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The exponential growth of DNA sequencing
technologies and concomitant advances in bioinfor-
matics methods are revolutionizing our understand-
ing of diverse microbial communities (Riesenfeld
et al., 2004; Tyson et al., 2004; Hugenholtz and
Tyson, 2008; Tringe and Hugenholtz, 2008; Caporaso
et al., 2010). Large-scale microbial metagenomics
studies have particularly exciting applications in
the arena of human health, laying the foundation for
the Human Microbiome Project (HMP). In the
context of the HMP and related efforts, care has
been taken to understand the impact of amplifica-
tion biases or sequencing errors. However, far less
attention has been paid to the impact of errors in
metadata on biological interpretations and the
mitigation of such errors. During processing and
pooling of hundreds of samples, some mislabeling is
likely. Figure 1 illustrates a real world example:
several 16S rRNA amplifications of bacterial com-
munity DNA samples collected along a time series
were accidentally mislabeled (late switched to early)
(Koenig et al., 2010). Automated detection of such
errors will be important as datasets become increas-
ingly large and complex.

Mislabeled metadata are especially problematic in
large-scale collaborations where data analysis is far
removed from data generation: researchers cannot
reconfirm sample labels or resequence questionable
samples, and must rely on the accuracy of available
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Figure 1 Resequenced 454 16S rRNA genes from infant time
series experiment. These data are 60 fecal samples obtained over
2.5 years from a single individual. (a) Principal coordinates
analysis of unweighted UniFrac distances derived from sequences
from the initial sequencing run. (b) Corrected data. (c) Taxonomic
discrepancies between the initial run (a) and the corrected run
(b). Sample points are colored according to collection time where
dark blue points represent time points that were collected early
during the experiment, whereas the light gray time points
represent later samples. Note that time points from days 19, 55
and 85 are misplaced in panel a (too dark for their position), and
after resequencing, they cluster with other dark blue samples
(early time points).
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metadata. However, we have found that supervised
classifiers are able to detect and even correct
erroneous metadata in some datasets. We have
demonstrated the efficacy of this approach by
applying two common classifiers to Monte-Carlo
simulations of mislabeled metadata from published
16S rRNA microbial community datasets examining
(1) variation of bacterial communities among human
body habitats (Costello et al., 2009), and (2) the
relationship of bacteria on computer keyboards to
the users’ hands (Fierer et al., 2010).

When the ‘alleged’ data labels (that is, the meta-
data supplied by the experimenter) contain errors,
we refer to this as ‘metadata error’. Normally when
we build a supervised classifier we can only
compare its predictions to the alleged labels, and
so the classifier’s ‘reported error’ may be inaccurate.
Here we work through an example in which all

metadata error is simulated, and so we can compare
a classifier’s predicted labels to the true labels to
measure the classifier’s ‘true error’. When all or
most of the samples are mislabeled, we expect the
classifier to be useless, but what if only a few of the
labels are wrong?

After intentionally mislabeling samples at various
rates of error, we tried to recover the correct
groupings using the taxon relative abundance
vectors as input features to two different classifica-
tion models that have been successful in other high-
dimensional classification problems (random forests
(Breiman, 2001) and nearest shrunken centroids
(Tibshirani et al., 2002)) on two easy classification
tasks (classifying general body habitats like skin vs
gut, and classifying hand/keyboard samples by
individual) and one hard task (classifying specific
sites within the skin habitat like palm vs forearm).

Figure 2 (a, b) Metadata error correction using random forests for the forensic identification task (a) and the general body habitat
classification task (b). The horizontal axes show the proportion of labels that has been intentionally perturbed, and the vertical axes show the
proportion of error in the prediction of the random forest classifier when trained on the full dataset with the perturbed labels. Each point
represents the average error for 10 random perturbations of the metadata, with standard error bars. The solid black line simply shows the
amount of error in the metadata, and is a useful reference for the other curves. The ‘Classifier’s reported error’ reflects how well the model
‘thinks’ it is doing based on the partially incorrect metadata, whereas the ‘Classifier’s true error‘ reflects a ‘god’s-eye view’ of how well the
model is actually doing based on the true metadata. If the model does a good job of learning the differences between categories, it will often
discover the true category for a mislabeled sample, although it will still report such a classification as an error. Hence the true error is
generally lower than the reported error. (c, d) Principal coordinates analysis plots of the UniFrac distances between samples in the Fierer
et al. (2010) dataset; the first two axes (shown) explain 18.0 and 6.3% of the total variation. Panel c Shows the data with 40 randomly chosen
intentionally confused labels circled in red, and d shows the labels predicted by the random forest classifier (trained with 2000 trees and
otherwise default settings using the confused labels). This classifier recovered all of the true class labels for those samples, while introducing
only two new incorrect labels. Confused labels that were corrected by the model are indicated with a black square; remaining errors are
indicated with a red circle.
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We first ran the models using the original (correct)
metadata for each classification problem, then using
perturbed metadata with an increasing proportion
of incorrect labels. A detailed description of our
methods is provided as Supplementary Information.

We found that both random forests and nearest
shrunken centroids are able to recover many of the
true data labels when the differences between
classes are large. Figure 2a shows that for keyboard
user classification, the random forest classifier
maintains near-zero true error even with 40%
incorrect class labels. Results for the relatively easy
body habitat classification were similar. These
results imply that in easy classification tasks some
classifiers can recover far more of the true data
labels than were provided in the alleged metadata
(Figures 2c–d and Supplementary Table 1 show an
example using the keyboard data). However, in the
harder skin site classification task (Figure 2b),
random forest’s true error rate is only better than
the metadata error when the metadata contains
between 40 and 80% errors, which is more metadata
error than we expect to find in any real dataset.

Conclusions

Supervised classifiers can in some cases be used to
detect or correct errata in metadata for microbial
communities before the data are subjected to biologi-
cal interpretation, although they should be used in
addition to, and not in place of, careful labeling and
data management. In two real datasets, the random
forest classifier and the nearest shrunken centroids
classifier maintain consistent accuracy until more
than 30–40% of samples are mislabeled. Furthermore,
when the data categories are highly distinct, the
output from the classifier often matches the true data
labels much better than the erroneous metadata. In a
harder classification task in which the data categories
are more subtle, supervised classifiers may not be
useful for realistic amounts of metadata error. We
encourage future research into this approach, specifi-
cally studies of which classifiers are most effective for
this purpose, which kinds of metadata are most
amenable to this technique, and how best to extend
this approach to mislabeling in continuous metadata
such as a time series. Although we focused on
mislabeled 16S rRNA surveys, similar principles
likely hold for metagenomic and other characteriza-
tions of microbial communities.
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