, PGM, and the penalised mixture of t, PTM when
data are sampled from a mixture of distributions with high degrees of freedom.
Colour coding is proportional to the posterior probability τ that the observation
has been generated by cluster A, in red, or cluster B in green. In the legend we
report the parameter ΘA and ΘB inferred by the EM algorithm. Note how out of
100 variables both models correctly select the only 2 informative: y1 and y2. The
accuracy of the two tested models is fairly similar.

higher percentage of correct cluster assignment.

Table 3.7 and Figure 3.14 refer to scenario 3 where the informative variables

have been sampled from t distributions with high degrees of freedom which means

that Gaussian mixture models should fit them quite accurately. This does not

happen because the non-informative variables have long tails and can only be

fitted with some degree of precision by the t mixtures models. In Figure 3.14 in

particular, we can see that even if the two clusters are fairly well separated and

approximately Gaussian, only PTMµ,σ correctly selects the two informative variables

y1 and y2 and assign almost all the observations to the right cluster. PGMµ,σ instead

can not filter out the noise which ends up masking the true clusters.

Table 3.8 refers to scenario 4 where we only have few high dimensional t dis-
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Model ARI Sens Spec

GM 2 (1) 100 (0) 0 (0)
PGMµ 2 (1) 0 (0) 100 (0)
PGMσ 2 (1) 100 (0) 33 (18)
PGMµ,σ 2 (1) 100 (0) 46 (43)

TM 62 (13) 100 (0) 0 (0)
PTMµ 74 (4) 91 (1) 100 (0)
PTMσ 67 (13) 83 (9) 95 (8)
PTMµ,σ 85 (3) 96 (7) 100 (0)

Table 3.6: Scenario 2, Summary results of tested mixture models when informative
and noise variables have t density function with low degrees of freedom. Note how
the clustering performance of t mixture models is significantly better and improves
with penalisation, column ARI. Similarly the variable selection is fairly accurate
as it show very low false nagatives and false positive errors.
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Figure 3.13: Scenario 2: Informative and non informative variables have been
sampled from t density function with low degrees of freedom. PGM fails to identify
the only informative variables and tries to cluster the noise variables.

tributed observations and the number of informative variables is only a small frac-

tion of the total. Robust penalisation is essential to filter out the 2000 noise
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Model ARI Sens Spec

GM 3 (3) 100 (0) 0 (0)
PGMµ 6 (3) 11 (23) 34 (19)
PGMσ 6 (3) 82 (34) 47 (45)
PGMµ,σ 8 (6) 77 (39) 40 (45)

TM 8 (8) 100 (0) 0 (0)
PTMµ 48 (14) 76 (23) 56 (50)
PTMσ 53 (8) 65 (15) 48 (46)
PTMµ,σ 87 (19) 100 (0) 92 (7)

Table 3.7: Scenario 3, Summary results when we have few observations with 200
non informative variables and only two informative. Even if the density of the
mixture components is approximately Gaussian, the performance of the Gaussian
models is pooor because they can not filter out the long tailed noise variables.
Penalised t mixtures, on the ther hand, are robust to noise data and, by selecting
only the relevant variables, can accurately identify the true clusters.
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Figure 3.14: Scenario 3: We have a limited number of observations with only 2
informative variables and 200 non informative variables. Mixture components are
approximately Gaussian and fairly well separated but only PTMµ,σ can accurately
exclude all long tailed non informative variables. Being able to identify the only
two informative variables, y1 and y2 can reconstruct the true cluster.
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variables and select the only 20 that can help us identify the true clusters. In

fact the performance of the Gaussian mixture models PGM is poor because it either

penalises all the variables, excluding also those informative, or it does not exclude

any variable at all, failing to unmask the hidden structure of the data. On the

other hand, as we can see from the column ARI, the accuracy of PTM increases con-

siderably when it jointly regularizes µ and σ because it is able to filter out almost

all the noise variables.

Model ARI Sens Spec

GM 2 (3) 100 (0) 0 (0)
PGMµ 1 (3) 13 (4) 34 (10)
PGMσ 1 (2) 70 (9) 14 (35)
PGMµ,σ 4 (5) 100 (1) 15 (30)

TM 34 (14) 100 (0) 0 (0)
PTMµ 48 (17) 53 (24) 85 (43)
PTMσ 55 (16) 58 (22) 76 (41)
PTMµ,σ 79 (22) 92 (23) 88 (20)

Table 3.8: Scenario 4, a more realistic case where observed data is high dimensional,
p = 2020, with only few observations, n = 100, and the ratio between informative
and non-informative variables is 1 to 100. Penalised mixture of t are robust to
long-tailed noise data and by selecting only the relevant dimensions can improve
the clustering performance.

3.5.6 High Dimensional Settings

In this section we assume more difficult conditions and simulate scenarios which

are much closer to the real life problems we want to investigate, like microarray

data.

We assume a sample size of n = 200, and m = 20 variables informative for

clustering. The number of uninformative variables, q, is always taken to be much

higher than m. As always, the informative variables are sampled from a mixture

of K multivariate Student’s t distributions. All the uninformative variables share

the same parameters and also follow a Student’s t distribution.
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In order to explore the effects of having fatter tails on both clustering and

variable selection performance, we consider two scenarios: a low degrees of freedom

case (Low DoF), in which the distributions have tails that are more pronounced

compared to multivariate Gaussians, and a high degrees of freedom case (High

DoF), that is Gaussian distributions. We simulate data with both two and tree

components. When K = 2, the parameters of the densities are chosen to ensure

that there is roughly a 30% overlap between them; when K = 3, which we indicate

as A, B and C, the parameters are chosen so that there is about 25% overlap

between A and B, 30% overlap between A and C, and around 5% overlap between

B and C. The exact density parameters of the two components for K = 2 are

ΨA = {π = 0.5, µ = −2, σ = 2, ν = 7} and ΨB = {0.5, 2, 5, 7} respectively; for

K = 3 are ΨA = {0.3,−6, 4, 7}, ΨB = {0.2, 0, 8, 7} and ΨC = {0.5, 6, 12, 7}. In

the high Degrees of Freedom scenario all ν are set to 30.

In a separate experiment we specifically assess the effects of increasing the

number of uninformative variables, and consider two cases: q = 200 (low noise)

and q = 2000 (high noise), while still keeping the number of informative variables

fixed at m = 20.

To assess the clustering performance of the suggested penalised Student’s t

mixture model (PTM), we compare it with two competing clustering methods that

simultaneously partition the samples and identify the relevant genes: the penalised

Gaussian mixture (PGM) (Xie et al., 2008a), and the sparse K-means algorithm

(PKM) (Witten and Tibshirani, 2010), which uses a lasso-type penalty to select the

variables and obtain a sparse hierarchical clustering.

For each setting being considered, we generate 100 independent data sets and

report on Monte Carlo averages. In Table 3.9 we consider two and three clusters,

and fit the three competing models. In all cases, the correct number of clusters is

pre-specified and only the number of selected variables is learnt from the data using

model selection. The modified BIC criterion is used to select the degree of penalty

in both PGM and PTM models, without using the resampling procedure, which is

evaluated separately later. For PKM, we use the built-in model selection procedures

that rely on multiple permutations of the data. All methods are assessed using
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ARI, sensitivity and specificity indexes.

In the low degrees of freedom and K = 2 case, PTM achieves the highest sen-

sitivity index at the cost of a marginally lower specificity compared to the other

two models. This ability to identify and retain the truly informative variables

translates into the highest average ARI for PTM. As expected, PKM performs poorly

in this case as no probabilistic model is assumed, and the model is more sensitive

to extreme observations.

In the K = 3 case, the specificity of all three competing models is still com-

parable, but PTM achieves the highest sensitivity that leads to the best clustering

performance. When the distributions are Gaussian, both PGM and PGM have sim-

ilar performances, as expected in this case, whereas performance of PKM is lower,

especially with three clusters.

K = 2 K = 3
DoF Model ARI Sens Spec ARI Sens Spec

PKM 0.33 0.38 1.00 0.10 0.20 1.00
Low PGM 0.57 0.60 0.96 0.40 0.70 0.98

PTM 0.72 0.76 0.97 0.56 1.00 0.96
PKM 0.62 0.66 1.00 0.37 0.77 1.00

High PGM 1.00 1.00 1.00 0.71 1.00 0.99
PTM 1.00 1.00 1.00 0.71 1.00 0.99

Table 3.9: Performance assessment of three competing sparse clustering methods.
Data simulated with parameters n = 200,m = 20, and q = 2000. The correct num-
ber of mixture components is assumed known, and variable selection is performed
for each simulated data set.

Resampling Strategies

We verify that even in more extreme conditions with high dimensional dataset, the

contribution of the resampling procedure is not only useful for variable ranking,

but it is also critical to improve model selection accuracy.

The potential benefit that can be gained from the resampling procedure of

Section 3.4.1, in terms of both variable selection and clustering performance, are
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summarised in Table 3.10. Here we consider four scenarios whereby we vary the

distribution used to generate the data within each cluster as well as the number of

uninformative variables. The data are sampled from a mixture of three multivariate

Student’s t distributions with parameters: ΨA = {π = 0.3, µ = −6, σ = 4, ν = 10},
ΨB = {0.3, 0, 8, 10} and ΨC = {0.4, 6, 16, 10}. The sample size is n = 200, with

m = 20 informative variables while the number of uninformative variables q is

taken to be both 200 and 2000. After running the subsampling procedure with a

fixed probability selection threshold, π̃ = 0.7, the improved ability of the model to

exclude the noise variables improves the clustering performance, as quantified by

the ARI. The improvement is particularly remarkable when the distributions have

longer tails.

Low DoF High DoF
Resampling q = 200 q = 2000 q = 200 q = 2000

No 0.84 0.64 0.88 0.82
Yes 0.92 0.86 0.98 0.93

Table 3.10: ARI for the PTMmodel, with and without resampling. Data simulated
with parameters K = 3, n = 200,m = 20. In the High DoF scenario all ν are set
to 30. PTM was fitted using K = 3

Low DoF High DoF
Resampling q = 200 q = 2000 q = 200 q = 2000

No 0.5 (3.7) 0.0 (4.7) 0.72 (3.3) 0.55 (3.75)
Yes 0.85 (2.85) 0.3 (2.35) 1.00 (3) 1.00 (3)

Table 3.11: Percentage of correctly identified mixture components in the PTM
model, with and without resampling. Data simulated with parameters K = 3, n =
200,m = 20. The average number of clusters is in brackets.

In Table 3.11 we explore the effects of the two-step resampling approach de-

scribed in Section 3.4.1 on the selection process of the number of mixture compo-

nents. For this experiment, we use the simulated data sets used to produce the

results of Table 3.10, where the true number of clusters is K = 3. For each scenario

being considered, we search among models having up to five clusters. We report
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on the percentage of times the correct number of clusters is selected by the two

strategies, with and without resampling. As expected, both model selection strate-

gies perform better when the distribution of the simulated variables is Gaussian.

In both high and low degrees of freedom scenarios, there is a notable performance

gain when using the resampling scheme especially so in particularly demanding

conditions when the data have fatter tails and the number of noise variables is

high. We note also that in all scenarios the average number K selected, quoted in

brackets in Table 3.11, is higher for the first strategy. This evidence confirms that,

by reducing the number of noise variables, the resampling approach alleviates the

overfitting problem which is particularly important in high dimensional setting.

3.6 Discussion

When applied to high dimensional datasets, many clustering techniques begin to

suffer from the curse of dimensionality, degrading the quality of the results. We

have developed a method for simultaneously clustering high dimensional data and

selecting informative variables by employing a penalised mixture of Student’s t

distributions. We chose finite mixture of t in the first place because it is robust

to outliers and noisy observations, but we impose also penalisation to improve its

clustering performance through variable selection. We also described a resampling

procedure to support the model selection and provide an effective metric to rank

variables.

We have proposed an adaptive L1-norm penalty function to regularize the max-

imum likelihood estimates of the location µ and the dispersion parameter σ in

order to identify the non informative variables. We have derived a modified EM

algorithm to find the MLE of all the unknown parameters of the mixture of distri-

butions and then discussed the appropriate likelihood based criteria to select the

best model.

We have then tested the proposed clustering algorithm on different simulated

scenarios and given evidence that, as the tails of the distribution of the informative

and noise variables becomes longer, penalised mixture of Student’s t distributions
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achieves higher clustering accuracy than the equivalent Gaussian model. We have

also verified the benefit of implementing a subsampling routine to refine the vari-

able selection process and increase the model selection accuracy.

While the results so far have responded to our expectations, we feel there is still

scope to further extend the research in this area. On the same path of the present

study, we believe that investigating other types of penalty functions could lead to

some interesting results. For example, in the context of Gaussian mixtures, Xie

et al. (2008a) proposed to group together multiple parameters of the same variable

across clusters with the idea of performing a more effective model regularization.

Similarly Wang and Zhu (2008) suggested to use any prior knowledge available to

group together variables that are perceived to be either all informative or all non-

informative. A slightly different approach has been described by Liu and Rattray

(2010) who proposed pairwise variable selection that retains only those variables

that can help to separate at least two clusters. All of these approaches have been

tested on t mixture and, as we have seen before, combining robust modelling and

regularization could lead to interesting results.

Another possible route worth following is to impose regularization on the de-

grees of freedom parameter. We envisage that ν should be part of the set of

relevant parameters considered when performing variable selection. We can imag-

ine the situation where two clusters share the same location and show the same

dispersion but might be characterized by different tail shape. The challenge, in

this case, is to recognise exactly whether the observed data are sampled from a

long tailed t distribution or rather from a mixture of two or more Gaussian dis-

tribution. This problem would necessarily require the development of alternative

ways of combining penalties on different parameters.

So far, we have accepted the restrictive assumption that the correlation matrix

of recorded variables was diagonal, i.e. independent variables. This simplifying

hypothesis was formulated to make the inversion of the covariance matrix compu-

tationally cheaper by avoiding singularities. Relaxing this assumption could lead

to improved results, especially in the situation where two or more variables show

some correlation. A similar event would signal the importance of those variables

118



Penalised Mixtures of Student’s t Distributions

even if their parameters’ estimate deviate only marginally from the population

average.

Having tested the performance of the penalised mixture of t distributions on

simulated datasets, in the following chapters we will use the proposed model to

investigate the two real life problems we described in chapter 1.

In order to solve the bioinformatics problem, in chapter 5 we will fit the mixture

model on the microarray dataset to identify possible cancer subtypes and select

only those genes that are really informative. One reason for using t mixture models

is that gene expression levels have been observed to have distributions with heavier

tails than the Gaussian. The other reason is that the proposed penalisation can

reduce significantly the number of genes necessary to identify different subtypes

and can also help to discover which genes, out of the few thousands recorded, are

responsible for the insurgency of specific tumor subtypes.

The second application we discuss in chapter 6 is in finance. It is standard

practice to group financial markets in macro sectors based on the nature and

fundamental characteristics of the goods exchanged. We suggest, instead, a data-

driven approach and cluster financial markets on the basis of the observed features

of each market’s price dynamics. As we do not have any prior knowledge of which

feature are more informative to cluster markets, we let the penalised mixture of

t distribution answer that question for us. The results should hopefully lead us

to engineer more robust trading strategies that are better suited to exploit the

specific features of each cluster.
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3.A Appendix: Derivations

3.A.1 Conditional Expectation Q2,k and Q3,k
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3.A.2 First Derivative of Q2(Ψ)
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3.A.3 Updating algorithm for µ

Since the conditional expectation of the complete data Qp(Ψ|Ψ(t)) defined in (3.7)

is concave-differentiable with respect to µk,d, when µk,d 6= 0 we know a local max-

imum µk,d must satisfy the following conditions:





∂
∂µk,d

Qp(Ψ|Ψ(t)) = 0 if and only if µk,d 6= 0

Qp(0, .) ≥ Qp(∆µk,d, .) if and only if µk,d = 0

Case I: µk,d 6= 0
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which yields
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Case II: If µi,d = 0 is a maximum then we compare Qp(0, .) with Qp(∆µk,d, .).

Qp(0, .) ≥ Qp(∆µk,d, .) for any ∆µk,d near 0

=⇒ −∑n
i=1

τ
(t)
i,k

2

u
(t)
i,k

σ2
k,d

(yi,d)
2 + C1 ≥ −∑n

i=1

τ
(t)
i,k

2

u
(t)
i,k

σ2
k,d

(yi,d −∆µk,d)
2 − λµ ωk,d |∆µk,d|+ C1

=⇒∑n
i=1

τ
(t)
i,k

2

u
(t)
i,k

σ2
k,d

(2 yi,d sign(∆µk,d)− |∆µk,d|) ≤ λµ ωk,d

=⇒
∑n

i=1 |τ
(t)
i,k

u
(t)
i,k

yi,d|

σ2
k,d

≤ λµωk,d

3.A.4 Updating algorithm for σ

Since the conditional expectation of the complete data Qp(Ψ|Ψ(t)) defined in (3.7)

is concave-differentiable with respect to σ2
k,d when σ2

k,d 6= 1 we know a local maxi-

mum σ2
k,d must satisfy the following conditions:
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Notice that
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where C1, C2 and C3 are constants with respect to σ2
k,d. Therefore the first equation

of (3.21) becomes
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The second equation of (3.21) becomes
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Chapter 4

Mixture of Lasso Regressions

with t-Errors

4.1 Introduction

Our interest in the previous chapter was to perform unsupervised cluster analy-

sis with variable selection. Here, we consider a slightly different situation where

paired explanatory and response variables are available and a supervised learning

approach would be more appropriate.

We noted before that in the real life data under investigation, some of the

response variables might be explained by only a small subset of the associated

input variables. Maintaining the assumption that the recorded samples have been

generated from an heterogeneous population, we propose here a mixture of regres-

sions model that simultaneously regularizes the regression coefficients and selects

the relevant covariates. More precisely, we follow a Bayesian approach which pro-

vides the most suitable framework and define a hierarchical structure of priors that

allows us to build a model with the desired properties of accuracy and parsimony.

Since the final model is necessarily complex and high dimensional, we devise an

efficient sampling algorithm based on Particle Markov Chain Monte Carlo methods

(Andrieu et al., 2010) to support the practical implementation of the estimation

procedure. In addition to giving an account of the simulation procedure we also test



Mixture of Lasso Regressions with t-Errors

its performance using experimental data and illustrate the results that demonstrate

the accuracy of the model.

It should be noted that, while mixture of regressions models can be applied to

a wider range of inferential problems, here we focus our attention on its clustering

and variable selection capabilities and our following discussion reflects that.

The outline of the chapter is as follows. In section 4.2 we describe the hier-

archical representation of the model and justify the choice of priors that lead to

the posteriors of interest. In section 4.3 we discuss how we can meet some of the

estimation challenges posed by the model and how we can efficiently simulate from

the target posterior distribution using a combination of Sequential Monte Carlo

sampling algorithms and metropolised Gibbs sampling steps. In section 4.4 we

use a variety of numerical examples to illustrate the simulation strategy and give

evidence of the main properties of the proposed model. In appendix 4.A we re-

view the essential elements of Markov Chain Monte Carlo methods and the Gibbs

sampling algorithm in particular.

4.2 The Model

Generalising the peculiarities of the financial and microarray data we want to

investigate, let us first highlight the relevant aspects of the problem that motivate

the mixture of regression model we propose.

Assume we have a collection of n ∈ N
+ paired observations Dn = (xi, yi)

n
i=1

where yi ∈ R is the response variable and xi ∈ R
p is the corresponding vector of

explanatory variables. To simplify notation we use x1:p,i to indicate the collection

of covariates at the ith sample and set the first element x1,i to be 1 to allow a more

convenient formulation of the model. The defining characteristic of the data is

that the n samples are independently generated from an heterogeneous population

and only few of the p covariates convey any useful information to explain yi.

To answer these demanding conditions, we propose a Bayesian mixture model

which postulates that there are K ≤ n possible linear regression curves to describe

the data and that each curve potentially depends upon a different collection of the
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variables 1, . . . , p. To facilitate the derivation of a sparse solution, we introduce a

p-dimensional binary vector γk1:p, where we use γk1:p to denote (γk1 , . . . , γ
k
p ), which

encodes whether each of p observed covariates should be included or not in the kth

regression curve for k = 1, . . . , K. Similarly, we use γk1:p as a subscript indicator

which deletes the elements corresponding to γkd = 0 for d ∈ {1, . . . , p} and returns

a vector of length |γk1:p|1 (L1−norm).

In a probabilistic framework, the model is then defined as the conditional dis-

tribution of yi given xi

yi|xi, β, w, si, γ1:p ∼
K∑

k=1

wk N (x′γk
1:p,i

βk
γk
1:p
, ski ) (4.1)

which is a mixture of normal distributions with parameters

• wk with 0 ≤ wk ≤ 1 for k = {1, . . . , K} such that
∑K

k=1 wk = 1, are the

mixing proportion of the K components.

• βk
1:p with β

k
d ∈ R for d = {1, . . . , p}, is the collection of regression coefficients.

• ski , with ski ∈ R
+ for i = {1, . . . , n} is a variable introduced to allow a

Student’s t regression error.

Having defined the model, the values of the parameters Ψ = (w, β, s, γ) are

unknown and will have to be inferred from the data Dn using a Bayesian approach.

Note that throughout our discussion we assume that the number of clusters K

is known. In a different situation, we could have included K in the set of unknown

parameters and modified the estimation process accordingly. While this would be

a standard procedure, it adds another level of complexity to the model that we

rather avoid here since it is not the focus of our investigation. Nonetheless we will

consider this extension of the model as a potential subject of future work.

4.2.1 Prior Specification

Whilst a mixture of Gaussian distributions as described in (4.1) is a fairly general

model, it is also flexible enough to allow us to choose convenient priors that achieve
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the objective of making the model robust to outliers and selecting only the relevant

covariates. This task is facilitated by using a hierarchical representation of the

mixture model and having different levels of priors and hyperpriors.

Following the standard missing data approach, see Diebolt and Robert (1994),

we introduce, for every ith−data point, the latent allocation variable zi ∈ {1, . . . , K}
which indicates the membership of yi to the kth−cluster. Thus, we can simplify

the mixture structure and note that the conditional distribution of yi given zi = k,

with probability p(zi = k) = wk, is the Gaussian distribution

yi | γk1:p, xkγk
1:p
, βk

γk
1:p
, ski , zi = k ∼ N (x′γk

1:p,i
βk
γk
1:p
, ski ). (4.2)

Assuming the mixture weights follow a Dirichlet distribution, the prior on w1:K−1

is

w1:K−1 ∼ Dir(δ)

where Dir(δ) is the symmetric Dirichlet distribution. Having only the concentra-

tion parameter δ specified means we do not have any prior knowledge favouring one

component over another, but we still can control how evenly spread the weights w

are.

Distribution of ski

Following the hierarchical representation, given zi = k, the prior distribution of

the variance parameter ski in (4.2), is set to be

ski ∼ Ga(d/2, d/2)

where Ga(a, b) is Gamma distribution of mean a/b. The hyperparameter d corre-

sponds to the degrees of freedom of the student-t distribution obtained integrating

an infinite mixture of normal over a gamma distributed variance parameter. The

choice of a lower degrees of freedom parameter d allow us to build a robust regres-

sion model that can accommodate for observations errors or more extreme outliers.
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In Figure 4.1 we can see how the shape of the prior changes as the degrees of free-

dom increase.
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Figure 4.1: Gamma prior distribution on the dispersion parameter ski . We can see
how the shape of the distribution changes as a function of the degrees of freedom
of the Student’s t regression error.

The Bayesian Lasso

A very important feature of the model we propose is that combines, in a mixture

framework, shrinkage and variable selection. It achieves this result by adopting

specific priors for the regression coefficients β and the binary indicator variables

γ.

We have seen in section 2.6 that, using a ML approach in a single mixture

component framework, Tibshirani (1996) was able to regularise the estimated linear

regression coefficients βk
1:p introducing the penalty term: hλ(β

k
1:p) =

∑p
d=1 |βk

d |q for
some q ≥ 0 and λk ∈ R

+. The effect of penalising the likelihood function is to
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shrink the vector of MLE of βk
1:p toward zero with the possibility of setting some

coefficients exactly equal to zero, thus excluding them from the model.

As Park and Casella (2008) point out, equivalent results to the Lasso penalty

can be achieved by assuming that βk
1:p have independent Laplace, i.e. double-

exponential priors,

p(βk
1:p|σ2

k) =

p∏

d=1

λk

2
√
σ2
k

exp

(
−λk|βk

d |√
σ2
k

)
(4.3)

where σ2
k ∈ R

+ determines the scaling of the regression coefficients in the kth−curve

and λk ∈ R
+ is the smoothness parameter that controls the tail decay. Since the

mass of (4.3) is quite highly concentrated around zero with a distinct peak at

zero, the regression coefficient estimates corresponding to the posterior mean and

posterior mode are shrunk towards zero in equivalent fashion to the penalisation

least squares estimation procedure.

Another convenient property of the double-exponential distribution is that it

can be represented as a scale mixture of normals with exponential mixing distri-

bution. Therefore, introducing a latent vector of scale variables we obtain a more

tractable hierarchical formulation of the prior on βk
1:p, see (Hans, 2009). Ignoring for

the moment the γ1:p indicator and assuming a single component mixture, consider

the following hierarchical prior on the dth regression coefficient: βd|τ 2d , λ ∼ N (0, τ 2d )

where the hyperparameter τ 2d itself has hyperprior τ 2d ∼ Ex(λ2/2). We note that

marginally βd still follows a Laplace distribution with parameter λ

p(βd) =

∫ ∞

0

p(βd|τ 2d ) p(τ 2d ) dτ 2d
∝ exp(−λ |βd|).

The modular structure of hierarchical modelling allows us to extend, in a

straightforward way, the Bayesian Lasso method to our proposed mixture of linear

regression. Together with the prior on βk
γk
1:p

we also specify priors on the hyper-

parameters σk, with σk ∈ R
+, to control the scaling, and τ k1:p, with τ kd ∈ R

+, to
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induce shrinkage on the coefficients of the kth regression curve.

βk
γk
1:p
|σ2

k, τ
2,k

γk
1:p
, γk1:p ∼ N|γk

1:p|1

(
0, σ2

kdiag(τ
2,k

γk
1:p
)

)

σ2
k ∼ IGa(a, b)

τ 2,k
γk
1:p
|γk1:p

i.i.d.∼ Ex(λ2/2)

where Nl(µ,Σ) is the l−dimensional normal distribution of mean µ and covariance

Σ. Note that, to simplify notation, when l = 1 we drop the subscript. IGa(a, b) is
the Inverse-Gamma distribution of mean b/(a−1) (a > 1). Ex(a) is the exponential
distribution of mean 1/a. The smoothness parameter λ controls the tail decay, as

we can see from Figure 4.2 and is ultimately responsible to shrink the more weakly

related regularization parameters to 0. Whilst in our discussion we assume λ is

given, Park and Casella (2008) have shown, in a non-mixture Bayesian framework

with known γ1:p, that the Lasso parameter can be chosen by marginal maximum

likelihood or using an appropriate hyperprior.

Comments on Bayesian Lasso

Even if the mode of the posterior, assuming a the double-exponential prior, is equiv-

alent to the Lasso estimate, the marginal regularisation behaviour induced by the

Bayesian version of the Lasso is qualitatively quite different from the one it shows

in the frequentist setting. This is because, in the Bayesian approach, inference

can be carried out with unified and computationally efficient sampling schemes,

see section 4.3.2. The sampling based approach provides richer information on

the posterior of a regression coefficient and adequately reflects the uncertainty in

estimating a parameter to be close to zero. From the resulting samples, the pos-

terior median or the posterior mean can easily be derived as point estimates, but

computing the posterior mode is more difficult. Since the posterior for the regres-

sion coefficients will typically be skewed, the posterior mean and median will not

coincide with the posterior mode and, as a consequence, will always be different

from zero. Still, the concentration around zero will be quite high for redundant
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Figure 4.2: Exponential distribution. We can see the sensitivity of the tail decay
to the smoothness parameter λ.

parameters so that coefficients may well be deemed to be equal to zero from a

practical perspective.

Note also that, even if we will not be aiming to do this in the present discus-

sion, the full conditional distributions of βk
1:p, σ

2
k and τ 2,k1:p are still easy to sample,

therefore estimating regularised regression coefficients and tuning the shrinkage pa-

rameter can be done simultaneously. In this context, the sensitivity of the results

to the parameters can be measured via corresponding marginal posteriors.

As a further remark, although it seems to be quite restrictive to assume that all

τ k1:p are i.i.d., the resulting class of regularisation priors is still large. Quite different

classes of priors are obtained modifying the prior specifications, for examples see

Fahrmeir et al. (2009).

Finally, while the Bayesian Lasso can effectively regularise the regression coeffi-

cients β1:p and provide an indication of which covariates are relevant, we also want
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to address the regression model uncertainty and would prefer to make explicit the

variable selection decision i.e. whether or not to have the covariate xd with linear

effect βk
dxd as part of the linear predictor x′ βk.

4.2.2 Variable Selection

The frequentist version of the Lasso provides a straightforward method for variable

selection by identifying the non-important predictor variables as those variables

whose β̂k
d = 0. In the Bayesian version of the Lasso approach, under the absolutely

continuous (w.r.t. Lebesgue measure) double-exponential prior distribution, the

prior probability of the event {βk
d = 0} is zero. Thus, the posterior probability

of such an event must also be zero. To overcome this problem, we are required

to explicitly allocate prior probability mass to these events, {βk
d = 0} in order for

posterior inferences about events to be coherent.

As we have seen in section 2.4.2, confronted with similar problems George and

Mcculloch (1997); Tadesse et al. (2005); Kim et al. (2006); Schäfer and Chopin

(2011) have proposed an effective solution by once again specifying a convenient

prior for the selection indicator γkd . Placing prior mass on the event {βk
d = 0} is

equivalent to assigning a prior distribution to the space of two alternative regression

models: one which includes the dth covariate and the other one which excludes it.

This can be done in a Bayesian framework using the latent indicator variable,

γk1:p, where p(γ
k
d = 1) corresponds to prior probability of the model including the

variable xd and p(γkd = 0) indicates to probability the alternative event.

We adopt this solution and specify selection priors that fit into the mixture

framework of regularised regressions. A suitable prior for γkd is the Bernoulli dis-

tribution Be(φ) which, under the assumption that γk1:p are independent, yields

γk1:p ∼
p∏

d=1

φγk
d (1− φ)1−γk

d . (4.4)

Note that setting φ = 1/2 means that when considering whether to include the

variable xd we do not have any prior information and the two alternative models,
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γkd = 1 and γkd = 0, are equally likely. Only after having observed the data, the

important predictor variables can then be identified by examining the marginal

posterior inclusion probabilities.

We should also point out the level of the flexibility of the mixture model. By

making γk1:p cluster specific, each regression curve can be a function of its own dif-

ferent set of covariates. On the other hand, the combinations of competing models

to be evaluated grows exponentially with the number of explanatory variables and

clusters, K2p. In theory, for the given prior, we could compute the posterior

probability of each model before selecting the best one. In practice, it is evident

that a full exploratory search is unfeasible and we need to incorporate a selection

procedure into the sampling algorithm.

In section 4.3 we discuss how to construct a stochastic sampler which will allow

us to generate samples from the marginal posterior distribution of π(γk1:p). This

solution will provide a viable computational approach for addressing model uncer-

tainty while preserving the regularization properties induced by the Bayesian Lasso

methodology. We first need to derive the posterior distribution of the parameters

of interest.

4.2.3 Posterior Distribution

As we can see in Figure 4.3, we have been able to formulate a Bayesian hierarchical

representation of the mixture of regressions model. We have also discussed in

the previous section how the desired properties of robustness and parsimony are

achieved by specifying convenient priors for the relevant parameters. We now

derive the posterior of interest that will allow us to draw inference on the cluster

membership of each observation and on the contribution of each variable.

Using a synthetic notation to indicate the unknown parameters of the model

ψ = (w1:K , σ1:K ,β1:K , s1:n,γ1:p, τ
2
1:p), and the fixed, assumed known, hyperparame-

ters of the model h = (a, b, λ, φ, d, δ), we can say that, after observing the covariates

x = (x1, . . . ,xn) and the responses y = (y1, . . . , yn), the posterior distribution of
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Figure 4.3: Directed Acyclic Graph (DAG) showing the hierarchical structure of
the priors on the parameters of the proposed mixture model. We have drawn a
square box around hyperparameters considered to be a known constant, a circle
to indicate an latent variables that need to be estimated, and a rectangular box to
indicate observed data. The arrows indicate the conditional dependence structure
of the model.

ψ is

π(ψ|x,y) ∝ L(y;x, ψ) p(ψ|h) (4.5)

where L(y;x,ψ) is the likelihood function and p(ψ|x) the prior distributions we

have previously defined.

Since our main focus is to draw inference on the cluster membership of the

observations and identify the relevant explanatory variables, we remove as many

other variables as possible. We integrate out the parameters β1:K , σ1:K and w1:K−1

in (4.5)

π(z1:n, s1:n,γ1:p, τ
2
1:p|Dn) =

∫
π(z1:n, s1:n,γ1:p, τ

2
1:p,β1:K , σ1:K , w1:K−1|Dn) d(β1:K , σ1:K , w1:K−1)
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and obtain the marginal posterior density of interest up to a normalizing constant

π(z1:n, s1:n,γ1:p, τ
2
1:p|Dn) ∝

K∏

k=1

[
ξj(s

k
1:n, γ

k
1:p, τ

2,k
1:p |D̃k)

{ n∏

i=1

ϕ(ski ; d/2, d/2)

}
×

{ ∏

d:γk
d
6=0

ϕ(τ 2,kd ; 1, λ2/2)

}] ∏K
k=1 Γ(δ + nk)

Γ(
∑K

k=1[nk + δ])

(4.6)

where Γ(·) is the gamma function, ϕ(x; a, b) is the Gamma density of mean a/b,

nk =
∑n

i=1 I{k}(zi) the number of observations assigned to the kth cluster, D̃k is

the collection of observations assigned to the kth cluster. Given zi = k, we can

derive

ξk(s
k
1:n, γ

k
1:p, τ

2,k
1:p |D̃k) =

|V ∗
k |1/2Γ(a∗k)ba(b∗k)(−a∗

k
)

|Vk|1/2πnk/2Γ(a)

with

Vk = diag(1, τ 2,k
γk
1:p
)

V ∗
k =

(
diag(τ 2,k

γk
1:p
)−1 + x′γk

1:p
Σ−1

sk1:n
xγk

1:p

)−1

m∗
k = V ∗

k (x
′
γk
1:p
Σ−1

sk1:n
yk)

a∗k = a+ nk/2

b∗k = b+

(
(yj)′Σ−1

sk1:n
yk − (m∗

k)
′(V ∗

k )
−1m∗

k

)
/2

where Σsk1:n
= diag(sk1, . . . , s

k
n).

With conjugate priors, the marginal posterior distribution of model parameters

(γ1:p, τ
2
1:p) and allocation variables z1:n are available in closed form. Nonetheless,

sampling from the posterior distribution is the only viable approach that enables

us to make inference on arbitrary functionals of the unknown variables. Given

the high dimensionality of the posterior distribution we will require an efficient

simulation methodology.

Note that if we were interested in simulating the regression coefficients β1:K

and the regression variance σ2
1:K we could sample the joint full conditional. Given
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that the conjugate joint prior is a normal inverse-gamma, from Bayes’ theorem the

joint posterior given zi = k is

π(βk
γk
1:p
, σ2

k|Dn, τ
2,k
1:p , γ

k
1:p, s

k
1:n) ∝ L(y;x,ψ) p(βk

γk
1:p
, σ2

k)

which yields

π(βk
γk
1:p
, σ2

k|Dn, τ
2,k
1:p , γ

k
1:p, s

k
1:n) ∝ (σ2

k)
(−a∗

k
+

γk1:p
2

+1) ×

exp

{
−
(βk

γk
1:p

−m∗
k)

′(V ∗
k )

−1(βk
γk
1:p

−m∗
k) + 2 b∗k

2 σ2
k

}
.

Given the allocations w1:K−1 we would be able to sample the posterior of re-

gression coefficients and regression variance for all components but this is outside

the scope of the thesis. Nonetheless it constitutes an interesting route for further

work even if the convergence of the MCMC is likely to be slowed down.

4.3 Simulation Methodology

Once we have been able to explicitly calculate the posterior distribution of the

parameters of interest up to a constant, we then want to sample from this distri-

bution in order to approximate quantities like expected values, which in our case

are the classification probability of each observation and the marginal probability

of inclusion of each variable.

The main tool available to Bayesian inference for sampling from a target distri-

bution, such as π in (4.6), are the Monte Carlo methods we introduced in chapter

2. Among these, Markov chain Monte Carlo (MCMC) is the approach more fre-

quently followed to draw inference on mixture models, see Robert and Casella

(2004) for a complete review. In line with this approach, here we implement some

recently proposed algorithms that have been developed to suit scenarios like ours,

involving both an high dimensional model and complex patterns of dependence

between parameters.

We should first note that, within the mixture modelling literature, there has

135



Mixture of Lasso Regressions with t-Errors

been work done on perfect sampling and direct sampling, making use of the full

conditional distributions. For example, Mukhopadhyay and Bhattacharya (2011)

proposed a perfect sampling methodology for fitting mixture models with either

known or unknown number of components and applied this technique to both

conjugate and to non-conjugate cases. Fearnhead and Meligkotsidou (2007) instead

proposed a direct sampling method that returns independent samples from the true

posterior. Unfortunately, the described algorithms have either limited applicability

even for simple real life problems.

Considering that our proposed model allows for a random number of covariates,

we need an algorithm flexible enough to explore a parameter space whose dimension

is itself a random variable. Confronted with similar problem, Schäfer and Chopin

(2011) used a Sequential Monte Carlo (SMC) algorithm, originally described by

Del Moral et al. (2006), to adaptively sample from a binary distribution. Using

the variable selection problem in linear regression as test case, they showed that

even in difficult circumstances, with hundred of covariates, the Sequential Monte

Carlo method can outperform standard techniques based on simple Markov chain

exploration.

In light of recent work presented by Andrieu et al. (2010), we adopt a Parti-

cle Markov chain Monte Carlo (PMCMC) simulation procedure which combines

MCMC and SMC methods and takes advantage of the strengths of both. The key

feature of PMCMC algorithms is that they are in fact exact approximations of

idealised MCMC algorithms, while they use sequential Monte Carlo methods to

build high dimensional proposal distributions. On the other hand, compared to

stand alone SMC, PMCMC sampling is less likely to suffer from the path depletion

problem. More precisely, here we implement a particle Metropolis-within-Gibbs

(PMWG) algorithm which is effective in situations where using the prior distribu-

tion of the underlying latent process as the proposal distribution is the only known

practical solution.
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4.3.1 Sampling Procedure

We can effectively achieve the result of simulating from the posterior distribution

(4.6), following a two stage procedure. In the preliminary stage, we initialise the

algorithm by sampling plausible parameters values from the corresponding priors

and generate various particles that represent possible cluster assignments of the

observed data points. In the subsequent stage, which should be repeated until

convergence, we alternate a conditional SMC step, which produce a likely labelling

of the data, and a Metropolis step, which updates the error estimate and the other

parameters of interest.

Essentially, the sampling procedure consists in

• Stage I: Initialise the algorithm. Sample s1:n,γ1:p, τ
2
1:p from the respec-

tive priors. Run the SMC algorithm, as described in section 4.3.2, storing

all the N particles labels z1:n = z11:n, . . . , z
N
1:n and their genealogy a1:n−1 =

(a11:n−1, . . . , a
N
1:n−1) (defined below). Sample one particle index t ∈ {1, . . . , N}

according to the normalized weights W
1

n, . . . ,W
N

n (defined below).

• Stage II: Repeat the following steps till convergence

1. Run the conditional SMC algorithm, as described in section 4.3.3.

2. Sample t ∈ {1, . . . , N} according to new weights W
1

n, . . . ,W
N

n . Store

zt1:n and bt1:n (defined below).

3. Given zt1:n, update the current values of s1:n,γ1:p, τ
2
1:p following the

MCMC steps described in section 4.3.4.

It is worth pointing out that, as we iterate through the simulation algorithm,

the cluster structure evolves with the choice of variables and we should appreciate

the fact that the variable selection, in the context of clustering, is much more

complicated than in the standard classification or regression analysis.

We should also be aware of label switching problem which is a common issue

when estimating the parameters of a Bayesian mixture model. In our implemen-

tation we adopt the practical solution of assuming that we already have a sensible
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cluster assignment that we can use as a reference to guide the relabelling process

after every MCMC iteration. More precisely, in the real life application we are

going to discuss, we will permute all possible labelling combinations of the compo-

nents and choose the one that maximizes the adjusted rand index computed with

respect to cluster assignment proposed by the penalised t mixture model.

4.3.2 Sequential Monte Carlo Algorithm

With SMC methods we indicate a general class of algorithms that use a set of

weighted particles to recursively approximate a sequence of distributions of increas-

ing dimension. It has been originally introduced to suit situations with incoming

observations, where any inferential statement has to be continuously updated.

Nonetheless, it has demonstrated to be highly effective also in static problems like

mixture models and it has become an integral part of PMCMC.

Before illustrating how the SMC algorithm is exploited in our sampling pro-

cedure, we refer to the appendix 4.A and to the work of Del Moral et al. (2006);

Andrieu et al. (2010); Doucet et al. (2000) for a more detailed review of the different

sampling methods we implement in the following section. In particular, we assume

the reader is familiar with Sequential Importance Sampling (SIS), appendix 4.A.3.

Sampling Cluster Labels

The SMC method allows us to simulate from the conditional posterior distribution

of the latent label indicator variables πn(z1:n|s1:n,γ1:p, τ 2
1:p,Dn). Following Algo-

rithm 4.1, we first initialize s1:n,γ1:p, τ
2
1:p by sampling their respective priors, and

then alternate sequential importance sampling and resampling steps.

More explicitly, the sequential importance sampling targets the full conditional

density of the latent labels variables z1:i which, after the first 1, . . . , i data points,

is

πi(z1:i|s1:i,γ1:p, τ 2
1:p,Di) ∝

[ K∏

k=1

ξk(s
k
1:i, γ

k
1:p, τ

2,k
1:p |D̃(i)

k )Γ(δ + n
(i)
j )

]/
Γ(

K∑

k=1

(n
(i)
k + δ))
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where D̃(i)
k denotes the data allocated to the kth cluster out of the first i observations

and

n
(i)
k =

i∑

l=1

I{k}(zl)

their total number.

Adaptive Resampling

Without supervision, sequential importance sampling can incur the problem of

weight degeneracy. As new incoming observations are fed into the algorithm, the

variance of ωn(x1:n) typically increases at an exponential rate until all the mass

concentrates on one single particle, leaving the remaining particles with weights

tending to zero.

To avoid spending a large computational effort to update trajectories whose

contribution to the final estimate is negligible, we execute a resampling step with

the intention of replacing the unpromising lowest weighted particles with new par-

ticles that hopefully lie in regions of high target density. The exact procedure con-

sists in sampling N particles from the approximated target distribution π̂n(x1:n)

to obtain N new particles which will then be equally weighted. At the subsequent

iteration of the importance sampling step, the new weights will be simply equal to

the incremental weights, W1:n+1 = αn+1(x1:n+1).

On the other hand, if we iterate several times the weighting and resampling

procedure, we will rapidly deplete the number of distinct particles and the accuracy

of the full conditional density estimation will suffer because the paths become very

similar. In particular for i << n the marginal distribution π̂n(x1:i) will only be

approximated by a few if not a single unique particle. This is due to the fact that

only the variables {Xj
n} are sampled at time n, whereas the path values {Xj

1:n−1}
are not rejuvenated.

To find a balance between weights degeneracy and path degeneracy, Liu (2001)

and Del Moral et al. (2011) among others, suggest to resample only when the

variance of the unnormalized weights is above a fixed threshold. In the solution
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we adopt, the threshold is a function of the Effective Sample Size (ESS)

ESS =

(
N∑

j=1

(W j
n)

2

)−1

which takes values between 1 and N and, as described in Algorithm 4.1, we resam-

ple only when it is below ESS < N/2. To fully appreciate the effect of introducing

this rule, in the experimental section 4.4.2 we tested and compared the two versions

of the algorithm, with and without adaptive resampling, and show the different

impact they have on weights dispersion and paths diversity.

It should be noted here that executing the resampling step only when the con-

dition ESS < N/2 is satisfied, does not alter the property of the algorithm that

still returns an unbiased empirical estimate of the target distribution, since the

estimate of the normalising constant is unbiased, as noted in a personal commu-

nication by Andrieu C. and Whiteley N..
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Algorithm 4.1 Sequential Monte Carlo Algorithm

Step 1. Sample N labels, z11 , . . . , z
N
1 , from π1(z1| · · · ) and set the corresponding

weights W j
1 = 1 for j = 1, . . . , N .

Step 2. For i = 2, . . . , n repeat the following

1. If ESS < N/2, for each j = {1, . . . , N} resample aji−1 ∈ {1, . . . , N} using

the discrete distribution

W
j

i−1 =
W j

i−1∑N
g=1W

g
i−1

.

otherwise keep all the current particles by aji−1 = j for j ∈ {1, . . . , N}.

2. sample, for each j ∈ {1, . . . , N}, a label zji from πi(zi| · · · ) where

πi(zi| · · · ) =
ξzi(s

zi
1:i, γ

zi
1:p, τ

2,zi
1:p |D̃zi)Γ(δ + 1 + n

(i−1),aji−1
zi )

∑K
zi=1 ξzi(s

zi
1:i, γ

zi
1:p, τ

2,zi
1:p |D̃zi)Γ(δ + 1 + n

(i−1),aji−1
zi )

and n
(i−1),aji−1

k =
∑i−1

i=1 I{k}(z
(aji−1)

i ). Set zj1:i = (z
aji−1

1:i−1, z
j
i ).

3. Set, for each j ∈ {1, . . . , N}

W j
i =

∑K
zi=1

[∏K
k=1 ξk(s

k
1:i, γ

k
1:p, τ

2,k
1:p |D̃(i)

k )Γ(δ + n
(i),j
k )

]/
Γ(
∑K

k=1(n
(i),j
k + δ))

[∏K
k=1 ξk(z

k
1:i−1, γ

k
1:p, τ

2,k
1:p |D̃(i−1)

k )Γ(δ + n
(i−1),j
k )

]/
Γ(
∑K

k=1(n
(i−1),j
k + δ))

and i = i+ 1.

4.3.3 Conditional Sequential Monte Carlo Algorithm

The conditional SMC algorithm we iterate in the second stage of our sampling

procedure is essentially the SMC algorithm described in Section 4.3.2 except it

preserves the path of one particle.
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To describe the algorithm, we need to introduce a sequence of indexes bt1:n ∈
{1, . . . , N}n to represent the genealogy of the tth particle for t ∈ {1, . . . , N}. Once

we have set btn = t, the genealogy of tth particle can then be defined recursively

bti = a
bti
i−1 for i = 1, . . . , n−1 where the a1:n−1 = (a11:n−1, . . . , a

N
1:n−1) are the recorded

samples from the previous iteration of the SMC algorithm.

As we can see from the Algorithm 4.2, the sampling sequence is similar to what

is implemented in a standard SMC algorithm except that one randomly chosen

particle t with its ancestral lineage bt1:n is fixed and ensured to survive, whereas

the remaining N − 1 particles are regenerated as usual.

Algorithm 4.2 Conditional Sequential Monte Carlo Algorithm

Step 1. Sample 1 − N labels zj1 from π1(z1| · · · ), for j = 1, . . . , N while j 6= bt1

(i.e. excluding j = bt1), and set all the weights W j
1 = 1 for j = 1, . . . , N .

Step 2. For i = 2, . . . , n repeat the following

1. If ESS < N/2, for each j ∈ {1, . . . , N} except j = bti, resample aji−1 ∈
{1, . . . , N} using the discrete distribution

W
j

i−1 =
W j

i−1∑N
g=1W

g
i−1

.

otherwise keep all the current particles by aji−1 = j.

2. Sample zj1 from πi(zi| · · · ) for each j ∈ {1, . . . , N} except j = bti, and update

the corresponding path zj1:i = (z
aj
l−1

1:i−1, z
j
i ).

3. Set W j
i as for the SMC algorithm, for each j ∈ {1, . . . , N}, (this includes the

fixed particle j = bti)

142



Mixture of Lasso Regressions with t-Errors

4.3.4 Markov Chain Monte Carlo Steps

In the SMC algorithm we sample from the posterior distribution of the latent

label indicator variable Z and propose a cluster assignment of each observation.

With the MCMC steps our objective is to update the other parameters of the

mixture model that control the regression error distribution, the regularization of

the regression coefficients and the variable selection process. For a more complete

review of MCMC methods we refer to the section of the appendix 4.A.1, where the

essential aspects of the methods are discussed. Here we just remark this; the fact

that executing the MCMC moves allows us to explore neighbouring models which

are copies of the current model where just a few components are altered.

The MCMC kernels we adopt suit the requirements of our simulation procedure

and provide an effective way to sample from complex probability measures. That

is, they are more likely to find regions of high probability measure than simple

importance functions. More precisely, the transition kernels we implement are often

referred to as metropolised Gibbs samplers, since they proceed component-wise as

the classical Gibbs sampler, which sequentially draws each component from the full

marginal distribution, see appendix 4.A.2. Sill, the sampling procedure is qualified

as metropolised because it accepts or refuses the proposed move according to a

Metropolis-Hastings step. Essentially, once we have generated a candidate value

x∗i from a proposal distribution q(·|xi−1), the basic idea of the Metropolis-Hastings

algorithm is to accept the move with probability min{1, A} where A is

A =
π(x∗i )q(xi−1|x∗i )
π(xi−1)q(x∗i |xi−1)

otherwise x∗i is rejected and we stay at xi = xi−1.

One critical decision we need to take is to fix the average size of the proposed

moves which depends on hyperparameters we control, see the work of Roberts

et al. (1997). Large step proposals improve the mixing properties of the chain and

help to escape from the attraction of local modes. The inconvenience in this case

might be that the acceptance rate becomes excessively low since we blindly propose

arbitrary points in the sampling space. If, instead, we change one component at
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a time with smaller steps, we will quite often accept the move, but it is unlikely

that we will efficiently explore the entire parameter space. To clarify the concept,

we document the direct relation between the step length and the acceptance rate

in the experimental section 4.4.2.

Having discussed the general MCMC approach and the specific version of the

Gibbs sampler we intend to use, we should now see how this is implemented in

practice in our model. Let us first note that the Particle Gibbs Metropolis-Hastings

update we propose is defined on an extended space which includes the N label

particles z1:n = z11:n, . . . , z
N
1:n, their genealogy a1:n−1 = (a11:n−1, . . . , a

N
1:n−1), the

number of clustersK, and the vector of parameters and hyperparameters of interest

θ = (s1:n,γ1:p, τ
2
1:p),

π(K, z1:n,a1:n−1,θ|Dn) =
π(zk1:n,θ|Dn)

Nn

ψθ(z1:n,a1:n−1)

π1(z
bk1
1 | · · · )∏n

i=2W
bki−1

i−1 πi(z
bki
i | · · · )

and targets the probability density

E = {1, . . . , N}(n−1)N+1 × {1, . . . , K}nN × R
nK
+ × {0, 1}Kp ×

( Kp⋃

z=1

R
z
+

)
.

The single MH steps, that separately update the elements of θ, are then as

follow.

Step 1: Update τ 2
1:p

To update the τ 2
1:p, given all the other variables are fixed, we can use the following

procedure. For each k ∈ {1, . . . , K}, assuming |γk1:p|1 > 0, sample for each d where

γkd = 1

(τ 2,kd )∗ = τ 2,kd exp{ντ Nd} (4.7)
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with ντ > 0 a user-set parameter and Nd ∼ N (0, 1), independent for each d.

Accept all the (τ 2,kd )∗ with probability

min

{
1,
ξk(s

k
1:n, γ

k
1:p, (τ

2,k
1:p )

∗|D̃k)

ξk(sk1:n, γ
k
1:p, τ

2,k
1:p |D̃k)

∏

d;γk
d
6=0

ϕ((τ 2,kd )∗; 1, λ2/2)(τ 2,kd )∗

ϕ(τ 2,kd ; 1, λ2/2)τ 2,kd

}

otherwise keep the current τ 2,k1:p . The chain is reversible as a by-product from

being a Metropolis-within-Gibbs algorithm. The chain leaves the extended target

invariant using a simple adaptation of Theorem 5 of Andrieu et al. (2010). That

the extended target admits the posterior of interest as an appropriate marginal

follows from the fact that the SMC with adaptive resampling provides an unbiased

estimate of the normalizing constant; see the decomposition of Arnaud and Le

Gland (2009).

Step 2: Update s1:n

To update s1:n, given all the other variables are fixed, we can use the following

procedure. For each i ∈ {1, . . . , n}, k ∈ {1, . . . , K} propose

(ski )
∗ = ski exp{νsNi} (4.8)

where νs > 0 is a user-set parameter (potentially different from the ντ above) and

Ni ∼ N (0, 1), independent for each i. Note that (sk1:n)
∗ features only one changed

value from sk1:n. The proposed move then is accepted with probability

min

{
1,
ξk((s

k
1:n)

∗, γk1:p, τ
2,k
1:p |D̃k)

ξk(sk1:n, γ
k
1:p, τ

2,k
1:p |D̃k)

∏

i;γk
i 6=0

ϕ((ski )
∗; d/2, d/2)(ski )

∗

ϕ(ski ; d/2, d/2)s
k
i

}

otherwise keep the current ski .
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Step 3: Update γ1:p

To update γ1:p, given all the other variables are fixed, we can use the following

procedure. For each d ∈ {1, . . . , p}, k ∈ {1, . . . , K} (i.e. propose to change only

one element each time), if γkd = 0 we propose (γkd )
∗ = 1 and draw (τ kd )

∗ from its

prior (Ga(1, λ2/2)). The proposed move is accepted with probability

min

{
1,
ξk(s

k
1:n, (γ

k
1:p)

∗, (τ 2,k1:p )
∗|D̃k)

ξk(sk1:n, γ
k
1:p, τ

2,k
1:p |D̃k)

}

otherwise we keep γkd = 0. If γkd = 1, we propose to set it to be zero, removing the

corresponding τ 2,kd and using the same expression as above to accept/reject (with

the appropriate changes i.e. the proposed state here has fewer variables than the

current model). In this proposal, we are adding or removing columns from our

design matrix.

Note that this algorithm is best suited for scenarios similar to the ones we

investigate in this thesis, where the number of components K > 2 and the number

of data points n ≥ 40 make the space to be sampled much bigger than the one for

the explanatory variables. Before applying to real life data we test and observe its

performance on simulated data.

4.4 Numerical Examples

The scope of this section is to verify, using simulated datasets, the properties of

the mixture model we propose. Testing it in a controlled environment, we aim to

highlight the main properties and possible faults of the model.

First we assess how the simulation procedure responds to different scenarios,

its sensitivity to changes in prior hyperparameters and how to set the parameters

that control the algorithm. In particular, we monitor the acceptance rate of the

metropolised Gibbs sampling steps and the degeneracy of the weights and path

diversity in the two cases: with resampling that is executed at every iteration and

with adaptive resampling which is subject to ESS criterion being satisfied.
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The performance of the proposed model is then discussed in terms of cluster-

ing accuracy, which means checking that homogeneous observations are correctly

grouped together. At the same time we also interested to verify that only the truly

informative variables are actually included in the model.

The model simulation procedure and its related sampling algorithms have been

coded in Matlab; the code is available on request.

4.4.1 Simulation Settings

We assume one basic scenario that we then perturb to highlight the different prop-

erties of the model and different important aspects of the simulation procedure. In

the standard scenario the parameters of the model have been randomly generated

from the following priors

w1:K−1 ∼ Dir(2)
ski ∼ Ga(2, 2)
γk1:p

i.i.d.∼ Be(1/2)
τ 2,k
γk
1:p
|γk1:p

i.i.d.∼ Ex(1/2)
σ2
k ∼ IGa(2, 4)

βk
γk
1:p
|σ2

k, τ
2,k

γk
1:p
, γk1:p ∼ N|γk

1:p|1

(
0, σ2

kdiag(τ
2,k

γk
1:p
)

)

and each data point is then sampled from the mixture

yi ∼
K∑

k=1

wk N (x′γk
1:p,i

βk
γk
1:p
, ski ).

Each dataset we generate contains n = 50 paired observations sampled from

a mixture of three components K = 3. More precisely, for each data point i ∈
{1, . . . , n} we first sample a label zi = k from M(1|w1, . . . , wK) then sample the

covariates xi of dimension p = 20 from a centered Gaussian distribution whose

dispersion depends on the cluster membership. We finally obtain the response
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variable yi by adding a random error ski to the systematic component x′
γk
1:p
βk
γk
1:p
.

The only parameters of the simulation algorithm we need to set are: the number

of particles, say N = 100; the step length of the proposed MH move for τ , say

ντ = 2; the step length of the error update, say νz = 3, and also the number of

repeats of the sampling procedure, say a few thousand.

4.4.2 Sensitivity of the Simulation Methodology

We first want to assess how the simulation procedure responds to changes in the

step length of the MCMC moves and how the resampling option influences the

weights and path degeneracy.

Acceptance Rate

The MCMC updating algorithms described in (4.7) and (4.8) depend on the pa-

rameters ντ and νs respectively. These parameters have to be set by the user and

are important because they control the range of the steps the algorithm can take

to explore the parameter space and ultimately determine the speed and mixing

properties of the chain.

In Figure 4.4 we see that, as expected, the acceptance rate of both updates

gradually decays as we increase the step length. This allows us to identify an

interval of values for ντ and νs that corresponds to a target acceptance usually

fixed between 0.20− 0.60.

Weights and Paths Degeneracy

The other important aspect of the simulation behaviour that we can partially

control is the weight degeneracy. By introducing the adaptive resampling step

we limit the risk of the empirical probability mass collapsing on a single particle.

We are equally aware that resampling tends to replicate the most likely paths

and might lead to an impoverished diversity of explored paths. This effect is also

marginally alleviated by limiting the frequency of the resampling.
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Figure 4.4: Acceptance rate as a function of step length. Left plot, acceptance
rate of the MCMC move to update τ 2,k1:p as a function of the control parameter ντ .
Right plot, acceptance rate of the MCMC move to update sk1:n as a function of the
control parameter νs.

Figure 4.5 shows that, in our case, adaptive resampling ultimately is beneficial

to preserve both path and weight diversity. We note in the left column that if

we systematically resample after every new observation is processed, we end up

fairly quickly with a single path that gets replicated for all N particle. As that

happens, all particles become equally likely, W j = 1/N for each j ∈ {1, . . . , N},
and ESS/N = 1 almost always. Figure 4.5 shows that, in our case, adaptive

resampling ultimately is beneficial to preserve both path and weight diversity.

We note in the left column that if we systematically resample after every new

observation is processed, the paths diversity drops fairly quickly till the same path

gets replicated for all N particle. As that happens, all particles become equally

likely, W j = 1/N for each j ∈ {1, . . . , N}, and ESS/N = 1 almost always.

With adaptive resampling, on the other hand, the degeneracy of weights and

paths is maintained at a tolerable level. In the right column, we preserve a variety

of paths that might have different likelihood as shown by the more disperse ESS
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plot. Note also how in some instances no resample is performed for several runs

and the number of particles remains stable as it is their weight. Even if at the

end of every iteration of the sampling procedure we only need to store one single

particle, it is important that we are able to preserve a richer variety of paths and

consequently a more homogeneous weight distribution from which we can sample.

4.4.3 Model Performance

We suggested on more than one occasion that our main objective is to have a model

that can simultaneously cluster the observations and select the relevant variables.

To assess how accurately our model performs these tasks, we employ the same

three indicators we introduced in section 3.5.

Clustering Accuracy

To test the clustering accuracy of the mixture of Lasso regressions with Student’s

t errors, we generate random datasets using the simulation settings described in

4.4.1. We then let the algorithm run and for each iteration we save one particle that

represents one sample from the posterior distribution of the label indicator vari-

ables, π(z1:n). Once we have collected enough samples we analyse the distribution

of the Adjusted Rand Index Score over the sampled paths.

In Figure 4.6 we can see that the distribution is highly skewed towards 1, which

means that most of the time the suggested clustering assignment perfectly matches

the true clustering. In other words, we can say that the classification probability

distribution we try to approximate π̂(z1:n) is fairly accurate and well representative

of the observed data, at least in this example.

Variable Selection Accuracy

The other major point we want to investigate is the accuracy of the variable se-

lection approach we implemented for the mixture of regressions. We would hope

that the model identifies as many informative variables as possible, and at the
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Figure 4.5: Left Column: Unconditional Resampling, we resample systematically every time
a new observation is fed into the SMC algorithm. Right Column: Adaptive Resampling, we
only resample whenever the ESS falls below a fixed threshold. Top Row: Weight Degeneracy,
measured as ESS/N , where 1 means all particles have equal weight, and 0 means the entire
probability mass is on one particle. Bottom Row: Path Degeneracy, measured as percentage
of paths that remain different as we loop through the observations. Each line represents three
separate repeats of the sampling procedure and darker lines correspond to earlier iterations.

same time is sufficiently parsimonious to exclude as many as possible of the noise

variables.

In Figures 4.7 and 4.8 we look, as before, at the distribution over all MCMC
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Figure 4.6: Adjusted Rand Index distribution. For every MC iteration we record
the adjusted Rand Index score of the proposed cluster assignment versus the true
clusters labels. Where a distribution centered around zero would be an indica-
tion of random assignment, the observed values give evidence that the model is
successfully assigning most of the data points to the proper cluster.

iterations of the relevant indices, in this case the sensitivity and specificity indexes.

Note that given the relatively small number of variables, p = 20, we should not be

surprised to observe some very coarse distributions, since there are only so many

informative or noise variables. In both plots it is evident that the overall variable

selection accuracy is considerable. The sensitivity of the selection algorithm is

fairly high, since most of the informative covariates are included and play a role in

the regression curves. Conversely, the specificity index is equally good if not better,

as very few noise variables are retained at all. We can explain the marginally lower

sensitivity compared to the specificity, by noticing that the model is successfully

parsimonious and achieves a satisfactory clustering performance even with only a

smaller subset of the informative variables.

4.5 Conclusions

In this chapter we have studied the problem of clustering paired samples of input

and output variables while attempting to identify the truly relevant covariates.

Following a Bayesian approach we have proposed a mixture of Lasso regressions
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Figure 4.7: Variable Selection accuracy over all MC iterations. In the left plot
we show the distribution of the Sensitivity index, i.e. the ability of the algorithm
to identify the truly informative variables. In the right plot the Specificity index
measures the accuracy of the model in isolating the non-informative variables. On
the other hand, the right plot shows that the model is very precise in excluding
the noise variables.

that respond to these requirements.

The model, by construction, admits a sparse solution which is achieved through

a cluster specific binary vector that dictates which variables should be included and

which variable should be excluded. To ensure we also obtain a robust solution, we

allow for regression errors to be student’s t distributed and implement a Bayesian

Lasso approach that impose regularization on the regression coefficients.

Since the model is complex and high-dimensional, an efficient sampling routine

is required to approximate the posterior distribution of the quantities of interest.

We implemented a Particle Markov chain Monte Carlo simulation procedure that

alternates a conditional Sequential Monte Carlo algorithm to sample from the

posterior of the clustering labels, with a Metropolised Gibbs sampler that update

the other relevant parameters conditional on the proposed cluster assignment.

We coded the estimation procedure in Matlab and used simulated data to asses

how accurately the model clusters the observations and selects the right explana-

tory variables. We have first verified the sensitivity of the sampling algorithm to
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Figure 4.8: Receiver Operating Characteristic, this plots illustrates the possible
risk that by including too many variables we could also have many noise variables
slipping through. In reality we observe that our model is fairly accurate as it can
identify and include the greater majority of informative variables with a very small
error rate.

changes in the set parameters that control the step length of the update moves.

Secondly we have demonstrated how we can contrast the weights and paths degen-

eracy in the SMC routine, using a trigger condition to execute the resampling step.

We have then discussed in more detail the performance of the proposed model in

likely standard scenarios.

Having verified that the model behaves and performs in line with our expecta-

tions, we can now rely on it to investigate the real life data problems we described

in chapter 1.

As a final remark, we should say that the potential extension of the model

would involve studying the case where the number of clusters K is unknown and

removing the assumption of independence between the covariates.
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4.A Appendix: Sampling Algorithms

For a more in depth discussion of Markov Chain Monte Carlo methods we refer

the reader to the related work of Robert and Casella (2004, 2011); Doucet et al.

(2000). Here we only review the essential notions and methods that are at the core

of the simulation method we propose.

In chapter 2, we introduced the basics of Monte Carlo methods and Importance

Sampling which we consider preliminary material for the following discussion.

4.A.1 Markov Chain Monte Carlo

We first describe the theory underlying MCMC methods, and then introduce the

Gibbs sampler, an MCMC method which is particularly suited to solve mixture

model inferential problems.

The MCMC methods provide an alternative way of approximating the integral

I(h) we defined in (2.20). We suggest an effective sampling procedure which relies

on the construction of an ergodic Markov chain with stationary distribution π.

A Markov chain in discrete time and general state space X , is a sequence of

random variables (X0, X1, . . .), with Xn ∈ X for n ≥ 0, which obeys the Markov

Property. That is, given the current state Xn, the distribution of the next state

Xn+1 is independent of the past history of the chain, (X1, . . . , Xn−1). When this

condition is verified, the distribution of the time homogeneous Markov chain {Xn}
on state space X is fully specified by the distribution of X0 and by its transition

kernel.

To construct a Markov chain which is π−invariant and ergodic, we need to

define easily simulated transition probabilities P (x, x∗) for x, x∗ ∈ X , such that

∫

x∈X

π(dx)P (x, x∗) = π(x∗).

Once we have run the Markov chain for a sufficiently long time, i.e. for large

n, we assume that the chain has been able to exhaustively visit the state space of

the support of π and that the distribution of Xn has become stationary. We can
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then collect a sufficiently large number of sample N from the chain and use the

empirical measure to approximate the target distribution π

π̂(x) =
1

N

N∑

j=1

δXj(x).

Therefore, due to the strong-law of large numbers for Markov Chains, see Meyn

and Tweedie (1993), the MCMC estimate

IMCMC(h(x)) =

∫
h(x) π̂(x)dx =

1

N

N∑

j=1

h(Xj)

converges almost surely to I(h).

4.A.2 Gibbs Sampler

The Gibbs sampler is designed to handle multidimensional problems where the

transition kernel is formed by the full conditional distributions.

Suppose that π is a p−dimensional density, known up to a normalizing constant,

which is defined on X , an open subset of Rp, and denote π(x) = π(x1, . . . , xp) the

distribution we want to sample from.

As we can see in Algorithm 4.3, at each step the Gibbs sampler replaces the

value of one of the variables with a value drawn from the distribution of that

variable conditioned on the remaining variables being fixed. More precisely, xd is

replaced by a value drawn from the full conditional distribution πd(xd|x\d) where

xd denotes the d−component of x and x\d denotes x1, . . . , xp but with xd omitted.
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Algorithm 4.3 Gibbs Sampling Algorithm

Step 1. Choose an initial state x0 ∈ X

Step 2. For j = 1, . . . , N repeat the following

Draw Xj
1 ∼ π1(x1|xj−1

\1 )
...

Draw Xj
d ∼ πd(xd|xj1:d−1, x

j−1
d+1:p)

...

Draw Xj
p ∼ πp(xp|xj

\p)

A sufficient condition to ensure the ergodicity of the chain is that none of the

conditional distributions be anywhere zero, which means that any point in the

space can be reached from any other point.

A drawback of the Gibbs sampler is that if there are strong dependencies within

the components (x1, . . . , xp), then it is likely to take a large number of iterations

before it reaches convergence.

4.A.3 Sequential Importance Sampling

Sequential importance sampling (SIS) is a direct extension of Important Sampling

(IS) we presented in chapter 2, and its objective is to compute expectations w.r.t.

a sequence of probability measures of increasing dimension {πi(x1:i); i = 1, . . . , n}
defined on {X i ∈ R

i; i = 1, . . . , n} where each density is only assumed known up

to a normalizing constant

πn(x1:n) =
p̃n(x1:n)

Zp
n

.

We assume that p̃n : X n → R
+ can be evaluated pointwise but the normalizing

constant Zp
n is unknown, this in fact is the case of our target distribution (4.6).

The importance density function qn(x1:n) = q̃n(x1:n)/Z
q
n is defined on a support

that covers the support of the target distribution πn, and ideally captures some of

the important characteristics, for example its scale or dependence structure. As
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for the IS case, given π(x) > 0 ⇒ q(x) > 0, the Radon-Nykodym theorem allows

us to write

πn(x1:n) =
ωn(x1:n) qn(x1:n)

Zp
n

,

Zp
n =

∫
ωn(x1:n) qn(x1:n) dx1:n

where the unnormalized weight function ωn(x1:n) is given by the ratio

ωn(x1:n) =
p̃n(x1:n)

qn(x1:n)

Assuming the proposal density has also been conveniently chosen because it is

easier to sample from, we can approximate qn(x1:n) using the empirical measure

obtained from the N particles (x11:n, . . . , x
N
1:n). Note that since the importance

distribution admits the following decomposition

qn(x1:n) = qn−1(x1:n−1) qn(xn|x1:n−1)

= q1(x1)
n∏

i=2

qi(xi|x1:i−1)

each particle xj1:n for j = 1, . . . , N has been derived recursively starting by sampling

X i
1 ∼ q1(x1) at time 1 and then iterating Xj

i ∼ qi(xi|xj1:i−1) at time i for i =

2, . . . , n.

Using the sampled particles we can approximate the target distribution

π̂n(x1:n) =
N∑

j=1

W j δXj(x1:n)

where the normalized weight W j
n = ωn(X

j
1:n) /

∑N
l=1 ω(X

l
1:n) is derived from the

unnormalized weight computed recursively

ωn(x1:n) = ω1(x1)
n∏

i=2

αi(x1:i)
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given

αn(x1:n) =
p̃n(x1:n)

p̃n−1(x1:n−1) qn(xn|x1:n−1)

the incremental importance weight.
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Chapter 5

Application to Gene Expression

Data

5.1 Introduction

Microarray gene expressions studies are routinely carried out to measure the tran-

scription levels of an organism’s genes. A common aim in the analysis of expressions

measurements observed in a population is the identification of naturally occurring

sub-populations. In cancer studies, for instance, the identification of sub-groups

of tumours having distinct mRNA profiles can help discover molecular fingerprints

that will define subtypes of disease (Smolkin and Ghosh, 2003).

Many different approaches have been suggested for partitioning biological sam-

ples, including hierarchical clustering, K-means and probabilistic methods based

on finite mixtures of distributions. One of the widely recognised advantages of

model-based clustering lies in the fact that it explicitly accounts for the experi-

mental noise that is typical of microarray studies (Liu and Rattray, 2010). The

gene expression measurement within each cluster are modelled as random variables

drawn from a group-specific probability distribution, several well-known parame-

ter estimation algorithms exist and have been applied to gene expression data (Qu

and Xu, 2004; He et al., 2006; Liu and Rattray, 2010; Melnykov and Maitra, 2010).

In this chapter we implement the probabilistic clustering algorithms we pro-
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posed in chapter 3 to robustly model a cohort of patients diagnosed with breast

cancer. The aim is to identify the informative genes and rank them by importance

in order to discover data clusters that emerge only when considering the expression

levels of the selected genes. Being able to identify the smaller subset of informative

genes is essential not only to improve the quality of the data partitioning process,

but also to aid the biological interpretation of the results.

The chapter is organised as follows. In section 5.2 we describe the microarray

data we intend to investigate to find evidence of clinically relevant breast cancer

subtypes. In section 5.3 we select the most appropriate model parameters and fit

a penalised mixture of t distributions. We also follow a resampling procedure to

propose a ranking of each genes contribution towards clustering. In section 5.4.2

we analyze the marginal distribution across the proposed clusters of some relevant

clinical variables and discuss the possibly different prognosis of patients in each

cluster. In section 5.5 we review our results in light of similar studies conducted

on the same subject.

5.2 Breast Cancer Data

The proposed sparse mixture models were used for the analysis of a publicly avail-

able breast cancer data set consisting of n = 128 early-stage tumors from those

collected at Nottingham City Hospital NHS Trust between 1986 and 1992 (Naderi

et al., 2007; Blenkiron et al., 2007). This cohort of tumours is representative of the

demographics of breast cancer, and the majority of patients were post-menopausal.

Microarray data recording the expression levels of p = 36, 939 probes are available

in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession num-

ber E-TABM-576. In particular, the total RNA from the primary breast tumors

was labelled using the Illumina TotalPrep RNA Amplification kit (Ambion) fol-

lowing manufacturer’s instructions. 1.5 ug of biotin-labelled cRNA were used for

each hybridisation on Sentrix Human-6 BeadChips v1.0 (Illumina, San Diego, CA)

following manufacturer’s protocol. Illumina’s BeadStudio software (version 3.3.8)

was used to process raw array data and output a single summarised value for each
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bead type on each of the arrays.

From the medical records of each patient, we also had access to several clinical

variables that we can use to independently verify the relevance of the proposed

clustering.

• Age: Patient age at time of diagnosis (in years).

• Meno: Menopausal status. Premenopausal (1), Postmenopausal (2).

• Size: Invasive tumour size in cm.

• Grade: Histological grade of invasive tumour (1, 2 or 3).

• Stage: Lymph node stage. Node negative (1), 3 or less axillary nodes (2), 4

or more axillary nodes, apical node, or axillary and internal mammary node

involved (3).

• NPI: Nottingham Prognostic Index = (0.2 x size (cm) + grade + stage).

• ER: Estrogene Receptor (H score) system, cut off at score of 10 or DCC cut

off 10fmol/mg protein).

• Dead: Alive (0), dead from breast cancer (1), dead from other causes (2),

lost to follow up (3).

5.3 Penalised t Mixture Model

Our analysis is unsupervised and we fit a penalised mixture of Student’s t dis-

tributions, model (3.4) discussed in chapter 3, in order to propose a reasonable

model-based clustering. Within the estimation process we execute a resampling

routine which provides the means for ranking genes according to their perceived

contributions to the cluster assignment.
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Model Assumptions

As a preliminary check, we verify that we assume the proper parametric density

function to describe the gene distribution. We fit the standard non penalised

version of the Gaussian and t mixtures and compute the likelihood ratio of the two

models. The resulting tests statistic of 12761.71 with a p-value of less than 0.0001

suggests that our hypothesis that genes expression levels are best described by a

Student’s t density function is in fact supported by the data. This conclusion is

confirmed also by the BIC which takes into account the fact that a t mixture is a

less parsimonious model.

Even when we fit the marginal density of each gene individually, as in Figure 5.1,

we see that in the majority of the cases the estimated degrees of freedom parameters

are very low. This evidence indicates that a more accurate fit can be achieved by

assuming t components rather than Gaussian ones, which is corroborated also by

the distribution of p-values from the likelihood ratio tests.
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Figure 5.1: Gaussian Vs t components. Left plot shows the distribution of fitted
degrees of freedom assuming a t density function. Right plot shows the distribution
of p−values of the likelihood ratio test for all genes.
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Model Selection

Following the model selection procedure detailed in section 3.4 and already applied

in the financial application in section 6.6, we infer the number of clusters K by

testing up to five possible components, K = {2, . . . , 5}.
The optimal level of penalisation for the location and dispersion parameter

is again found exploring all possible combinations of λµ and λσ in the interval

[0, . . . , 10] and choosing the one that minimizes the modified BIC criterion.

In Tables 5.1, 5.2, 5.3 and 5.4 we report the detailed output of each simulation

run on the grid search. For each combination of λµ and λσ we quote the distance

in BIC units from the lowest level reached under each assumption, K = {2, . . . , 5}.
We note that despite some discontinuity caused by the different number of variables

retained at each iteration, there is a progressive degradation towards the minimum

point.

λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 496190 299131 269765 255141 252057 250051 249673 250659 251453 252419 253433
1 304439 102158 90788 59026 85327 53969 54343 55332 76619 73764 81059
2 271544 88345 56510 27265 39927 22155 22490 42056 14582 26166 27473
3 291591 74984 42869 11451 11696 29033 10990 32777 9717 33845 31160
4 287673 56047 24521 29325 21242 19629 19365 20227 21296 27763 10760
5 259530 55970 35497 11509 22544 17473 5926 17978 6887 8242 21345
6 261046 57871 34020 12055 7397 6036 16635 17396 7581 8263 19531
7 263601 69894 26371 24081 18859 23932 7174 7704 8882 19132 20226
8 266387 62287 37557 9203 10253 4114 4212 21483 18901 22750 11035
9 267621 56702 39148 16954 20459 4521 18089 0 1309 21109 22084
10 270346 67352 24258 19126 22789 12039 3967 24917 13076 14201 15387

Table 5.1: Model Selection, grid search assuming K = 2. Difference in BIC units
from best penalisation level λµ and λσ.

λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 715748 418860 368117 348721 340253 338392 363204 339281 366690 340110 344272
1 413325 160013 111277 93360 84884 108106 81609 83977 85423 93913 89178
2 370716 113910 60606 43199 35336 33235 39251 33488 36216 38076 40171
3 356324 87248 41337 22505 14832 12444 12501 14126 15972 18075 19920
4 350387 78111 64056 14979 6406 5007 4171 6361 5351 9557 12152
5 395252 80457 29918 11072 3460 10170 22965 2902 2483 6800 8622
6 363507 83024 30326 9805 3228 52 0 1872 3657 5663 7593
7 NA 83712 32418 11890 3522 65 1026 1766 3648 5626 7540
8 NA 88621 33295 13196 5095 2482 2378 2818 4646 18371 8614
9 376520 97253 36333 15379 26120 4279 4108 4970 6541 8301 10485
10 NA 102816 39925 17472 8688 5308 5304 6245 7913 9485 11943

Table 5.2: Model Selection, grid search assuming K = 3. Difference in BIC units
from best penalisation level λµ and λσ.

In Figure 5.2 we apply some degree of smoothing by interpolating the output
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λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 883033 563943 487388 459927 448919 444569 447565 445096 447074 452178 451442
1 557100 222731 156136 131376 119747 112084 113327 116789 123181 120291 122195
2 501169 154212 87895 65402 51548 50236 49368 51492 54868 55697 62570
3 486039 134467 64912 31548 22330 21550 21536 18782 24904 24922 28666
4 NA 137459 55109 26488 16483 11996 9967 14201 16216 26620 20520
5 NA 112920 48954 21375 8026 5316 4237 3773 4654 9174 13266
6 NA 135566 51272 23608 7527 3337 2046 5280 7216 6456 9097
7 NA 133335 51545 22101 9065 4632 4006 3239 8140 7295 18260
8 761167 150730 56264 23590 5992 5831 9289 2702 191 11084 8093
9 901745 149743 61223 27740 14262 6054 2071 0 729 2141 12864
10 NA 148479 65089 20873 15726 1758 1050 274 7565 7844 14558

Table 5.3: Model Selection, grid search assuming K = 4. Difference in BIC units
from best penalisation level λµ and λσ.

λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 1095880 716338 625206 595298 575313 569698 562102 564070 567886 571899 572658
1 928946 289149 210275 173234 160529 151075 155095 156526 164262 156967 168482
2 NA 204744 126402 80250 69494 70533 69253 73599 80359 85251 85235
3 NA 161040 88449 53387 34103 32413 31404 33682 42835 43251 46213
4 800686 164737 65796 27065 25979 20035 23601 13683 19001 27308 29325
5 NA 169385 71684 30501 19385 12476 8191 7911 15048 12639 12243
6 1160384 213481 69246 40025 13723 8464 7156 4687 5778 15344 9124
7 865998 198420 68356 20565 3174 945 13192 8645 20034 9383 16776
8 985544 202227 63106 23342 23533 7412 0 1325 11544 8571 6752
9 NA 245857 87026 39537 14123 4604 9366 5160 5364 17736 10285
10 NA 240396 98007 44610 23186 13412 8350 8641 15357 10265 11978

Table 5.4: Model Selection, grid search assuming K = 5. Difference in BIC units
from best penalisation level λµ and λσ.

from previous tables and note that the optimal level of penalisation is localised in

a fairly stable region even assuming different number of components.

The results summarized in Table 5.5 support a choice of a 3-components mix-

ture. The BIC is at its lowest for K = 3 while the log likelihood tends to overfit

the data by assuming too many components.

# Clusters LLIK AIC BIC

2 -1107716 2268718 2344705
3 -1064321 2208573 2322554
4 -1034137 2174849 2326825
5 -1010667 2154553 2344524

Table 5.5: Model Selection PTM. Number of clusters.

5.3.1 Clustering Results

As suggested by the evidence from the experiment done with simulated data in

section 3.5, we also implement a resampling step to reduce the dimension of the
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Figure 5.2: Optimal level of penalisation λµ and λσ for K = 2, . . . , 5 according to
modified BIC criterion.

data. Of the 36, 939 genes recorded we only retain 1128 probes which have a

selection probability above 0.7 (about 3% of the total). The results of fitting a t

mixture of three components using the selected genes across the 128 tumors are

displayed in Figure 5.3, where on the x-axis we have the probes and on the y-axis

the patients grouped by cluster.

On first inspection, we can see that there is a noticeable correspondence between

the cluster we propose and the expression level patterns of the genes depicted in the

heatmap. It is clear that different genes are necessary to isolate different groups

of patients. We note that, typically, the separation emerges because there is a

marked under expression of certain informative genes in one cluster relative to the
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other two.

Figure 5.3: Heatmap of expression levels of selected Genes clustered assuming three
component. On the side the distribution of the Estrogen Receptor (ER) factor in
each cluster, and the clustering assignment assuming only two components.

In order to interpret the clustering allocations, we explore the correlation with

the clinical sub-groups induced by the Estrogen Receptor (ER). The ER status as

well as the patients cluster assignments are reported at the top row of Figure 5.3.

Approximately 80% of human breast carcinomas present an estrogen receptor α-

positive (ER+) disease, with ER+ breast cancers responding well to therapies, and

ER-negative tumours being more resistant. ER status is an essential determinant

of clinical and biological behaviour of human breast cancers, and it is well known

that the major molecular features of breast cancer segregate differently according

to ER status (Schneider et al., 2006). With K = 2, our analysis finds clusters that
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overlap with ER-positive and ER-negative tumours, which is in line with previous

findings on independent data sets (Van’t Veer et al., 2002, for instance). In this

case, 82.5% of all ER- tumors fall into cluster A, and the remaining ones into cluster

B. When an additional cluster is added, we observe a split of the ER+ dominated

cluster B into two groups: 81% of the samples in cluster A are still ER-, whereas

the majority of samples in B and C are ER+ (88% and 76%, respectively).

5.3.2 Variable Selection Results

The other important property of the model we propose is that while identifying and

fitting each cluster density function, it also selects the most informative variables.

To verify that this is in fact the case we perform a non parametric Kruskal-Wallis

rank sum test (Hollander and Wolfe, 1999) under the null hypothesis that the three

clusters have been sampled from the same distribution. In Figure 5.4 we show a

separate boxplot for the p-values of the selected genes and for the excluded ones.

We see that for the genes that we considered informative, the null hypothesis is

refused in almost all cases, whilst for the excluded genes the clustering assignment

is irrelevant. On the basis of this evidence we conclude that the proposed model

really identifies clusters of patients with significantly different gene expression levels

and also selects the more informative genes.

One other assumption we want to see confirmed is that the selected genes have

marginal Student’s t distributions. In Figure 5.5 we plot the histogram of the

fitted degrees of freedom parameter ν for every component. It appears that in the

majority of cases the estimated density has longer tails than a Gaussian, therefore

it justifies assuming low degrees of freedom t density as suggested also by the

distribution of the p-values of the likelihood ratio test.
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Figure 5.4: Kruskal-Wallis rank sum test under the null hypothesis that the three
clusters identified come from the same distribution. Left boxplot represents the
distribution of p-values of the test conducted on the selected genes. Right boxplot
is the same test on the excluded variables.
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genes by cluster. Right plot shows the distribution of p−values of the likelihood
ratio test by cluster.
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5.4 Biological Explanation

5.4.1 Gene Ranking

Several of the genes retained by the model since their selection probability is above

the threshold 0.7, had also been previously included in independent ER signatures

(Abba et al., 2005; Thakkar et al., 2010). Among the highest ranking genes we find

(with selection probabilities): FOXA1 (0.935), NTN4 (0.906), CSNK1A1 (0.892),

STC2 (0.885), SF3B3 (0.863), MMP12 (0.860), ITGB7 (0.845), CA12 (0.831),

MLPH (0.827), GATA3 (0.824), NAT1 (0.802), GABRP (0.781), DUSP4 (0.745),

NUTF2 (0.777), XBP1 (0.756), SLC43A3 (0.752), PLAT (0.727), ESR1 (0.727)

and AARS (0.713). For example, FOXA1 has very recently been found to be a

key determinant of ER function and endocrine response (Hurtado et al., 2011).

Moreover, FOXA1, GATA3 and ESR1 have also been found to be associated to

ER status in an analysis of invasive ductal carcinoma (Schneider et al., 2006).

In Figure 5.6 we plot the fitted component density functions of FOXA1, GATA3,

ESR1 and NAT1. The expression level of these genes for patients in cluster A fol-

low a clearly separate and distinct distribution from the other two clusters which

are ER+ dominated. To appreciate how important this separation can be, note

that genetic variants immediately upstream of ESR1 have been linked to breast

cancer risk.

Very recently, A.K. Dunbier, H. Anderson, Z. Ghazoui, E. Lopez-Knowles, S.

Pancholi, R. Ribas, S. Drury, K. Sidhu, A. Leary, L. Martin (2011) found that three

open reading frames within this region are tightly co-expressed with ESR1, and in-

vestigated the function of these three genes: C6ORF97, C6ORF96 and C6ORF211.

Their findings suggest that the genes could contribute to the phenotype associated

with ER positivity. In addition, they may be involved in the mechanism by which

genetic variation in this region of the genome contributes to breast cancer suscep-

tibility. These three genes have also been found to have high selection probabilities

in our ranking (0.770, 0.713 and 0.709, respectively).
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Figure 5.6: ER related genes selected by resampling methods.

5.4.2 Clinical Variables by Cluster

To further investigate whether the three clusters may indicate clinically distinct

subgroups of patients, we explore the frequency distribution of the NPI, grade,

tumor size and survival rate. In this Section we report on the prognosis profile of

the 128 patients, broken down by cluster. When using two mixture components, all

the variables display a markedly different distribution in the two clusters, which are

representative of ER+ and ER- tumors. When using three mixture components,

all variables are differently distributed in the ER+ dominated clusters B and C,
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with cluster C being more similar to cluster A, which is ER- enriched.

Nottingham Prognostic Index

The NPI is an important index used to determine prognosis following surgery for

breast cancer. This index uses pathological variables, such as nodal status, tumor

size and histological grade, to generate a prognostic score for each patient that

is predictive of outcome (Callagy et al., 2006). Since it is a continuous variable,

NPI offers a responsive and sensitive means of modelling a continuum of clinical

aggressiveness, indexing the outcome likelihood of invasive breast cancer patients.

In Figure 5.7 we report the boxplot of the NPI marginal distribution across

different clusters of patients. We find that cluster A, which presents mainly ER-

tumors, is characterized by an higher level NPI. Interestingly in the K = 3 case, we

see a split of the ER+ dominated cohort, where cluster B shows a more benign NPI

profile. We can verify that the differences we observe are statistically significantly

by computing the Kolmogorov-Smirnov test of equality. The p-values of the paired

test, A/B = 0.0005, A/C = 0.9517, B/C = 0.0090, confirm that, in terms of NPI

profile, cluster A and C are much more similar despite having different ER status.
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Figure 5.7: NPI distribution by cluster assuming two and three components.

Another important test that support this conclusion is the χ2 test for indepen-

dence. Since NPI is a continuous variable, we resolve to bin the observations in
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quartiles in order to compute the contingency table 5.6. We find that the p-value

of the χ2 test is 0 for K = 2 and 0.003 for K = 3 which reflects the significant

deviation from what would be a random cluster assignment.

K=2 K=3
Quartile Cluster A Cluster B Cluster A Cluster B Cluster C Expected

1 0.07 0.33 0.06 0.36 0.15 0.24
2 0.15 0.30 0.19 0.30 0.19 0.25
3 0.39 0.23 0.39 0.20 0.37 0.28
4 0.39 0.14 0.35 0.13 0.30 0.22

Table 5.6: NPI contingency table assuming two and three components.

Grade

One other clinical variable that appears to have significantly different distribution

across the clusters we propose is Grade. It is a measure of cell appearance, where

higher grade means an higher cell life alteration caused by the tumor.

In Figure 5.8 we find a similar pattern to the one we encountered for NPI.

Cluster A is generally showing a less favourable prognosis which, in the K = 3

case, is close to the Cluster C. As before, this impression is confirmed by the p-

values of the Kolmogorov-Smirnov test of equality: A/B = 0.0, A/C = 0.9998,

B/C = 0.0010.

In the contingency table 5.7 we report the exact frequency of each state in each

cluster. The p-value of the χ2 test for independence is 0 for K = 2 and 0 for K = 3

which would suggest that the partition we fitted is not random.

K=2 K=3
Grade Cluster A Cluster B Cluster A Cluster B Cluster C Expected

1 0.07 0.34 0.06 0.39 0.15 0.26
2 0.29 0.46 0.29 0.50 0.30 0.41
3 0.63 0.20 0.65 0.11 0.56 0.34

Table 5.7: Grade contingency table, assuming two and three components.
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Figure 5.8: Grade of invasive tumour by cluster assuming two and three compo-
nents.

Size

The size of invasive tumor seems to be another obvious clinical variable we should

monitor to asses the relevance of our clustering results. In Figure 5.9 and Ta-

ble 5.8 we report the boxplots and frequency table. In this case the p-values

of the Kolmogorov-Smirnov test of equality, A/B = 0.2273, A/C = 0.5387,

B/C = 0.0022, seem to suggest that only Cluster B and C are significantly dif-

ferent. Similarly only the p-value of the χ2 test for K = 3 is significant 0.008,

whereas for K = 2 is 0.17.

K=2 K=3
Size Cluster A Cluster B Cluster A Cluster B Cluster C Expected
1 0.25 0.45 0.30 0.53 0.11 0.39
2 0.10 0.11 0.10 0.09 0.19 0.11
3 0.28 0.30 0.30 0.26 0.37 0.29
4 0.38 0.14 0.30 0.13 0.33 0.21

Table 5.8: Size of invasive tumour (in cm) by cluster assuming two and three
components.
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Figure 5.9: Size contingency table assuming two and three components.

Observed Survival Rate

Ultimately, one of the most important factors to consider is the survival rate of

the patients within each cluster. For this analysis we only look at the patients for

which we have follow up information at the time when the data were collected. In

this case we only have a smaller subset of 115 patients excluding those for which we

do not have after surgery information and those that have died for other reasons.

In Figure 5.10 we plot the ratio of the patients whose medical record indicate they

have not died by cancer after the surgery and the subsequent treatment.

At first inspection, the pattern we observe seem to be in line with the profile of

the other clinical variables, where cluster B has an higher expectation of survival.

The Kolmogorov-Smirnov test on paired clusters returned the following p-values:

A/B = 0.6803, A/C = 0.9994, B/C = 0.1766, which suggests that the only

significant difference is between cluster B and cluster C, which otherwise shows a

survival rate fairly similar to cluster A.

The χ2 test based on the contingency table 5.9 considers the marginal distri-

bution of all clusters simultaneously and provides a stronger evidence that they

are not independent since the p-value 0.035 is significant for K = 3. On the other

hand, with a p-value 0.219 for K = 2 we can not affirm that the survival rate of

the patients is significantly different under the two clusters assumption.

175



Application to Gene Expression Data

Cluster A Cluster B

Survival Rate

0.0

0.2

0.4

0.6

0.8

1.0

Alive

Dead

Cluster A Cluster B Cluster C

Survival Rate

0.0

0.2

0.4

0.6

0.8

1.0

Alive

Dead

Figure 5.10: Observed Survival rate by cluster assuming two and three components.

K=2 K=3
Cluster A Cluster B Cluster A Cluster B Cluster C Expected

Alive 0.62 0.75 0.64 0.81 0.54 0.71
Dead 0.38 0.25 0.36 0.19 0.46 0.29

Table 5.9: Observed Survival rate by cluster assuming two and three components.

5.5 Validation with other Studies

Different studies have tried to identify breast carcinomas subtypes beyond the

simple classification between positive and negative Estrogen Receptor status (Sorlie

et al., 2001; Calza et al., 2006; Sotiriou and Pusztai, 2009; Nicolau et al., 2011). The

number of subtypes is not consistent across papers and there is no clear consensus

on the gene expression signatures that should mark each group.

In order to validate our results, we have compared our proposed clustering as-

signment with the clustering obtained by fitting a t mixture on the list of genes

identified as relevant by Calza et al. (2006). The 87 genes used by Calza et al.

(2006) is a subset of the 500 genes that were originally selected by Sorlie et al.

(2003) who isolated those that showed the most informative variation among sub-

types of tumors. In their study of 412 patients from Stockholm and Uppsala,
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Sweden, genes were median-centered and subtypes were isolated using an average-

linkage hierarchical clustering algorithm based on uncentered correlation distance

metric.

The heatmap in Figure 5.11 shows the gene expression patterns in our cohort

of 128 samples using the Basal-like signatures provided by Calza et al. (2006).

Comparing their cluster assignment with ours we find that the Basal-like subtype

can be positively mapped to our cluster A. Not only is it characterised as expected

by an higher percentage of ER- cases, but we observe a consistent over-expression

of the relevant genes in correspondence of Cluster A. The clinical prognosis also

is in line with what is described by previous papers: patients of this group are

expected to have an above average tumor size, see Figure 5.9, an higher frequency

of grade three carcinomas, Figure 5.8, and they are also less responsive to therapy,

Figure 5.10.

Within the ER+ dominated subgroup, there is evidence to suggest a correspon-

dence between our cluster B and the Luminal A subtype, whereas our cluster C

seems to correspond to the Luminal B subtype. Previous studies have generally

found it difficult to separate the two Luminal subtypes and suggested different lists

of marker genes to isolate them. We again apply the signature used by Calza et al.

(2006) to our cohort of 128 tumor, and the resulting heatmap is plotted in Figure

5.12.

We note a clear separation between our cluster A and the remaining two. Al-

though the separation between cluster B and C is less clear, we can justify the three

clusters given that the genes in cluster B are generally the most over-expressed.

Figure 5.13 shows the expression profile of the Luminal B genes. In this case too we

can identify three main patterns overlapping with our three clusters; notably, the

gene expression patterns in cluster C appear to be more similar to cluster A, de-

spite their different ER status. This result has also been confirmed by other studies

in which Luminal B and ER- dominated subtypes have been found to share simi-

lar grade-associated and outcome-associated genes expression levels (Sorlie et al.,

2003; Calza et al., 2006). The differences in prognosis between cluster B and C can

also be seen in Figures 5.9, 5.8, and are in line with the results described by Sorlie
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Figure 5.11: Basal-like markers genes

et al. (2001) and Nicolau et al. (2011) for Luminal A and B subtypes. Luminal B

patients (as in our cluster C) present a bigger tumor size, higher frequency of grade

3 carcinomas and ultimately a less favourable survival rate. These properties make

them more similar to Basal-like subtype (as in our cluster A), than to Luminal A

(as in our cluster B).

In order to make a direct comparison between the cluster assignments we would

have obtained had we used the signature of Calza et al. (2006), and the cluster

assignment we propose, we have fitted a (non-penalised) three-component mixture

model using the 87 genes of Calza et al. (2006). Table 5.10 summarises the outcome

of this comparison. We find that there is a fair agreement and that most of the

patients are assigned to the same clusters. Cluster A, that is the ER- dominated
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Figure 5.12: Luminal A genes list used in the study of the Uppsala cohort

group of patients that we mapped onto Basal-like subtype, is the one which is more

easily identifiable and it shows an almost exact match between the two models.

On the other hand, there is slightly more disagreement when classifying the ER+

patients. Although the overlap between models is still clear, as noted before, the

separation of Luminal A and Luminal B subtypes is usually more arduous.

5.6 Discussion

In this chapter we have applied the penalised mixture of Student’s t distribution

we developed in chapter 3 to model a cohort of 128 patients diagnosed with breast

cancer. A resampling procedure for model selection and variable ranking has also
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Figure 5.13: Luminal B genes

PTM

Cluster A Cluster B Cluster C
Cluster A 27 0 3

TM Cluster B 1 58 3
Cluster C 3 12 21

Table 5.10: Overlap between the cluster assignment we propose, PTM, using 1128
genes, and the cluster assignment obtained fitting a t-mixture model on the 87
genes identified by Calza et al. (2006)

been implemented, which allowed us to reduce the number of genes to fit to 3% of

the original data dimensions.

We identify three clinically important subtypes that are characterized by dis-

tinct gene expression profiles. We find that our proposed clustering is able to
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clearly separate the ER+ from ER- samples and independently confirm the results

of other studies on this subject. Moreover, there is an indication that the selected

genes may be important to explain the differences regarding the marginal distri-

bution of certain relevant clinical variables and the typical medical prognosis we

observe in each cluster.

Further investigation might try to directly regress the clinical profile of each

patient on the genes we have identified as informative. Positive results in this

area would improve our knowledge of the relation between over/under expression

of certain genes and the insurgency of specific tumor subtype.
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Chapter 6

Application to Financial Data

6.1 Introduction

In chapters 3 and 4, we have presented two different methods for clustering het-

erogeneous data and selecting informative variables. The first method follows an

unsupervised approach and consist in fitting a mixture of Student’s t distributions

using an EM algorithm. The second is a mixture of Lasso regressions with t er-

rors, fitted using a PMCMC simulation procedure. We now want to adopt both

models to propose a reasonable clustering of financial markets, based on a subset

of measurable features of their price dynamics. The ultimate goal is to find a

more appropriate systematic trading strategy whose parameters can be robustly

calibrated on groups of similar markets.

In order to produce a reliable clustering, we first need to identify the relevant

features that characterize each financial market. Striving to be as objective as

possible we rely only on the observed price history from which we try to infer the

properties of the underlying market dynamics. We derive the distribution and time

series of returns and discuss what are the most appropriate statistics that we can

use to measure their important features.

Once we have computed all the relevant statistics for each market, we collect

them in data matrix that we then use as basis for the clustering algorithm. We

fit both of our models and discuss what the informative statistics are, that have
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driven the clustering and whether the commonly accepted partition based on macro

sectors is justified by the evidence we found.

The outline of the chapter is as follows. In section 6.2 we present the list of fi-

nancial markets we intend to cluster and describe how to preprocess historical price

data to obtain a more stationary series of returns. In section 6.3 we discuss what

the relevant features of the returns distributions are and the related statistics that

can be used to measure them. In section 6.4 we analyze the time series of returns

and focus our attention on the statistics that measure the temporal dependence

and scaling properties of returns. In section 6.5 we collect all statistics in a data

matrix that we are going to fit using our proposed models. We also compute an

index that represents the investment performance of a simple systematic trading

strategy and take it to be the response variable that we would like to cluster. In

section 6.6 and 6.7 we review the clustering and variable selection results of the

penalised t mixture model and Lasso regression model respectively. We illustrate

the evidence in support of the conclusions we draw and find it to be consistent

with our knowledge of the problem. In appendix 6.A we provide some background

notions on the theoretical distributions and random process that are commonly

adopted in finance to fit the distributions and time series of returns.

6.2 Data

The dataset analysed has been kindly provided by AHL Research, a quantitative

investment manager, and integrates external sources with proprietary records of

live prices sampled during actual trading activity. The selection of markets consid-

ered covers several sectors, assets classes and regions. The details of each market

considered are listed in Table 6.1. The frequency of the samples is daily, typically

the end of day official settlement price, whenever the exchange provides one.

6.2.1 Macro Sectors

Financial markets are commonly grouped in seven macro sectors based on the

fundamental nature of the underlying good traded in that market. Here we give a
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MARKET SECTOR DESCRIPTION EXCHANGE TYPE START CCY
ADL METALS Aluminium LME C 19900101 US
CPN METALS Copper.NY COMEX F 19900101 US
GLN METALS Gold COMEX F 19900101 US
SLN METALS Silver COMEX F 19900101 US
CRC AGS Corn CBOT F 19900101 US
WHC AGS Wheat CBOT F 19900101 US
SBC AGS Soyabeans CBOT F 19900101 US
SGN AGS Sugar CSCE F 19900101 US
CFN AGS Coffee.NY CSCE F 19900101 US
CCN AGS Cocoa.NY CSCE F 19900101 US
CTN AGS NY.Cotton NYCE F 19900101 US
EUUS CURRENCY Euro Vs USD IB X 19900101 US
ADUS CURRENCY Australian D Vs USD IB X 19900101 US
SFUS CURRENCY Swiss Franc Vs USD IB X 19900101 US
UKUS CURRENCY British Pound Vs USD IB X 19900101 US
YNUS CURRENCY Japanese Yen Vs USD IB X 19900101 US
EUYN CURRENCY Japanese Yen Vs Euro IB X 19900101 YN
CDUS CURRENCY Canadian Dollar Vs USD IB X 19900101 US
ESPC STOCKS E.mini.SP500.Future CME F 19900101 US
TSM STOCKS SP.Canada.60.Ind MON F 19900101 CD
FTL STOCKS FTSE LIFFE F 19900101 UK
DXF STOCKS Dax.Index DTB F 19901123 EU
CGP STOCKS CAC.40.10EUR MATIF F 19900101 EU
NKS STOCKS Nikkei.225 SIMEX F 19900101 YN
TSJ STOCKS Tokyo.Stk.Exch TSE F 19920722 YN
AOSS STOCKS Ausi.SPI200.Ind SFE F 19900101 AD
ESTF STOCKS Euro.STOXX DTB F 20000609 EU
HSH STOCKS Hang.Seng HKFE F 19900101 HK
KIS STOCKS Korean.KOSPI200.Ind KSE F 20000920 KW
TWS STOCKS Taiwan.MSCI.Ind SIMEX F 19970109 US
TNC BONDS 10yr.T.Notes CBOT F 19900101 US
GTL BONDS Gilts LIFFE F 19900101 UK
DBF BONDS Euro.BUND EUREX F 19900101 EU
JBT BONDS Japanese.Bond TSE F 19900101 YN
ABS BONDS Ausi.10yr.Bond SFE F 19900101 AD
CBM BONDS Canadian.Bond MON F 19900214 CD
EDC IRATES Eurodollar CME F 19900101 US
SSL IRATES Short.Sterling LIFFE F 19900101 UK
EUL IRATES Euribor LIFFE F 19900101 EU
EYT IRATES Euroyen TIFFE F 19900101 YN
ARS IRATES Ausi.T.Bills SFE F 19900101 AD
NGN ENERGY Natural.Gas NYMEX F 19900403 US
CLN ENERGY Crude.Oil.NY NYMEX F 19900101 US
HON ENERGY Heating.Oil NYMEX F 19900101 US
RBN ENERGY RBOB.Gasoline NYMEX F 19900101 US
PTL ENERGY Gas.Oil IPE F 19900101 US

Table 6.1: List of financial markets and macro sectors considered. Legend: Mar-

ket: Three letters code to identify each market. Sector: Each market belongs
to one of the seven macro sector. Description: Short description of the market.
Exchange: Main exchange where the instrument is traded. Type: The type of
contract used to execute the transaction. It can be Cash, X, if the good is traded
on the spot, like currencies, exchange traded futures, F or less standardised for-
wards contracts C. Start: The first date the daily records are available from.CCY:

Currency in which contract is denominated.
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brief description of the major characteristics of each sector.

Metals: This sector includes all markets trading the raw goods used mainly in

heavy industry. Historically, being dominated by specialist agents, it has not been

very liquid nor transparent. It typically operates over the counter with a closed

group of dedicated market makers. Another peculiarity is that the production can

only respond slowly to surge in demand. The reason is that to increase production

typically it is necessary to make a considerable investment of money and time, e.g.

opening new mines. The consequence of this inelasticity is protracted imbalances

between demand and offer and wide fluctuations in prices.

Stocks: This sector includes all the markets where shares of ownership of

Public Companies are traded. It is the biggest in terms of capital invested and

the one that attracts most attention. It is recognised as one of the most efficient

since any imbalances between supply and demand are quickly absorbed and any

deviation is promptly corrected. Its liquidity and transparency make it one of the

most difficult sectors to predict.

Bonds: This sector contains all markets dealing with sovereign government and

corporate debt obligations. It is commonly perceived to be a risk free investment.

Being the safest of all alternatives available it is also the benchmark for evaluating

the risk reward profile of any other asset class. It is mainly driven by countries’

fiscal policies and central banks’ monetary interventions.

Short Term Interest rates: This sector covers inter-banks and government

short term loans markets. Similarly to the bond sector, it responds to central bank

monetary policies and it is strictly linked to business cycles. It is also a measure

of the short term cost of borrowing. Any fluctuation in this sector due to interest

rates movements has direct repercussion throughout all other assets classes.

Energies: This sector includes all markets dealing with fossil fuels and other

goods that can be used as a source of energy. It shows a seasonal pattern due to

the different consumption level during warm and cold weather. It is also linked

to the economy long term cycle since a booming economy does require an higher

usage of energy. Historically it has also shown abnormally high volatility due to

its strategic and geopolitical importance.
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Agriculturals: This sector includes those markets trading the raw output of

the agricultural industry. It is dominated by producers of the goods, consumers

and specialist market makers. Being linked to farms cycles it has an high degree of

seasonality. Crops are also very sensitive to the weather conditions during particu-

lar phases of their growth. For this reason, meteorological events can influence the

price patterns of these markets. Note that producers are systematically interested

in hedging future harvest, e.g. selling next year’s crop to buy the seeds to plant

today. Conversely, the industries that process these goods want to have guaranteed

delivery of the raw material to their factories. Market makers provide the extra

liquidity to both parties.

Currencies: This sector includes those markets that exchange liquid assets

and liabilities which are denominated in different currencies. Their operativity

is important to set the relative value of one currency versus another and has an

impact on the flow of goods and capital between countries. It ultimately effects all

other sectors since every financial contract in any markets has to be denominated

in a particular currency. The currency markets are not centralised in any physical

exchange and operate virtually for 24 hours a day.

Market’s Returns

Financial markets can be thought as complex dynamical systems whose evolution

drives the price or volume processes. The price change in response to incoming

news or to demand vs offer imbalances, is the most informative and closely watched

projection of market dynamics. In the book by Mantegna and Stanley (1999), three

different methods have been suggested to compute returns series from price series.

If p is the price of an exchange traded instrument at time t and δ is the time

interval, we obtain:

yt,δ = pt − pt−δ.

Note that for daily returns we will omit the index δ = 1, and use the simpler

notation yt = pt−pt−1. The price difference maintains the historical accuracy of the

monetary variations, e.g. the daily price excursion necessary to compute historical
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profits and losses. On the other hand, the magnitude of price changes is usually

proportional to the nominal level of prices. In this case, it would be inappropriate

to compare returns of two periods when prices were orders of magnitude apart.

The volatility measure, for example, would be biased towards the time of high

nominal prices. The percentage change in prices is computed as

y′t,δ =
pt − pt−δ

pt−δ

.

It partially corrects the distortion on the volatility measure but it is still affected

by changes in scale. Alternatively, the changes in natural logarithm of prices

y′′t,δ = log pt − log pt−δ

should correct for the average drift in scale, but it does that by introducing a non

linear transformation. The second order effects in this case are difficult to assess.

Normalisation

One known problem of financial time series is that they are not stationary. The

economy is an open system that evolves through time. To make historical returns

more homogeneous and comparable we adopt the solution of normalising the series

of returns by a rolling volatility measure, as shown in Figure 6.1. This transfor-

mation is intended also to filter out the bias introduced by the short memory of

the volatility process, see Figure 6.2.

We now take the opportunity to clarify some notations used in the remainder

of the chapter: y denotes the collection of returns computed as price differences;

(yt)
T
t=1 is the series of daily returns that preserves the magnitude and the sign of

historical prices excursions; y(v) denotes the collection of normalised returns. They

are computed by dividing the price difference by a lagged rolling volatility measure

y
(v)
t =

yt
volt−1

(6.1)
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where vol is computed as exponentially weighted moving average of the absolute

price differences

volt = α(V ) |pt − pt−1|+ (1− α(V )) volt−1 (6.2)

with exponential decay α(V ) which we typically set to 0.02. The normalised price

series will be mainly used when analysing and comparing different returns distri-

butions.
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Figure 6.1: Normalisation by the rolling volatility. Top row, Simple price differ-
ences y. Bottom row, price differences divided by rolling measure of volatility,
y(v).
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Figure 6.2: Rolling Volatility Measure of daily returns, FTSE future

6.3 Returns Distribution Statistics

We have established that we can investigate financial markets’ dynamics by study-

ing the price process and in particular the daily price returns which represent the

evolution of the market through time. We now want to investigate which statistics

we can compute to best describe a market returns distributions. The objective, as

we discussed in chapter 1, is to measure the most relevant features of each empirical

distribution so that we can characterize each market and have enough informative

variables to guide the clustering assignment.

6.3.1 General Descriptive Statistics

The general descriptive statistics are used to describe the basic features of the

returns’ distribution, like the one in Figure 6.3. They provide simple summaries

about the relevant aspects of its shape and together with simple graphics analysis

they form the basis of virtually every quantitative analysis of data. We briefly

describe all the statistics we compute grouped by the feature of the distribution

they are trying to measure.
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Figure 6.3: Sampled probability distribution for normalised FTSE futures returns.

Location. The distribution of markets returns is generally assumed to be

centered around zero. In reality we can expect a marginally positive drift to

accommodate for inflation and structural long term growth of the economy. The

location of a distribution is indicated by the Mean, and Median. To exemplify how

these simple statistics can characterize clusters of market, in Figure 6.4 we show

the boxplot of sample mean and median grouped by the macro sectors. Even if

our aim with the present study is to refine this partition, we note already that

different sectors show distinct typical location.

Dispersion. It measures the dispersion of the population around its mean. In

finance it is first of all considered a measure of risk where higher dispersion means

more uncertainty and more chances of an adverse outcome. In the present thesis

we consider the sample volatility measured as Variance and Stdev. In Figure 6.5,

we can see how different sectors might be characterized by a different volatility

level.

Range. The range statistics give information about the support of the distri-

bution. Besides the Minimum and Maximum a more conservative and robust mea-
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Figure 6.4: Location: Boxplot of sample Mean and Median of daily normalized
returns, y(v), for each market grouped by sector.
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sure of the range of a distribution is the interquartile range, iqrt, computed as

the difference between the first quartile, FirstQuartile and the third quartile,

ThirdQuartile. It is more robust because it avoids possible distortions intro-

duced by outliers.

Similarly, the interquantile range, InterQuantile, is the difference between

the 99.5th percentile and the 0.5th percentile. Whilst the interquartile range,

InterQuantile, excludes any information contained in the tails of the distribution,

the interquantile tries to filter out only the very extreme observations.

Asymmetry. The asymmetry of the distribution is measured by the skewness.

The Skew is the third moment of the distribution about its mean. A more robust

measure of skewness can be computed using quantiles to filter out possible spurious

outliers and errors in the data: RobustSkewness = (q0.5+q99.5−2q50)/(q99.5−q0.5).
Kurtosis. The kurtosis is the ratio of the fourth moment of distribution about

its mean, µ4, and the squared variance. For a Gaussian distribution its value is

3. It is normal practice to quote the excess kurtosis as a measure of the distribu-

tion’s distance from normality. A positive value means that more of the variance

is generated by infrequent extreme events as opposed to frequent modestly sized

deviations. Such a distribution is called leptokurtic and, relative to a Gaussian dis-

tribution, shows more mass near the mean and fatter tails. If the opposite is true,

it is called platokurtic and exhibits relative smaller peak and thinner tails. The

Robust Kurtosis statistics offers some advantages. It is less effected by extreme

realisations in the data which sometimes might not be genuine market moves but

only error spikes. The robust kurtosis compares the estimated quantiles q of the

sampled distribution versus the theoretical quantiles z of a normal distribution:

RobustKurtosis = (q99.5 − q0.05)/(q75 − q25)− (z99.5 − z0.05)/(z75 − z25).

Tail Shape. Measuring the main features of the tail shape of a distribution

can yield to very interesting insights in the properties of the markets’ dynamics.

As shown in Figure 6.6 we can use a Generalized Pareto Distribution (GPD) to

model the tail of the daily returns. Using the standard GPD notation described in

Appendix 6.A.1, the two relevant parameters we want to estimate from historical

data are the scale parameter and the shape parameter ξ. The parameters can be
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estimated via maximum likelihood estimation.
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Figure 6.6: Fitted Generalised Pareto Distribution on joint lower and upper tail,
where ξ has been estimated by maximum likelihood with threshold u set at the
95th percentile.

Alternatively, we can follow a non parametric approach, first proposed by Hill

(1975), as shown in Figure 6.7. In this case the shape parameter ξ is approximated

by averaging the tail slope over a reasonable interval as suggested by Gopikrishnan

et al. (1999).

It is worth pointing out that we can obtain a more accurate characterisation of

the markets’ return distribution by studying the upper and lower tail separately.

According to general belief markets fall faster than they rise since they are more

likely to overreact to negative news than the other way around. We would then

expect to find confirmation of this asymmetry by observing that the left tail of

negative returns is heavier than the right tail of positive extreme events. Looking

at Figure 6.8 we only find partial evidence that this is in fact the case.
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Figure 6.8: Lower Vs Upper tail: Tail shape indexes ξ estimated separately for
positive and negative returns. Each point corresponds to a different markets and
the colour coding represents the macro sector that market belongs to.
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6.4 Returns Series

In the previous section we have reviewed some of the main statistics commonly used

to describe market returns distributions. We now want to further characterize each

markets dynamics by measuring the relevant properties of time series of returns

where the temporal structure is preserved.
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Figure 6.9: Price Series of rolled FTSE 100 Future.

It is worth pointing out that according to the efficient market hypothesis, prices

should instantaneously discount, i.e. price in, all the public information as soon as

it becomes available. Therefore, there should not be any trace of long memory in

returns series since only the arrival of new information which is completely random

could justify any price change. A simple general model for price processes in this

case would assume that it can be represented as:

pt = µt−1 + pt−1 + ǫt, t = 1, . . . , T

where pt is the price at time t, µ the mean change or drift and ǫt a random error

and the return yt = ∆p at time t is simply yt = µ+ ǫt.

In reality, the flow of relevant information does not appear to be completely
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random and also the price moves seems to be not independent. More formally, it is

reckoned that there are three degrees of market efficiency that correspond to three

different types of random walks :

• RW1 ǫt ∼ i.i.d. (0, σ2)

• RW2 ǫt is an independent process (allows for heteroskedasticity)

• RW3 ǫt is an uncorrelated process (allows for dependence in higher order

moments)

Several theoretical processes have been considered in the literature to conform

to the different market efficiency hypotheses. Among these, we should mention

fractional Brownian motion which has been proposed to model the price process

when there is evidence of long-range dependence. In Appendix 6.A.2 we review

the important properties of this and other theoretical processes that we will refer

to in the following discussion.

Before describing the relevant statistics and how to compute them, let us recall

that there are different ways of ordering the collection of returns {. . . , yt−1, yt, yt+1, . . .}
depending on the index and frequency chosen. Typically, for a constant and smooth

process, discretization is obtained by sampling at regular intervals. For financial

price series we have three alternative domains that we can use to index and order

the records: physical time domain, volume domain and transaction domain. In our

following discussion we will use the time domain, but we consider the two other

options as an interesting extension of the present work.

6.4.1 Return Series Statistics

We have detailed how we will extract information from the returns. Here we review,

grouped by the particular feature they try to measure, the relevant statistics that

we are going to compute from returns series in order to cluster markets.

Temporal Autocorrelation. As a preliminary test we will compute the basic

autocorrelation of the returns series to verify whether at least the weak form of
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Figure 6.10: Autocorrelation and Partial Autocorrelation function.

market efficiency RW3 holds true. We can see an example of sample autocorrelation

and partial autocorrelation function for a financial market in Figure 6.10.

Another statistic we compute to quantify the degree of linear dependence in

return series is the Q−statistic which is designed to detect departures from zero

autocorrelation in either direction and at all lag, see Campbell et al. (1997) for

an example of an application to financial markets. In other words, we test the

null hypothesis H0 : yt ∼ WN(0, σ2) where WN denotes a white noise process.

The Q−statistic proposed by Box and Pierce (1970) is obtained by summing the

squared autocorrelations

Qm = T

m∑

j=1

ρ̂2j

which is asymptotically distributed as χ2
m. For finite samples an unbiased test

statistic, called modified Q−statistic, was introduced by Ljung and Box (1978).

Scaling of Volatility. If a market satisfies the random walk hypothesis, then

the variance of its returns should be a linear function of the time interval (Hamilton,

1994; Campbell et al., 1997). The purpose of the variance ratio test is precisely to
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verify whether this hypothesis is confirmed

vrt(j) =
Var(y

(j)
t )

j · Var(yt)

where y
(j)
t = yt−j+1 + . . . + yt and yt is the return at time t. Note that a value

vrt(j) < 1 denotes a mean reverting process, whereas vrt(j) > 1 indicates that

the process is mean averting and the variance grows more than expected with the

time interval. For more details on the modified variance ratio test we refer the

interested reader to paper by Lo and MacKinlay (1988). In plot 6.11 we can see

an example of vrt statistic computed for an increasing return interval j.
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0.
8

0.
9

1.
0

1.
1

holding period

va
ria

nc
e 
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Variance Ratios and 95% confidence band

Figure 6.11: Variance Ratio Test for FTSE 100 Future. The price process appear
to be mean reverting.

Long Memory. Another important aspect of markets returns, which is par-

ticularly interesting to the investment community, is the degree of persistence of

the observed price changes. We have implemented different methods, either in the

time domain or in the frequency domain, to quantify the level of persistence in

returns series. In the time domain, long memory manifests itself as hyperbolic de-

caying autocorrelation functions. Whereas, in the frequency domain, the spectrum
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appears to have high power at low frequencies.

The rescaled range statistic, rst, is computed to test the null hypothesis that

the price increments are random. The original notion of R/S statistic was proposed

by Hurst (1951) as a way of measuring the long term behaviour of the Nile river

floods, but it has since found application also in finance (Peters, 1991; Sprott,

2003). The modified rst statistic that we quote in our analysis is the version

suggested by Lo and MacKinlay (1988):

rst =
1

σ̂T (j)

[
max
1≤k≤T

k∑

l=1

(yl − ȳ)− max
1≤k≤T

k∑

l=1

(yl − ȳ)

]

the difference with Hurst’s original version lays entirely on the estimate of the

volatility σ̂T (j) as computed by Newey and West (1987). The advantage of σ̂T (j) is

that it takes into account not only the sums of squared deviations of the individual

terms yt, but also the autocovariances up to lag j. The test statistics rst should

scale proportionally to the power of the time interval T , rst ≈ (aT )H where

a is just a normalizing constant and H is the Hurst Exponent. Note that, in

the absence of a long-run statistical dependence, H is 1/2 therefore when returns

are generated by an independent process with finite variances we obtain rst =

(πT/2)1/2. Gneiting and Schlather (2001) found that the following relation H =
log(rst)
log (T )

= d + 1
2
, where d is the fractal dimension, suggests a practical way to

estimate the Hurst exponent H. As shown in Figure 6.12, they propose to regress

its value by plotting the log rst versus the log T .

The GPH test was proposed by Geweke and Porter-Hudak (1983) as an alterna-

tive approach to test for the presence of long memory is based on Wold’s spectral

representation (Hamilton, 1994). Similarly the periodogram method, prd, and the

Whittle’s method, whd, provide a practical method to estimate the fractal dimen-

sion d by decomposing the price process in its frequency domain.

The Generalized Hurst Exponent (GHE) described in Barabási and Vicsek

(1991); Di Matteo (2007); Di Matteo et al. (2004), allows a richer analysis of

persistent dynamics. By computing the q-order moments of the distribution of the
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Figure 6.12: Rescaled Range Test

increments, Kq(δ) =
E(|Y (t+δ)−Y (t)|q)

E(|Y (t)|q)
where δ is the time-interval, we are much less

sensitive to the outliers than if we were using maxima/minima. The generalized

Hurst exponent H(q) can be defined as a property of the scaling behaviour ofKq(δ)

Kq(δ) ∼
(
δ

ν

)qH(q)

In Figure 6.13 we see an example of how we proceed to empirically estimate the

GHE from the q-order moments.

6.5 Data Matrix

In previous sections of this chapter we have reviewed some of the relevant fea-

tures of the distribution and time series of returns that we believe can help us to

characterize the underlying price dynamics of each market.

Note that at this point we have not tried yet to isolate the most informative

features, but we consider all as potentially relevant for clustering. For each of the

n = 46 financial markets we have data for, we compute p = 81 statistics which we
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Figure 6.13: Generalized Hurst Exponent estimate for FTL.

arrange in a 46× 81 data matrix. We expect that both the models we introduced

in chapter 3 and 4 will be able to automatically select the important variables and

produce a reasonable cluster assignment of markets.

As a preliminary overview, in Figure 6.14, we plot the correlation matrix of

the different statistics computed over all markets. We can see that some variables

are, as expected, highly correlated, for example kurtosis and robust kurtosis, or

variance and interquantile range.

Response Variable

Let us recall that the ultimate goal of the study is to find a more appropriate sys-

tematic trading strategy whose parameters can be robustly calibrated on clusters

of similar markets.

To verify that the markets’ return features we have described are related to the

trend following strategies we are interested in, we compute a risk adjusted measure

of investment performance as response variable. We adopt a simple moving average

crossover to generate buy or sell signals and target a constant risk profile by scaling
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Figure 6.14: Correlation between different statistics computed on all markets.

positions according to a rolling volatility measure. Given a time series of prices

{pt}Tt=1, and Ania’s value EMA1 = p1, the exponential moving average at time t > 1

is

EMAt = α pt + (1− α)EMAt−1

where α represents the degree of exponential decay of the weights associated to

older prices. The value of α determines the speed at which the exponential moving

average reacts to a new recorded price and ultimately how close it tracks the price

process. To generate our position signal we compute a fast EMA(F) and a slow
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EMA(S) by fixing α(F ) = {0.03} and α(S) = {0.01} respectively. A buy signal is then

generated every time the fast moving average crosses from below the slow moving

average; conversely, a sell signal is given when it crosses from above. The position,

pos, is then held proportional to the difference between the two moving averages,

post = (EMA
(F)
t − EMA

(S)
t )/volt

where vol is a measure of the rolling volatility computed as from (6.2) with fixed

α(V ) = 0.02. The point of scaling the position proportionally to the volatility of the

price process, is to automatically adjust the risk of our exposure to the perceived

uncertainty of the market. In practice, when the volatility increases we would scale

down our positions. In Figure 6.15 we report, as an example, the diagnostic plots

of a systematic trading strategy applied to the FTSE 100 future. The annualised

Sharpe Ratio (Sharpe, 1966), in the bottom plot, measures the average return per

unit of risk and it is computed from the sequence of the daily profits and losses

rt = pos1−t × (pt − pt−1)

sr =
250/T

∑T
t=1 rt√

250Var(r)

where 250 is the number of working days in a year.

We have remarked that our goal is to verify whether the commonly accepted

partition of financial markets in macro sectors is justified. In Figure 6.16 we find

some evidence that the same strategy applied to all markets generally returns a

better or worse Sharpe ratio depending on the macro sector the market is in.

6.6 Penalised t Mixture Model

The first model we fit using the 46 × 81 data matrix described in Section 6.5 is

the penalised mixture of Student’s t components model. Since this is an unsu-

pervised clustering method, at this point, we do not include in the fitting process

the response variable, i.e. the Sharpe ratios. Our goal here is to find a reasonable

objective clustering of the markets and simultaneously identify the informative
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Figure 6.15: Systematic Trend Following Trading Strategy applied to FTSE 100
Future.

statistics that depict the relevant features of the price dynamics.

We know from section 3.4, that before we can proceed to estimate the model

parameters, we need to set the number of clusters, K, and fix an optimal level of

penalisation λµ and λσ. We follow the exact procedure illustrated in section 3.5.2

and fit a separate model for K = 2, . . . , 5 where for each K we test all possible
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Figure 6.16: Sharpe Ratios of a simple trend following trading strategy applied to
different markets grouped by fundamental macro sectors.

combinations of λµ and λσ in the interval [0, . . . , 10]. In Tables 6.2, 6.3, 6.4 and

6.5 we illustrate the outcome of these procedure. The matrices report the distance

in BIC units from the lowest BIC level reached by all combinations. We note that

despite some discontinuities there is a fairly clear indication of the region where

the optimal model is.

λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 372 349 364 421 458 475 510 569 689 697 696
1 144 38 64 142 175 205 232 295 364 387 398
2 NA 12 39 92 146 176 209 231 264 298 403
3 NA 0 57 87 145 165 201 216 250 283 292
4 323 39 72 115 161 177 201 229 248 273 292
5 NA 123 97 121 156 179 204 228 253 278 292
6 NA 253 128 122 166 192 212 237 259 276 293
7 NA 175 152 160 176 196 218 242 267 286 304
8 2264 231 185 171 183 211 229 251 269 293 292
9 2325 70 224 195 200 218 233 252 273 289 315
10 2404 577 268 219 225 241 238 256 279 294 312

Table 6.2: Model Selection, grid search assuming K = 2. Difference in BIC units
from best penalisation level λµ and λσ.

In Figure 6.17 we can see the smoothed contour levels of the BIC index on the

grid of λµ and λσ for every K. Note that, in line with the conclusions drawn from
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λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 798 706 746 783 834 863 685 929 969 1002 1023
1 550 230 409 328 532 412 452 415 530 709 727
2 798 139 376 263 475 212 556 400 646 429 469
3 874 216 360 213 447 298 335 340 352 606 399
4 NA 0 203 184 283 381 491 554 578 346 363
5 2681 465 286 249 335 404 304 346 387 408 610
6 1027 136 433 321 272 318 519 349 609 608 622
7 1185 94 427 352 432 447 450 372 407 413 428
8 3047 267 418 370 378 437 359 372 418 611 498
9 1200 807 492 434 413 409 376 424 475 477 624
10 2254 803 630 421 396 429 447 463 475 624 499

Table 6.3: Model Selection, grid search assuming K = 3. Difference in BIC units
from best penalisation level λµ and λσ.

λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 1269 1209 1334 1400 884 1525 941 974 1564 1030 1669
1 713 681 730 788 802 595 775 701 706 1104 1096
2 1420 552 563 611 693 737 597 861 868 794 962
3 2909 693 540 630 658 382 789 661 803 657 933
4 1739 913 604 531 514 634 354 618 861 883 774
5 1901 1127 659 432 467 612 682 670 697 713 929
6 3110 1220 761 475 476 638 723 698 871 892 789
7 1756 569 673 700 468 691 720 728 808 775 846
8 1856 1037 756 692 652 607 629 659 807 820 972
9 1474 0 565 743 659 683 688 713 764 829 838
10 2233 1408 809 715 681 700 759 687 808 827 851

Table 6.4: Model Selection, grid search assuming K = 4. Difference in BIC units
from best penalisation level λµ and λσ.

λµ\λσ 0 1 2 3 4 5 6 7 8 9 10
0 945 1312 1644 1547 1626 1673 1911 1295 1181 1345 1258
1 1198 856 855 954 999 502 518 605 644 1153 725
2 1211 590 519 493 582 442 600 462 858 664 662
3 1304 241 455 520 548 407 350 377 740 637 613
4 1971 794 439 509 529 514 631 525 462 656 842
5 1612 1797 553 416 318 480 268 497 536 389 427
6 1956 1751 371 284 638 537 514 556 359 373 664
7 NA 25 483 596 226 438 480 529 666 688 707
8 3111 1621 890 481 458 531 652 565 691 690 506
9 2183 253 727 515 394 464 500 624 682 696 718
10 2250 0 720 650 538 435 570 245 608 707 718

Table 6.5: Model Selection, grid search assuming K = 5. Difference in BIC units
from best penalisation level λµ and λσ.

experimental scenarios, the optimal level of penalisation is fairly robust irrespective

of the number of components and that the joint penalisation is always a better

option than penalising only the location or the dispersion parameter.
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Figure 6.17: Optimal Penalisation: Using BIC criteria to identify the optimal
level of penalisation λµ and λσ for K = 2, . . . , 5.

Once we have established the optimal λ∗µ and λ∗σ for each K = 2, . . . , 7, we

implement the subsampling routine described in Section 3.4.1 and retain only the

variables whose selection probability is above the threshold π̃ ≥ 0.7. We then

compare the likelihood of each fitted model and follow the BIC criterion to choose

the best one. In Table 6.6 we report the results of the model selection procedure

and observe that the AIC and BIC criteria agree in indicating K = 4 as the best

model, whereas the likelihood criterion alone would have chosen a less parsimonious

model.

To asses how robust our clustering assignment is and how different the results

would be if we had chosen a different value K, in Figure 6.18 we plot the heatmap
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# Clusters LLIK AIC BIC

2 -1654 3563 3795
3 -1417 3217 3566
4 -1271 3053 3520
5 -1212 3062 3646

Table 6.6: Model Selection PTM

of the ARI index computed for each pair of tested models from Table 6.6. We note

that the two model K = 4 and K = 5 arrive to very similar conclusions as their

ARI is 68%. This result confirms why their BIC score being so close.
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Figure 6.18: Cluster agreement of each pair of models for K = 2, . . . , 7 measured
by Adjusted Rand Index.

6.6.1 Clustering Results

Based on the indications of the model selection procedure, we fit a mixture of four

components, K = 4, with a penalisation of the location parameters equal to λµ = 9

and λσ = 5 for the dispersion parameters. In Table 6.7 we report the results of the

clustering assignment. We can see that there is some degree of overlapping with
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the fundamental sector partition. The adjusted rand index is ARI = 28% which is

fairly high considering that the number of macro sectors is 7 while we only assume

4 clusters.

Looking at the results in more detail, the first thing to notice is that all interest

rate markets are kept as a separate cluster with the only exception of the Japanese

bond future which is known to be an odd market compared to other bonds. It is

interesting, on the other hand, to see that the most liquid and efficient markets,

such as the majority of the stocks, currencies and bonds, are considered as a single

homogeneous group. We can also say that while the energies and agricultural

markets are allocated to cluster A and B respectively, the metals have been split

with some insight between the industrial metals (aluminium and copper), and

precious metals (gold and silver).

Cluster A Cluster B Cluster C Cluster D
MARKET SECTOR MARKET SECTOR MARKET SECTOR MARKET SECTOR
Aluminium METALS Gold METALS Jap.Bond BONDS Wheat AGS
Copper METALS Silver METALS Eurodollar IRATES Cotton AGS
Corn AGS Soyabeans AGS S.Sterling IRATES EURUSD CCY
Crude.Oil ENERGY Sugar AGS Euribor IRATES AUDUSD CCY
Heat.Oil ENERGY Coffee AGS Euroyen IRATES CHFUSD CCY
Gasoline ENERGY Cocoa AGS Aus.T.Bills IRATES GBPUSD CCY
Gas.Oil ENERGY JPYUSD CCY EURJPY CCY

Taiwan STOCKS CADUSD CCY
Nat.Gas ENERGY SP500.Fut STOCKS

SP.Canada STOCKS
FTSE STOCKS
DAX STOCKS
CAC40 STOCKS
NIKKEI STOCKS
TOKYO STOCKS
Aus.Spi STOCKS
EU.STOXX STOCKS
Hang.Seng STOCKS
Kospi STOCKS
10y.T.Notes BONDS
Gilts BONDS
Bund BONDS
Aus.10y BONDS
Cad.Bond BONDS

Table 6.7: Cluster Assignment for K = 4
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Variable Selection Results

In terms of variable selection, it is interesting to observe in Table 6.8 the ranking

of the variables retained by the model after the resampling procedure, that is the

variables whose selection probability is above the threshold π̃ ≥ 0.7. To asses how

robust the results are we also report the ranking for the K = 5 model.

We note that the features that appear to be more informative for clustering is

the distribution shape, measured by the kurtosis and standard deviation, together

with the scaling property of the volatility, measured by the variance ratio test, vrt.

One plausible explanation would be that kurtosis, and the scaling of volatility

to some extent, are a proxy of the liquidity and efficiency of the market. It is

generally accepted that the more evolute and efficient a market is, the faster any

imbalance between demand and offer will be corrected, therefore reducing the

possibility of extreme moves which are at the base of leptokurtic distributions.

Similarly, the variance ratio test statistics could be used to distinguish between

mean reverting and mean averting processes, where a mean reverting price process

is again usually expression of an efficient and liquid market, like most of those

in cluster D. In conclusion our proposed clustering seems to be mapping to some

degree the efficiency of the different markets.

As a final independent check of the relevance of the partition we have identified,

we plot in Figure 6.19 the boxplot of the Sharpe ratios of the markets in each of

the proposed clusters. Even if Sharpe ratio has never been part of the fitting

process we note a noticeable difference of its distribution across different clusters.

This evidence seems to confirm the validity of the results we obtained and would

suggest to further investigate the possible implications on real life trading.

These results, in fact, are to be expected since it is known that trend following

strategies strives when there is higher volatility and extremes market moves. Being

purely directional are best positioned to take advantage of unusually bigger markets

returns, the same returns that increase the kurtosis of the distribution.
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4 Clusters 5 Clusters
Rank Variable Selection π Variable Selection π
1 Kurtosis 0.948 vrt 1.000
2 RobustKurt 0.911 Kurtosis 1.000
3 StdDev 0.903 tDof 0.955
4 vrt 0.851 RobustKurt 0.955
5 tDof 0.851 box2 0.933
6 Maximum 0.851 tsdv 0.933
7 Iqnt 0.844 Iqnt 0.933
8 wavbeta 0.822 box1 0.888
9 wavH 0.822 Iqrt 0.888
10 box2 0.822 box5 0.866
11 box1 0.800 lwD 0.866
12 lwH 0.770 lwH 0.866
13 Iqrt 0.770 tfitdof 0.844

Table 6.8: Variable Selection. Highest ranking variables according to resampling
method for model K = 4 with π̃ ≥ 0.7 and for model K = 5.
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Figure 6.19: Sharpe Ratio of the same trend following trading strategy applied to
markets clustered according to penalised t mixture model for K = 4.

6.7 Mixture of Lasso Regressions

We tested the penalised mixture of t distributions and proposed a new clustering

of the financial markets. We now fit the Bayesian mixture of Lasso regressions and
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compare the results of the two models.

In the present implementation of the mixture of regressions we will assume

the same number of components K = 4 as we have found from the resampling

procedure. Similarly, to have a more significant result, we reduce the column

dimensions of the design matrix down to only those that have a selection probability

above the threshold π̃ ≥ 0.7 as reported in the table 6.8. The observed dependent

variable y is the Sharpe ratio of the simple moving average crossover strategy we

described in section 6.5.

To fit the model we follow the sampling procedure described in Section 4.3.1

and execute ten thousand iterations of the PMCMC algorithm with adaptive re-

sampling. As a preliminary check that the process has run as expected we record an

acceptance rate of the proposed updates for τ , s of about 0.248, 0.262 respectively,

which are in the correct range.

We should remark that to avoid the label switching problem common to every

Bayesian mixture sampling procedure, we permute all possible labelling combina-

tions of the components and choose the one that maximizes the adjusted rand index

computed with respect to cluster assignment proposed by the penalised t mixture

model. It is interesting to see in Figure 6.20 that there is in fact a reasonable

agreement between the two methods with an average ARI = 32%.

Whilst the explicit estimation of the regression coefficients was not part of the

scope of this study, in Table 6.9 we quote the relative selection frequency of each

variable across all PMCMC iterations. In practice we compute the average of

the γ indicator vector over the ten thousands iteration we run. Since all of these

statistics were previously selected by the resampling method applied to the PTM, we

do not expect in this case to see a clear separation between some more informative

and other less informative variables. The frequency of inclusion is fairly similar for

all statistics. Note anyway that the variance ratio test statistics and the kurtosis

are still positioned high in the table.

In Table 6.10 we report the empirical posterior probability of the label indica-

tor variable zi for i = {1, . . . , n} which indicates what it is the most likely cluster

assignment for each market. It appears that in most cases there is a fairly clear
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Figure 6.20: Adjusted Rand Index Distribution between sampled particles after
every PMCMC iteration and proposed clustering by the penalised t mixture PTM.

indication of what cluster each market should belong to, see for example Alu-

minium. In some other there seems to be more uncertainty between two possible

assignments, for example Soyabeans. To better asses the relevance of these con-

clusions, we compare the posterior probability versus the hard assignment of the

PTM model. We note that generally there is only a partial overlapping, but that

there is almost perfect matching with cluster B. A direct estimation of the regres-

sion coefficient could shade some light on what is the exact relation between each

feature and the Sharpe Ratio of that market. To draw stronger conclusions for the

other markets we would need further investigation.

6.8 Discussion

In this chapter we have investigated the real life problem of clustering financial

markets based on some objective and measurable features of their price dynamics.

We first computed a number of statistics that characterize the distribution and

time series of daily returns and then fitted the two proposed mixture models we
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Rank Variable Selection Frequency
1 Maximum 0.6475
2 wavbeta 0.5825
3 Kurtosis 0.5725
4 box1 0.5625
5 vrt 0.56
6 tsdv 0.535
7 Robustkurt 0.5325
8 wavH 0.5275
9 Iqrt 0.52
10 tdof 0.5125
11 Iqnt 0.51
12 box2 0.495
13 lwH 0.4825

Table 6.9: Variable Selection. Frequency each variable is selected.

presented in previous chapters.

The penalised mixture of t distributions provides some clear indications on how

to cluster financial markets. This result seem reasonable and justifiable given the

variables that have been selected as informative. As an independent check, we

plotted the distribution of the Sharpe ratios by clusters and found significant evi-

dence suggesting that there might be a link between the clusters we have identified

and the profitability of a simple trend following strategy we have implemented.

Further research could investigate the direct relation between the relevant statis-

tics and the market behaviour triggering the trading signal and therefore suggest

a better strategy to exploit it.

Using the smaller subset of statistics as explanatory variables and the Sharpe

ratio as response variable, we then fit the mixture of Lasso regressions model. In

this case the clustering results are more difficult to interpret but still confirm, to

some extent, the indications from the PTM model.

In conclusion, we have been able to implement the proposed models to in-

vestigate a real life problem and obtain some promising insights both from the

clustering and the variable selection point of view.
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MARKET SECTOR PTM Clus A Clus B Clus C Clus D
Aluminium METALS A 78 2 19 1
Copper METALS A 28 12 13 47
Corn AGS A 32 15 20 33
Crude.Oil ENERGY A 56 10 24 10
Heat.Oil ENERGY A 57 8 30 5
Gasoline ENERGY A 60 7 26 7
Gas.Oil ENERGY A 54 5 22 19
Gold METALS B 3 50 9 38
Silver METALS B 10 37 49 4
Soyabeans AGS B 8 37 42 13
Sugar AGS B 5 54 4 37
Coffee AGS B 10 37 18 35
Cocoa AGS B 16 23 41 20
JPYUSD CCY B 10 29 23 38
Taiwan STOCKS B 14 32 25 29
Nat.Gas ENERGY B 8 32 36 24
Jap.Bond BONDS C 32 12 33 23
Eurodollar IRATES C 60 9 22 9
S.Sterling IRATES C 60 8 24 8
Euribor IRATES C 59 7 29 5
Euroyen IRATES C 34 21 27 18
Aus.T.Bills IRATES C 54 6 24 16
Wheat AGS D 50 6 28 16
Cotton AGS D 63 7 23 7
EURUSD CCY D 59 7 22 12
AUDUSD CCY D 63 3 26 8
CHFUSD CCY D 44 5 33 18
GBPUSD CCY D 63 6 24 7
EURJPY CCY D 58 7 24 11
CADUSD CCY D 61 6 24 9
SP500.Fut STOCKS D 58 6 26 10
SP.Canada STOCKS D 59 7 24 10
FTSE STOCKS D 62 6 22 10
DAX STOCKS D 61 6 23 10
CAC40 STOCKS D 60 6 24 10
NIKKEI STOCKS D 57 6 26 11
TOKYO STOCKS D 57 12 24 7
Aus.Spi STOCKS D 63 7 23 7
EU.STOXX STOCKS D 61 10 27 2
Hang.Seng STOCKS D 65 10 21 4
Kospi STOCKS D 58 7 28 7
10y.T.Notes BONDS D 56 9 28 7
Gilts BONDS D 53 9 28 10
Bund BONDS D 57 8 26 9
Aus.10y BONDS D 40 14 28 18
Cad.Bond BONDS D 60 6 25 9

Table 6.10: Empirical posterior cluster assignment probability π(zi = k) for i =
{1, . . . , n} and for k = {A,B,C,D}.
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6.A Appendix: Background Theory

6.A.1 Extreme Value Theory

The focus of this section is to discuss in more detail how the shape of the returns

distributions tails is an important feature to distinguish between different markets.

Due to the low frequency of observed extreme events, the fitting of long tailed dis-

tribution is particularly difficult in practice. From an investment portfolio point of

view, being able to deal with rare extreme market events is crucial to make optimal

use of capital while avoiding the risk of default. We review the essential theoretical

background and discuss different methods available to efficiently estimate the tail

shape parameters for each market.

Extreme value theory allows us to make inference on the shape of the tails

of a distribution by focusing on the rare large realisations. The objective is not

necessarily to fit accurately the bulk of the distribution but to draw reliable infer-

ence about the tails from the few extreme observations recorded so far, for a more

detailed review of the method see Coles (2001) and Zivot and Wang (2006).

Assuming that {X1, X2, . . .} is a collection of i.i.d. random variables each with

unknown cumulative distribution function (CDF) F (x) = P{Xi ≤ x}, then we can

say that the maximum Mn = max(X1, . . . , Xn) has probability

P{Mn ≤ x} = P{X1 ≤ x, . . . , Xn ≤ x} =
n∏

i=1

F (x) = F n(x)

which implies that asymptotically F n(x) can only converge to 0 or 1 as n→ ∞. As

a special case, if we were able to find the upper end point x+ of F we would know

that ∀x < x+ then F n(x) → 0 as n → ∞ and the distribution of Mn degenerates

to a point mass on x+.

If instead we linearly normalize the variable Mn.

Zn =
Mn − an

bn

where an and bn are sequences of real numbers that control the location and scale
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of Zn as n increases, the distribution of the renormalised variable Zn can only

converge to

P{Mn − an
bn

≤ z} → H(z) as n→ ∞

where

Hξ,µ,σ(x) =

{
exp(−(1 + ξ(x−µ

σ
)−1/ξ)) ξ 6= 0, 1 + ξ(x− µ)/σ > 0

exp(−(exp (−x−µ
σ

))) ξ = 0, x ∈ R

and µ is the location parameter, σ is the scale parameter and ξ is the shape

parameter that determines the tail behaviour of Hξ while 1/ξ = α is called the tail

index when ξ > 0.

The parameter ξ is what we need to infer from the observed data. It specifies the

shape of the distribution at the extremes and controls how fast the tails declines.

The three possible cases are:

• Gumbel: ξ = 0 . F is thin tailed, tail declines exponentially.

H0,0,1(x) = exp(− exp−(x)) for x ∈ R

• Frechet: ξ > 0 . F is fat tailed, tail declines by a power function:1−F (x) =
x−1/ξL(x), for some slowly varying function L(x).

H 1
α
,0,1(α · (x− 1)) = H 1

α
,1, 1

α
(x) =

{
0 for x ≤ 0

exp(−x−α) for x > 0

Unfortunately not all moments are finite for this type of distribution. In fact

E(Xk) = ∞ for k ≥ α = 1/ξ

• Weibull: ξ < 0. In this case the tail of F is finite and all his moments exist.

H− 1
α
,0,1(α · (x+ 1)) = H− 1

α
,−1, 1

α
(x) =

{
exp(−(−x)α) for x ≤ 0

1 for x > 0
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Excess Distribution Function

If we have more information than just the knowledge of extreme values, we can

make inference on the tail of the distribution by using all samples above a certain

threshold.

We derive the excess distribution function over the threshold u by the condi-

tional probability:

Fu(y) = P{X − u ≤ y|X > u} =
F (y + u)− F (u)

1− F (u)
, y > 0

While the expected mean function of the excedeances Xi above u is:

e(u) = E[X − u|X > u]

Generalised Pareto Distribution

For a large enough threshold u, the excess distribution function Fu(y) converges

to the Generalised Pareto Distribution Gξ,µ,σ(y)

Gξ,µ,σ̃(y) =

{
1−

(
1 + ξy

σ̃

)−1/ξ
for ξ 6= 0, 1 + ξ(x− µ)/σ̃ > 0

1− exp
(
− y

σ̃

)
for ξ = 0

where y > 0 and σ̃ = σ + ξ(u − µ). Note also that while for ξ < 1, since for

k ≥ α = 1/ξ the k-th moment E[Xk] is infinite, the expected mean excess is

E[X − u0|X > u0] =
σu0

1− ξ

which can be extended to u > u0 for an appropriate change of scale σu:

e(u) = E[X − u|X > u] =
σu0 + ξu

1− ξ
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6.A.2 Theoretical Random Processes

We review some of the most commonly adopted theoretical models for price and

returns series.

Brownian Motion

Brownian motion has been used to model a wide range of phenomena. Its simple

formulation makes it a favourite also in finance where it is used to describe the

price as a sum of random returns like in the Wold’s decomposition, see Feder (1988)

and Reif (1965).

We shall start from its simplest version: the one dimensional random walk. Let

us consider in the binomial case x as a particle that can move at every step by a

fixed length l with a probability p upwards and with probability q = 1− p down.

The mean displacement per step is then given by:

s̄ = pl + q(−l) = (p− q)l = (2p− 1)l

with a dispersion:

(∆s)2 = s2 − s̄2 = l2[1− (2p− 1)2] = 4pql2

After N steps the particle x will be x = s1 + s2 + · · ·+ sN =
∑N

i=1 si for which the

following is true:

x̄ = (p− q)Nl

(∆x)2 = 4pqNl2

In a slightly more realistic model, if we think that the price Y can move every

τ seconds by making a positive or negative jump ξ whose length is set accordingly

to the Gaussian distribution:

p(ξ, τ) =
1√

4πDτ
exp

(
− ξ2

4Dτ

)
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where D is the diffusion coefficient:

D =
1

2τ
E(ξ2)

and E(ξ2) is the mean square jump distance and also the variance of the sequence

of the steps {ξi}:
E(ξ2) =

∫ ∞

−∞

ξ2p(ξ, τ)dξ = 2Dτ

The position of the price Y is then a random function of time Y (t = nτ) =
∑n

i=1 ξi where the increments distribute according to

Yt − Yt0 ∼ ξ|t− t0|1/2

and ξ is a normalised independent Gaussian random process.

Scaling Property of the Brownian Motion

It is worth noting that the Brownian motion has also a nice scaling property. In

fact the distribution of ξ for t = bτ is:

p(ξ, bτ) =
1√

4πDbτ
exp

(
− ξ2

4Dbτ

)

with variance:

E(ξ2) = 2Dbτ = 2Dt

For the Brownian motion this mean that whereas the mean displacement of the

price Y (t) still has mean:

E(Y (t)− Y (t0)) = 0

the variance grows proportionally with time:

E([Y (t)− Y (t0)]
2) = 2D|t− t0|

The transformation that changes the timescale by b and the length scale by b1/2
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make the distribution invariant:

p(b1/2ξ, bτ) = −b1/2p(ξ, τ)

This property allows us to define the variable y as

y =
Y (t)− Y (t0)√

2Dτ(|t− t0|/τ)1/2

which has standard Gaussian distribution with zero mean and unit variance.

Fractional Brownian Motion

The fractional version of the Brownian motion seem more accurate in describing

financial events for only a small increase in complexity, Feder (1988), it only has

one more degree of freedom, the exponent H.

The position of the price Y is still a random function of time Y (t) for t = nτ ,

but the distribution of the increments are now proportional to the time interval

raised to the power of H for 0 < H < 1:

Yt − Yt0 ∼ ξ|t− t0|H

with ξ a normalised independent Gaussian random process as before. The incre-

ments have still expected mean

E(YH(t)− YH(t0)) = 0

but the variance is now

E([Y (t)− Y (t0)]
2) = 2Dτ(|(t− t0)/τ |)2H ∼ |t− t0|2H

and the diffusion coefficient becomes

DH =
1

2

d

dt
E(Y (t)2) = D|t|2H−1.
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Application to Financial Data

As for the scaling property, the Fractional Brownian Motion transformation is

proportional to |∆t|H :

YH(bt)− YH(0) = bH{YH(bt)− YH(0)} = |∆t|H{YH(1)− YH(0)} ∼ |∆t|H

In the discrete case we can approximate the process YH(t), or the position of the

particle after time t, by the summation:

YH(t) ≃
1

Γ(H + 1
2
)

nt∑

i=−∞

(
t− i

n

)H−1/2
ξi√
n

In the continuous case, instead, the total displacement is obtained by integrating

over all previous increments dB(t′) of an ordinary Gaussian random process B(t)

with average zero and unit variance:

YH(t)− YH(0) =
1

Γ(H + 1
2
)

∫ t

−∞

K(t− t′)dB(t′)

with

K(t− t′) =

{
(t− t′)H−1/2 0 ≤ t′ ≤ t

{(t− t′)H−1/2 − (−t′)H−1/2} t′ ≤ 0

and Γ(x) the gamma function.
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Chapter 7

Conclusions

The two real life problems we set out to investigate have motivated us to search

for a probabilistic model that can simultaneously perform robust clustering and

variable selection. We reviewed the existing literature and found scope to develop

two new models that are expected to better respond to our requirements and to

be robust to the noise and outliers that is generally found in real data.

We have explored both an unsupervised and a supervised route which lead us

to propose a penalised mixture of Student’s t distributions and mixture of Lasso

regressions with t-errors.

We first introduced the penalised mixture of Student’s t distributions and il-

lustrated the properties of the model that make it particularly flexible to fit high

dimensional data and robust to outliers. Variable selection is performed by impos-

ing an adaptive L1-norm penalty function acting on the location and the dispersion

parameter. To gauge more information about the relative importance of each vari-

able we have also proposed a data resampling procedure which allows us to rank

the features and improves on the selection of the true number of clusters. In or-

der to efficiently fit the the model to the data we have derived a modified EM

algorithm that returns the maximum likelihood estimates of the unknown mixture

parameters.

We have developed the second model in a Bayesian framework and proposed

a hierarchical representation of the mixture of regressions that demonstrates the
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desired properties of accuracy, robustness and sparsity. Robustness is achieved

by allowing the regression errors to be t distributed and adopting convenient pri-

ors that induce a Lasso type estimates of the regression coefficients. Sparsity is

achieved by assuming a cluster specific binary vector that dictates which variables

should be included and which variables should be excluded from the model. In

order to estimate the relevant parameters we have implemented a PMCMC al-

gorithm with a Metropolised Gibbs sampler that allows us to approximate the

posterior distributions of interest.

The performance of the proposed methods is assessed by generating multiple

simulated datasets under different scenarios and illustrating in which situations

the models are expected to show a more accurate fit than standard methods.

The algorithms have then been applied for the analysis of two real life problems

from bioinformatics and finance respectively, that is identifying clinically distinct

subtypes of breast cancer and clustering financial markets based only on some

measurable features of their price dynamics. From the analysis of the results we

find significant evidence that the inference we draw from the models provide a

truthful insight in the problems under investigation.

The three cancer subtypes we isolate are characterized by distinct gene expres-

sion profiles and independently confirm the results of other studies on this subject.

There is also significant evidence that the genes we select are important to explain

the differences we observe in the marginal distribution of some relevant clinical

variables and the different prognosis of each cluster.

In clustering financial markets we find that the partition we derive does cor-

respond to groups of markets where the performance of the systematic trading

strategy is different. This result suggests that the features we select are in fact

informative and could be relevant to design a better trading algorithm.

Future Work

Although it does not seem to have hindered the clustering and variable selec-

tion performance of the model, one of the strongest assumptions we made is that
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variables are independent. Fitting a full covariance matrix requires a significant

increase in complexity and computational effort, but it would lead to a fairer repre-

sentation of real life situations. Alternatively, we could transpose the data matrix

and apply the clustering process also to the variables in order to get more indica-

tions, beyond what we can gauge from the the simple correlation, whether there

are groups of variables that should be considered as a unity by the model.

In the context of the penalised t mixture model, we believe it would be inter-

esting to explore different types of penalty functions. A pairwise penalisation that

acts also on the degrees of freedom parameter seems the most promising route in

this area.

In the context of the Bayesian mixture of regressions, there are several aspects

which could motivate future work. Firstly, with regards to the theoretical prop-

erties of the model. We did not investigate, for example, the issue of Lindley’s

paradox, which can manifest itself in mixtures (e.g. Jennison (1997)). That is, we

would like to know if there are some combination of prior parameters, which would

lead one to favouring statistical models with a single component. In connection

to this, whether the complex posterior also satisfies a collection of inequalities for

model probabilities as is the case for some standard Bayesian mixtures; see Nobile

(2005). Secondly, is the actual computational procedure of selecting the number of

components. There are at least two options which we intend to consider in future

work. The first is simply to use our PMCMC algorithm in each model. Then, as

one can easily obtain a marginal likelihood estimate (indeed using the proposed

particles - ’all the samples’ - see Andrieu et al. (2010)) and compute Bayes factors

- see e.g. Nobile (1994). The second idea is to build a trans-dimensional sampler

based upon PMCMC and SMC samplers (Del Moral et al., 2006). Here, one uses a

trans-dimensional version of the PMMH sampler. Suppose one has a target density

πk(x) in dimension k and our overall target density is:

π(k, x) ∝ πk(x)p(k) x ∈ X k k ∈ {1, . . . , kmax} = K

where p(k) is a prior on the dimension (here the number of components in the
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mixture). Thus we have defined a target density on

⋃

k∈K

{k} × X k.

Now introduce a sequence of targets of dimension k:

πk,n(x) ∝ πk(x)
γn

where 0 < γ1 < · · · < γp for some p ≥ 1 given. Our trans-dimensional proposal

is as follows: Given a model order k proposal a model order k′ and use an SMC

sampler to simulate the sequence πk′,n. The acceptance probability of such a move

is:

1 ∧
∏p

n=1
1
N

∑N
i=1w

i
n,k′∏p

n=1
1
N

∑N
i=1w

i
n,k

p(k′)q(k|k′)
p(k)q(k′|k)

where q(k′|k) is the proposal density of moving from k to k′ and

p∏

n=1

1

N

N∑

i=1

wi
n,k′

is the marginal likelihood estimate from the SMC sampler in dimension k′. This

allows one a possibility of producing very competitive trans-dimensional proposals.
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Notation

Symbol Distribution
Be Bernoulli distribution
Dir Dirichlet distribution
δ Dirac delta mass distribution
IGa Inverse-Gamma distribution
IW Inverse Wishart distribution
Ga Gamma distribution
N Gaussian distribution
M Multinomial distribution
St Student’s t distribution

Table 7.1: List of notations used for standard distributions.
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