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Abstract

A better similarity mapping function across heteroge-
neous high-dimensional features is very desirable for
many applications involving multi-modal data. In this
paper, we introduce coupled dictionary learning (DL)
into supervised sparse coding for multi-modal (cross-
media) retrieval. We call this Supervised coupled-
dictionary learning with group structures for Multi-
Modal retrieval (SliM2). SliM2 formulates the multi-
modal mapping as a constrained dictionary learning
problem. By utilizing the intrinsic power of DL to deal
with the heterogeneous features, SliM2 extends uni-
modal DL to multi-modal DL. Moreover, the label in-
formation is employed in SliM2 to discover the shared
structure inside intra-modality within the same class by
a mixed norm (i.e., ℓ1/ℓ2-norm). As a result, the multi-
modal retrieval is conducted via a set of jointly learned
mapping functions across multi-modal data. The exper-
imental results show the effectiveness of our proposed
model when applied to cross-media retrieval.

Introduction

Similarity search, a.k.a. nearest neighbor search, is a fun-
damental problem and has enjoyed success in many appli-
cations of data mining, database, and information retrieval.
Nevertheless, most of the similarity search algorithms are
only conducted in the uni-modal data setting, which are re-
stricted to retrieve the similar data with the same modality
as query data. Nowadays, many real-world applications in-
volve multi-modal data, where information inherently con-
sists of data with different modalities, such as a web image
with loosely related narrative text descriptions, or a news ar-
ticle with paired text and images. Therefore, it is desirable
to support similarity search for multi-modal data (i.e., cross-
media retrieval), e.g., the retrieval of textual documents in
response to a query image or vice versa (Wu, Zhang, and
Zhuang 2006) (Zhuang, Yang, and Wu 2008). Multi-modal
retrieval is very important to many applications of practical
interest, such as finding some detailed textual documents of
a tourist spot that best match a given image, obtaining a set
of images that best visually illustrate a given text, or search-
ing similar results by a set of combined texts and images.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To the best of our knowledge, there are generally two
kinds of approaches to boost cross-modal retrieval: one is
canonical correlation analysis (CCA) (Hotelling 1936) and
its variants. For examples, after the maximally correlated
subspace of text and image features is obtained by CCA,
logistic regression is employed to cross-media retrieval in
(Rasiwasia et al. 2010). A supervised extension of CCA, re-
ferred as generalized multiview analysis (GMA), was pro-
posed in (Sharma et al. 2012) for cross-media retrieval.
These existing CCA-based approaches attempt to enforce
a strong assumption among the multi-modal data, i.e., the
different modalities have a common or a shared subspace.
However, this assumption is too restricted to some extent
for analysis of multi-modal data in real-world setting. For
example, given a pair of image and text, the image probably
contains a considerable amount of information not related to
its corresponding text, and it is not even guaranteed that the
text is related at all to the visual content of the image.

Another kind of approaches for multi-modal retrieval are
extensions of Latent Dirichlet Allocation (LDA). Follow-
ing the seminal work of Blei et al.(Blei, Ng, and Jordan
2003), Latent Dirichlet Allocation (LDA) has been extended
to learn the joint distribution of multi-modal data (e.g.,
texts and images) such as Correspondence LDA (Corr-LDA)
(Blei and Jordan 2003), Topic-regression Multi-modal LDA
(tr-mmLDA) (Putthividhy, Attias, and Nagarajan 2010),
Multi-field Correlated Topic Modeling (mf-CTM) (Salo-
matin, Yang, and Lad 2009) and Hierarchical Dirichlet Pro-
cess(HDP) based LDA (Virtanen et al. 2012). These afore-
mentioned approaches tend to model the correlations of
multi-modal data at latent semantic (topic) level across
modalities. Therefore, they either assume that all modalities
share same topic proportions, or have one-to-one topic cor-
respondences, or have commonly shared topics. Neverthe-
less, those assumptions inherently restrain a more flexible
application of cross-media retrieval in the setting involved
uncontrolled multi-modal data .

On the other hand, when the class labels (categories) of
multi-modal data are available, it is natural to assume that
intra-modality data within the same class (category) shares
some common aspects. For examples, images from the ”ar-
chitecture” category have similar low-level visual features
(such as geometric regularities and patches of uniform color
(Todorovic and Nechyba 2004) ), and textual documents
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from ”biology” have overlapping words (e.g., cells and ge-
netics). Therefore, it is appropriate to utilize the class la-
bels to learn the discriminately shared components for intra-
modal data from the same category. Motivated by the fact
that dictionary learning (DL) methods have the intrinsic
power of dealing with the heterogeneous features by gener-
ating different dictionaries for multi-modal data, this paper
tends to study on jointly learning multi-modal dictionaries in
a supervised setting, and simultaneously mining the shared
structures inside each intra-modality from the same classes.

There are some existing DL approaches for multi-modal
data. Method was proposed in (Monaci et al. 2007) to learn
multi-modal dictionaries for audiovisual data. This model,
however, can only deal with synchronous temporal signals.
A dictionary learning approach is proposed in (Jia, Salz-
mann, and Darrell 2010) to factorize the latent space across
modalities into shared components (to all modalities) and
private parts (to each modality). The assumption in (Jia,
Salzmann, and Darrell 2010) that assumes a unique sparse
coefficient across all the modalities is still too restricted to
multi-modal data in real-world applications.

Inspired by the recently proposed idea of (semi-)coupled
dictionary learning (CDL) for image super-resolution
(Jia,Tang, and Wang 2012) and photo-sketch synthesis
(Wang et al. 2012), which suggest that one pair of image
patches from different domains (low resolution vs high res-
olution, or photo vs sketch) has the same dictionary entries
or has a mapping function between the reconstructed sparse
coefficients, this paper proposes Supervised coupled dic-
tionary learning with group structures for Multi-Modal re-
trieval (SliM2). SliM2 extends uni-modal DL to multi-modal
DL and jointly learns a set of mapping functions across
different modalities. Furthermore, SliM2 utilizes the label
information to discover the shared structures inside intra-
modalities from the same classes.

The Model of SliM2

In this section, we first briefly review sparse coding and its
extensions, then we present the formulation of SliM2. At
last, SliM2 is conducted for multi-modal retrieval.

Dictionary Learning and Its Extensions

The modeling of data with the linear combinations of a few
elements from a learned dictionary has been the focus of
much recent research (Olshausen, Field, and others 1997)
(Wright et al. 2009). The essential challenge to be resolved
in sparse coding is to develop an efficient approach with
which each sample can be reconstructed from a ’best dic-
tionary’ with a ’sparse coefficients’.

Let X ∈ Rp×n be the data matrix to be reconstructed,
D ∈ Rp×k the learned dictionary and α ∈ Rk×n the sparse
reconstruction coefficients (also known as sparse codes),
where p, n and k are the dimensions of feature space, the
number of data samples and the size of the dictionary respec-
tively. The formulation of sparse coding can be expressed as

follows:

min
D,α

1

2
‖X−Dα‖2F + λΨ(α)

s.t. ‖di‖ ≤ 1, ∀i,

(1)

where Ψ(α) represents the imposed penalty over sparse
codes α and di is one of the dictionary atoms of D. Typ-
ically, the l1 norm is conducted as a penalty to explicitly
enforce sparsity on each sparse codes αj (αj ∈ α(j =
1, . . . , N )) (Tibshirani 1996) (Jia, Salzmann, and Darrell
2010) as follows

Ψ(α) =
N
∑

j=1

‖αj‖1 . (2)

The above classical data-driven approach to dictionary
learning is well adapted to reconstruction tasks such as
restoring a noisy signal. In order to learn a discriminative
sparse model instead of purely reconstructive one, sparse
coding is extended into supervised sparse coding (Mairal et
al. 2008). In real-word setting, different data can be natu-
rally designated into different groups, a mixed-norm regu-
larization (ℓ1/ℓ2-norm) can be conducted in sparse coding
to achieve sparsity as well as to encourage the reconstruc-
tion of samples from the same group by the same dictionary
atoms, which is named as group sparse coding in (Bengio et
al. 2009).

If all of the images in one class (category) is taken as a
group, as stated before, it is appropriate to assume that when
a set of dictionary atoms has been selected to represent one
image of a given category, the same dictionary atoms could
be used to represent other images of the same category (Ben-
gio et al. 2009). The formulation of group sparse coding is
as follows:

min
D,α

1

2
‖X−Dα‖2F + λ

J
∑

l=1

k
∑

i=1

‖αi,Ωl
‖2

s.t. ‖di‖ ≤ 1, ∀i,

(3)

where J is the number of classes (groups), Ωl represents
the indices of the examples that belong to the l-th class (l-
th group), and α:,Ωl

is the coefficient matrix associated to
examples in the l-th group.

The Formulation of SliM2

Suppose that we have a labeled training set of N
pairs of correspondence data with M modalities from

J classes: {(x
(1)
i , · · · , x

(M)
i , li) : i = 1, . . . , N} ∈

{(X(1), · · · ,X(M),L)}. X
(m) ∈ RPm×N (1 ≤ m ≤

M ) is Pm-dimensional data from the m-th modality, li =
(li1, . . . , liJ)

′ ∈ {0, 1}J is the corresponding class label,

lij = 1 if the i-th data xi = (x
(1)
i , · · · , x

(M)
i ) belongs to the

jth class and lij = 0 otherwise. Here, the i-th data xi only

belongs to a single class:
∑J

j=1 lij = 1.

We have seen from Eq.(3) that group sparse coding is a
way for uni-modal dictionary learning when the input sig-
nals are naturally assigned into different groups. Of particu-
lar interest to us in this paper is modeling the relationships
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between multi-modal data rather than the independent dic-
tionary learning from uni-modal data. In order to resolve this
issue, we resort to semi-coupled DL (Wang et al. 2012) for a
mapping between reconstruction coefficients. The underly-
ing motivation behind our SliM2 has two points: a) jointly
learn dictionaries for each modality data and a relatively
simple mapping function across modalities; b) discover the
shared structures for each intra-modality data from the same
class via a mixed norm (i.e., ℓ1/ℓ2-norm).

SliM2 aims to jointly learn a set of dictionar-
ies for M modality data respectively, i.e., D =
{D(1),D(2), · · · ,D(M)} with D

(m) ∈ RPm×K and
their corresponding reconstruction coefficients A =
{A(1),A(2), · · · ,A(M)} with A

(m) ∈ RK×N , where K
is the size of the dictionaries (the number of atoms in
dictionary). In order to conduct the multi-modal retrieval,
we assume there exists a set of linear mappings W =
{W(1),W(2), · · · ,W(M)} with W

(m) ∈ RK×K between
sparse codes. The objective function of our proposed SliM2

is formulated as follows:

min
M
∑

m=1

‖X(m) −D
(m)

A
(m)‖2F +

M
∑

m=1

J
∑

l=1

λm‖A
(m)
:,Ωl

‖1,2

+ β
M
∑

m=1

∑

n 6=m

‖A(n) −W
(m)

A
(m)‖2F + γ

M
∑

m=1

‖W(m)‖2F

s.t. ‖d
(m)
k ‖ ≤ 1, ∀k, ∀m,

(4)

where A:,Ωl
is the coefficient matrix associated to those

intra-modality data belonging to the l-th class. For an ar-
bitrary matrix A ∈ R

k×n, its ℓ1/ℓ2-norm is defined as

‖A‖1,2 =
k

∑

i=1

√

√

√

√

n
∑

j=1

A2
ij . (5)

Here, β,γ and λm(m = 1, . . . ,M) are tuning parameters
denoting the weights of each term in Eq.(4). It is obvious
that data in the m-th modality space can be mapped into

the n-th modality space by the learned W (m) according to

‖A(n)−W
(m)

A
(m)‖2F , therefore, the computation of multi-

modal similarity is achieve in SliM2.
The degree of sparsity for data across modalities could be

different due to their heterogeneity with high-dimensional
settings. As a result, different λm(m ∈ {1, . . . ,M}) is em-
ployed in Eq.(4) to control the degree of sparsity of the
sparse codes respectively for M modality data.

It can be observed from Eq.(4) that the proposed SliM2

not only jointly minimizes the reconstruction error of data
across modalities, but also independently encourages to uti-
lize same dictionary atoms for the reconstruction of the
intra-modality data from the same class.

The Optimization of SliM2

The aforementioned objective function in Eq.(4) is non-
convex and non-smooth, but it is convex to each set of D =
{D(1),D(2), · · · ,D(M)}, A = {A(1),A(2), · · · ,A(M)}

and W = {W(1),W(2), · · · ,W(M)} when the other two
are fixed. Therefore, in practice, we can develop an iterative
algorithm to optimize the variables alternatively. This ap-
proach is called the alternative minimization and is widely
used in many applications such as (Kang, Grauman, and Sha
2011) and (Jia, Tang, and Wang 2012).

First, we fix D and W to optimize A. We initialize W
as identity matrix and D using the dictionary learning algo-
rithm in (Mairal et al. 2010) respectively. With D and W
fixed, the optimization of A can be obtained as follows:

min
A

M
∑

m=1

‖X(m) −D
(m)

A
(m)‖2F +

M
∑

m=1

J
∑

l=1

λm‖A
(m)
:,Ωl

‖1,2

+ β
M
∑

m=1

∑

n 6=m

‖A(n) −W
(m)

A
(m)‖2F .

(6)

Eq.(6) is a problem of multi-modal group sparse coding
and we use block-coordinate descent (Qin, Scheinberg, and
Goldfarb 2010) (Friedman, Hastie, and Tibshirani 2010) to
solve it.

After obtaining A, we then update the dictionaries D as
follows:

min
D

M
∑

m=1

‖X(m) −D
(m)

A
(m)‖2F

s.t. ‖d
(m)
k ‖ ≤ 1, ∀k, ∀m,

(7)

This is a quadratically constrained quadratic program
(QCQP) problem which can be solved using the method pre-
sented in (Yang et al. 2010).

Finally, we update W as follows:

min
W

M
∑

m=1

∑

n 6=m

‖A(n) −W
(m)

A
(m)‖2F

+ (γ/β)
M
∑

m=1

‖W(m)‖2F ,

(8)

This is a set of ridge regression problem and can be worked
out as follows:

W
(m) = A

(n)
A

(m)T (A(m)
A

(m)T + (γ/β) · I)−1, (9)

where I is the identity matrix. The above procedure iterates
until the convergences of A, D and W are achieved.

SliM2 for multi-modal retrieval

Given a query x
(m)
q ∈ RPm from m-th modality , suppose

we are looking for its similar data from the n-th modality.
Now we have jointly learned the dictionary for each

modality data D = {D(1),D(2), · · · ,D(M)} and a set of

mapping functions W = {W(1),W(2), · · · ,W(M)}. For

the query data x
(m)
q , we need to map x

(m)
q into the space of

n-th modality data. With the initialization as follows:

α(m)
q = min

αq

1

2
‖x(m)

q −D
(m)α(m)

q ‖2F + λ‖α(m)
q ‖1

α(n)
r = W

(m)α(m)
q

x
(n)
r = D

(n)α(n)
r ,

(10)
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Algorithm 1 The optimization of SliM2

Input The labeled training set of N pairs data with M

modalities from J classes {(x
(1)
i , x

(2)
i , · · · , x

(M)
i , li)} ∈

{(X(1),X(2), · · · ,X(M),L)}.

1: Initialize D = {D(1),D(2), · · · ,D(M)} and W =
{W(1),W(2), · · · ,W(M)},

2: Optimize A = {A(1),A(2), · · · ,A(M)} by Eq.(6),

3: Update D = {D(1),D(2), · · · ,D(M)} with other vari-
ables fixed using Eq.(7),

4: Update W = {W(1),W(2), · · · ,W(M)} with other
variables fixed using Eq.(9),
5: Repeat 2-4 until convergence.
Output multi-modal dictionaries D and a set of mapping
functions W

we then obtain optimized α̂
(n)
r and α̂

(m)
q as follows:

min
α̂

(m)
q ,α̂

(n)
r

‖x(m)
q −D

(m)α(m)
q ‖2F + ‖x(n)

r −D
(n)α(n)

r ‖2F

+ β‖α(n)
r −W

(m)α(m)
q ‖2F + λm‖α(m)

q ‖1 + λn‖α
(n)
r ‖1 .

(11)

The query data x
(m)
q can be mapped into n-th modality

data x̂
(n)
r as follows:

x̂
(n)
r = D

(n)α̂(n)
r . (12)

Thus, all of data in the n-th modality which has the least

distances to x
(n)
r is ranked as the retrieved results of the

query data.
We summarize the optimization of SliM2 in Algorithm 1

and multi-modal retrieval by the SliM2 in Algorithm 2.

Experiments

In this section, we evaluate the performance of our proposed
SliM2 when applied to cross-media retrieval. We first in-
troduce the data sets and evaluation criterions we adopted,
then we elaborate parameter setting and tuning in our exper-
iments. At last, we compare SliM2 with other state-of-the-art
algorithms and demonstrate the results.

Data Sets

One of our experimental data sets is the Wiki Text-Image
data (Rasiwasia et al. 2010). Wiki Text-Image contains
2173/693(training/testing) text-image pairs from ten differ-
ent categories. After SIFT features (Lowe 1999) are ex-
tracted, k-means clustering is conducted to obtain the rep-
resentation of bag-of-visual-words (abbreviated as BoVW)
(Fei-Fei, Fergus, and Perona 2004) for each image. The
term frequency is used to obtain the representation of bag-
of-textual-words (abbreviated as BoW) for each text. Since
the dimensions of texts and images are important factors
for multi-modal data retrieval, we set two kinds of different
dimensions for comparisons: one is 500-dimension BoVW
and 1000-dimension BoW, the other is 1000-dimension
BoVW and 5000-dimension BoW.

Algorithm 2 The multi-modal retrieval by SliM2

Input The learned multi-modal dictionaries D =
{D(1),D(2), · · · ,D(M)} and a set of mapping functions

W = {W(1),W(2), · · · ,W(M)} from training data and

query data x
(m)
q ∈ RPm in the m-th modality

1: Initialize α
(m)
q ,α

(n)
r and corresponding retrieval x

(n)
r

using Eq.(10),

2: Optimize α̂
(m)
q ,α̂

(n)
r with other variables fixed using

Eq.(11),

3: Update x̂
(n)
r using Eq.(12),

4: Repeat 2-3 until convergence.

5: the ranked neighbors of x̂
(n)
r .

Output The retrieved similar data in the n-th modality

The other data set we used is the NUS-WIDE data set.
Each image with its annotated tags in NUS-WIDE can be
taken as a pair of image-text data. We only select those pairs
that belong to one of the 10 largest classes with each pair
exclusively belonging to one of the 10 classes. We use the
500-dimension BoVW based on SIFT features for the rep-
resentation of each image and 1000-dimension tags for the
representation of each text as the authors supplied.

Evaluation Methods

There are many evaluation criteria for cross-modal retrieval
algorithms such as mean average precision (MAP), area un-
der curve (AUC) and precision recall curves. Most of them
are based on the retrieved ranking list of queries. Ideally,
given labeled pairs of image-text, an appropriately correct
retrieved result can be one that belongs to the same category
as the query data (Sharma et al. 2012) or the correspond-
ing unique one paired with the query (Jia, Salzmann, and
Darrell 2011). The first one represents the ability of learn-
ing discriminative cross-modal mapping functions while the
later one reveals the ability of learning corresponding latent
concepts. In this paper, we use both of them as follows:

MAP : MAP is defined here to measure whether the re-
trieved data belong to the same class as the query (relevant)
or does not belong to the same class (irrelevant). Given a
query (one image or one text) and a set of its corresponding
R retrieved data, the Average Precision is defined as

AP =
1

L

R
∑

r=1

prec(r)δ(r), (13)

where L is the number of relevant data in the retrieved
set, prec(r) represents the precision of the r retrieved data.
δ(r) = 1 if the rth retrieved datum is relevant to the query
and δ(r) = 0 otherwise. MAP is defined as the average AP
of all the queries. Same as (Zhen and Yeung 2012), we set R
= 50 in the experiments.

Percentage: Since there is only one ground-truth match
for each image/text, to evaluate the multi-modal perfor-
mance we can resort to the position of the ground-truth
textt/image in the ranked list obtained. In general, one im-
age (or text) is considered correctly retrieved if it appears
in the first t percent of the ranked list of its corresponding
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NUS-WIDE Image Query Text Text Query Image

CCA 0.2175 0.2400

GMA 0.2634 0.3051

SCDL 0.3073 0.2602

SliM2 0.3154 0.2924

Table 3: The performance comparison in terms of MAP
scores on NUS-WIDE data set. The results shown in bold-
face are best results.

retrieved texts (or images) according to (Jia, Salzmann, and
Darrell 2011). t is set to equal to 0.2 in our experiments.

Compared Methods

We devise our compared algorithms as follows : compare
with one of the popular traditional methods only utilizing the
pair-wise information, one of our counterparts and the unsu-
pervised dictionary learning method with a mapping func-
tion cross reconstruction coefficients. The compared algo-
rithms with our proposed SliM2 are listed as follows:
• Canonical Correlational Analysis (CCA): CCA is the

classical method in cross modal retrieval which learns a
common space across multi-modal data.

• Generalized Multiview Analysis (GMA): GMA is a su-
pervised method in cross-modal retrieval which utilizes
both pair-wised and label information of multi-modal
data. As stated by authors (Sharma et al. 2012), GMA is a
supervised kernelizable extension of CCA and maps data
in different modality spaces to a single (non) linear sub-
space.

• Semi-coupled Dictionary Learning (SCDL): SCDL
(Wang et al. 2012) is an unsupervised dictionary learn-
ing approach to learn a pair of dictionaries and a map-
ping function across two-views in image domains, here
we conduct SCDL to multi-modal data.

Parameter Tuning

For parameter tuning, we split the training data sets into 5
folds and test on each fold with the remaining 4 as training
data to do cross validation. β, γ, λm(m ∈ {1, 2}) and K
are tuning parameters in our experiments. We perform grid
search strategy on the first 4 folds to set λm(m ∈ {1, 2})
and line-search method for the other parameters. The setting
of β, γ, λ1, λ2 and K on Wiki data set is 1, 0.1, 0.1, 0.01 and
200, respectively while 0.01, 1, 0.01, 0.01 and 128 on NUS-
WIDE data set. Here, λ1 is the regularization parameter cor-
responding to image modality while λ2 corresponds to text
modality.

Performance Comparisons

For the Wiki Text-Image data set, the performance by each
algorithm is given in table 1 and table 2 in terms of MAP
and Percentage respectively. For NUS-WIDE data, the per-
formance by each algorithm is given in table 3 and table 4 in
terms of MAP and Percentage respectively.

In our experiments, we can submit one image to retrieve
texts (Image query Text), or submit one text to retrieve im-
ages (Text query Image). From the experiments, we can
make the following observations:

NUS-WIDE Image Query Text Text Query Image

CCA 0.3901 0.4016

GMA 0.4242 0.2913

SCDL 0.4421 0.3239

SliM2 0.4639 0.3877

Table 4: The performance comparison in terms of Percent-
age scores on NUS-WIDE data set. The results shown in
boldface are best results.

• For Image query Text, in general, dictionary learning
based methods (SCDL and SliM2) are better than di-
rect mapping-based methods (CCA and GMA) on image
query text case in all of metrics for the two data sets, and
moreover SliM2 achieves the best performances. This is
due to that SCDL and SliM2 learn the multi-modal map-
ping functions from sparse codes instead of BoW/BoVW
with sparse codes obtaining through the minimization of
reconstruction errors. The introduction of class label fur-
ther boosts the multi-modal retrieval.

• For Text query Image, the proposed SliM2 achieves best
performances in term of Percentage metric over Wiki data
set. Since images and texts are paired in our experiments,
Percentage is more accurate for true performance. CCA
shows a good performance over NUS-WIDE data set for
percentage because the annotated tags in NUS-WIDE are
manually selected and there is highly-qualified correlation
between images and tags.

• For different algorithms, the algorithms utilize pair-wise
information perform better on Percentage with algorithms
utilized label information better on MAP.

Figure 1 illustrates one example of image query text and
one example of text query image over Wiki image-text data
set. The retrieved results by SliM2 (top row) and GMA (bot-
tom row) are compared.

For the example of image query text, we use the corre-
sponding images of retrieved texts to demonstrate the re-
sults. Though all of retrieved texts come from the ”sports”
category same as the query image, and strongly correspond
to the query image, the result by SliM2 is more visually con-
sistent with the query image.

For the example of text query image, the query text is
about parks from ”geography” category. The retrieved im-
ages by SliM2 all come from ”geography” category, while
the first retrieved image and the last one by GMA come from
”history” category. From the underlined words in the query
text describing the semantics of this query text, we can ob-
serve that the retrieved images by SliM2 are more semanti-
cally correlated with the query text than that of GMA.

Conclusion

SliM2 is proposed in this paper for multi-modal retrieval.
SliM2 can utilize the class information to jointly learn dis-
criminative multi-modal dictionaries as well as mapping
functions between different modalities. We have demon-
strated the superior performance of SliM2 in terms of MAP
and Percentage for two data sets.
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Wiki
BoVW(500D),BoW(1000D) BoVW(1000D),BoW(5000D)

Image Query Text Text query Image Image Query Text Text query Image

CCA 0.1767 0.1809 0.1994 0.1859

GMA 0.2245 0.2148 0.2093 0.2267

SCDL 0.2341 0.1988 0.2527 0.1981

SliM2 0.2399 0.2025 0.2548 0.2021

Table 1: The performance comparison in terms of MAP scores on Wiki data set. 500-dimensional bag of visual words (BoVW)
and 1000-dimensional bag of textual words (BoW), as well as 1000-dimensional bag of visual words (BoVW) and 5000-
dimensional bag of textual words (BoW), are used to represent each image and text respectively. The results shown in boldface
are best results.

Wiki
BoVW(500D),BoW(1000D) BoVW(1000D),BoW(5000D)

Image Query Text Text Query Image Image Query Text Text Query Image

CCA 0.2236 0.2340 0.3054 0.2845

GMA 0.2877 0.2548 0.3002 0.2496

SCDL 0.3709 0.2790 0.3857 0.3037

SliM2 0.3899 0.2842 0.4084 0.3106

Table 2: The performance comparison in terms of Percentage scores on Wiki data set. 500-dimensional bag of visual words
(BoVW) and 1000-dimensional bag of textual words (BoW), as well as 1000-dimensional bag of visual words (BoVW) and
5000-dimensional bag of textual words (BoW), are used to represent each image and text respectively. The results shown in
boldface are best results.

GMA

Image Query Text

Text Query Image

Fanno Creek
parks

Portland
Parks

Hillsdale Park picnic
tables

Albert
Kelly Park
paths picnic tables play
areas

Fanno Creek
Natural Area

,

passes through
or near 14 in several
jurisdictions. The

and Recreation
Department manages three:

, with
and a dog park near

the headwaters;
, with unpaved

,
, and Wi-Fi north of the

creek about from the mouth,
and the

, north of the
creek about from the mouth.

Images corresponding to the top retrieved texts

Top retrieved images

GMA

SliM2

SliM2

Figure 1: Two examples of image query text and text query image over Wiki data set by SliM2 (top row) and GMA (bottom row).
For the example of image query text, we use the corresponding images of retrieved texts to demonstrate the results. The query
image comes from the ”sports” category and all of retrieved texts (and their corresponding images) also come from ”sports”
category. For the example of image query text, the query text is about parks from ”geography” category. The underlined words
in the query text describe the semantics of the query text. All of retrieved images by SliM2 come from ”geography” category,
and the second and the third retrieved images by GMA come from ”geography” category while the other two come from
”history” category.
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