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Abstract

This paper proposes to learn binary hash codes within

a statistical learning framework, in which an upper bound

of the probability of Bayes decision errors is derived for

different forms of hash functions and a rigorous proof of

the convergence of the upper bound is presented. Conse-

quently, minimizing such an upper bound leads to consistent

performance improvements of existing hash code learning

algorithms, regardless of whether original algorithms are

unsupervised or supervised. This paper also illustrates a

fast hash coding method that exploits simple binary tests to

achieve orders of magnitude improvement in coding speed

as compared to projection based methods.

1. Introduction

Mapping high dimensional image data into binary codes

plays an indispensable role for efficient storing and search-

ing of large scale image databases. Owing to storage ef-

ficiency and sublinear search time, compact binary codes

have been widely applied to various vision applications

such as object recognition [20], image retrieval [23], lo-

cal descriptor matching [6, 19] and binary feature matching

[2, 9, 17, 21] etc.

Learning compact binary code has been traditionally

treated as a “similarity-preserving” problem with objective

to map similar data points into similar binary codes. Of-

ten original data points are assumed to reside in a high-

dimensional Euclidean space while (dis-)similarity between

binary codes is quantified by Hamming distance. The learn-

ing process then aims to minimize discrepancies between

pairwise Euclidean and Hamming distances. This approach

is well suited for approximate nearest neighbour search in

Euclidean space e.g. as in [26, 7].

Recent work demonstrate considerable performance im-

provements with a discernible shift of research focus to

(semi-)supervised approaches, in which the learning of hash

functions is invariably governed by some forms of label in-

formation. By exploiting either semantic labels provided

by human or labels derived from neighbourhoods in Eu-

clidean space, these supervised approaches optimize a va-

riety of objective functions including empirical accuracy of

(dis-)similar data points [24, 23, 12], pairwise hinge-like

loss [13], triplet ranking loss [14] and binary code quan-

tization loss [3] etc. Despite empirical justifications with

large databases, the choice of objective functions for these

methods is to some extent heuristic and it remains an open

question to exploit label information in a consistent and the-

oretically sound manner.

The research presented in this paper, therefore, proposes

to formulate binary hash code learning within a statistical

learning framework, in which an upper bound of the proba-

bility of Bayes decision errors is derived for different forms

of hash functions (Section 3). Furthermore, a rigours proof

of the convergence of the upper bound for arbitrary sequen-

tial learning algorithms is presented in Theorem 1. Con-

sequently, minimizing the upper bound for existing hash

code learning algorithms leads to consistent performance

improvements, regardless of whether original algorithms

are unsupervised or supervised (Section 4).

The processing time of converting a query data point into

binary codes (i.e. coding time) is a crucial performance pa-

rameter for nearest neighbour search algorithms. Having

short coding time is of particular interest for vision appli-

cations such as fast keypoint recognition [16] and image

localization [18] etc, in which query images may contain

up to 10K features and the coding time amounts to a signif-

icant portion of the total processing time. While the cod-

ing time is considered a constant for projection based hash

functions, we demonstrate in Section 4.4 that it actually can

be reduced by order of magnitudes by exploiting simple yet

discriminative binary tests of input feature vectors. The pro-

posed Haar-Like hash function, albeit suboptimal in terms

of precision rate, is preferred due to its high speed and com-

putational simplicity for real-time applications running on

mobile devices.

2. Related Work

We review below only supervised hash code learning

methods and refer readers to two journal articles [19, 4] for

thorough reviews of this active research area.
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Supervised hash learning methods: Kullis and Darrell

proposed to minimize reconstruction errors between both

similar and dissimilar data points [7]. Wang et al. [23, 24]

and Liu et al. [12] used a supervised term to minimize em-

pirical errors between data point pairs associated with three

types of label i.e. similar, dissimilar and others. Motivated

by the hinger loss in SVMs, Norouzi and Fleet proposed to

minimize the upper bound on empirical loss of similar (or

dissimilar) point pairs [13], and extended the method to in-

corporate ranking loss defined on triplets of binary codes

[14]. Similar loss function was used in [10] to encode prox-

imity comparison information of labelled data. Recently,

Wang et al. generalized the idea to preserve orders of mul-

tiple sub-categories defined on training data, and demon-

strated favourable results in comparison with state of the art

methods [25].

Binary tests: There are abundant literatures related to

binary test descriptors. Owing to its fast calculation speed,

binary test has long been adopted to extract Haar-like fea-

tures for real-time object detection [22]. Simple binary tests

were used for fast keypoint recognition in a Naive Bayesian

classification framework [16], which is probably the most

similar work to the proposed Haar-Like hash functions, nev-

ertheless, the random selection of binary tests adopted in

[16] often led to low precision rates for short code lengths

(see Section 4.4 of this paper for a comparison). BRIEF de-

scriptor completely abandoned the training phase, but had

to resort to long code lengths ranging from 128 to 256 bits

[2]. More recent ORB descriptor decorrelated BRIEF fea-

tures by using a learning step to search for binary tests with

means near 0.5 [17]. D-Brief descriptors [21] was trained to

reduce code lengths while maintaining high discriminative

power.

Jensen Shannon Divergence (JSD) used in this paper is

related to information gain (IG), which was used to select

the “best” random test when growing a randomized forest

classifier [8, 1]. However, IG-based selection was found not

necessarily better than random selection in those papers.

3. Theoretic Analysis

This section lays down theoretic foundation for a sequen-

tial binary hash code learning framework and presents a rig-

orous proof of the convergence property of the framework.

3.1. A Statistical Learning Framework for Binary
Code Learning

We treat learning optimal binary codes as a typical multi-

class classification problem, in which a p-dimensional ob-

servation x = (x1, x2, ..., xp) ∈ R
p is classified as com-

ing from one of M possible classes C1, C2, ..., CM . Let

π1, ..., πM denote the a priori probabilities of the classes

and p1(x), ..., pM (x) denote corresponding probability den-

sity functions. For now let us assume these are known. Nev-

ertheless, we do NOT assume any specific forms of class

distribution models e.g. Gaussian or uniform.

A hash function h : R
p → {0, 1} is often treated as

a mapping of an observation x to a single bit binary code.

Depending on the outcome of the hash function, the entire

sample space S = R
p is partitioned into two complemen-

tary B-subsets that are defined as follows:

[b]Sh = {x∈S | h(x)=b }, b = 0 or 1. (1)

By definition, [0]Sh ∪ [1]Sh = S, [0]Sh ∩ [1]Sh = ∅ and spe-

cially [∅]S∅ = S. This definition of B-subsets is generic and

accommodates to different families of hash functions such

as linear transform, kernelized or more complex hash func-

tions used e.g. in [5, 26, 12].

A set of K hash functions ❤K = {h1, h2, ..., hK} par-

titions the space S into 2K non-overlapping B-subsets1,

which are intersections of B-subsets of each hash function:

[b1b2...bK ]S
❤K

= [b1]
S
h1

∩ [b2]
S
h2

∩ ...[bK ]ShK
.

Each B-subset [b1b2...bK ]S
❤K

is uniquely determined by its

binary code [b1b2...bK ] and partitioning hash functions ❤K .

When ambiguity seems unlikely, ❤K and S are omitted and

binary codes are denoted as b1...K for brevity of description.

If a hash code [b1b2...bK ] is observed, the posterior prob-

ability of class Cm is given by Bayes Theorem:

Pr(Cm|b1...K) =

πm

∫

b1...K

pm(x)dx

M
∑

i=1

πi

∫

b1...K

pi(x)dx

.

The probability of Bayes decision error by choosing the

class MAP estimate Cm̃ that has the largest posterior prob-

ability is:

P (e | b1...K) = 1−

πm̃

∫

b1...K

pm̃(x)dx

M
∑

i=1

πi

∫

b1...K

pi(x)dx

,

and the total probability of error for a given set of hash func-

tions ❤K is:

P (e | ❤K) =
∑

b1...K∈D❤K

P (e | b1...K),

where D❤K
is a finite set with all non-empty B-subsets as

its members.

Our goal is to seek a set of hash functions that minimizes

the total probability of Bayes decision errors:

❤
∗
K = argmin

❤K

P (e | ❤K). (2)

1Depending on different hash functions, certain binary codes may cor-

respond to empty B-subsets. Nevertheless these empty sets can be simply

skipped from consideration.
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Minimizing the objective function (2) is akin to minimizing

empirical training error in recent supervised hashing learn-

ing methods [24, 23, 12]. However, the non-smooth max(.)
function in the class MAP estimate makes it difficult to ana-

lyze the convergence property of the minimization of (2). In

the rest of the paper, we first present a rigorous proof of the

convergence of an upper bound on P (e) and then illustrate

how to use the upper bound to supervise a variety of hash

code learning algorithms.

3.2. Jensen Shanon Divergence

It has been shown, by Theorem 6 in [11], that the prob-

ability of error P (e) is related to the generalized Jensen-

Shannon Divergence (JSD):

P (e) ≤
1

2

(

H(π)− JSDπ(p1, ..., pM )
)

where H(π) = −
M
∑

i=1

πi lnπi is the entropy of the a priori

probabilities and

JSDπ(p1, ..., pM ) = H
(

M
∑

i=1

πipi

)

−
M
∑

i=1

πiH(pi)

=
M
∑

i=1

πiKL(pi||p̄).

(3)

JSD can also be interpreted as weighted, by πi, average of

Kullback-Leibler divergences KL(pi||p̄) between class dis-

tributions and the mixture distribution p̄ =
M
∑

i=1

πipi.

For a given set of hash functions ❤K , JSD is in discrete
form and can be computed by summing over all B-subsets:

JSDπ(p1, ..., pM | ❤K) =
∑

b1...K∈D❤K

JSDπ(p
b1...K
1 , ..., pb1...KM ),

(4)

where pb1...Ki =
∫

b1...K

pi(x)dx. Again, we may abuse above

notations as JSD❤K

π and JSDb1...K
π respectively.

Since H(π) is a constant for a given problem, it immedi-

ately follows that the upper bound of the probability of error

is minimized by maximizing (4):

❤
∗
K = argmax

❤K

JSDπ(p1, ..., pM | ❤K). (5)

Remark 1: The JSD measure as an objective function

can be intuitively interpreted as the combination of an un-

supervised and a supervised terms: maximizing the first

term H
( M
∑

i=1

πipi

)

in (3) leads to balanced bit assignments

regardless of class labels. Maximizing the second term

−
M
∑

i=1

πiH(pi), on the other hand, often leads to unbalanced

Algorithm 1: LSH-JSD Sequential Learning

Input: x ∈ R
N×p,yn ∈ {1, ...,M}, n = 1, ..., N , K, L

begin

❤K = ∅; πi =
Ni

N
; I∅i = 1Ni×1; where

Ni := #data points in class i;
hl = sgn(xwl) and H = sgn(xW ) , where

W = [w1, ...,wL] ∈ R
p×L are candidate projections;

for k = 1; k ≤ K; k = k + 1; do

Compute JSD
❤K∪hl
π for all hl by looping

for all b1...K with pb1...Ki �= 0 do

p
b1...K∩[1]hl

i ← Count “1” bits of I
b1...K
i ∩ hl;

end

Search h∗
l such that JSD

❤K∪h∗

l
π is maximized;

Update ❤K ←− ❤K ∪ h∗
l ;

Update I
b1...K
i accordingly;

end

end

Output: ❤K = {h1, .., hK}

bit assignments among different classes. These two oppos-

ing terms conspire to minimize the upper bound of the prob-

ability of MAP decision errors.

Remark 2: Owing to the convexity of KL divergence,

Theorem 1 below proves that the upper bound of the

Bayesian decision error is monotonically decreasing when

a sequential learning approach repeatedly adds more hash

functions except for some pathological cases.

Theorem 1. Given a set of hash functions ❤K =
{h1, .., hK} and its superset ❤S = {h1, .., hK , hS} ⊃ ❤K ,

if the condition in the proof below is satisfied, then

JSDπ(p1, ..., pM | ❤K) < JSDπ(p1, ..., pM | ❤S).

Proof. ∀ [b1...K ]❤K
= [b1...K ]❤K

∩
(

[0]hS
∪ [1]hS

)

=
(

[0]hS
∩ [b1...K ]❤K

)

⋃

(

[1]hS
∩ [b1...K ]❤K

)

� s1
⋃

s2.

Assume without loss of generality that s1 	= ∅, s2 	= ∅, we

have pbi � pb1...Ki =
∫

s1

pi(x)dx +
∫

s2

pi(x)dx � ps1i + ps2i ,

pb �
M
∑

i=1

πip
b
i , ps1 �

M
∑

i=1

πip
s1
i , ps2 �

M
∑

i=1

πip
s2
i .

It then follows the log sum inequality that

pbi ln
(

pbi/ pb
)

≤ ps1i ln
(

ps1i / ps1
)

+ ps2i ln
(

ps2i / ps2
)

(6)

with equality if and only if ps1i / ps1 = ps2i / ps2 .

Summing up LHS and RHS of (6) over all [b1...K ]❤K

and M classes, the theorem follows on the condition that:

∃ [b1...K ]❤K
= s1 ∪ s2 such that ps1i / ps1 	= ps2i / ps2 .

Remark 3: the condition above is satisfied even for ran-

dom hash functions and thus Theorem 1 also proves the

convergence property of the well-known Locality Sensitive

Hashing (LSH) method [5]. Nevertheless, as demonstrated
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Figure 1. Comparison of LSH and LSH-JSD performances on CI-

FAR10 dataset. Upper: with Euclidean neighbours. Bottom: with

Semantic labels. Left: Precision vs number of bits. Right: Preci-

sion vs Log(recall).

in the following section, to select the hash function which

maximizes JSD at each step is a preferred option to random

selection of hash functions.

4. Experiments

Section 3 lays down theoretic foundation for a sequential

binary hash code learning framework. In this section, we

demonstrate how to adopt this generic framework to train

existing learning algorithms with labelled datasets.

4.1. Dataset and Evaluation Protocols

We treat a dataset x ∈ R
N×p containing N p-

dimensional row vectors xn ∈ R
1×p, n = 1, ..., N as in-

dependent observations drawn from underlying multi-class

distributions pi, thus, class a priori probabilities can be di-

rectly estimated πi = Ni

N
where Ni is the number of data

points that belong to each class. For each data point, the

associated class label yn ∈ {1, ...,M} is either a seman-

tic label given by human or the one derived from Euclidean

distance between data points. For the latter case, a kmeans

clustering method is applied to obtain Euclidean neighbour-

hoods of the whole dataset.

Four publicly available datasets, namely CIFAR10, CI-

FAR100, LabelMe22k and SIFT10K, are used to compare

the proposed hash code learning approach against existing

methods. The CIFAR10 dataset consists of 60K 32 × 32
colour images in 10 classes, with 5K training images and

1K test images, respectively, per class. Every images is

represented by a 512-dimensional GIST feature vector [15].

Both semantic labels and Euclidean ones are used for CI-

FAR10. CIFAR-100 is just like the CIFAR-10, except that it

has 20 “coarse” and 100 “fine” superclasses. LabelMe22K

contains 20K training images and 2K testing images. 50

Figure 2. Left: Precision-Recall vs L (#candidate hash functions).

Right: Preparation time vs L.

Figure 3. Left: Precision-Recall vs N (#random labels). Right:

Precision-Recall vs #training labels.

classes and all 2000 testing images are used in our exper-

iments. SIFT10K dataset contains 10K SIFT descriptors,

which are classified into 100 classes. 100 nearest neigh-

bours are provided for each class and there is one query

SIFT descriptor per class that is used for testing in our ex-

periments. In total, there are six sets of data/labels used in

our experiments (see Table 4 for complete datasets).

Given a subset of testing data points with ground-truth

labels, we use Precision-Recall curves to illustrate perfor-

mances of different methods (see Figure 1 right column for

examples) whereas precision and recall rates are defined as

the number of true positives divided by, respectively, the

number of all retrieved and the number of all positives. Two

examples precision curves measured at Hamming radius 0

and 1 for hash codes lengths ranging from 8 to 64 bits are il-

lustrated in Figure 1 (left column). Mean average precision

(mAP) are often used to quantify performances of different

methods. In this work, we measure mAP only for Hamming

radius no greater than 3 since high precision rates prevent

unnecessarily long lists of retrieved items.

4.2. Sequential Learning with JSD

We first demonstrate how to supervise the well-known

LSH with a sequential learning algorithm 1. A set of L
candidate linear projections wl ∈ R

p×1, l=1, ...L are ran-

domly generated and applied to the whole dataset hl =
sgn(xwl)

2. Outcomes of candidate projections are con-

catenated into a binary matrix H ∈ {0, 1}N×L. We also

rearrange x according to classes so that H can be parti-

tioned into separated matrices Hi ∈ {0, 1}Ni×L per class.

2Following convention in literature, the bias term is absorbed into wl

for the brevity of description.
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Figure 4. Left to right: Performance comparison of JSD with SH [26], BRE [7], ITQ [3] and KSH [12] on CIFAR10 dataset with

Euclidean neighbourhood. Upper: Precision vs number of bits. Bottom: Precision vs Log(recall) with 32 bits code.

Binary vector Ib1...Ki ∈ {0, 1}Ni×1 indicates those points

that are associated with class i and binary code b1...K . This

way p
b1...K∩[1]hl

i can be efficiently computed by counting

“1” bits in the intersection of Ib1...Ki and corresponding col-

umn vectors hl, and thereafter normalizing the count with

respect to Ni. The complement p
b1...K∩[0]hl

i can be com-

puted accordingly. The whole JSD-based learning process

is implemented as a binary tree growing algorithm in MAT-

LAB codes. The core bit count step is implemented as a

mex function using SSE4 popcnt instruction. All experi-

ments are run with Intel Xeon 3.6GHz x4 64bits CPU and

12GB RAM.

This supervised approach leads to significant perfor-

mance improvement as compared to random projection

adopted in LSH. Figure 1 illustrates improvements in pre-

cision rates measured on CIFAR10 dataset with both Eu-

clidean neighbour and semantic labels. The improvements

can also be found in Table 4 for experiments with other

datasets. Figure 2 (left) illustrates how the precision of JSD

algorithm is positively related to the number of candidate

hash functions L. Whereas a small number of 200 can-

didates lead to significant improvement over random pro-

jections in LSH, 50 times more candidates improves about

10% precision only.

Precisions of JSD-based learning essentially depend on

qualities of label information. Figure 3 shows that there is

a graceful precision loss due to noisy or partial labels. With

50% random labels, the precision of JSD learning decreases

about 20% yet still outperforming LSH. Training with 1%
labels, the incurred precision loss is no more than 5%.

4.3. JSD improvements of other methods

Algorithm 1 can also be used to improve other binary

code learning methods with a minor modification, i.e. by

appending outputs of existing methods He ∈ {0, 1}N×K to

candidate projection outcomes H ← H ∪ He. This generic

approach of exploiting label information can be applied to

any hash coding learning algorithms in a consistent manner.

We set L (=10000+K) for all experiments reported in this

paper. Figures 4 illustrates performance improvements of

one unsupervised (SH [26]) and three supervised methods

(BRE [7], ITQ [3] and KSH [12]) measured on CIFAR10

dataset with Euclidean labels. It is shown that JSD-based

learning approaches, denoted as X-JSD, consistently im-

prove all existing methods to various extents, with the only

exception that precision-recall curves are almost identical

for KSH and KSH-JSD.

Quantitative performance comparison, in terms of mean

average precision (mAP), are summarized in Figure 5 in

which six sets of data/labels are used. It is observed that

performances of JSD-based learning approaches compare

favourably with those of original methods in the majority of

comparisons. While the average improvement of SH-JSD

over SH is more noticeable (11.7%), the difference between

KSH-JSD and KSH is merely 1.3%. Detailed comparison

of mAP across different methods and datasets are illustrated

in Table 4. Note that for datasets reported in top three pan-

els, both the best scores (in bold font) and the runner ups

(underlined) along each row bunch together in “KSH/JSD”

column. In the bottom two panels, however, performances

in KSH/JSD column no longer excel but JSD learning meth-

ods still outperform the original methods in the majority of

cases (with minor exceptions marked by “‡”). This adap-

tation demonstrates that the JSD learning approach is not

biased and can be effectively applied to any existing meth-

ods.

Note that certain columns of He might be selected if their

JSD measures are the largest one at some steps. For in-
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Figure 5. Comparison of “JSD” learning method with original methods (denoted by “X”). Mean average precision (mAP %) are measured

only for Hamming radius no greater than 3. Six datasets are used and the rHALF method is introduced in Section 4.4.

K (bits) 8 12 16 24 32 48 64 selected

KSH 3 4 4 5 9 27 42 38%
KBRE 0 0 0 2 13 26 42 24%
KITQ 0 0 0 0 6 22 35 17%
KKSH 7 7 12 18 27 42 60 80%

Table 1. Numbers and average percentages of hash functions that

are selected from different methods.

stance, Table 1 summarizes numbers of hash functions that

are selected from different methods in one example run. In

particular, the last column shows percentage of hash func-

tions that are selected from corresponding learning meth-

ods, averaged over different lengths of hash codes. Notice-

ably, KSH contributes the majority of selected hash func-

tions and this seems in accordance with high precision rates

of KSH reported in Figure 4 as well as Table 4.

4.4. Time Complexity and Supervised Haar-like
Functions

Table 2 summarizes average time costs of two time-

consuming steps in the proposed JSD learning algorithm.

First, the preparation time (Tp) of candidate matrix H is

approximately proportional to the number of candidates L
(also see Figure 2 right). Second, the training time (Ts)

mainly depends on the number of bits K. However, Ts

does not increase exponentially with K since the number of

data points is finite and pb1...Ki quickly approach 0 for many

subsets after dozens of iterations. Therefore, a small prob-

ability threshold pt(= 0.0001) is used to early stop many

L 200 600 1000 2000 6000 10000

Tp(s) 2.39 1.63 2.09 3.31 8.88 29.47

K 8 16 24 32 48 64

Ts(s) 6.6 56.9 111.1 116.5 121.2 129.9

Table 2. Summary of time complexity.

branches whenever pb1...Ki < pt. Precision loss incurred by

early stopping is negligible.

Relatively long preparation time Tp and training time Ts

is not a critical issue for off-line training, which is often

the case for large scale image searching applications. In-

stead, the processing time of converting a query data point

into binary codes (i.e. coding time) is a crucial performance

parameter for nearest neighbour search algorithms. While

the coding time is often considered a constant for projection

based hash functions, it actually can be reduced by order of

magnitudes by exploiting simple yet discriminative binary

tests of input feature vectors.

Haar-Like Functions: Inspired by the well known

Haar-like features for real-time object detection [22], we

propose a set of Haar-Like Functions (HALF) as follows:

hij(x) =

{

1 if xi > xj , i 	= j
0 otherwise

, (7)

where xi is i-th component of the input vector x =
(x1, x2, ...xp) ∈ R

p.

This family of hash functions constitute a special sub-

set of the well-known linear projections that have only two

non-zero elements (1 and −1 respectively) in each column
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Figure 6. Performance comparison on CIFAR10 dataset with semantic labels (upper row) and Euclidean neighbourhood (bottom row).

Three columns on left: Precision-recall curves with varying code lengths. Right-most column: summary of precisions.

of the projection matrix W . For p-dimensional input vec-

tors, there are in total
(

p
2

)

candidate HALFs from which K
HALFs are to be selected. Random selection of HALFs

(rHALF) does not necessarily guarantee satisfactory preci-

sion rates, instead, we adopt the proposed JSD learning al-

gorithm to boost precision rates of random HALFs (denoted

as rHALF-JSD hereafter).

It is observed in Figure 5 that rHALF-JSD significantly

outperforms rHALF by about 14% improvement in mAP.

As compared with other methods, Figure 6 shows that the

curve of rHALF-JSD (red solid line) lies almost exactly be-

tween unsupervised (LSH, rHALF and SH) and supervised

methods (BRE, ITQ and KSH). It is also shown in the right

most column of Table 4 that rHALF-JSD outperforms all

other methods for 128 dimensional SIFT feature vectors.

Given that HALFs merely amount to a tiny fraction of all

possible linear projections, its performance is acceptable.

The practical value of rHALF-JSD lies in its extremely

short coding time Tc (see Table 3). Since there is no matrix

multiplication involved, the per query coding time is at least

two orders of magnitude faster than other projection based

methods for 512-dimensional GIST vectors. This speedup

is particularly useful for real-time applications such as fast

keypoint recognition [16] and image localization [18] in

which query images may contain up to 10K features and

the coding time amounts to a significant portion of the to-

tal processing time. The advantage of the proposed Haar-

Like function becomes more pronounced for applications

running on mobile devices.

5. Conclusion

Contributions of this work are two-folds. First, we for-

mulated binary hash coding learning within a statistical

learning framework in which an upper bound of the proba-

Tc(s) Tp(s) Ts(s)

rHALF-JSD 1.0× 10−7 183.6 3337.5

LSH 80× 10−7 0.5

SH 400× 10−7 3.0

BRE 290× 10−7 494.7

KSH 430× 10−7 156

Table 3. Average time cost of rHALF-JSD in comparison with that

of LSH, SH, BRE and KSH. Tc - coding time. Tp - preparation

time. Ts - training time.

bility of Bayes decision errors is derived for arbitrary hash

functions. Since the convergence property of such a se-

quential learning method is rigorously proved, one is able

to freely apply the JSD-based learning approach to differ-

ent hash functions as long as sufficient number of labelled

data are available. Our experimental results also demon-

strated the viability of such a generic approach. Second,

we proposed a very simple and fast hash function which is

able to reduce the coding time by two order of magnitudes

as compared with other projection based methods. Due to

its high speed and computational simplicity, the proposed

Haar-Like function is especially preferred for applications

running on mobile devices.

As for future work, we advocate the JSD-based learn-

ing approach as a generic framework to combine different

learning algorithms. In order to alleviate the burden of pro-

viding labels for all data points, we are interested in a semi-

supervised approach where the second term of JSD (in eq.

3) can be estimated using only partially labelled data.
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