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Abstract. The microRNAs are small, endogenous non-coding RNAs
found in plants and animals, which suppresses the expression of genes
post-transcriptionally. It is suggested by various genome-wide studies
that a substantial fraction of miRNA genes is likely to form clusters.
The coherent expression of the miRNA clusters can then be used to clas-
sify samples according to the clinical outcome. In this background, a new
rough hypercuboid based supervised similarity measure is proposed that
is integrated with the supervised attribute clustering to find groups of
miRNAs whose coherent expression can classify samples. The proposed
method directly incorporates the information of sample categories into
the miRNA clustering process, generating a supervised clustering algo-
rithm for miRNAs. The effectiveness of the rough hypercuboid based
algorithm, along with a comparison with other related algorithms, is
demonstrated on three miRNA microarray expression data sets using
the B.632+ bootstrap error rate of support vector machine. The asso-
ciation of the miRNA clusters to various biological pathways are also
shown by doing pathway enrichment analysis.

Keywords: MicroRNA · Co-expressed miRNAs · Clustering · Rough
sets

1 Introduction

Micro RNAs/miRNAs are a class of short approximately 22-nucleotide non-
coding RNAs found in many plants and animals. They inhibit the expression
of mRNA expression post-transcriptionally. It has been shown by [1] that the
miRNAs on a genome tend to present in a cluster. Large scale surveys [2] have
established the fact that miRNAs have tendency to present in clusters. Exis-
tence of co-expressed miRNAs is also demonstrated using expression profiling
analysis in [3]. These findings suggest that members of a miRNA cluster, which
are at a close proximity on a chromosome, are highly likely to be processed as
co-transcribed units. In [4,15], different approaches are introduced to discover
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miRNA cluster patterns. Expression data of miRNAs can be used to detect clus-
ters of miRNAs as it is suggested that co-expressed miRNAs are co-transcribed,
so they should have similar expression pattern.

Several unsupervised clustering techniques like hierarchical clustering algo-
rithms [8] and self organizing maps [2] are used to cluster a miRNA expression
data. However, the groups of miRNAs discovered by these unsupervised clus-
tering algorithms are not potential enough to do tissue classification [5], as the
miRNAs are grouped based on their similarity without incorporating the class
label information. In this regard, several supervised clustering algorithms are
proposed to cluster gene expression data [5,10,11]. In [5], genes are clustered by
incorporating the knowledge of tissue. On the other hand, hierarchical clustering
is employed on the gene expression data and the average of resultant clustering
solutions are further used to do sample classification. Only in the later part, infor-
mation of the class label is incorporated [10]. In [11], a fuzzy-rough supervised
gene clustering algorithm is described. The algorithm uses fuzzy equivalence
classes to compute relevance of the clusters, that makes the algorithm sensitive
to the fuzzy parameter. However, none of the works has addressed the problem
of supervised clustering of miRNAs.

However, one of the main problems in expression data analysis is uncertainty.
Some of the sources of this uncertainty include imprecision in computations and
vagueness in class definition. In this background, the rough set [16] provides a
mathematical framework to capture uncertainties associated with human cogni-
tion process. In [11,13,14], rough sets have been successfully used to analyze a
microarray expression data.

In this regard, this paper presents a new rough hypercuboid based super-
vised clustering algorithm. It is developed by integrating the concepts of rough
hypercuboid equivalence partition matrix [12,14] and supervised attribute clus-
tering algorithm [11]. It finds coregulated clusters of miRNAs whose collective
expression is strongly associated with the sample categories. Using the concept
of rough hypercuboid equivalence partition matrix, the degree of dependency is
calculated for miRNAs, which is used to compute both relevance and significance
of the miRNAs. Hence, the only information required in the proposed method
is in the form of equivalence classes for each miRNA, which can be automat-
ically derived from the data set. A new measure is developed for calculating
similarity between two miRNAs. Based upon the similarity values, the miRNAs
are grouped into cluster. The new supervised clustering algorithm divides the
miRNA expression data in distinct clusters. In each cluster, the first selected
miRNA has high relevance value with respect to the class label and it is the rep-
resentative of the cluster. The representative is modified in such a way that the
averaged expression value has high relevance value with the class label. Finally,
the proposed method generates a set of clusters, whose coherent average expres-
sion levels allow perfect discrimination of tissue types. The concept of B.632+
error rate [7] is used to minimize the variability and biasedness of the derived
results. The support vector machine is used to compute the B.632+ error rate as
well as several other types of error rates as it maximizes the margin between data
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samples in different classes. The effectiveness of the proposed approach, along
with a comparison with other related approaches, is demonstrated on several
miRNA expression data sets.

2 Rough Hypercuboid Based Supervised Attribute

Clustering

In this paper, a new algorithm is developed based on rough hypercuboid equiv-
alence partition matrix. Every clustering algorithm need a distance or similarity
measure to group objects. Accordingly, a new rough hypercuboid based simi-
larity measure is proposed. The concept of rough hypercuboid was presented in
[20], while that of rough hypercuboid equivalence partition matrix was proposed
in [12,14]. It has also been successfully applied for feature/gene/miRNA selec-
tion in [12,14]. The relevance of a cluster is calculated using rough hypercuboid
equivalence partition matrix based dependency measure. The proposed rough
hypercuboid based supervised similarity measure is integrated into the super-
vised attribute clustering algorithm developed by Maji [11]. Prior to describe
about the new supervised attribute clustering algorithm, next the concept of
rough hypercuboid equivalence partition matrix is described.

2.1 Rough Hypercuboid Equivalence Partition Matrix

Let U = {s1, · · · , si, · · · , sn} be the set of n objects or samples and C =
{M1, · · · , · · · ,Mm} denotes the set of m attributes or miRNAs of a given
microarray data set. Let D be the set of class labels or sample categories of
n samples.

If U/D = {β1, · · · , βi, · · · , βc} denotes c equivalence classes or information
granules of U generated by the equivalence relation induced from the decision
attribute set D, then c equivalence classes of U can also be generated by the
equivalence relation induced from each condition attribute or miRNA Mk ∈ C. If
U/Mk = {µ1, · · · , µi, · · · , µc} denotes c equivalence classes or information gran-
ules of U induced by the condition attribute or miRNA Mk and n is the number
of objects in U, then c-partitions of U are the sets of (cn) values {hij(Mk)} that
can be conveniently arrayed as a (c×n) matrix H(Mk) = [hij(Mk)]. The matrix
H(Mk) is denoted by

H(Mk) =

⎛

⎜

⎜

⎝

h11(Mk) h12(Mk) · · · h1n(Mk)
h21(Mk) h22(Mk) · · · h2n(Mk)
· · · · · · · · · · · ·
hc1(Mk) hc2(Mk) · · · hcn(Mk)

⎞

⎟

⎟

⎠

(1)

where hij(Mk) =

{

1 if Li ≤ xj(Mk) ≤ Ui

0 otherwise.
(2)

The tuple [Li,Ui] represents the interval of ith class βi according to the
decision attribute set D. The interval [Li,Ui] is the value range of condition
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attribute or miRNA Mk with respect to class βi. It is spanned by the objects
with same class label βi. That is, the value of each object sj with class label
βi falls within interval [Li,Ui]. This can be viewed as a supervised granulation
process, which utilizes class information.

On employing a condition attribute or miRNA Mk a c × n matrix H(Mk)
termed as hypercuboid equivalence partition matrix is generated. The c × n
matrix H(Mk) is termed as hypercuboid equivalence partition matrix of the con-
dition attribute or miRNA Mk. Each row of the matrix H(Mk) is a hypercuboid
equivalence partition or class. Here hij(Mk) ∈ {0, 1} represents the membership
of object sj in the class βi satisfying following two conditions:

1 ≤
n

∑

j=1

hij(Mk) ≤ n,∀i; 1 ≤
c

∑

i=1

hij(Mk) ≤ c,∀j. (3)

The above axioms should hold for every equivalence partition, which corre-
spond to the requirement that an equivalence class is non-empty. However, in
real data analysis, uncertainty arises due to overlapping class boundaries. Hence,
such a granulation process does not necessarily result in a compatible granula-
tion in the sense that every two class hypercuboids or intervals may intersect
with each other. The intersection of two hypercuboids also forms a hypercuboid,
which is referred to as implicit hypercuboid. The implicit hypercuboids encom-
pass the misclassified samples or objects those belong to more than one classes.
The degree of dependency of the decision attribute set or class label on the con-
dition attribute set depends on the cardinality of the implicit hypercuboids. The
degree of dependency increases with the decrease in cardinality.

Using the concept of hypercuboid equivalence partition matrix, the misclas-
sified objects of boundary region present in the implicit hypercuboids can be
identified based on the confusion vector defined next

V(Mk) = [v1(Mk), · · · , · · · , vn(Mk)]; where vj(Mk) = min{1,

c
∑

i=1

hij(Mk) − 1}. (4)

In rough sets if an object sj belongs to the lower approximation of any class
βi, then it does not belong to the lower or upper approximations of any other
classes and vj(Mk) = 0. On the other hand, if the object sj belongs to the
boundary region of more than one classes, then it should be encompassed by
the implicit hypercuboid and vj(Mk) = 1. Hence, the hypercuboid equivalence
partition matrix and corresponding confusion vector of the condition attribute
Mk can be used to define the lower and upper approximations of the ith class βi

of the decision attribute set D. Let βi ⊆ U. βi can be approximated using only
the information contained within Mk by constructing the M -lower and M -upper
approximations of βi:

M(βi) = {sj | hij(Mk) = 1 and vj(Mk) = 0}; M(βi) = {sj | hij(Mk) = 1}; (5)

where equivalence relation M is induced from attribute Mk. The boundary
region of βi is then defined as

BNM (βi) = {sj | hij(Mk) = 1 and vj(Mk) = 1}. (6)
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Dependency. The dependency between condition attribute Mk and decision
attribute D can be defined as follows:

γMk
(D) =

1

n

c∑

i=1

n∑

j=1

hij(Mk) ∩ [1 − vj(Mk)]; that is, γMk
(D) = 1 −

1

n

n∑

j=1

vj(Mk), (7)

where 0 ≤ γMk
(D) ≤ 1. If γMk

(D) = 1, D depends totally on Mk, if 0 <
γMk

(D) < 1, D depends partially on Mk, and if γMk
(D) = 0, then D does not

depend on Mk. The γMk
(D) is also termed as the relevance of attribute Mk

with respect to class D.

Significance. The resultant hypercuboid equivalence partition matrix
H({Mk,Ml}) of size c × n can be computed from H(Mk) and H(Ml) as fol-
lows:

H({Mk, Ml}) = H(Mk) ∩ H(Ml); where hij({Mk, Ml}) = hij(Mk) ∩ hij(Ml). (8)

The significance of the attribute Mk with respect to the condition attribute
set {Mk,Ml} is given by

σM(D,Mk) =
1

n

n
∑

j=1

[vj(M − {Mk}) − vj(M)] ; (9)

where 0 ≤ σ{Mk,Ml}(D,Mk) ≤ 1. Hence, the higher the change in dependency,
the more significant the attribute Mk is. If significance is 0, then the attribute
is dispensable.

2.2 Rough Hypercuboid Based Supervised Similarity Measure

The simple concepts of rough hypercuboid based dependency and significance is
used to calculate distance between two miRNAs and then the non-linear transfor-
mation of the distance is used to calculate similarity between two miRNAs. This
subsection presents the proposed rough hypercuboid based supervised similarity
measure.

Let C = {M1, · · · ,Mi, · · · ,Mj , · · · ,MD} denotes the set of D condition
attributes or miRNAs of a given data set. Define RMi

(D) as the relevance of
the condition attribute Mi with respect to the class label or decision attribute
D. The dependency function of rough hypercuboid can be used to calculate the
relevance of condition attributes or miRNAs. Hence, the relevance RMi

(D) of
the condition attribute Mi with respect to the decision attribute D using rough
hypercuboid can be calculated as follows:

RMi
(D) = γMi

(D) (10)

where γMi
(D) represents the degree of dependency between condition attribute

or miRNA Mi and decision attribute or class label D that is given by (7).
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At first, the distance between two miRNAs Mi and Mj is calculated using
rough hypercuboid based approach. Then the non-linear transformation of the
distance is done for getting the similarity between these two miRNAs. The non-
linear transformation is done to detect nonlinear interdependencies between the
underlying two miRNAs. The rough hypercuboid based significance (9) is used
to compute similarity between two miRNAs and it is defined next.

Definition 1. The rough hypercuboid based similarity measure between two

attributes or miRNAs Mi and Mj is defined as follows:

ψ(Mi,Mj) =
1√

κ2 + 1
; where κ =

{

σMi
(D,Mj) + σMj

(D,Mi)

2

}

(11)

Hence, the supervised similarity measure ψ(Mi,Aj) directly takes into account
the information of sample categories or class labels D while computing the sim-
ilarity between two attributes or miRNAs Mi and Mj . If attributes Mi and
Mj are completely correlated with respect to class labels D, then κ = 0 and
so ψ(Mi,Mj) is 1. If Mi and Mj are totally uncorrelated, ψ(Mi,Mj) = 1√

2
.

Hence, ψ(Mi,Mj) can be used as a measure of supervised similarity between
two miRNAs Mi and Mj .

2.3 Supervised miRNA Clustering Algorithm

In this work the proposed rough hypercuboid based similarity measure is incorpo-
rated into the Fuzzy-Rough Supervised Attribute Clustering Algorithm [11]. In
the proposed method a new rough hypercuboid based similarity measure is devel-
oped to calculate similarity between two miRNAs. Whereas, in [11] a fuzzy-rough
supervised similarity measure is proposed. However, the fuzzy-rough supervised
similarity measure is sensitive to the fuzzy parameter that is used to calculate
the similarity between two objects.

Let C represents the set of miRNAs of the original data set, while S and
S̄ are the set of actual and augmented attributes, respectively, selected by the
miRNA clustering algorithm. Let Vi is the coarse cluster associated with the
miRNA Mi and V̄i, the finer cluster of Mi, represents the set of miRNAs of Vi

those are merged and averaged with the attribute Mi to generate the augmented
cluster representative M̄i. The main steps of the integrated miRNA clustering
algorithm are reported next.

1. Initialize C ← {M1, · · · ,Mi, · · · ,Mj , · · · ,MD}, S ← ∅, and S̄ ← ∅.
2. Calculate the rough hypercuboid based relevance value RMi

(D) of each
miRNA Mi ∈ C.

3. Repeat the following nine steps (steps 4 to 12) until C = ∅ or the desired
number of attributes are selected.

4. Select miRNA Mi from C as the representative of cluster Vi that has highest
rough hypercuboid based relevance value. In effect, Mi ∈ S, Mi ∈ Vi, Mi ∈
V̄i, and C = C \ Mi.
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5. Generate coarse cluster Vi from the set of existing attributes/miRNAs of C

satisfying the following condition:

Vi = {Mj |ψ(Mi,Mj) ≥ δ;Mj 
= Mi ∈ C}. (12)

6. Initialize M̄i ← Mi.
7. Repeat following four steps (steps 8–11) for each miRNA Mj ∈ Vi.
8. Compute two augmented cluster representatives by averaging Mj and its

complement with the attributes of V̄i as follows:

M̄
+
i+j =

1

|V̄i| + 1

⎧

⎨

⎩

∑

Mk∈V̄i

Mk + Mj

⎫

⎬

⎭

; M̄ −

i+j =
1

|V̄i| + 1

⎧

⎨

⎩

∑

Mk∈V̄i

Mk − Mj

⎫

⎬

⎭

(13)
9. The augmented cluster representative M̄i+j after averaging Mj or its com-

plement with V̄i is as follows:

M̄i+j =

{

M̄
+
i+j if R

M̄
+

i+j
(D) ≥ R

M̄
−

i+j
(D)

M̄
−
i+j otherwise.

(14)

10. The augmented cluster representative M̄i of cluster Vi is M̄i+j if
RM̄i+j

(D) ≥ RM̄i
(D), otherwise M̄i remains unchanged.

11. Select attribute Mj or its complement as a member of the finer cluster V̄i

of attribute Mi if RM̄i+j
(D) ≥ RM̄i

(D).

12. In effect, M̄i ∈ S̄ and C = C \ V̄i.
13. Stop.

3 Experimental Results

The performance of the proposed rough hypercuboid equivalence partition
matrix based supervised miRNA clustering (RH-SAC) method is extensively
studied and compared with that of some existing feature selection and clus-
tering algorithms on three miRNA expression data sets GSE17846, GSE21036,
and GSE28700. The algorithms compared are mutual information based Info-
Gain [17] and minimum redundancy-maximum relevance (mRMR) algorithm
[6], method proposed by Golub et al. [9], rough set based maximum relevance-
maximum significance (RSMRMS) algorithm [13], µHEM [14], fuzzy-rough
supervised attribute clustering algorithm (FR-SAC) [11]. The error rate of sup-
port vector machine (SVM) [18] is used to evaluate the performance of different
algorithms. To compute the error rate of SVM, bootstrap approach (B.632+
error rate) [7] is performed on each miRNA expression data set. For each train-
ing set, a set of differential miRNA groups is first generated, and then SVM is
trained with the selected coherent miRNAs. After the training, the information
of miRNAs those were selected for the training set is used to generate test set
and then the class label of the test sample is predicted using the classifier. The
maximum number of features selected by the new integrated supervised miRNA
clustering algorithm are 50.
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3.1 Optimal Value of δ Parameter

The threshold δ in (12) plays an important role in the performance of the pro-
posed supervised miRNA clustering algorithm. It controls the size of a cluster.
Hence, it has direct influence in the performance of the proposed algorithm.
Higher the value of δ sparse the cluster becomes. To find the optimal value of δ
parameter the proposed algorithm is implemented on three data sets. The value
for which the B.632+ error rate is minimum is considered to be the optimum δ
value for the corresponding data set.The value of δ is varied from 0.90 to 1.00.
Hence, the optimum value of δ for three miRNA data sets are calculated using
the following relation:

δ⋆ = arg min
δ

{B.632 + error}. (15)

The optimum values of δ∗ obtained using (15) are 0.99, 1.00, 0.95 for
GSE17846, GSE21036, and GSE28700 data sets, respectively. The number of
miRNAs at which optimal δ∗ value is obtained for miRNA data sets are 31, 49,
and 43 for GSE17846, GSE21036, and GSE28700 data sets, respectively.

3.2 Different Types of Errors

This section describes about the different types of errors generated by the SVM
classifier. The importance of B.632+ error over apparent error (AE), gamma
error (γ), and bootstrap (B1) error is also established. All the errors are cal-
culated using the SVM for the proposed method. The results are presented for
the optimum values of δ. Figure 1 represents different types of errors obtained
for three different data sets. From the figure it is seen that the γ error rate is
higher than any other type of errors for each data set, while B1 error is lower
than the γ error rate but higher than the B.632+ error and AE. The average
of B1 error and AE leads to B.632+ error rate lower than the B1 error but
higher than AE. Table 1 represents minimum values of different types of errors
and corresponding number of miRNAs at which the error is obtained for each
miRNA data sets. From the table it is seen that the B.632+ estimator rectifies
the upward bias of B1 error and downward bias of AE.

Table 1. Comparative analysis of different types of errors for proposed method

Microarray
data sets

AE B1 Error γ Error B.632+ Error

Error miRNAs Error miRNAs Error miRNAs Error miRNAs

GSE17846 0.000 5 0.087 31 0.458 2 0.059 31

GSE21036 0.000 41 0.062 49 0.397 7 0.041 49

GSE28700 0.000 2 0.250 43 0.466 27 0.197 43
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Fig. 1. Different error rates of the proposed algorithm on different data sets obtained
using the SVM averaged over 50 random splits

3.3 Comparative Performance Analysis

In this section comparative performance analysis of the proposed supervised
miRNA clustering algorithm has been shown. The proposed algorithm has been
compared with some popular feature selection and supervised attribute cluster-
ing algorithms.

Table 2 represents the different types of error obtained by different methods
at their optimal parameters. It also contains the number of miRNAs at which the
corresponding lowest error rate is obtained by each method. From the table it is
seen that the almost all the algorithms generate AE equal to zero. However, the
RSMRMS generates non zero AE in 2 cases. From the table it is seen that the
proposed supervised miRNA clustering algorithm generates B.632+ error rate
lower than any other method except in one case. Only in one case the µ-HEM
miRNA selection algorithm generates better result than the proposed method.

3.4 Pathway Enrichment Analysis of Obtained miRNAs

In this section biological importance of the obtained miRNAs using proposed
supervised miRNA clustering algorithm is described. Those miRNAs which are
selected by the proposed method in all the 50 bootstrap samples were used for
further analysis. The association of those miRNAs with different biological path-
ways were determined. The DIANA-miRPath v2.0 [19] interface has been used
to identify the miRNA-pathway relationship. The server performs an enrichment
analysis of miRNA gene targets in KEGG pathways. The tool first identifies the
target genes of the uploaded miRNAs.

The DIANA-miRPath v2.0 has been applied on the selected miRNAs of
miRNA data sets. Those pathways are selected whose P -value is lower than
0.05. The miRNA-pathway relation is represented by a heatmap. Figure 2 rep-
resents the heatmap of the miRNA-pathways which are found to be statistically
significant. The darker colors represent that the miRNA is associated with the
pathway more significantly. In data set GSE17846 the miRNA profiling of total
blood of multiple sclerosis and control samples is performed. From the figure it is
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Table 2. Comparative performance analysis of different algorithms

Microarray Algorithms/ Apparent Error B1 Error γ Error B.632+ Error

data sets Methods Error miRNAs Error miRNAs Error miRNAs Error miRNAs

GSE17846 Golub 0.0000 6 0.1165 48 0.4795 48 0.0809 48

InfoGain 0.0000 7 0.0930 37 0.4799 37 0.0630 37

mRMR 0.0000 3 0.1010 48 0.4798 48 0.0690 48

RSMRMS 0.0000 2 0.0930 39 0.4792 39 0.0640 39

µ-HEM 0.0000 2 0.0870 49 0.4790 49 0.0590 49

FR-SAC 0.0000 2 0.2340 47 0.4659 18 0.1803 47

RH-SAC 0.0000 5 0.0870 31 0.4580 2 0.0588 31

GSE21036 Golub 0.0000 35 0.0694 48 0.4370 39 0.0466 48

InfoGain 0.0000 39 0.0730 50 0.4452 44 0.0490 50

mRMR 0.0000 19 0.0640 49 0.4400 50 0.0430 49

RSMRMS 0.0500 5 0.0890 5 0.4173 5 0.0750 5

µ-HEM 0.0000 42 0.0580 47 0.4440 47 0.0390 47

FR-SAC 0.0000 41 0.0785 50 0.4020 1 0.0530 50

RH-SAC 0.0000 41 0.0620 49 0.3970 7 0.0410 49

GSE28700 Golub 0.0000 27 0.3004 27 0.4736 3 0.2482 27

InfoGain 0.0000 35 0.3090 8 0.4678 8 0.2710 21

mRMR 0.0000 21 0.3330 49 0.4728 7 0.2850 49

RSMRMS 0.0230 34 0.3310 19 0.4715 15 0.2850 19

µ-HEM 0.0000 25 0.3060 4 0.5000 4 0.2570 4

FR-SAC 0.0000 24 0.3362 50 0.4650 43 0.2888 50

RH-SAC 0.0000 2 0.2500 43 0.4660 27 0.1969 43

seen the miRNAs selected by the proposed method are statistically related with
29 pathways. Multiple Sclerosis is a autoimmune disorder and from the Fig. 2 it
is seen that around 7 pathways are significant and they are related to autoim-
mune disorder. They are Cell adhesion molecules (CAMs), TGF-beta signaling
pathway, PI3K-Akt signaling pathway, Leukocyte transendothelial migration,
MAPK signaling pathway, Fc gamma R- mediated phagocytosis, and Calcium
signaling pathway. On the other hand around 48 pathways-miRNAs relation-
ship are found to be statistically significant for GSE21036 data set. This data
set is generated using metastatic prostate cancer samples and normal adjacent
benign prostate. From Fig. 2 it is seen that the proposed method is able to select
those miRNAs that are associated with prostate cancer. In addition to that it is
also able to identify other significant pathways like Progestrone-mediated oocyte
maturation, Inositol phosphate metabolism, mTOR signaling pathway, and so
forth. Similarly, several significant miRNA-pathway relations are obtained using
the DIANA-miRPath tool for the data set GSE28700. In this data set, expression
profiles of microRNAs in gastric cancer are stored. From Fig. 2 it is clear several
cancer related pathways are found to be significant using the proposed method.
From the figure it is seen that total 22 pathways are found to be significant and
few of them are Colorectal cancer, Pancreatic cancer, Non-small cell lung cancer,
Chronic myeloid leukemia, Hepatitis B, Small cell lung cancer, HIF-1 signaling
pathway, Focal adhesion, Prostate cencer, Pathways in cancer.
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(a) GSE17846 (b) GSE21036

(c) GSE28700

Fig. 2. miRNAs versus pathways heat map for different miRNA data sets

4 Conclusion

The paper presents a new rough hypercuboid based supervised similarity mea-
sure that is incorporated into the supervised miRNA clustering algorithm. It
uses the concept of rough hypercuboid for calculating similarity between two
miRNAs and thus improves the performance of the method. The rough hyper-
cuboid based similarity measure uses the information of class label for calculat-
ing similarity between two miRNAs and hence, makes it a supervised measure.
The proposed method fetches cluster of miRNAs whose collective expressions
are strongly associated with the class label. The effectiveness of the proposed
rough hypercuboid based supervised miRNA clustering algorithm is shown and
compared with other existing methods on three miRNA expression data sets.
The selected miRNAs are also found to be significantly associated with different
important pathways that are related to the data set.
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