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Supervised deep learning‑based 
paradigm to screen the enhanced 
oil recovery scenarios
Rakesh Kumar Pandey 1, Asghar Gandomkar 2, Behzad Vaferi 2,3*, Anil Kumar 4 & 
Farshid Torabi 5

High oil prices and concern about limited oil reserves lead to increase interest in enhanced oil recovery 
(EOR). Selecting the most efficient development plan is of high interest to optimize economic cost. 
Hence, the main objective of this study is to construct a novel deep‑learning classifier to select the 
best EOR method based on the reservoir’s rock and fluid properties (depth, porosity, permeability, 
gravity, viscosity), and temperature. Our deep learning‑based classifier consists of a one‑dimensional 
(1D) convolutional neural network, long short‑term memory (LSTM), and densely connected neural 
network layers. The genetic algorithm has been applied to tune the hyperparameters of this hybrid 
classifier. The proposed classifier is developed and tested using 735 EOR projects on sandstone, 
unconsolidated sandstone, carbonate, and conglomerate reservoirs in more than 17 countries. Both 
the numerical and graphical investigations approve that the structure‑tuned deep learning classifier 
is a reliable tool to screen the EOR scenarios and select the best one. The designed model correctly 
classifies training, validation, and testing examples with an accuracy of 96.82%, 84.31%, and 82.61%, 
respectively. It means that only 30 out of 735 available EOR projects are incorrectly identified by the 
proposed deep learning classifier. The model also demonstrates a small categorical cross‑entropy 
of 0.1548 for the classification of the involved enhanced oil recovery techniques. Such a powerful 
classifier is required to select the most suitable EOR candidate for a given oil reservoir with limited 
field information.

Enhanced oil recovery (EOR) helps optimize the recovery factor to increase the returns from oil and gas 
 projects1–3. Increasing oil prices create concern about future energy resources and increase interest in enhanced 
oil recovery in the  world4,5. EOR projects are often expensive and have high initial costs than traditional second-
ary  projects6. An inappropriate recovery project may lead to permanent damage in the reservoirs and increases 
financial losses. These analyses comprise laboratory tests and progress through reservoir characterization and 
simulation, design, and implementation of pilot tests to the final design and implementation of the full field 
project. Moreover, all the above-mentioned phases involve investments that can be risky if not properly supported 
by a preliminary cost-efficient screening phase. Hence, a key element of the decision-making approach is, first 
and foremost, the assessment of the EOR potential for a target reservoir. This is the critical goal accomplished 
by the practice of EOR screening, which is meant to provide the first metric to be employed for risk reduction 
with modest capital investment.

Therefore, a reliable and precise enhanced oil recovery screening method is desirable to develop depleting res-
ervoirs. A literature review indicates that there are generally two techniques for EOR screening: (1) conventional 
EOR screening (CEORS) and (2) advanced EOR screening (AEORS)7–9. The CEORS technique considers several 
predefined screening parameters to indicate the likelihood of successful implementation of each EOR technique. 
These parameters usually cover the reservoir fluid and rock properties (such as oil saturation, API gravity, 
layer thickness, formation type, permeability, viscosity, salinity, temperature, and depth) for successful EOR 
 methods10,11. These proposed standards were achieved by analyzing the successful EOR projects performed before 
 199710. Additionally, other factors such as available reserve and implementation costs have a tangible impact 
on the proposed criteria. These parameters have been extensively used in EOR screening for many years and 
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researchers hardly tried to improve/ update them. Al-Adasani and  Bai12 reviewed EOR projects conducted since 
1998 and improved Taber et al.10 proposed principle. Mashayekhizadeh et al. integrated several major screening 
criteria and produced a set of realism criteria for each EOR  technique13. Zhang et al. proposed a graphical screen-
ing index by analysis of the many enhanced oil recovery projects based on the statistical  parameters14. Jensen et al. 
considered CEORS in the Ekofisk field and the results indicated that the water alternating gas injection (WAG) 
and air injection scenarios are the most suitable EOR  methods15. Alvarado and Manrique highlighted that the 
notable limitation of conventional methods is that they only provide a “go/no go” response, without additional 
details on EOR strategies performed in similar  fields16. On the other hand, advances in computer science have 
created a good chance for an alternative approach. In the last decade, computer-aided technology has upgraded 
EOR screening approaches. The reservoir rock and fluid properties and also the successful implementation of 
EOR methods play an important role in this approach. This approach was gently extended as AEORS. Similar 
with other research  fields17, machine learning methods are also applied to handle the EOR  screening18,19. Artificial 
intelligence strategies, including artificial neural networks (ANN)18,19, expert  systems20,21, fuzzy  inference22, and 
Bayesian  Networks23,24 have already been engaged in the EOR classification task. The earliest studies of AEORS 
were performed by Alvarado et al.25. They considered 290 EOR projects around the world and applied dimension-
ality reduction and clustering methods to create an expert map for choosing a suitable EOR  method25. Research 
conducted by Lee et al. includes training an ANN model using 230 successful enhanced oil recovery scenarios 
to identify the most suitable EOR scenario for candidate  reservoirs26. In addition, Zerafat et al. integrated the 
criteria proposed by Taber et al. using 1098 EOR scenarios and developed a Bayesian Belief network to predict 
the appropriate EOR  methods24. Parada and Ertekin used a commercial reservoir simulator to collect the data 
needed to accomplish the ANN  train27. They proposed a new approach for EOR screening and predicting the 
performance of enhanced oil recovery  scenarios27. Several similar studies were also carried out in this field 
and many machine learning techniques were checked to find an intelligent tool for the EOR screening. Khazali 
et al. recently trained a fuzzy decision tree-algorithm using 548 successful EOR projects around the world to 
indicate the screening  rules28. Babushkina et al. define and investigate analogy by applying a k-Means clustering 
method on the 6-dimensional space of reservoir rock and fluid  properties29. The EOR potential of a target field 
is estimated by interpolation of the recovery factors associated with the (eventually different) EOR techniques of 
projects belonging to the same  cluster29. Also, Trujillo et al.30 combined conventional and advanced approaches 
to rank the available database according to a similarity  score10,11. This approach has made it possible to identify 
EOR techniques with high potential for application in Colombia’s oilfields.

Consequently, careful and detailed preliminary studies must be performed to reduce uncertainty and mini-
mize the risk of failure of the EOR screening process.

New classes of intelligent techniques, namely deep-learning  framework31, deep reinforcement  learning32,33, 
deep belief  network34, dual-graph attention convolution  network35 are recently suggested to monitor (mod-
eling, control, as well as classification) the behavior of even complicated problems. Therefore, the main problem 
addressed in this work involves selecting the most suitable EOR technique for the target reservoir using a novel 
deep learning-based classifier. This novel classifier consists of LSTM (long short-term memory), 1D CNN (one-
dimensional convolutional neural network), and densely connected neural network (DNN) layers. In addition, 
the genetic algorithm (GA)36 has been used to systematically adjust the hyperparameters of the classifier. The 
proposed classifier requires a minimum amount of information (i.e. depth, porosity, permeability, oil gravity, 
viscosity, and temperature) to rank the potential EOR scenarios and suggest the best one. Such a powerful tool 
can reduce the cost associated with field trials and assist in EOR method selection with greater confidence.

Data description
The data from 735 real-field EOR projects applied on carbonate, sandstone, unconsolidated sandstone, and 
conglomerate reservoirs in more than 17 countries have been collected from the literature and used for devel-
oping the deep learning-based classifier. This information includes porosity (%), depth (ft), oil gravity (API), 
permeability (md), viscosity (cP), and temperature (°F) as the independent variables. In addition, the applied 
EOR scenarios including water flooding (Class 0),  CO2 flooding (Class 1), hydrocarbon flooding (Class 2), water 
alternating gas (Class 3), polymer flooding (Class 4), surfactant flooding (Class 5), thermal recoveries such as 
steam flooding and in-situ combustion (Class 6) are the targets that must be identified.

Figure 1 presents the distribution of the reservoir lithology available in the collected real-field EOR projects. 
This figure shows the carbonate and conglomerate reservoirs with the maximum and minimum numbers of the 
EOR operations in the available database. Furthermore, Fig. 2 differentiates the EOR projects based on the loca-
tion where they are executed. It can be seen that the collected databank includes the EOR information of more 
than 17 countries all around the world.

Data processing. During data pre-processing, the z-score normalization (Eq. (1)) has been applied to scale 
the input  feature37.

where AV and NV represent the actual and normalized values of a variable. In addition, μ and σ signify the mean 
and standard deviation of the variable.

The numerical labels (0 to 6) representing the different EOR methods have been converted to a binary matrix 
in the current study.

(1)NV = (AV − µ)/σ ,
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Deep learning‑based paradigm
As explained earlier, this work aims to apply a linearly stacked hybrid three-layered deep-structured network 
consisting of 1D CNN, LSTM, and DNN to screen EOR methods based on reservoir rock and fluids properties 
and temperature.

Figure 3 presents the general structure of the hybrid classifier used in this study. The numerical value of 
the normalized independent variables (v × 1 vector) enters into 1D CNN for feature  learning38. The CNN has k 
filters of size R1 × 1 that are convolved with the input matrix to produce k feature maps. The rectified linear unit 
(ReLU) activated CNN gives the output of shape v × k. The LSTM layer with p units and a hyperbolic tangent 
(Tanh) activation  function39 provides feedback connection to carry forward the relevant information. Finally, 
the LSTM output delivers to the DNN layer with D neurons and a softmax activation function to provide the 
final classification results.
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Figure 1.  The distribution of EOR methods based on reservoir lithology.
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Figure 2.  Total available data distribution by country.
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Results and discussions
Data distribution. The available dataset (735 samples) has been split into three nonoverlapping groups, i.e. 
training (90%, 661 samples), validation (7%, 51 samples), and testing (3%, 23 samples). The first group includes 
samples that help to adjust the tunable parameters of the classifier and accomplish the learning stage. On the 
other hand, the validation group is used to evaluate the model’s performance during the training step. The last 
group has been applied to assess the classification performance of the trained model against some unseen sam-
ples and monitor its generalization ability.

Model architecture. Since the number of independent variables and EOR classes dictates by the investi-
gated problem, it is only necessary to regulate the number of units in the CNN and LSTM layers. The GA which 
provides an optimal or near-optimal solution of a pre-defined objective function from the problem  space40, has 
been utilized in this work to tune these two hyperparameters. The population was initialized using random sam-
pling, and the GA evolved over 500 generations using tournament selection, one-point crossover, and mutation 
operators. The GA minimizes the categorical cross-entropy (CCE) function to obtain optimal hyperparameters’ 
values, including the number of filters in the CNN layer (Conv1D units) and the number of units in the LSTM 
layer (LSTM units). Table 1 provides the bounds of the search space which are utilized during GA optimization.

Figure 4 introduces a variation of the CCE by the GA generation when the number of filters in the CNN layer 
and units in the LSTM layer is changed in the predefined ranges. This figure shows that the minimum CCE of 
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Figure 3.  Structure of the hybrid three-layered deep-structured classifier.

Table 1.  Search space for the variables during GA optimization.

Hyperparameter Abbreviation Range of investigation

Number of filters in the CNN layer Conv1D units [1, 500]

Number of units in the LSTM layer LSTM units [1, 500]
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Figure 4.  Variation of the CCE by the GA generation.
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0.1050 is achieved in the 143rd generation. This minimum CCE is associated with the Conv1D, and LSTM units 
as 349 and 60, respectively.

Table 2 summarizes the key characteristics of the structure-tuned deep learning classifier by the GA.

Structure‑tuned classifier. The previous analysis approves that the hybrid sequential model with three 
layers (i.e. CNN with 349 units and LSTM with 60 units) is the best classifier to select the most efficient EOR 
scenario for a considered oil reservoir. This classifier only needs to receive the normalized matrix of the six inde-
pendent features to rank the EOR classes.

Evaluation model performance. Numerical analysis. The CCE and accuracy indices have been applied 
to evaluate the classifier’s performance. The mathematical expressions of these indices are shown in Eqs. (2) and 
(3)41.

where N is the number of the data sample; nk and nk present the kth actual and estimated values.
Table 3 summarizes the numerical value of the CCE as well as the accuracy of the designed deep learning-

based classifier in the training, validation, and testing stages. It should also be noted that our deep learning classi-
fier identified the correct EOR scenario of 735 field examples with an overall accuracy of 95.92 and CCE = 0.1548.

Performance analysis by the confusion matrix. The confusion  matrix42 is a well-established graphical technique 
to easily assess the reliability of a classifier. This technique reveals the number of correct as well as incorrect 
identifications of each involved class. Indeed, the records located in the diagonal cells indicate the number of 
correct identifications for the involved classes. Furthermore, other records in the confusion matrix are incorrect 
identifications.

The confusion matrices associated with the training, validation, and testing stages are presented in Figs. 5, 6, 
and 7, respectively. Figure 5 clarifies that the proposed deep learning model correctly identifies 640 out of 661 
EOR scenarios in the training stage. Furthermore, the designed classifier shows outstanding performance in the 
correct identification of both the validation and testing groups. Indeed, it correctly distinguishes 43 out of 51 
validation samples and 19 out of 23 unseen testing examples.

Conclusions
This research aims to employ the deep learning-based structure for selecting the most suitable EOR scenario 
based on the oil reservoir characteristics including depth, porosity, permeability, gravity, viscosity, and tempera-
ture. The information on 735 real-field EOR projects collected from the literature has been used to design the 
considered classifier and monitor its accuracy. The utilized databank includes the EOR scenarios applied on the 
carbonate, sandstone, unconsolidated sandstone, and conglomerate reservoirs in more than 17 countries. The 
hyperparameters of the deep learning-based classifier have been tuned by the GA. It was found that the 1D CNN 
and LSTM layers of the classifier must have 349 and 60 units, respectively. The structure-tuned deep learning 
classifier identified the correct EOR scenario of 735 field examples with excellent accuracy of 95.92 and a small 
CCE of 0.1548. Such a reliable tool can easily reduce the cost associated with checking several EOR projects 
based on the try-and-error procedure.

(2)CCE = (1/N) ×

∑N

k=1

[

nk × log (nk) + (1− nk) × log (1− nk)
]

(3)Accuracy (%) = 100 ×
Numbers of the true detection

Numbers of true and false detection
,

Table 2.  The key features of the structure-tuned deep learning-based classifier by the GA.

Layer Output shape Number of parameters Activation function

CNN (None, 6, 349) 698 ReLU

LSTM (None, 60) 98,400 Tanh

DNN (None, 7) 427 Softmax

Table 3.  The numerical values of the achieved CCE and accuracy by the developed classifier.

Classification stage CCE Accuracy (%)

Training 0.1050 96.82

Validation 0.6082 84.31

Testing 0.5914 82.61
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Figure 5.  The confusion matrix of the designed model related to the training data classification.

Figure 6.  The confusion matrix of the designed model related to the validation data classification.

Figure 7.  The confusion matrix of the designed model related to the testing data classification.
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Data availability
All analyzed data in this study collected from the literature are available on reasonable request from the cor-
responding author (Dr. B. Vaferi).
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