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Abstract

Online class-incremental continual learning (CL) stud-

ies the problem of learning new classes continually from

an online non-stationary data stream, intending to adapt to

new data while mitigating catastrophic forgetting. While

memory replay has shown promising results, the recency

bias in online learning caused by the commonly used Soft-

max classifier remains an unsolved challenge. Although the

Nearest-Class-Mean (NCM) classifier is significantly un-

dervalued in the CL community, we demonstrate that it is

a simple yet effective substitute for the Softmax classifier. It

addresses the recency bias and avoids structural changes in

the fully-connected layer for new classes. Moreover, we ob-

serve considerable and consistent performance gains when

replacing the Softmax classifier with the NCM classifier for

several state-of-the-art replay methods.

To leverage the NCM classifier more effectively, data em-

beddings belonging to the same class should be clustered

and well-separated from those with a different class label.

To this end, we contribute Supervised Contrastive Replay

(SCR), which explicitly encourages samples from the same

class to cluster tightly in embedding space while pushing

those of different classes further apart during replay-based

training. Overall, we observe that our proposed SCR sub-

stantially reduces catastrophic forgetting and outperforms

state-of-the-art CL methods by a significant margin on a

variety of datasets.

1. Introduction

With the ubiquity of personal smart devices and image-

related applications, a massive amount of image data is gen-

erated daily. A practical online learning system is expected

to learn incrementally without storing all streaming data and

retraining over it due to space and computational resource

limitations. However, a well-documented drawback of deep

neural networks that prevents it from learning continually is
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Figure 1: An overview of SCR. During training, an input

batch is created by concatenating the minibatch Bn from

the data stream with another minibatch BM from the mem-

ory bufferM. The input batch and its augmented view are

encoded by a shared encoder and projection head before the

representations are evaluated by the supervised contrastive

loss. During testing, the projection head is discarded and all

the buffered samples are used to compute the class means

for the NCM classifier.

called catastrophic forgetting [40] — the inability to retain

previously learned knowledge after learning new tasks. To

address this challenge, Continual Learning (CL) studies the

problem of learning from a non-i.i.d stream of data, intend-

ing to preserve and extend the acquired knowledge while

minimizing storage, computation, and time.

Most early CL approaches considered task-incremental
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Figure 2: 2D t-SNE [53] visualization of data embeddings in the memory buffer M by the end of the training (CIFAR-

100). Note that ER [9], MIR [2] and ASER [50] are three state-of-the-art methods that use categorical cross-entropy loss

to train the network. By using supervised contrastive loss, the embeddings of our proposed SCR are better clustered and

separated based on labels, which provides a solid foundation for using distance-based classifiers such as NCM [41] and

cosine-similarity-based classifier [16].

settings, in which new data arrives one task at a time, and

the model can utilize task-IDs during both training and in-

ference time [28, 35, 36]. This setting implicitly simpli-

fies the CL problem as the model just needs to classify la-

bels within a task with the help of task-IDs. Meanwhile,

this simplification diminishes the applicability of this set-

ting when task-IDs are not available. In this work, we con-

sider a more realistic but challenging setting, known as on-

line class-incremental, where a model is required to learn

new classes continually from an online data stream (each

sample is seen only once) and classify all labels without

task-IDs.

Current CL methods can be taxonomized into three ma-

jor categories: regularization, parameter-isolation, and re-

play methods [43, 14]. The replay approach has been shown

to be simple and efficient compared to other approaches in

the online class-incremental setting [2, 3] . However, A

key challenge of replay methods is the imbalance between

old and new classes, as only a small amount of old class

data are stored in the replay buffer. Recent works have re-

vealed that the Softmax classifier and its associated fully-

connected (FC) layer are seriously affected by the class im-

balance, which leads to task-recency bias — the tendency of

a model to be biased towards classes from the most recent

task [39, 37, 24, 57]. Although the Nearest-Class-Mean

(NCM) classifier [41] is significantly undervalued in the CL

community, we demonstrate that it is a simple yet effective

substitute for the Softmax classifier as it not only addresses

the recency bias but also avoids structural changes in the

FC layer when new classes are observed. Moreover, we ob-

serve considerable and consistent performance gains when

replacing the Softmax classifier with the NCM classifier for

five methods with memory buffers. Since [61] also observed

similar gains in methods without memory buffer, we advo-

cate using the NCM classifier instead of the commonly used

Softmax classifier for future study.

Furthermore, to exploit the NCM classifier more effec-

tively, the data embeddings belonging to the same class

should be clustered and well-separated from those with dif-

ferent class labels. To this end, we contribute Supervised

Contrastive Replay (SCR), which leverages the supervised

contrastive loss [26] to explicitly encourage samples from

the same class to cluster tightly in embedding space and

push those of different classes further apart when replaying

buffered samples with the new samples. Through extensive

experiments on three commonly used benchmarks in the CL

literature, we demonstrate that SCR outperforms state-of-

the-art methods by significant margins with three different

memory buffer sizes.

2. Related Work

2.1. Continual Learning

Online Class-Incremental Learning Following the re-

cent CL literature [2, 3, 32, 12], we consider the online su-

pervised class-incremental learning setting where a model

needs to learn new classes continually from an online data

stream (each sample is seen only once). Formally, we define

a data stream D = {D1, . . . , DN} over X × Y , where X
and Y are input/output random variables respectively and

N is the number of tasks. Note that tasks do not overlap in

classes, meaning {Yi} ∩ {Yj} = ∅ if i 6= j (where {Yk}
represents the set of data for task k). We consider a classifi-

cation model with two components: a encoder f : X 7→ R
d

that maps an input image to a compact d-dimensional vec-

torial embedding, and a classifier g : Rd 7→ R
c which maps

the embedding to output predictions (c is the number of

classes observed so far). A CL algorithm A is defined with

the following signature:

At : 〈(f, g)t−1, B
n
t ,Mt−1〉 → 〈(f, g)t,Mt〉 (1)

The model receives a small batch Bn
t of size b from task

Dn at time t. f and g will be updated based on Bn
t and

data in Mt−1, a bounded memory that can be used to store



a subset of the training samples or other useful data [35, 9].

Moreover, we adopt the single-head evaluation setup [7]

where the classifier has no access to task-IDs during infer-

ence and hence must choose among all labels. Our goal is to

train the model (f, g) to continually learn new classes from

the data stream without forgetting.

Approaches As previously discussed, current CL meth-

ods can be classified into three major categories: regular-

ization, parameter-isolation, and replay methods [43, 14].

Regularization methods constraint the updates of some im-

portant network parameters to mitigate catastrophic forget-

ting. This is done by either incorporating additional penalty

terms into the loss function [33, 1, 62, 48] or modifying

the gradient of parameters during optimization [36, 8, 22].

Other regularization methods imposed knowledge distilla-

tion [23] techniques to penalize the feature drift on pre-

vious tasks [35, 57, 45]. Parameter-isolation methods

bypass interference by allocating different parameters to

each task [38, 32, 60]. Replay methods deploy a mem-

ory buffer to store a subset of data from previous tasks for

replay [47, 9]. Regularization methods mostly protect the

model’s ability to classify within a task, and thus they do not

work well in our setting, which requires the ability to clas-

sify from all labels the model has seen before [34]. Also,

most parameter isolation methods require task-IDs during

inference, which violates our setting. Therefore, in this

work, we will focus on replay methods, which have been

shown to be efficient and effective compared to other ap-

proaches in the online class-incremental setting [2, 3].

Metrics We use the average accuracy of the test sets from

observed tasks to measure the overall performance [7, 9].

In Average Accuracy, ai,j is the accuracy evaluated on the

held-out test set of task j after training the network from

task 1 to i. By the end of training all N tasks, the average

accuracy can be calculated as follows:

Average Accuracy(AN ) =
1

N

N∑

j=1

aN,j (2)

2.2. Contrastive Learning

The general goal of contrastive learning is intuitive: the

representation of “similar” samples should be mapped close

together in the embedding space, while that of “dissimi-

lar” samples should be further away [25, 30]. When la-

bels are not available (self-supervised), similar samples are

often formed by data augmentations of the target sample

while dissimilar samples are often drawn randomly from

the same batch of the target sample [10] or from the mem-

ory bank/queue that stores feature vectors [21, 58]. When

labels are provided (supervised), similar samples are those
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Figure 3: Confusion matrices for ER and SCR on CI-

FAR100 with a memory buffer of size 2,000. ER suffers

seriously from the task-recency bias as it tends to predict

most samples as classes in the most recent task, while SCR

is clearly less biased because of the more discernible em-

beddings and NCM classifier.

from the same class and dissimilar samples are those from

different classes [26]. Contrastive learning has recently

attracted a surge of interest and shown promising results

in various areas including computer vision [18, 6], natu-

ral language processing [11, 15], audio processing [49, 42],

graph [20, 44] and multimodal data [4, 51].

3. Method

3.1. Softmax Classifier vs. NCM Classifier

Softmax classifier Softmax classifier with cross-entropy

loss has been a standard approach for classification tasks

for neural networks [17]. Although this combination also

dominates the CL for image classification, it may not be the

best choice for CL due to the following deficiencies.

• Architecture modification for new classes When the

model receives new classes, the Softmax classifier re-

quires the model to stop training and add weights in

the FC classification layer to accommodate the new

classes.

• Decoupled representation and classification In the

class-incremental setting, as mentioned in [46], it is

problematic that the weights in the classification layers

are decoupled from the encoder since whenever the en-

coder changes, weights in the classification layer must

also be updated.

• Task-recency bias Multiple previous works [57, 24,

31, 5] have observed that a model with the Soft-

max classifier has a strong prediction bias towards the

most recent task due to the imbalance of new and old

classes, which is the primary source of catastrophic
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Figure 4: The means of the weights in the FC layer for new

and old classes on CIFAR100. The mean of new classes is

much higher than that of old classes, which leads to task-

recency bias.

forgetting. Figure 3 (a) shows the confusion matrix af-

ter training task 10, which shows that the model tends

to predict most samples as classes in the most recent

task. As illustrated in Figure 4, the means of weights

for the new classes in the FC layer are much higher

than those for the old classes and hence the model as-

signs a larger probability mass for predicting a sample

as a new class vs. an old class.

Nearest Class Mean (NCM) Classifier The NCM clas-

sifier and its variants have been widely used in few-shot or

zero-shot learning [56, 59]. Concretely, after the embedding

network f is trained, the NCM classifier computes a class

mean (prototype) vector for each class using all the embed-

dings of this class. To predict a label for a new sample x,

NCM compares the embedding of x with all the prototypes

and assigns the class label with the most similar prototype:

µc =
1

nc

∑

i

f(xi) · ✶{yi = c} (3)

y∗ = argmin
c=1,...,t

‖f(x)− µc‖ (4)

where nc is the number of samples for class c and ✶{yi =
c} is the indicator for yi = c. The embedding network f
keeps being updated in CL, and the true prototype vector

for each class cannot be exactly computed with the updated

f due to the unavailability of the training data for previous

tasks. iCaRL [46] approximates the prototype vectors us-

ing the data in the memory buffer, while SDC [61] proposes

a drift compensation to update previously computed proto-

types without using a memory buffer and .

Although the NCM classifier is significantly undervalued

in the CL community, we argue that it is a simple yet effec-

tive substitute for the Softmax classifier as it not only re-

solves the deficiencies of the Softmax classifier mentioned

above but also demonstrates a considerable improvement.

• Since the NCM classifier simply compares the embed-

ding of the test sample with prototypes, it does not re-

quire an additional FC layer, and therefore, new classes

can be added without any architecture modification.

• As the prototypes change instinctively based on the

encoder, the NCM classifier is more robust against

changes of the encoder.

• The biased weights in the FC layer result in the task-

recency bias, but since the NCM classifier does not in-

volve the FC layer, it is intrinsically less prone to the

task-recency bias.

Figure 5 shows the average accuracy comparison of a

Softmax classifier and an NCM classifier on five methods.

NCM classifiers show significant improvements over the

commonly used Softmax classifier across all five methods

and three datasets, which suggests that the dominance of

the Softmax classifier in online continual learning should

be revisited.

Although the NCM classifier has shown impressive re-

sults, the embedding quality greatly and directly impacts

the performance of the NCM classifier. To effectively ex-

ploit the NCM classifier, the data embeddings belonging

to the same class should be clustered and well-separated

from those with a different class label. However, the bi-

nary cross-entropy loss used in iCaRL may not be capable

of addressing the relationship between classes, and the com-

monly used categorical cross-entropy loss may not be effec-

tive in creating discernible patterns in the embedding space,

as shown in Figure 2.

3.2. Supervised Contrastive Replay

Supervised Contrastive Learning To improve accuracy

of the vanilla NCM classifier, we propose to leverage con-

trastive learning, which has shown promising progress in

self-supervised learning to obtain more discernible patterns

in the embedding space. Specifically, we will focus on the

supervised contrastive learning (SCL) [26, 19] as labels

are available in the online class-incremental setting. Intu-

itively, SCL aims to tightly cluster embeddings of samples

from the same class while pushing those of different classes

further apart. Concretely, following the framework pro-

posed in [10, 52], SCL consists of three main components.

Aug(·) create an augmented view x̃ of a data sample x,

x̃ = Aug(x). Encoder network Enc(·) maps an image sam-

ple x to a vectorial embedding r = Enc(x) ∈ RDE (with r
normalized to the unit hypersphere inRDE ).Projection net-

work Proj(·) maps r to a projected vector z = Proj(r) ∈
RDP followed by a L2 normalization step. For an incom-

ing batch with b samples B = {xk, yk}k=1...b, we create

a multiviewed batch with 2b samples: the original incom-

ing batch and its augmented view, BI = B ∪ B̃ where
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We set the memory size to 2,000 for Mini-ImageNet and CIFAR-100 and 500 for CIFAR-10. (Refer to Table. 1 for a more

detailed comparison with different memory sizes). Methods with NCM classifiers show significant improvements over the

commonly used Softmax classifier across all three datasets, which suggests that the dominance of the Softmax classifier in

online continual learning should be revisited.

B̃ = {x̃k = Aug(xk), yk}k=1...b. The SCL loss takes the

following form:

LSCL(ZI) =
∑

i∈I

−1

|P (i)|

∑

p∈P (i)

log
exp (zi · zp/τ)∑

j∈A(i) exp (zi · zj/τ)

(5)

where I is the set of indices of BI and A(i) = I\{i},
represents the set of indices of all samples in BI except for

sample i. P (i) ≡
{
p ∈ A(i) : yp = yi

}
is the set of all

positives (i.e., samples with the same labels as sample i) in

BI excluding sample i, and |P (i)| is its cardinality. ZI =
{zi}i∈I = {Proj(Enc(xi)}i∈I ; τ ∈ R+ is an adjustable

temperature parameter controlling the separation of classes;

the · indicates the dot product.

Supervised Contrastive Replay (SCR) An overview of

SCR can be found in Figure 1. As mentioned in Sec-

tion 2.1, during the training phase, the model receives one

small batch Bn at a time from task Dn in the data streamD.

An input batch is created by concatenating Bn with another

batch BM selected from the memory bufferM. The input

batch and its augmented view are encoded by a shared en-

coder network Enc(·) and a projection network Proj(·) be-

fore the representations are evaluated by the supervised con-

trastive loss LSCL. After updating both Enc(·) and Proj(·)
with the gradient from LSCL, the memory bufferM will be

updated with Bn.

During the testing phase, Proj(·) is discarded. All the

buffered samples are fed into Enc(·) to obtain the embed-

dings, which are used to compute the class means (proto-

types) for the NCM classifier. As SCR builds much more

discernible patterns in the embedding space with the con-

trastive loss, the NCM classifier is able to unleash its capa-

bility in our method. Algorithm 1 summarizes the training

and inference procedures.

Algorithm 1: Supervised Contrastive Replay

Initialize: MemoryM← {} ∗M ; Aug(·);
Encθ(·); Projφ(·)

for n ∈ {1, . . . , N} do

Training phase:

for Bn ∼ Dn do
BM←MemoryRetrieval(Bn,M)

BnM ← Bn ∪BM

BI ← BnM ∪Aug(BnM)
ZI ← Projφ(Encθ(BI))
θ, φ← SGD(LSCL(ZI), θ, φ)// Eq. 5

M←MemoryUpdate(Bn,M)

Testing phase:

// C ← number of observed classes

for c ∈ {1, . . . , C} do
// nc ← number of class c samples

µc =
1
nc

|M|∑
i

Encθ(xi) · ✶{yi = c}

y∗ = argmin
c=1,...,t

‖Encθ(x)− µc‖ // classify x

4. Experiment

4.1. Experiment Setup

Datasets Split CIFAR-10 is constructed by splitting the

CIFAR-10 dataset [29] into 5 different tasks with non-

overlapping classes and 2 classes in each task, similarly

as in [2]. Split CIFAR-100 splits the CIFAR-100 dataset
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Figure 6: Average accuracy on observed tasks on CIFAR10 (M=0.2k), CIFAR100 (M=2k) and Mini-ImageNet (M=2k). SCR

consistently outperform all the compared methods by an enormous margin. Note that all the compared methods on the plots

use the NCM classifier.

[29] into 10 disjoint tasks, and each task has 10 classes.

Split Mini-ImageNet divides the Mini-ImageNet dataset

[54] into 10 disjoint tasks with 10 classes per task.

Baselines We compare our proposed SCR against several

state-of-the-art continual learning algorithms:

• A-GEM (ICLR’19) [8]: Averaged Gradient Episodic

Memory, that utilizes the samples in the memory

buffer to constrain the parameter updates.

• ASERµ (AAAI’21) [50]: Adversarial Shapley Value

Experience Replay that leverages Shapley value adver-

sarially in memory retrieval.

• ER (ICML-W’19)[9]: Experience replay, a replay

method with random sampling in memory retrieval and

reservoir sampling in memory update.

• EWC++ (ECCV’18) [7]: An online version of

EWC [28], a regularization method that limits the up-

date of parameters that were crucial to the past tasks.

• GSS (NeurIPS’19) [3]: Gradient-Based Sample Selec-

tion, a replay method that diversifies the gradients of

the samples in the replay memory.

• LwF (TPAMI’18) [35] Learning Without Forgetting, a

regularization method that utilizes knowledge distilla-

tion to penalize the feature drifts on previous tasks.

• MIR (NeurIPS’19) [2]: Maximally Interfered Re-

trieval, a replay method that retrieves memory samples

with loss increases given the estimated parameter up-

date based on the current batch.

• offline: This is not a CL method, but rather an upper

bound; offline trains the model over multiple epochs

on the whole dataset with iid sampled mini-batches.

We use 50 epochs for offline training.
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Figure 7: Run time (training + inference) comparison.

SCR achieves state-of-the-art performance without sacrific-

ing computation efficiency.

• fine-tune: A lower-bound method that simply trains

the model when new data is presented without any

measure for forgetting avoidance.

Implementation Detail Following [9, 36, 8, 2], we use a

reduced ResNet18 as the backbone model for all datasets.

We use stochastic gradient descent with a learning rate of

0.1, and the model receives a batch with size 10 at a time

from the data stream. All the methods except for SCR are

trained with cross-entropy loss and classify with the Soft-

max classifier. The projection network of SCR is a Multi-

Layer Perceptron (MLP) [17] with one hidden layer (ReLU)

and an output size 128, and we set the temperature τ to

0.1. We use reservoir sampling [55] for memory update and

random sampling for memory retrieval and use a memory

batch size 100. The ablation study of the variables men-

tioned above will be discussed in Section. 4.4.

4.2. Evaluation of NCM Classifier

To assess the effectiveness of the NCM classifier,

we compare five methods that employ memory buffers



Method M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

fine-tune 4.3± 0.2 5.8± 0.3 18.1± 0.3

iid offline 51.4± 0.2 49.6± 0.2 81.7± 0.1

EWC++ 4.5± 0.2 5.8±0.3 18.1± 0.3

LwF 8.9±0.5 13.9±0.5 21.2± 0.9

AGEM 4.5± 0.4 4.6± 0.2 4.6± 0.2 5.8± 0.3 6.0± 0.3 5.9± 0.2 18.2± 0.3 18.3± 0.2 18.2± 0.2

AGEM-NCM 9.5± 0.3 10.6± 0.3 11.6± 0.5 11.5± 0.8 13.1± 0.8 14.3± 0.4 28.1± 1.8 29.0± 1.8 29.1± 0.9

ER 10.3± 0.7 13.4± 0.7 16.4± 1.5 11.2± 0.6 14.6± 0.4 21.0± 0.9 22.4± 1.1 29.0± 2.5 37.7± 2.0

ER-NCM 16.8± 0.8 19.7± 1.0 21.1± 0.8 16.8± 0.5 20.9± 0.6 28.3± 1.0 30.8± 2.0 40.8± 1.5 49.4± 0.9

GSS 10.5± 0.6 13.5± 1.1 14.5± 2.2 10.6± 0.4 13.5± 0.4 18.0± 1.1 23.0± 0.9 28.5± 1.5 34.6± 2.3

GSS-NCM 15.2± 0.9 18.9± 0.7 20.9± 1.3 13.2± 0.7 18.1± 0.9 25.8± 0.7 28.5± 1.2 37.3± 1.6 46.6± 2.0

MIR 10.7± 0.7 14.7± 1.1 17.3± 1.6 11.7± 0.3 14.9± 0.5 21.6± 1.2 23.8± 0.9 33.6± 1.7 43.0± 1.6

MIR-NCM 17.8± 0.5 20.5± 0.7 22.1± 0.9 16.4± 0.4 19.8± 0.6 27.9± 1.0 31.2± 1.5 40.9± 1.5 49.9± 1.0

ASERµ 12.5± 0.8 14.9± 0.5 18.2± 0.9 14.4± 0.6 17.5± 0.6 21.7± 1.0 28.5± 1.3 39.8± 1.7 46.7± 1.3

ASERµ-NCM 16.6± 0.7 18.4± 0.5 21.1± 0.3 22.0± 0.6 25.2± 0.7 29.6± 0.4 34.1± 0.8 43.7± 0.8 50.3± 0.9

SCR 24.1± 0.6 30.6± 0.5 35.4± 0.5 26.6± 0.5 32.8± 0.7 37.8± 0.3 48.6± 1.1 59.6± 1.2 65.7± 0.6

Gains 6.3 ↑ 10.1 ↑ 13.3 ↑ 4.6 ↑ 7.6 ↑ 8.2 ↑ 14.5 ↑ 15.9 ↑ 15.4 ↑

(a) Mini-ImageNet (b) CIFAR-100 (c) CIFAR-10

Table 1: Average Accuracy by the end of training. M is the memory buffer size and all numbers are the average of 10 runs.

SCR considerably and consistently outperforms all the compared methods by large margins in different datasets and memory

sizes.

(AGEM, ER, GSS, MIR, ASERµ) with their variants

equipped with the NCM classifier. As we can see in Fig-

ure 5 and Table 1, methods with the NCM classifier show

significant improvements over those with the default Soft-

max classifier. For instance, in CIFAR100, the NCM clas-

sifier helps ASERµ with 1k memory achieve 22%, which

requires five times more memory to achieve when using the

Softmax classifier. Generally, we also observe that the per-

formance gain is more notable when the memory buffer is

small. For example, in Mini-ImageNet, MIR obtains 66.4%

relative improvement (10.3%→ 17.8%) with M=1k, which

is only improved by 27.7% relatively (17.3% → 22.1%)

with M=5k. Furthermore, the NCM gains are less obvious

for GSS, and we find out that it’s because some classes only

have a few or sometimes zero samples in the GSS buffer,

which makes it hard to estimate the correct prototypes for

those classes. Moreover, ASERµ has better NCM gains in

general, and it’s because ASERµ tends to learn more dis-

cernible embeddings, as we can see in Figure 1.

To sum up, we observe considerable and consistent per-

formance gains when replacing the Softmax classifier with

the NCM classifier for five methods on three different

datasets and memory sizes. Since [61] also observed similar

gains in methods without memory buffer, we advocate using

the NCM classifier instead of the commonly used Softmax

classifier for future study.

4.3. Evaluation of SCR

To evaluate the performance of SCR, we compare it

with several state-of-the-art CL methods described in Sec-

tion 4.1. As we can see in Figure 6, SCR consistently out-

performs all the compared methods by enormous margins

along the whole data streams of three different datasets.

Note that all the compared methods on the plots have al-

ready been NCM-augmented. Table 1 shows the detailed

comparison of SCR with all the compared methods on dif-

ferent datasets and memory sizes. The last row of the

table shows the absolute improvements over the second-

best methods. SCR consistently achieves state-of-the-art

results across all settings and outperforms the compared

methods by large margins. SCR achieves 35.4% (13.3%↑),
37.8% (8.2%↑) and 65.7% (15.4%↑) respectively in Mini-

ImageNet, CIFAR100 and CIFAR10 respectively. The suc-

cess of SCR comes from (i) the NCM classifier, which has

shown impressive performance over the Softmax classifier

in Section 4.2, and (ii) the contrastive loss, which enables

the model to learn more discernible embeddings and pro-

vides a solid foundation for the NCM classifier. Moreover,

we observe SCR benefits from a large memory buffer in

general, as contrastive learning desires more diverse neg-

ative samples. For example, SCR achieves 60.2% rela-

tive gain with M=5k (21.1% (MIR-NCM)→ 35.4%), while

obtains 35.4% relative improvement with M=1k (16.6%

(MIR-NCM)→ 24.1%). In terms of task-recency bias, we
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Figure 8: Average accuracy of SCR with M=2k on CIFAR100 for ablation study.

can see in Figure 3 (b) that SCR is clearly much less biased

than ER even though a slight bias is still observed. Further-

more, SCR does not sacrifice its computation efficiency, as

shown in Figure 7. Its running time (combined training and

inference) is shorter than ASERµ and only slightly longer

than MIR.

In summary, by evaluating on three standard CL datasets

and comparing to the state-of-the-art CL methods, we have

strongly demonstrated the effectiveness and efficiency of

SCR in overcoming catastrophic forgetting, which brings

online CL much closer to its ultimate goal of matching of-

fline training while maintaining a low computation foot-

print.

4.4. Ablation Study

In this subsection, we aim to explore the impact of var-

ious SCR configurations on its performance. We use SCR

with M=2k on CIFAR100 as the study case to analyze the

impacts of components of SCR.

Impact of memory batch size BM. Figure 8 (a) shows

the impact of the memory batch size. Generally speaking,

contrastive learning benefits from larger batch sizes as it

means more negative samples [10, 26]. Nevertheless, in on-

line CL, accuracy improvement is more obvious with the

increase of BM when BM is smaller than 200. The perfor-

mance drops when BM continues to increase. We suspect

the decrease is due to the overfitting of the memory samples

as 500/1,000 are 25%/50% of the whole memory buffer in

this study case.

Impact of memory buffer management. We compare

random retrieval + reservoir update(Random), ASER re-

trieval + update (ASER), ASER retrieval (ASER-R), ASER

update (ASER-U) and GSS. As we can see in Figure 8 (b),

the random option is much better than GSS and slightly bet-

ter than others. We observed that some classes have only a

few or zero samples in the memory for GSS, which is un-

desirable for SCR. Although random seems reasonable for

the balanced CIFAR100 dataset, when facing imbalanced

datasets, combing SCR with other memory management

methods may yield better performance [27, 13].

Impact of temperature variable τ . We can see from Fig-

ure 8 (c) that the performance deteriorates when the τ is too

low and too high. SCR with τ ranging from 0.02 to 0.16

achieves stable results.

Impact of projection network Proj(·). We tried Multi-

Layer Perceptron (MLP), linear and no projection network

(None). Although [10] suggests that a nonlinear projection

network improves the representation quality, we find that

the choice of projection network is insignificant in online

CL as shown in Figure 8 (d).

5. Conclusion

In this paper, we first demonstrated that the NCM clas-

sifier is a simple yet effective substitute for the Softmax

classifier in the online CL. It resolves several deficiencies

of the Softmax classifier and shows considerable and con-

sistent performance gains across a variety of CL methods.

Based on these results, we advocate using the NCM classi-

fier instead of the commonly used Softmax classifier for fu-

ture study of CL methods. Moreover, to leverage the NCM

classifier more effectively, we proposed SCR that explicitly

encourages samples from the same class to cluster tightly in

embedding space while pushing samples of different classes

further apart during experience replay-based training.

Empirically, we observe that our proposed SCR substan-

tially reduces catastrophic forgetting in comparison to state-

of-the-art CL methods and outperforms them all by a sig-

nificant margin on various datasets and memory settings. In

summary, leveraging a simple randomized experience re-

play method while using a supervised contrastive loss (in

place of cross-entropy) combined with an NCM classifier

bring us closer to realizing the ultimate goal of continual

learning to perform as well as offline training methods.
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