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Abstract: In our work, we propose a novel formulation for supervised di-
mensionality reduction based on a nonlinear dependency criterion called
Statistical Distance Correlation, (Székely et al., 2007). We propose an ob-
jective which is free of distributional assumptions on regression variables
and regression model assumptions. Our proposed formulation is based on
learning a low-dimensional feature representation z, which maximizes the
squared sum of Distance Correlations between low-dimensional features z
and response y, and also between features z and covariates x. We propose
a novel algorithm to optimize our proposed objective using the Generalized
Minimization Maximization method of (Parizi et al., 2015). We show supe-
rior empirical results on multiple datasets proving the effectiveness of our
proposed approach over several relevant state-of-the-art supervised dimen-
sionality reduction methods.
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1. Introduction

Rapid developments of imaging technology, microarray data analysis, computer
vision, neuroimaging, hyperspectral data analysis and many other applications
call for the analysis of high-dimensional data. The problem of supervised dimen-
sionality reduction is concerned with finding a low-dimensional representation
of data such that this representation can be effectively used in a supervised
learning task. Such representations help in providing a meaningful interpreta-
tion and visualization of the data, and also help to prevent overfitting when the
number of dimensions greatly exceeds the number of samples, thus working as
a form of regularization. In this paper we focus on supervised dimensionality
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reduction in the regression setting where we consider the problem of predicting
a univariate response yi ∈ R from a vector of continuous covariates xi ∈ R

p, for
i = 1 to n.

Sliced Inverse Regression (SIR) of Li (1991); Lue (2009); Szretter and Yohai
(2009) is one of the earliest developed supervised dimensionality reduction tech-
niques and is a seminal work that introduced the concept of a central subspace
that we now describe. This technique aims to find a subspace given by the col-
umn space of a p × d matrix B with d << p such that y |=X|BTX where |=

indicates statistical independence. Under mild conditions the intersection of all
such dimension reducing subspaces is itself a dimension reducing subspace, and
is called the central subspace (Cook, 1996). SIR aims to estimate this central
subspace. Sliced Average Variance Estimation (SAVE) of Shao et al. (2009) and
Shao et al. (2007) is another early method that can be used to estimate the
central subspace. SIR uses a sample version of the first conditional moment
EX | Y to construct an estimator of this subspace and SAVE uses the sam-
ple first and second conditional moments to estimate it. Likelihood Acquired
Directions (LAD) of Cook and Forzani (2009) is a technique that obtains the
maximum likelihood estimator of the central subspace under assumptions of
conditional normality of the predictors given the response. Like LAD, methods
SIR and SAVE rely on elliptical distributional assumptions like Gaussianity of
the data.

More recently developed methods do not require any distributional assump-
tions on the marginal distribution of x or on the conditional distribution of y.
The authors of Gradient Based Kernel Dimension Reduction (gKDR), Fukumizu
and Leng (2014), use an equivalent formulation of the conditional independence
relation y |= X|BTX using conditional cross-covariance operators and aim to find
a B that maximizes the mutual information I(BTX,y). In this work, the au-
thors use Gaussian kernels to provide equivalent characterizations of conditional
independence using sample estimators of cross-covariance operators.

Sufficient Component Analysis (SCA) of Yamada et al. (2011) is another
technique where the B is also learnt using a dependence criterion. SCA aims to
maximize the least-squares mutual information given by SMI(Z, Y ) =
1
2

∫ ∫
(

pzy(z,y)
pz(z)py(y)

− 1)2dzdy between the projected features Z = BTX and the

response. This is done under orthonormal constraints over B, and the optimal

solution is found by approximating
pzy(z,y)

pz(z)py(y)
using method of density ratio es-

timation (Sugiyama et al., 2012; Vapnik et al., 2015), and also an analytical
closed form solution for the minima is obtained. In Suzuki and Sugiyama (2013)
(LSDR), the authors optimize this objective using a natural gradient based iter-
ative solution on the Steifel manifold S

m
d (R) via a line search along the geodesic

in the direction of the natural gradient (Amari, 1998; Nishimori and Akaho,
2005). In our work, we show benefits of Distance Correlation as a criterion for
supervised low-dimensional feature learning.

Our contribution in this paper is as follows: We propose a new formulation
for supervised dimensionality reduction that is based on a dependency criterion
called Distance Correlation, (Szekely et al., 2007). This setup is free of distribu-
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tional, as well as regression model assumptions. The novelty in our formulation
is that we do not restrict the transformation from x to z to be linear, as in case
many of the above techniques.

To further add to this, the recent work of Sheng and Yin (2016) looks at suffi-
cient dimensionality reduction through linear projections using distance covari-
ance and Xin Chen and Zou (2015) looks at goodness-of-fit tests with distance
covariance in the context of sufficient dimensionality reduction. In addition, Li
et al. (2012); Kong et al. (2015); Berrendero José R and Torrecilla (2014) have
used Distance Correlation as a criterion for feature selection in a regression
setting.

In our work we use the following notation: The spectral radius of a matrix M
is denoted by λmax(M), ith eigenvalue by λi(M), and ith generalized eigenvalue
Ax = λiBx by λi(A,B). Moreover, λmax(M) (λmax(A,B)), and λmax(M)
(λmin(A,B)) respectively, the maximum and minimum eigenvalues (generalized
eigenvalues) of matrices M, A and B. We use the usual partial ordering for
symmetric matrices: A � B means A−B is positive semidefinite; similarly for
the relationships �,≺,≻. The norm ‖·‖ will be either the Euclidean norm for
vectors or the norm that it induces for matrices, unless otherwise specified.

2. Distance correlation

Distance Correlation introduced by Szekely et al. (2007) and Székely et al.
(2009); Székely and Rizzo (2012, 2013) is a measure of nonlinear dependencies
between random vectors of arbitrary dimensions. We describe below α-distance
covariance which is an extended version of standard distance covariance for
α = 1.

Definition 2.1. Distance Covariance (Székely et al., 2007), α-dCov: Distance
covariance between random variables x ∈ R

d and y ∈ R
m with finite first

moments is a nonnegative number given by

ν2(x,y) =

∫

Rd+m

|fx,y(t, s)− fx(t)fy(s)|2w(t, s)dtds

where fx, fy are characteristic functions of x,y, fx,y is the joint characteristic
function, and w(t, s) is a weight function defined as

w(t, s) = (C(p, α)C(q, α)|t|α+p
p |s|α+q

q )−1

with C(d, α) = 2πd/2Γ(1−α/2)
α2αΓ((α+d)/2) .

The distance covariance is zero if and only if random variables x and y are
independent. From above definition of distance covariance, we have the following
expression for Distance Correlation:

Definition 2.2. Distance Correlation (Székely et al., 2007) (α-dCorr): The
squared Distance Correlation between random variables x ∈ R

d and y ∈ R
m
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with finite first moments is a nonnegative number defined as

ρ2(x,y) =

{
ν2(x,y)√

ν2(x,x)ν2(y,y)
, ν2(x,x)ν2(y,y) > 0.

0, ν2(x,x)ν2(y,y) = 0.

The Distance Correlation defined above has the following interesting proper-
ties; 1) ρ2(x,x) is defined for arbitrary dimensions of x and y, 2) ρ2(x,y) = 0
if and only if x and y are independent, and 3) ρ2(x,y) satisfies the relation
0 ≤ ρ2(x,y) ≤ 1. In our work, we use α-Distance Covariance with α = 2 and in
the following paper for simplicity just refer to it as Distance Correlation.

We define sample version of distance covariance given i.i.d. samples {(xk,yk)|
k = 1, 2, . . . , n} sampled from joint distribution of random vectors x ∈ R

d and
y ∈ R

m. To do so, we define two squared Euclidean distance matrices EX

and EY, where each entry [EX]k,l = ‖xk − xl‖2 and [EY]k,l = ‖yk − yl‖2 with

k, l ∈ {1, 2, . . . , n}. We then make their row and column sums zero to obtain ÊX

and ÊY respectively by multiplying with a centering matrix Borg and Groenen
(2005) J given by J = I− 1

n11
T on both sides as ÊX = JEXJ and ÊY = JEYJ

Now the sample distance correlation (for α = 2) is hence defined as follows:

Definition 2.3. Sample Distance Correlation (Székely et al., 2007): Given i.i.d
samples X × Y = {(xk,yk)|k = 1, 2, 3, . . . , n} and corresponding double cen-

tered Euclidean distance matrices ÊX and ÊY, the squared sample distance
correlation is defined as,

ν̂2(X,Y) =
1

n2

n∑

k,l=1

[ÊX]k,l[ÊY]k,l,

and equivalently sample distance correlation is given by

ρ̂2(X,Y) =

{
ν̂2(X,Y)√

ν̂2(X,X)ν̂2(Y,Y)
, ν̂2(X,X)ν̂2(Y,Y) > 0.

0, ν̂2(X,X)ν̂2(Y,Y) = 0.

3. Laplacian formulation of sample distance correlation

In this section, we propose a Laplacian formulation of sample distance covariance
and sample distance correlation which we later use to propose our objective
function used for supervised dimensionality reduction (SDR).

A graph Laplacian version of sample distance correlation can be obtained as
follows:

Lemma 3.1. Given matrices of squared Euclidean distances EX and EY and
Laplacians LX and LY formed over adjacency matrics ÊX and ÊY, the square
of sample distance correlation ρ̂2(X,Y) is given by

ρ̂2(X,Y) =
Tr

(
XTLYX

)
√

Tr (YTLYY)Tr (XTLXX)
. (3.1)
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Proof. Given matrices ÊX, ÊY, and column centered matrices X̃, Ỹ, from result
of Torgerson (1952) we have that ÊX = −2X̃X̃T and ÊY = −2ỸỸT . In the
problem of multidimensional scaling (MDS) (Borg and Groenen, 2005), we know
for a given adjacency matrix say W and a Laplacian matrix L,

Tr
(
XTLX

)
=

1

2

∑

i,j

[W]ij [EX]i,j . (3.2)

Now for the Laplacian L = LX and adjacency matrix W = ÊY we can represent
Tr

(
XTLYX

)
in terms of ÊY as follows,

Tr
(
XTLYX

)
=
1

2

n∑

i,j=1

[ÊY]i,j [EX]i,j .

From the fact [EX]i,j = (〈x̃i, x̃i〉+ 〈x̃j , x̃j〉−2 〈x̃i, x̃j〉), and also ÊX = −2X̃X̃T

we get

Tr
(
XTLYX

)
= −1

4

n∑

i,j=1

[ÊY]i,j([ÊX]i,i + [ÊX]j,j − 2[ÊX]i,j)

=
1

2

∑

i,j

[ÊX]i,j [ÊY]i,j −
1

4

n∑

j

[ÊX]j,j

n∑

i

[ÊY]i,j

− 1

4

n∑

i

[ÊX ]i,i

n∑

j

[ÊY]i,j

Since ÊX and ÊY are double centered matrices
∑n

i=1[ÊY]i,j =
∑n

j=1[ÊY]i,j = 0
it follows that

Tr
(
XTLYX

)
=
1

2

∑

i,j

[ÊX]i,j [ÊY]i,j .

It also follows that

ν̂2(X,Y) =
1

n2

n∑

i,j=1

[ÊY]i,j [EX]i,j =
2

n2
Tr

(
XTLYX

)

Similarly, we can express the sample distance covariance using Laplacians LX

and LY as

ν̂2(X,Y) =

(
2

n2

)
Tr

(
XTLYX

)
=

(
2

n2

)
Tr

(
YTLXY

)
.

The sample distance variances can be expressed as ν̂2(X,X)=
(

2
n2

)
Tr

(
XTLXX

)

and ν̂2(Y,Y) =
(

2
n2

)
Tr

(
YTLYY

)
substituting back into expression of sample

distance correlation above we get Equation 3.1.
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4. Framework

4.1. Problem statement

The goal in supervised dimensionality reduction (SDR) is to learn a low dimen-
sional representation Z ∈ R

n×p of input features X ∈ R
n×d so as to predict the

response y ∈ R
n×1 from Z.

In our proposed formulation, we use aforementioned Laplacian based sample
distance correlation to measure dependencies between variables. We propose to
maximize dependencies between the low dimensional features Z and response
vector y, and also low dimensional features Z with input features X. Our objec-
tive is to maximize the sum of squares of these two sample distance correlations
which is given by:

f(Z) = ρ̂2(X,Z) + ρ̂2(Z,y) (4.1)

f(Z) =
Tr

(
ZTLXZ

)
√

Tr (XTLXX)Tr (ZTLZZ)
+

Tr
(
ZTLyZ

)
√
Tr (yTLyy)Tr (ZTLZZ)

. (4.2)

On simplification we get the following optimization problem which we refer to
as Problem (P).

max
Z

f(Z) =
Tr

(
ZTSX,yZ

)
√
Tr (ZTLZZ)

Problem (P)

where kX = 1√
Tr(XTLXX)

, kY = 1√
Tr(yTLyy)

are constants, and SX,y = kXLX+

kY Ly.

4.1.1. Motivation

To elucidate on the intuition behind the two additive terms ρ̂2(X,Z) and ρ̂2(Z,y)
in above objective ρ̂2(X,Z) + ρ̂2(Z,y), we first point that for a special case of
learning a ZTrain such that ZTrain = yTrain, given a training data ofXTrain,yTrain,
we see that although the term ρ̂2(ZTrain,yTrain) is maximum it happens to be
the case that ZTrain is a grossly over-fitted representation of the training data.
That is, it does not aid in learning a reasonable ZTest to predict an out-of-sample
response YTest.

Optimizing our proposed objective function facilitates the learning of a rea-
sonable out-of-sample ZTest through two explicit supervised machine learning
maps; one that maps from XTrain to ZTrain to help predict ZTest and another
that maps from ZTrain to YTrain help predict YTest from the predicted ZTest.
Popular supervised machine learning techniques could be used to learn the two
maps above.

We also show through experiments later in this paper that our proposed
iterative solution of Z for this objective tries to increase ρ̂2(Z,Y) at a greater
rate while ρ̂2(Z,X) reduces at a relatively slower rate with respect to iterations.
We also visualize the plots of variables in Z vs. corresponding variables in X
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and the variables in Z vs. Y later in this paper at different iterations to further
show this effect.

Another parallel, yet motivating line of work on this topic is the popular
“Information Bottleneck Method” introduced and studied in (Tishby Naftali and
William, 1999; Chechik Gal and Yair, 2005; Noam, 2002) which tries to find a
compressed representation ofX while also preserving relevant information about
Y. This was used very recently to further explain the theoretical underpinnings
of deep learning in Ravid and Naftali (2017).

4.2. Algorithm

In the proposed problem (Problem (P)), we observe that numerator of our
objective is convex while denominator is non-convex due to the presence of a
square root and a Laplacian term LZ nonlinearly dependent on Z. Hence, this
makes direct optimization of this objective practically infeasible. So to optimize
Problem (P), we present a surrogate objective Problem (Q) which lower
bounds our proposed original objective. We maximize this lower bound with
respect to Z and show that optimizing this surrogate objective Problem (Q)
(lower bound), also maximizes the proposed objective in Problem (P). We do
so by utlizing the Generalized Minorization-Maximization (G-MM) framework
of Parizi et al. (2015).

The G-MM framework of Parizi et al. (2015) is an extension of the well
known MM framework of Lange et al. (2000). It removes the equality constraint
between both objectives at every iteration Zk, except at initialization step Z0.
This allows the use of a broader class of surrogate objective functions.

The surrogate lower bound objective is as follows,

max
Z

g(Z,M) =
Tr

(
ZTSX,yZ

)

Tr (ZTLMZ)
Problem (Q)

where M ∈ R
n×d belongs to the set of column-centered matrices.

The surrogate problem (Problem (Q)) is convex in both its numerator and
denominator for a fixed auxiliary variable M. Theorem 4.1 provides the required
justification that under certain conditions, maximizing the surrogate Problem
(Q) also maximizes the proposed objective Problem (P) .

An outline of the strategy for optimization is as follows:

a) Initialize: Initialize Z0 =
[
cJd,0

T
(n−d)×d

]T
, a column-centered matrix where

c = 1
4
√

2(d−1)
and Jd ∈ R

d×d is a centering matrix. This is motivated by

statement 1) in proof of Theorem 4.1.
b) Optimize: Maximize the surrogate lower bound Zk+1 = argmax g(Z,Zk)

(See section 5).
c) Rescaling: Rescale Zk+1 ← κZk+1 such thatTr

(
Zk+1LZk+1

Zk+1

)
is greater

than one. This is motivated by proof of statement 3) of Theorem 4.1, and
also the fact that g(Z,M) = g(κZ,M) and f(Z) = f(κZ) for any scalar κ.

d) Repeat step b and c above until convergence.
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Theorem 4.1. Under above strategy, maximizing the surrogate Problem Q
also maximizes Problem P.

Proof. For convergence it is enough for us to show the following, (Parizi et al.,
2015):

1. f(Z0) = g(Z0,Z0) for Z0 =
[
cJd,0

T
(n−d)×d

]T
and c = 1

4
√

2(d−1)
,

2. g(Zk+1,Zk) ≥ g(Zk,Zk) and,
3. f(Zk+1) ≥ g(Zk+1,Zk)

To prove statement 1, for Z0 =
[
cJd,0

T
(n−d)×d

]T
, we observe that Z0 column-

centered, LZ0
= 2Z0Z

T
0 and ZT

0 Z0 = c2Jd. Hence we get Tr
(
ZT

0 Z0LZ0
Z0

)
=

c4Tr (2Jd) = c42(d − 1) = 1. This proves the required statement f(Z0) =
g(Z0,Z0) = Tr

(
ZT

0 LZ0
ZT

0

)
.

Statement 2 follows from the optimization Zk+1 = argmax g(Z,Zk). To prove
statement 3 we have to show that

Tr
(
ZT

k+1SX,yZk+1

)
√
Tr

(
ZT

k+1LZk+1
Zk+1

) ≥
Tr

(
ZT

k+1SX,yZk+1

)

Tr
(
ZT

k+1LZk
Zk+1

) .

Since numerators on both sides are equal, it is enough for us to show that
√

Tr
(
ZT

k+1LZk+1
Zk+1

)
≤ Tr

(
ZT

k+1LZk
Zk+1

)
.

Now from Lemma A.4 we have Tr
(
ZT

k+1LZk+1
Zk+1

)
≤ Tr

(
ZT

k+1LZk
Zk+1

)
. It

follows from the rescaling step (step c) of the optimization strategy that the left
hand side Tr

(
Zt+1LZt+1

Zt+1

)
is always greater that one, and so taking square

root of it implies
√

Tr
(
Zt+1LZt+1

Zt+1

)
≤ Tr

(
ZT

t+1LZtZt+1

)
.

We summarize all of the above steps in Algorithm 4.1 below and section 5
further describes optimization algorithm to solve Problem (Q) required by it.

Algorithm 4.1 DISCOMAX

Require: Initialize Z0 =
[
cJd,0

T
(n−d)×d

]T
, a column-centered matrix where c = 1

4
√

2(d−1)
,

k ← 0
Ensure: Z∗ = argmaxZ f(Z)
1: repeat
2: Solve,

Zk+1 = argmax
Z

g(Z,Zk) Problem (Q)

3: Rescale Zk+1 ← κZk+1 such that Tr
(
ZT
k+1LZk+1

Zk+1

)
≥ 1

4: k = k + 1
5: until ‖Zk+1 − Zk‖2 < ǫ

6: Z∗ = Zk+1

7: return Z∗
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5. Optimization

In this section, we propose a framework for optimizing the surrogate objective
g(Z,M), referred to as Problem (Q), for a fixed M = Zk. We observe that for
a given value of M, g(Z,M) is a ratio of two convex functions. To solve this,
we convert this maximization problem to an equivalent minimization problem
h(Z,M), by taking its reciprocal (Schaible, 1976). This allows us to utilize the
Quadratic Fractional Programming Problem (QFPP) framework of Dinkelbach
(1967) and Zhang (2008) to minimize h(Z,M). We refer to this new minimiza-
tion problem as Problem (R). It is stated below.

min
Z

h(Z,M) =
Tr

(
ZTLMZ

)

Tr (ZTSX,yZ)
Problem (R) (5.1)

where M = Zk.
In his seminal work Dinkelbach (1967) and later Zhang (2008) proposed a

novel framework to solve constrained QFP problems by converting it to an
equivalent parametric optimization problem, by introducing a scalar parameter
α ∈ R. We utilize this equivalence proposed to defined new parametric problem,
Problem (S). The solution involves a search over the scalar parameter α while
repeatedly solving Problem (S) to get the required solution Zk+1. This search
process continues until values of α converge.

In a nutshell, Dinkelbach (1967) and Zhang (2008) frameworks suggest the
following optimizations are equivalent:

Problem (R)

minimize
z∈Rd

h(z) = f1(z)
f2(z)

⇐⇒
Problem (S)

minimize
z∈Rd

H(z;α∗) = f1(z)− α∗f2(z)

for some α∗ ∈ R

where fi(z) := zTi Aiz − 2biz + ci with A1,A2 ∈ R
n×n, b1,b2 ∈ Rn, and

c1, c2 ∈ R. A1 and A2 are symmetric with f2(x) > 0 over some z ∈ Z.
To see the equivalence of h(Z,M) in Problem (R) to h(z) above we observe

that: A1 = In ⊗ LM, A2 = In ⊗ SX,y, ci = c2 = 0, and b1 = b2 = 0. Also, due
to positive definiteness of Ai, fi(z) is positive

1, and f(zi) > 0. Using this setup
for h(Z,M) we get,2

min
Z

h(Z,M) =
vec (Z)

T
(In ⊗ LM)vec (Z)

vec (Z)
T
(In ⊗ SX,y)vec (Z)

(5.2)

In subsection 5.1 we propose a Golden Section Search (Kiefer, 1953) based
algorithm (Algorithm 5.1) which utilizes concavity property of H(Z;α) with re-
spect to α to locate the best α∗. During this search we repeatedly solveProblem
(S) starting with an intial interval 0 = αl ≤ α ≤ αu = λmin(LM,SX,y) for a

1In case of Ai is semi-definite we regularize by adding Ai + ǫI so that Ai ≻ 0
2⊗ indicates kronecker product. vec (Z) denotes column vectorization of matrix Z.
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fixedM, then at each step shorten the search interval by moving upper and lower
limits closer to each other. We continue until convergence to α∗. The choice of
the upper limit of αu = λmin(LM,SX,y) is motivated by proof of Lemma A.2.

To solve Problem (S) for a given α, we propose an iterative algorithm in
subsection 5.2 (Algorithm 5.2). It uses the classical Majorization-Minimization
framework of Lange (2013).

5.1. Golden Section Search

Dinkelbach (1967) and Zhang (2008) showed the following properties of the
objective3 H(α) with respect to α, for a fixed Z.

Theorem 5.1. Let G : R → R be defined as

G(α) = min
Z

H(Z;α) = min
Z

{
Tr

(
ZTLMZ

)
− αTr

(
ZTSX,yZ

)}

as derived from Problem (S), then following statements hold true.

1. G is continuous at any α ∈ R.
2. G is concave over α ∈ R.
3. G(α) = 0, has a unique solution α∗.

Algorithm 5.1 exploits the concavity property of G(α) to perform a Golden
Section Search over α. Subsection 5.2 provides an iterative Majorization-Mini-
mization algorithm (Algorithm 5.2) to solve this minimization problem Prob-
lem (S).

5.2. Distance correlation maximization algorithm

Algorithm 5.2 gives a iterative fixed point algorithm which solves Problem
(S). Theorem 5.2 provides a fixed point iterate used to minimize H(Z, α) with
respect to Z for a given α. The fixed point iterate4 Zt+1 = HZt minimizes
Problem (S) and a monotonic convergence is assured by the Majorization-
Minimization result of Lange (2013). Theorem 5.2 below derives the fixed point
iterate used in Algorithm 5.2.

Theorem 5.2. For a fixed γ2 (Lemma A.1), some α (Lemma A.2) and

H =
(
γ2DX − αSX,y

)†
(γ2DX − LM)

the iterate Zt = HZt−1 monotonically minimizes the objective,

F (Z;α) = Tr
(
ZTLMZ

)
− αTr

(
ZTSX,yZ

)
(5.3)

3For a fixed Z and variable argument α we denote H(Z;α) as H(α).
4We use the subscript t to indicate fixed point iteration of Zt.
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Algorithm 5.1 Golden Section Search for α ∈ [αl, αu] for a fixed M = Zk.

Require: ǫ, η = 1+
√
5

2
, αl = 0, SX,y,LX, Ly, M = Zk.

Ensure: Zk+1 = argminZ g(Z,Zk+1)
1: DX ← diag(LX)
2: LM ← 2MTM
3: αu ← λmax(LM,SX,y) (Lemma A.1)
4: β ← αu + η(αl − αu)
5: δ ← αl + η(αu − αl)
6: repeat
7: H(β) ← minimize

Z∈Rd

(
Tr

(
ZTLMZ

)
− βTr

(
ZTSX,yZ

))
(Problem (S))

8: H(δ) ← minimize
Z∈Rd

(
Tr

(
ZTLMZ

)
− δTr

(
ZTSX,yZ

))
(Problem (S))

9: if (H(β) > H(δ)) then
10: αu ← δ, δ ← β

11: β ← αu + η(αl − αu)
12: else
13: αl ← β, β ← δ

14: δ ← αl + η(αu − αl)
15: end if
16: until (|αu − αl| < ǫ)
17: α∗ ← αu+αu

2

18: Zk+1 ← argminZ∈Rd

(
Tr

(
ZTLMZ

)
− α∗Tr

(
ZTSX,yZ

))
(Problem (S))

19: return α∗, Zk+1

Proof. From Lemma A.1 we know that, (γ2DX−LM) � 0. Hence the following
would hold true for any real matrix N,

Tr
(
(Z−N)T (γ2DX − LM)(Z−N)

)
≥ 0

Rearranging the terms we get the following inequality over Tr
(
ZTLMZ

)
,

Tr
(
ZTLMZ

)
+Tr

(
NT (γ2DX − LM)Z

)
−Tr

(
NT (γ2DX − LM)N

)

≤ Tr
(
ZT γ2DXZ

)
−Tr

(
ZT (γ2(DX − LM)N

)

Tr
(
ZTLMZ

)
≤ Tr

(
ZT γ2DXZ

)
− 2Tr

(
ZT (γ2DX − LM)N

)

+Tr
(
NT (γ2DX − LM)N

)

= l(Z,N)

If N = Z then l(Z,Z) = Tr
(
ZTLMZ

)
. Hence l(Z,N) majorizes Tr

(
ZTLMZ

)
.

It also follows that the surrogate function l(Z,N)− αTr
(
ZTSX,yZ

)
majorizes

our desired objective functionH(Z;α). To optimize this surrogate loss we equate
its gradient to zero and rearrange the terms to obtain

(γ2DX − αSX,y)Z = (γ2DX − LM)N

Z = (γ2DX − αSX,y)
†(γ2DX − LM)N,

which gives us the update equation Zt+1 = HZt where H is given by,

H = (γ2DX − αSX,y)
†(γ2DX − LM). (5.4)
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Hence it follows from framework of Lange (2013) that above update equation
monotonically minimizes H(Z;α).

Algorithm 5.2 summarizes the steps of an iterative Majorization-Minimization
approach to solve Problem (S).

Algorithm 5.2 Distance Correlation Maximization for a given α

Require: γ2 (Theorem A.1), α, M = Zk, SX,y, LM, DX

Ensure: H(Z;α) = minimize
Z∈Rd

(
Tr

(
ZTLMZ

)
− αTr

(
ZTSX,yZ

))

1: t ← 0
2: Zt = Zk

3: H(Zt;α) ←
(
Tr

(
ZT
t LMZt

)
− αTr

(
ZT
t SX,yZt

))

4: H =
(
γ2DX − αSX,y

)† (
γ2DX − LM

)

5: repeat
6: Zt+1 = HZt

7: H(Zt+1;α) ←
(
Tr

(
ZT
t LMZt

)
− αTr

(
ZT
t SX,yZt

))

8: t ← t+ 1
9: until (|H(Zt+1;α)−H(Zt;α)| < ǫ) or (t ≥ Tmax)
10: F (α) ← H(Zt;α)
11: Z∗ ← Zt

12: return F (α),Z∗

6. Experiments

In this section we present experimental results that compare our proposed
method with several state-of-the-art supervised dimensionality reduction tech-
niques on a regression task.

6.1. Methodology

Fig 1. Out-of-Sample prediction

Methodology we use for our experiments
is as follows:

(i) We run our proposed algorithm on
the training set XTrain to learn low-
dimensional features ZTrain.

(ii) We learn the map ψ : z �→ y using
Support Vector Regression on ZTrain

and YTrain.
(iii) We learn mappings φi : x �→ zi, i = 1

to d for each dimension of z using
Support Vector Regression on XTrain and ZTrain.

During testing/out-of-sample phase, given a test input x∗, we use maps φi : x �→
zi for i = 1 to d and generate z∗. We then utilize maps ψ : z �→ y on z∗ to get the
predicted response y∗. Figure 1 illustrates the testing phase of our methodology.
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6.2. Datasets

In our results we report the Root Mean Squared (RMS) errors on five datasets
from the UCI-Machine Learning Repository (Lichman, 2013) in Tables 1 to 5.
We use the following datasets in our experiments.

(a) Boston Housing (Harrison and Rubinfeld, 1978): This dataset contains
information collected by the U.S Census Service concerning housing in the
area of Boston Mass. This dataset has been used extensively throughout the
vast regression literature to benchmark algorithms. The response variable
to be predicted is the median value of owner-occupied homes.

(b) Relative Location of Computed Tomography (CT) Slices (Graf
et al., 2011): This dataset consists of 385 features extracted from computed
tomography (CT) images. Each CT slice is described by two histograms
in polar space that are concatenated to form the final feature vector. The
response variable to be predicted is the relative location of an image on the
axial axis. The ground truth of responses in this dataset was constructed by
manually annotating up to 10 distinct landmarks in each CT Volume with
a known location. This response takes values in the range [0, 180] where 0
denotes the top of the head and 180 denotes the the soles of the feet.

(c) BlogFeedback (Buza, 2014): This dataset originates from a set of raw
HTML documents of blog posts that were crawled and processed. The task
associated with this data is to predict the number of comments in the up-
coming 24 hours. In order to simulate this situation, the dataset was curated
by choosing a base time (in the past) and selecting the blog posts that were
published at most 72 hours before the selected base date/time. Then a set of
281 features of the selected blog posts were computed from the information
that was available at the basetime. The target is to predict the number of
comments that the blog post received in the next 24 hours, relative to the
basetime. In the training data, the base times were in the years 2010 and
2011. In the test data the base times were in February and March 2012.

(d) Geographical Origin of Music (Zhou et al., 2014): Instances in this
dataset contain audio features extracted from 1059 wave files covering 33
countries/areas. The task associated with the data is to predict the geo-
graphical origin of music. The program MARSYAS was used to extract 68
audio features from the wave files. These were appended with 48 chromatic
attributes that describe the notes of the scale bringing the total number of
features to 116.

(e) UJI Indoor Localization (Torres-Sospedra et al., 2014): The UJIIndoor-
Loc is a Multi-Building Multi-Floor indoor localization database that re-
lies on WLAN/WiFi fingerprinting technology. Automatic user localization
consists of estimating the position of the user (latitude, longitude and alti-
tude) by using an electronic device, usually a mobile phone. The task is to
predict the actual longitude and latitude. The database consists of 19937
training/reference records and 1111 validation/test records. The 529 fea-
tures contain the WiFi fingerprint, the coordinates where it was taken, and
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other useful information. Given that this paper focusses on the setting of
univariate responses, we only aim to predict the ‘Longitude’.

6.3. Results

We perform five-fold cross validation on each of these datasets and report the
average Root Mean Square (RMS) error on the hold-out test sets. Tables 1 to 5
present the cross-validated RMS error of our proposed method (DisCoMax), and
six other supervised dimensionality reduction techniques namely; LSDR (Suzuki
and Sugiyama, 2013), gKDR (Fukumizu and Leng, 2014), SCA (Yamada et al.,
2011), LAD (Cook and Forzani, 2009), SAVE (Shao et al., 2009) and (Shao
et al., 2007) and SIR (Li, 1991).

In case of DisCoMax, we use the methodology described in sub-section 6.1.
For other methods we used in our evaluation, these techniques generate ex-
plicit maps to obtain the low-dimensional representations. As in the case of the
methodology for DisCoMax, we use these explicit maps and Support Vector
Regression (with a RBF kernel) to generate cross-validated RMS errors on the
responses.

We fix the folds used across the seven techniques presented within each of the
tables (Tables 1 to 5). We also compute RMS errors for increasing dimensions
d = 3, 5, 7, 9 and 11. We note a significant improvement in the predictive perfor-
mance of DisCoMax learnt features across all above mentioned cases of chosen
dimensionality d. We also note that the predictive performance (smaller error)
increases at a slower rate as we increase dimensionality of learnt features. This
experimental setup mimics the setup of Fukumizu and Leng (2014) and hence
at the moment, we just choose d such that the cross-validation error does not
decrease substantially (although a subjective choice) with any further increases.
We also believe that a better choice of estimating an optimal d from the data
prior to running the algorithm, would be further helpful.

For baseline comparison purposes, in case of the Boston Housing dataset, we
observe a RMS error of 0.1719 using Support Vector Regression without any
dimensionality reduction (d = 13). This when compared to DisCoMax RMS
errors which ranged between 0.1559 (d = 3) and 0.1297 (d = 11) always did
worse. We bold errors for DisCoMax for cases where errors were significantly
better when compared with their corresponding standard deviations taken into
account.

We show in Figure 2 the effect of increasing distance correlations by plotting
the iteratively learnt Z and fixed response y for different iterations of 0,500
and 1000 respectively. In the first row, we compare the response variable and
the learnt feature variable Zzn obtained by applying our technique on a feature
variable called “zn” in the original feature matrix X of the Boston Housing
dataset. We present the results for the same for the variables of “rm” and
“indus” in the next two rows of this Figure.

Similarly, in Figure 3 we plot the iteratively learnt Z and corresponding fea-
ture variableX for different iterations of 0,500 and 1000 for the variables of “zn”,
“rm” and “indus” respectively. We show that the distance correlations decrease
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Table 1

Boston Housing (Harrison and Rubinfeld, 1978): U.S Census Service concerning housing in
the area of Boston Mass. To predict median value of owner-occupied homes. Baseline results

SVR RMS error 0.1719.

Method/dimension 3 5 7 9 11

DisCoMax 0.1559 0.1493 0.1327 0.1311 0.1297

LSDR (Suzuki and Sugiyama, 2013) 0.1978 0.1963 0.1892 0.1886 0.1873

gKDR (Fukumizu and Leng, 2014) 0.1997 0.1813 0.1762 0.1738 0.1719

SCA (Yamada et al., 2011) 0.1875 0.1796 0.1708 0.1637 0.1602

LAD (Cook and Forzani, 2009) 0.2019 0.1964 0.1932 0.1917 0.1903

SAVE (Shao et al., 2009) 0.2045 0.1983 0.1967 0.1952 0.1947

SIR (Li, 1991) 0.2261 0.2193 0.2086 0.2076 0.2068

Table 2

Geographical Origin of Music (Graf et al., 2011): The input contains audio features
extracted from 1059 wave files covering 33 countries/areas. The task associated with the

data is to predict the geographical origin of music.

Method/d 3 5 7 9 11

DisCoMax 19.19 18.67 18.14 17.94 17.81

LSDR (Suzuki and Sugiyama, 2013) 23.63 22.31 22.09 21.93 21.82

gKDR (Fukumizu and Leng, 2014) 24.06 23.39 22.76 22.52 22.50

SCA (Yamada et al., 2011) 23.17 24.96 24.21 23.34 23.06

LAD (Cook and Forzani, 2009) 26.74 25.57 24.39 24.26 24.20

SAVE (Shao et al., 2009) 28.18 27.82 27.62 27.53 27.50

SIR (Li, 1991) 29.92 29.46 29.18 28.86 28.63

Table 3

BlogFeedback (Buza, 2014): This data contains features computed from raw HTML
documents of blog posts. The task associated with this data is to predict the number of

comments in the upcoming 24 hours.

Method/d 3 5 7 9 11

DisCoMax 25.82 24.69 24.33 23.90 23.62

LSDR (Suzuki and Sugiyama, 2013) 30.36 28.16 27.39 27.24 27.18

gKDR (Fukumizu and Leng, 2014) 29.72 27.62 27.29 26.91 26.81

SCA (Yamada et al., 2011) 28.53 27.31 26.60 26.32 26.30

LAD (Cook and Forzani, 2009) 30.42 30.39 30.20 30.04 29.99

SAVE (Shao et al., 2009) 31.93 31.27 30.72 30.53 30.31

SIR (Li, 1991) 33.63 32.65 31.39 31.16 30.83

at a relatively slower rate in comparison to the Figure 2. This hints towards
the learnt Z being a compressed representation of X while also maintaining a
higher distance correlation with Y.
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Table 4

Relative location of CT slices (Zhou et al., 2014): Dataset consists of 385 features extracted
from CT images. Features are concatenation of two histograms in polar space. The response

variable is the relative location of an image on the axial axis.

Method/d 3 5 7 9 11

DisCoMax 12.29 11.11 10.19 9.73 9.66

LSDR (Suzuki and Sugiyama, 2013) 14.38 13.14 12.87 12.73 12.69

gKDR (Fukumizu and Leng, 2014) 13.65 12.86 12.67 12.35 12.05

SCA (Yamada et al., 2011) 14.19 13.64 12.94 12.12 11.73

LAD (Cook and Forzani, 2009) 17.70 17.62 17.34 17.15 16.89

SAVE (Shao et al., 2009) 19.32 18.74 18.62 17.76 17.21

SIR (Li, 1991) 21.53 21.23 20.97 20.77 20.64

Table 5

UJI Indoor Localization (Torres-Sospedra et al., 2014): Multi-Building Multi-Floor indoor
localization database. The task is to predict the actual longitude and latitude. The 529

attributes contain the WiFi fingerprint, the coordinates where it was taken. The database
consists of around 20ktraining/reference records and 11k validation/test records.

Method/d 3 5 7 9 11

DisCoMax 12.28 11.10 10.19 9.73 9.65

LSDR (Suzuki and Sugiyama, 2013) 14.38 13.14 12.86 12.73 12.69

gKDR (Fukumizu and Leng, 2014) 13.65 12.86 12.67 12.34 12.05

SCA (Yamada et al., 2011) 14.18 13.63 12.94 12.12 11.73

LAD (Cook and Forzani, 2009) 17.69 17.62 17.34 17.15 16.89

SAVE (Shao et al., 2009) 19.32 18.74 18.61 17.75 17.20

SIR (Li, 1991) 21.53 21.23 20.97 20.77 20.63

7. Discussion

In this section, we discuss effects of choice of α in the optimization of Problem
(S) (Algorithm 5.2). We also experimentally show results on the iterative opti-
mization of Problem (P) using Algorithm 4.1 which optimizes a lower bound
in Problem (Q). We use the Boston Housing dataset for our analysis.

Figures 4a and 4b show gradual increase in sample distance correlations
ρ̂(X,Zt) (Blue) and ρ̂(Zt,y) (Red) with respect to the number of fixed point t
for two different choices of α = 6 × 104 and α = 70 × 104. We clearly observe
that the choice of α has a strong effect on rate of increase/decrease of individual
distance correlations ρ̂2(X,Zt) and ρ̂2(Zt,y) as iterations progress. This is be-
cause the α value positively weighs the term Tr

(
ZTSX,yZ

)
over Tr

(
ZTLMZ

)

in Problem (S). Figure 4c shows the rate of change of objective function f(Z)
with respect to the fixed point iterations t for two choices of α. The figure clearly
shows the slower (faster) rate of increase of f(Z) for smaller (larger) α.

Figure 5a and 5b repectively show the overall growth of distance correlations
(ρ̂(X,Z), ρ̂(Z,y)) and f(Z), with respect to the fixed point iterations (t), for
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Fig 2. Learnt representations Z corresponding to various variables in X vs. response Y after
0, 500 & 1000 iterations of our algorithm.
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Fig 3. Learnt representations Z corresponding to various variables in X vs. the original X
variable after 0, 500 & 1000 iterations of our algorithm.
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Fig 4. Effect of α values on growth of the proposed objective in Algorithm 5.2 the figures show
slower (faster) growth of distance correlations for smaller (larger) α.

α∗ = 800× 104. We periodically observe a sharp increases in f(Z) and distance
correlations after each DisCoMax subproblem of 220 fixed point iterations. The
figures show four such G-MM iterations of Algorithm 4.1. These sharp increases
are due to the resubstitution of M = Zk in Step 2 of Algorithm 4.1. This clearly
shows us that we are able to iteratively maximize the proposed objective in
Problem (P).

8. Conclusion

In our work, we proposed a novel method to perform supervised dimensionality
reduction. Our method aims to maximize an objective based on a statistical
measure of dependence called statistical distance correlation. Our proposed
method does not necessarily constrain the dimension reduction projection to
be linear. We also propose a novel algorithm to optimize our proposed objec-
tive using the Generalized Minorization-Maximization approach of Parizi et al.
(2015). Finally, we show a superior empirical performance of our method on
several regression problems in comparison to existing state-of-the-art methods.

For future work, we aim to extend our framework to handle multivariate
responses y ∈ R

q, as distance correlation is applicable to variables with arbitrary
dimensions. Our proposed approach is practically applicable on relatively small
datasets, as it involves repeatedly solving multiple optimization subproblems.
So we aim to to simplyfy this approach so that it is tractable for larger size
(several thousands of examples) datasets. In our work, we currently tackle the
out-of-sample issue by learning mutiple Support Vector Regressions, one for
each dimension of z. We plan to extend our framework so as to learn explicit
out-of-sample mappings from x to z.

Appendix A: Spectral radius of the fixed point iterate T (Zt)

To prove Lemma A.4, required for proving convergence in Theorem 4.1, we need
to show that the spectral radius λmax(H) < 1. We show this in Theorem A.3
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Fig 5. Overall gradual increase in f(Z) (Figure 5a) and distance correlations (Figure 5b) for
α∗ = 800×104. Plots show increase in both for each DisCoMax subproblem of (Algorithm 5.2)
and four outer G-MM iterations of Algorithm 4.1

and proceed to prove it by first by proving two required lemmas below.

Lemma A.1. For any choice of γ2 > λmax(DX,LM) and P : =
(
γ2DX − LM

)
,

we have P � 0.

Proof. To show zT (γ2DX−LM)z ≥ 0 for all z, we require that γ2 ≥ zTLMz
zTDXz

for

all z. This is always true for all values of γ2 ≥ λmax(DX,LM).
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Lemma A.2. If 0 = αl ≤ α ≤ αu = λmin(LM,SX,y) and Q : = (LM − αSX,y),
then we have Q � 0.

Proof. To show zT (LM−αSX,y)z ≥ 0 for all z, we require that α ≤ zTLMz
zTSX,yz

for

all z. This is always true if all values of α ≤ minZ
zTLMz
zTSX,yz

= λmin(LM,SX,y)

which is true by our choice of α.

We now utilize the above to results to prove λmax(H) ≤ 1 about the fixed
point iterate Zt+1 = HZt.

Theorem A.3. For the update equation Zt+1 = HZt with

H =
(
γ2DX − αSX,y

)† (
γ2DX − LM

)
,

we have λmax(H) ≤ 1.

Proof. The update equation looks as follows

Zt+1 =
(
γ2DX − αSX,y

)† (
γ2DX − LM

)
Zt.

For sake of simplicity assume P =
(
γ2DX − LM

)
and Q = (LM − αSX,y).

Zt+1 = (P+Q)
−1

PZt

Using the Woodbury matrix identity (A + UBV)−1 = A−1 − A−1U(B−1 +
VA−1U)−1VA−1, and setting U = I and V = I, we get, (A +B)−1 = A−1 −
A−1(B−1 +A−1)−1A−1. Applying this to the previous equation we get

Zt+1 = (P−1 −P−1(P−1 +Q−1)−1P−1)PZt = I−P−1(P−1 +Q−1)−1Zt

= I−P−1
(
(P−1 +Q−1)−1Q−1

)
QZt

Using the positive definite identity (P−1+BTQ−1B)−1BTQ−1 =PBT (BPBT+
Q)−1 for B = I we get, (P−1 + Q−1)−1Q−1 = P(P + Q)−1, which simplifies
the term in the brackets as,

Zt+1 = I−P−1
(
P(P+Q)−1

)
QZt = I− (P+Q)−1QZt

If we compare the above equation with a the general update equation from
Zhang et al. (2000), which is of the form

T (Zt+1) = Zt − β(Zt)B(Zt)
−1∇f(Zt)

where ∇f(Zt) is the gradient of the objective function f(Z) we get,

β(Zt) =
1

2
, B(Zt) = P+Q, ∇f(Zt) = 2QZt

Now from Theorem A.1 we conclude that B(Z) � 0, We also check the following
condition from Zhang et al. (2000) that

0 � ∇2f(Z) � 2B

β
.

or equivalently, as in our case 0 � 2Q � 4(Q+P), which is indeed true. Hence
it follows that λmax(T

′(Z)) ≤ 1 which implies λmax(H) ≤ 1.
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We now proceed to show that at end of every (t + 1) fixed point iterations
we have Tr

(
ZT

t+1LZt+1
Zt+1

)
≤ Tr (Zt+1LZ0

Zt+1).

Lemma A.4. For fixed point iteration Zt+1 = HZt for optimization of Zk+1 =
argmaxZ g(Z,Zk), we have, Tr

(
ZT

k+1LZk+1
Zk+1

)
≤ Tr (Zk+1LZk

Zk+1).

Proof. Laplacian for a weighted adjacency matrix W (with self loops) is defined
as L = D − W where D is a diagonal degree matrix with diagonal elements
[D]i,i =

∑
j [W]i,j and zero off-diagonal entries (Chung, 1997). For adjacency

matrix ÊZ we have ÊZ = JEZJ = −2Z̃Z̃T (Torgerson, 1952). We have Lapla-

cian as LZ = DZ − ÊZ with DZ = 0. This gives us for Zt+1 the Laplacian
LZt+1

= 2Zt+1Z
T
t+1. It also follows from the fact that since we choose our in-

tialization Z0 as column-centered matrix, and Zt+1 = HZt are also successively

column-centered for all t > 0. Hence, LZt+1
= 2Ẑt+1Ẑ

T
t+1. Now substituting

Zt+1 = HZt in Laplacian equation LZt+1
we get,

LZt+1
= 2(HZt)(HZt)

T = 2HZtZ
T
t H

T = HLZtH
T . (A.1)

Substituting above equation into right hand side of the statement to be proved
gives us,

Tr
(
ZT

t+1LZt+1
Zt+1

)
= Tr

(
ZT

t+1HLZtH
TZt+1

)
.

Substituting eigen decomposition of H = QΛQT where Λ is a diagonal eigen-
values matrix with values less than one (Theorem A.3) we get,

Tr
(
Zt+1LZt+1

Zt+1

)
= Tr

(
ZT

t+1(QΛQT )LZt(Q
TΛQ)Zt+1

)
.

For Λ = I (identity matrix) gives us,

Tr
(
Zt+1LZt+1

Zt+1

)
≤ Tr

(
ZT

t+1(QIQT )LZt(Q
T IQ)Zt+1

)

≤ Tr
(
ZT

t+1LZtZt+1

)
.

Repeating the above process until t = 0 we get Tr
(
Zt+1LZt+1

Zt+1

)
≤

Tr
(
ZT

t+1LZ0
Zt+1

)
. Now, for the initialisation Zt = Zk at t = 0, and given

that Zk+1 = argmaxZ g(Z,Zk) we have,

Tr
(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZT

k+1LZk
Zk+1

)
.

Lemma A.4 above allows us to show the following corollary:

Corollary 1. For fixed point iteration Zt+1 = HZt optimization of Zk+1 =
argmaxZ g(Z,Zk), we have Tr

(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZT

kLZk
Zk

)
.

Proof. From Lemma A.4 we have

Tr
(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZT

k+1LZk
Zk+1

)
≤ Tr

(
ZT

kH
TLZk

HZk

)

Following approach similar to proof of Lemma A.4 above by substituting eigen
decomposition of H = QΛQT into equation above we get,

Tr
(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZT

k ((Q
T IQ)T )LZk

(QT IQ)Zk

)
≤ Tr

(
ZT

kLZk
Zk

)
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T. J., Benedito-Bordonau, M., and Huerta, J. (2014). Ujiindoorloc: A new
multi-building and multi-floor database for wlan fingerprint-based indoor lo-
calization problems. In Proceedings of the fifth conference on indoor position-
ing and indoor navigation.

Vapnik, V., Braga, I., and Izmailov, R. (2015). Constructive setting for problems
of density ratio estimation. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 8(3):137–146. MR3353279

Xin Chen, D. C. and Zou, C. (2015). Diagnostic studies in sufficient dimension
reduction. Biometrika, 102(3):545–558.

Yamada, M., Niu, G., Takagi, J., and Sugiyama, M. (2011). Sufficient component
analysis for supervised dimension reduction. arXiv preprint arXiv:1103.4998.

Zhang, A. (2008). Quadratic fractional programming problems with quadratic
constraints. PhD thesis, Kyoto University.

Zhang, Y., Tapia, R., and Velazquez, L. (2000). On convergence of minimization
methods: attraction, repulsion, and selection. Journal of Optimization Theory
and Applications, 107(3):529–546.

Zhou, F., Claire, Q., and King, R. D. (2014). Predicting the geographical origin
of music. In Data Mining (ICDM), 2014 IEEE International Conference on,
pages 1115–1120. IEEE.

http://www.ams.org/mathscinet-getitem?mr=3353279

	Introduction
	Distance correlation
	Laplacian formulation of sample distance correlation
	Framework
	Problem statement
	Motivation

	Algorithm

	Optimization
	Golden Section Search
	Distance correlation maximization algorithm

	Experiments
	Methodology
	Datasets
	Results

	Discussion
	Conclusion
	Spectral radius of the fixed point iterate T(Zt)
	References

