
1 

 

Supervised Fuzzy Reinforcement Learning for Robot Navigation 

 
Fatemeh Fathinezhad, Vali Derhami

*
, Mehdi Rezaeian

 

Electrical and Computer Engineering Department, Yazd University 

Yazd, Iran 

[E-mails: fateme.fathinezhad@stu.yazd.ac.ir][E-mails:{vderhami, mrezaeian}@yazd.ac.ir] 

This paper addresses a new method for combination of supervised learning and Reinforcement Learning (RL). Applying 

supervised learning in robot navigation encounters serious challenges such as inconsistent and noisy data, difficulty for 

gathering training data, and high error in training data. RL capabilities such as training only by one evaluation scalar signal, 

and high degree of exploration have encouraged researchers to use RL in robot navigation problem. However, RL algorithms 

are time consuming as well as suffer from high failure rate in the training phase. Here, we propose Supervised Fuzzy Sarsa 

Learning (SFSL) as a novel idea for utilizing advantages of both supervised and reinforcement learning algorithms. A zero 

order Takagi-Sugeno fuzzy controller with some candidate actions for each rule is considered as the main module of robot‟s 

controller. The aim of training is to find the best action for each fuzzy rule. In the first step, a human supervisor drives an E-

puck robot within the environment and the training data are gathered. In the second step as a hard tuning, the training data 

are used for initializing the value (worth) of each candidate action in the fuzzy rules. Afterwards, the fuzzy Sarsa learning 

module, as a critic-only based fuzzy reinforcement learner, fine tunes the parameters of conclusion parts of the fuzzy 

controller online. The proposed algorithm is used for driving E-puck robot in the environment with obstacles. The 

experiment results show that the proposed approach decreases the learning time and the number of failures; also it improves 

the quality of the robot‟s motion in the testing environments. 
                Keywords: Robot navigation, Supervised learning, Reinforcement learning, Fuzzy systems. 

 

1. INTRODUCTION 
 

The main goal in robot navigation is directing the robot to move from a starting point to a target point without 

hitting obstacles [1, 2].  In dynamic and uncertain environments, applying global search algorithms do not suffice to 

address robot navigation due to the lack of a complete model or the map of environment. Researchers have used the 

local search and the local path planning algorithms with help of data obtained from robot‟s sensors such as sonar and 

infrared devices [3]. 

Learning methods are widely used for tuning local controllers‟ parameters. Supervised learning is one of the 

first methods that have been used for training robot controllers [4,5]. In a supervised learning method, a supervisor 

drives robot through environment and in each time step, the supervisor command and corresponding sensors‟ data 
are gathered. Then, the collected data are used for adjusting the controller‟s parameters based on gradient descent 

methods [6-8]. 

However, supervised learning in robot navigation has serious drawbacks as follows: 

1- In complex situations, a supervisor cannot make right decisions, so the wrong decisions can cause 

significant errors in the collected (training) data. 

2- Since the supervisor tries to drive the robot in the best way, many of the states may not be explored 

(visited). 

3- The inconsistency in data causes significant errors: For example, assume that a robot is in front of an 

obstacle and can avoid the obstacle either from the left or the right. In such a condition, a human 

supervisor may decide to turn robot to the right (rotation angle +45
o
) or turn to the left (rotation angle -45

o
). 

Different decisions in similar situations cause big disturbance in the training procedure. Since the objective 

function for a training procedure is to minimize the sum of squared errors, a value close to zero (i.e. 

forward movement) will be obtained by gradient descent methods for this condition. This causes (or may 

cause) a collision with an obstacle (See Figure 1).  
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A: Rotate to left                                                                B: Rotate to right 

 

 

C: Moving forward and obstacle collision 

FIGURE 1.Obstacle collision because of data inconsistency (The black cylinder is the goal and the colored cubes are obstacles) 

Considering mentioned shortcomings in supervised learning, the interactive learning algorithms are widely 

used in robot navigation [2, 9, 10, 11]. Reinforcement Learning (RL) is a modern powerful interactive algorithm that 

can learn only by trial and error and delayed reward. RL capabilities, such as no need for desired outputs, training 

based on a scalar reinforcement signal, the possibility of online interactive training and high degree of exploration, 

encourage researchers to use RL in robot navigation problem. Due to large dimension of the discrete state-action 

pairs, continuous RL algorithms such as fuzzy RL (FRL) are usually employed to overcome the curse of 

dimensionality [2, 12,13]. 

Here, we focus on continuous RL algorithms based on critic-only architecture. Critic-only is a known 

architecture in RL employed in Fuzzy Sarsa Learning (FSL) [14] and Fuzzy Q-Learning (FQL) algorithms [15]. 

These algorithms present a solution for tuning the conclusion parts of rules in fuzzy inference systems. 

RL algorithms are often time consuming and slow in training procedure. Since the state space in robot 

navigation is large, this leads to long learning time. Moreover, in the beginning of training phase, the robot does not 

have any knowledge, so the number of failures (punishments) would be high. These failures may cause to damage 

the robot in practical experiments. Our motivation in this paper is to combine “supervised learning” with “fuzzy 
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reinforcement learning”, so that we decrease learning time and the number of failures in RL as well as prevent 

weaknesses of supervised learning.  

Some researchers have addressed the related works in discrete space. In [16] a linear combination of supervised 

learning and Q-learning (one of the well known discrete RL methods) was proposed. In this approach, the selected 

actions by supervisor have a high chance for selection in each state during applying Q-learning. In [17], considering 

discrete action state space for robot navigation, a human guides the robot within the environment, when all states 

and actions are recorded in the defined Supervisor Table. Then, -greedy method is used for action selection in Q-

learning, where the suggested actions from Supervisor Table have high chance to select.  

In [18] supervised reinforcement learning is used for autonomous humanoid robot docking. It uses Gaussian 

distributed states activation so inputs can be continuous, however the action space is discrete and there are only 4 

actions. 

Above mentioned approaches have been proposed in the discrete (state or action) space, whereas we here focus 

on continuous state and action space. In [19] supervised adaptive dynamic programming was introduced for cruise 

control system. In there, actor- critic architecture was used for continuous RL and supervisor only guides RL process 

in three ways: 1) gives additional reward, 2) gives additional direct control signal to the agent; and 3) gives hints for 

exploration. In [2], the training data generated by the supervisor was used to determine the initial amounts of 

consequence parts of fuzzy rules in an actor-critic based FRL algorithm. This approach has two major weaknesses: 

1- As mentioned earlier, destructive effect of inconsistency in data makes significant errors in adjustable 

amounts. 

2- Lack of suitable exploration in actor-critic architecture [18], since the final amounts are determined around 

the obtained amount by training data and it causes trapping in local extrema.  

In this paper, we propose a new method for combination of supervised learning and critic-only FRL algorithm. 

The critic-only architecture is selected since it has high potential for management of the balance between 

exploration and exploitation [20], which is a desired feature in robot navigation problem. The proposed idea is 

developed on FSL as a critic-only FRL algorithm. In our approach, instead of determining an action for each state, 

the value or worth of each candidate action is determined by training data. Then, for improving the performance, the 

final online tuning is done by FSL. The proposed combination makes the learning process faster, improves the 

learning quality, and reduces the number of failures (obstacle collisions). To the best of our knowledge, the 

proposed approach is the first work for combination of supervised learning and FRL based on critic-only 

architecture.  

The main contributions of the paper are as follows: 

1- Proposing an approach for using training (supervised) data for initialization of the value (worth) of each 

candidate action in critic- only based FRL architecture. 

2- Designing controller using subsumption architecture [21] for robot navigation. 

3- Applying the proposed method in practice for navigation of a real robot (E-Puck).  

The paper is structured as follows. In Section 2, FSL algorithm is described. Design of fuzzy controller 

structure is presented in Section 3. In Section 4, our idea for combination of FRL and supervised learning is 

proposed. Section 5 presents the experimental results of applying the proposed method in a real-world application. 

Finally, Section 6 contains conclusion of the paper. 

2.  FUZZY SARSA LEARNING  



4 

 

FSL and FQL are two critic-only FRL algorithms. For FQL method not only there is not any theorem or lemma 

for convergence but also there are some divergent examples. In contrast, the existence of stationary points was 

established for FSL in [12]. Moreover, the experimental results in [12] signify higher learning speed and action 

quality for FSL compared to FQL. Therefore, we develop our idea based on FSL. 

FSL is an extension of Sarsa learning (a well-known RL algorithm) [12] for continuous state and action spaces 

using a zero order Takagi-Sugeno (T-S) fuzzy system [6] as function approximator. In this section, we describe FSL 

briefly; readers can find the comprehensive information about FSL in [12]. 

Sarsa method estimates the value of action an in state s denoted by ),( asQ  for the current policy according to 

the following update formula [22]: 

)],()1,1(1[),(),( tatsQtatsQtrttatsQtatsQ                                (1) 

where  is the learning rate,  is the discount factor, and 
1tr is the immediate reward received from the 

environment after applying action at in state st. 

Consider an n-input one-output zero order T-S fuzzy system with R rules of the following form [22]:  

iR : If
1x is

1iL and … and
nx is

inL , then ) with value( 1
1

i
i wo  or … or ) with value( im

im wo  

where
nxxs  1

is the vector of n-dimensional input state, inii LLL  1 is the n-dimensional strictly convex 

and normal fuzzy set of the i-th rule with a unique center, m is the number of possible discrete actions for each rule,

ijo and ij
w are the j-th candidate action and the approximate value of the j-th action in the i-th rule, respectively. The 

goal of FSL is to adapt ij
w on-line to be used to obtain the best policy. The number of candidate actions and their 

amounts are fixed for the entire state space and must be determined by designer according to problem characteristics.          

Although the candidate actions ijo  in the consequence of the fuzzy rules are discrete, the final inferred action (i.e., 

the fuzzy system output) is a continuous action in the range of )](max),(min[
,,

ij
ji

ij
ji

ooa . 

The action selection probability of the i-th candidate action in the i-th rule in state
ts is computed based on the 

following modified Softmax policy [22]: 

(2)                                                                                                                                   
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where )( ti s is the normalized firing strength of i-th rule for state 
ts , and 0T  is the temperature factor.  

Notice that to calculate the overall action, first an action is selected for each rule from among the candidate 

actions of that rule. Denoting the selected action in i-th rule and its corresponding value by 
ii

o and
ii

w , 

respectively, the system output (i.e., the overall continuous action) and its corresponding approximate Action Value 

Function (AVF) are computed as follows [22]: 
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Thus, the final continuous action is the weighted sum of the selected discrete actions of the rules. 

Applying action at, the environment goes to the next state
1ts , and the agent receives reinforcement signal 1tr . 

The next final action 
1ta  is chosen based on the present weight

tw . Then, the weight parameters of the i-th rule are 

updated by [22]:  





 







otherwise0
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                                           (5) 

where Q
~

 is the approximate action value temporal difference error determined by: 

),(ˆ),(ˆ),(ˆ
111 tttttttttt asQasQrasQ                                               (6) 

 and are the discount factor and the learning rate, respectively. As a practical matter, learning rate is gradually 

decreased as a function of time [7]. The algorithm procedure of FSL is summarized below: 

1. Observe state st+1 and receive reinforcement signal
1tr . 

2. Select a suitable action of each rule using modified Softmax action selection Eq. (2). 

3. Compute final action at+1 and the approximate AVF ),(ˆ
11  ttt asQ  using Eq. (3) and Eq. (4), respectively. 

4. Compute Q̂ and update w by Eq. (6) and Eq. (5), respectively. 

5. Compute new approximate AVF ),(ˆ
111  ttt asQ using Eq. (4). 

6. Apply the final action. 

7. t ← t+1 and return to step 1. 

3. DESIGN OF CONTROLLER FOR ROBOT NAVIGATION 

3.1 Mobile robot model 

In this paper, we use an E-puck robot, a mini wheeled mobile robot, developed at the EPFL for education 

purposes [23-25].The E-puck robot has already been used in a wide range of applications [26,27]  . E-puck is 

cylindrical in shape with a diameter of 70 mm and a weight of 150 g (see Figure 2). Eight infrared sensors placed 

around the robot measure closeness of obstacles in a 4 cm range. Readers can find the mathematical model of a 

wheeled mobile robot in [28], [29].  
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FIGURE 2. E-puck mobile robot [21] 

The robot has two lateral wheels which can rotate in both directions. It is able to count the number of pulses 

generated by encoders which are installed on each wheel for estimating the distance traversed by each wheel. Also, 

depending on type of applications, we can install on auxiliary equipment such as camera, and hook [26, 27].  

3.2. Controller architecture 

Our objective is to design a controller to drive an E-puck from a start point to a target point without hitting 

obstacles. The amounts of infrared sensors indicate the approximate distance between the robot and obstacles. The 

outputs of infrared sensors mounted in the right, the front, and the left side are used to generate the inputs of the 

controller as follows: 

},,{),,max()( 2,1, RightFrontLeftsidesnsntS sidesideside                                                                   (7)  

 

snside,1 and snside,2 denote the outputs of the first and second sensor in the mentioned side. The output range of 

infrared sensors in E-puck is between 0 and 3500 (0: when the sensor does not sense any obstacle in the area, and 

3500: when the sensor is almost contacted to obstacles). The fourth controller‟s input is the robot head angle with 

respect to the goal (see Figure 3), denoted by )(t , and  [-180
o
, 180

o
]. These 4 inputs are normalized and used as 

inputs of the controller. The controller‟s output is the rotation angle of the robot in the range of [-45
o
, + 45

o
]. The 

robot‟s velocity is considered almost fixed in each time step.  

 

FIGURE 3.Robot angle with the goal (the star (*) shows the goal) 
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For decreasing complexity of controller, we utilize the subsumption architecture as a behavior–based control 

architecture [21,30]. The subsumption is best-known reactive robotic architecture developed by Brooks [21]. His 

idea was decomposing a complex task to some parallel simple tasks or behaviors. This focus on simplicity leads to a 

design where each individual layer operating asynchronously without any central control. In general, the different 

layers are not completely independent. Levels are constructed from components referred to as „modules‟; they 

consist of small asynchronous processors. Inputs and outputs of these modules can be inhibited or suppressed. The 

result is a robust and flexible robot control system. 

Here two modules can be considered for the robot in environment. The first when the robot is near the obstacles, 

in this situation, the robot should avoid obstacles meanwhile tries to move toward the goal‟s position. In another 

module, there is not any obstacle around the robot, so it is able to rotate, whereby its head is located in the front of 

the goal and then the robot moves straightforward to the goal. Using subsumption architecture, we define two 

behaviors for the above mentioned situations: “obstacle avoidance” and “goal seeking”.  
 

 

FIGURE 4. Behavior-based control schema 

Figure 4 shows the designed structure of the behavior-based control system. Both modules (behaviors) receive 

sensor information; if the sensors do not recognize any obstacle around the robot, the module of “goal seeking” is 
active and its output suppresses the output of module of “obstacle avoidance”; otherwise “obstacle avoidance” 
module determines the angle of robot motion at each time-step for moving toward goal whereas the robot avoids 

obstacles. It has to be noticed that with respect to the defined tasks for modules and subsumption architecture, unlike 

some related works in [31-34]; in our designed structure no module is required to combine the output of modules 

(behaviors). Therefore, it decreases the computation cost and the system complexity.  

Generating the appropriate output for “obstacle avoidance” module is a complex task; so we use a fuzzy 

controller for this module. For fuzzy controller, a structure compatible with FSL (introduced in Section 2) is 

considered. A zero order T-S fuzzy controller with four inputs and one output is suggested. The inputs include 

robot‟s distances from the obstacles in left, right and front sides (obtained by Eq. (7)) and the robot head angle with 

respect to the target )( .  

 4. SUPERVISED FUZZY SARSA LEARNING 

In this section, our proposed method that combines supervised learning and FSL is explained. In the first phase, 

a supervisor drives the robot in the environment and training data is collected. In contrast to the available methods 
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which use training data for determining an action for each state; here, a new approach to determine the worth of each 

candidate action in each state is presented. In fact, training data is used to initialize w
ij
 (the value of each candidate 

action defined in Section 2) in each rule of fuzzy controller. For example, if the supervisor selects different actions 

in a state in separated visits; the worth of each selected action is proportional to the number of times that action has 

been selected.  

The output of fuzzy controller (see Eq. (3)) is the weighted sum of the selected actions of rules. So the worth of 

the controller‟s output is determined by the weighted sum of the worth of the selected actions of rules. Therefore, for 

determining the worth of discrete actions in rules, it is found out a set of possible candidate actions so that the 

computed final output would be almost close to the suggested output (by supervisor) and then, the worth of found 

candidate actions would be increased. 

Regarding the above description, we propose the following algorithm for determining the worth (w
ij
) of 

candidate actions of rules. Consider p-th sample of collected data as a pair of input - output (xp, yp) where xp is the 

input of the controller and yp is the suggested output by supervisor.  

For the weight (w
ij’s) initialization, the following steps are done for each pair of data (xp, yp).  

1- For xp as the input of fuzzy controller, firing strengths of fuzzy rules are computed and then four dominant 

rules (the rules with the highest firing strength (μ)) are selected. These rules are indexed by 

dl ,l=1,2,3,4,where
4321 dddd   . 

2- l=1 

3- The yp is divided by
ld . 

4- The result of division is compared with each candidate actions of the rule ( jd l
O ‟s). The closest action to 

this quotient is selected and indexed by kl. 

5- 
ll kdc (the amount of kl-th action‟s counter in dl-th rule) is increased one unit where ijC records the 

number of selection of j-th candidate action in i-th rule 

6- The product of the kl-th action of the dl-th rule and firing strength of the rule (
ld ) is computed and the 

result is subtracted from the action py : )(
lll kddpp ayy   . 

7- If 4l  then  l=l+1 and py is substituted by py  and goes to step 3. 

8- Finally, when the above steps were performed for all data, the value (worth)  of the j-th action in i-th rule is 

initialized as follows: 




j
ijc

ijij
c

w

)(
2

                                                                                                                                  (8)  

The pseudo-code of the proposed method is given in Figure 5. 
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Initialize counter cij for j-th candidate action in i-th rule with zero  

FOR each input-output data pair (xp,yp)   

// xp as an input vector and yp is the suggested output by supervisor  

Compute firing strength of the fuzzy rules for xp 

Select four rules that have highest firing strength (named D1, D2, D3 and D4) 

 

                              y'p = yp  
 

WHILE (l=4) 

 

        READ rule Dl and dl  

        ]
 

[
dl

p
y

a




 

        Closest action to the division result is selected and indexed by k1 

       
1CC

llll kdkd 
 

        
lkddlpp l

ayy    

 
END WHILE 

 
END FOR 

 
FOR each rule i  

         FOR each candidate action j  

                         END FOR

 




j
ijc

ijij
c

w

)(
2

 

 
FIGURE 5.Pseudo-code of the proposed method for initialization of worth of candidate actions 

In the second phase, FSL algorithm is used for online fine-tuning of conclusion parts of the fuzzy controller 

where its wij’s have been initialized by the proposed method. We call our proposed combination method: Supervised 

Fuzzy Sarsa Learning (SFSL). Figure 6 shows the block diagram of SFSL. 

The total procedure of SFSL can be explained in the following steps:  

1. Moving robot in the environment by supervisor, and gathering training data. 

2. Initialization of the value (worth) of the candidate actions in each rule by proposed method (See Figure5). 

3. Final tuning of the conclusion parts of the rules using FSL. 

// w
ij
 is worth of the j-th candidate action in i-th rule 

 //
llkd

a is the kl-th candidate action of the Dl-th rule 

// dl  is firing strength of the Dl-th rule 
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FIGURE 6. Block diagram of SFSL method (The dashed zone is the obstacle avoidance module implemted by SFSL) 

5. EXPERIMENTS  

The practical experiments are obtained using an E-puck robot. First, a training environment ( 2cm  80×120 ) was 

prepared (see Figure 7). The color rectangles are the obstacles and the black cylinder is the goal. The subsumption 

architecture is used for controlling the robot.  As it is stated in Section 3, the controller has 4 inputs. The main task is 

adjusting the parameters of the fuzzy controller used as “obstacle avoidance‟ module in our architecture. Figure 8 

shows the defined membership functions for each input. Based on grid partitioning [7] the controller has 24 fuzzy 

rules. 

 

FIGURE 7.Examples of training environment for E-puck robot (The black cylinder is the goal and the colored cubes are obstacles) 

The controller‟s output determines the rotation angle of the robot. The consequence of each rule is a constant 

value that must be selected from the candidate actions set, defined as: 
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 45,30,20,15,10,5,0,5,10,15,20,30,45 A                                                                              (9) 

Appropriate action for each rule is determined using the proposed learning method (SFSL).  

As the first step, the supervisor drove the robot in the training environment using a joystick, and 1200 data pairs 

were gathered. In the second step, the gathered data were used to initialize the value (worth) of candidate actions 

(
ij

w ) of the fuzzy controller based on the proposed method in Section 4.   

Also, we used the conventional supervised learning (least squared error method) to determine the actions of each 

fuzzy rule similar the first phase in [2]. After this phase (as hard tuning), the obtained fuzzy controller has been 

applied to derive the robot. However, the performance was poor and the robot collide the obstacles much, and it 

could not reach the goal. It is due to inconsistency in data which was explained in introduction.  

 

 

 

FIGURE 8.Input membership functions of the fuzzy controller 

In the third step as the final tuning,  FSL was used for adjusting the conclusion parts of the rules when
ij

w 's have 

been initialized by the proposed method. The upper bound of learning is 500 episodes. An episode begins from a 

starting point and finishes when the robot reaches the goal or the number of steps in episode exceeds 300. In each 

episode, the starting point of the robot and the goal were determined randomly. The learning procedure is finished 

whenever the robot could reach goal in 10 successive non-failure episodes or the number of episodes exceeds 500. 

The number of episodes at the end of learning phase is called Learning Duration Index (LDI).  

The reinforcement signal is defined as follows: 
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                                                    (10)         

where  is the robot head angle with respect to the goal, and N indicates that how much the robot is close to 

obstacles and is defined as follows: 

},,{),*4,*4max( RightFrontLeftSideSSSN forwardrightleft                                     (11)   

If N is greater than 2500, a failure is considered and reinforcement signal is -1 as a punishment. If 20002500 N , 

it indicates the robot is close to obtalces but it has not hitted the obstacle yet. Thus, reinforcement signal is -0.5. This 

punishment causes the robot learns that it moves in environemnt with an appropriate distance from  obtacles. In the 

case of 2000&0  N , despite the robot has a suitable distance from obstacles, but it has not rotated toward the 

goal direction )0(  in previous state, so it receives a punishment proportional to  . In the case of 

2000&0  N , the robot has a suitable distance from the obstacles and it has decreased its angle with respect to 

the goal, so it receives a reward proportional to  . If the distance between the robot and the goal is less than 5cm, it 

means that the robot reaches the goal and it receives the reward.  

During the experiments, when the robot collides obstacles (failures positions); it receives the reinforcement 

(punishment) signal and the weights of the algorithm are updated based on Eq. )5(.  For getting away from collision 

region, the robot moves directly back about 5 cm, then it rotates randomly in the range of [-45
o
, + 45

o
]. Afterwards, 

the episode continues and the algorithm determines the rotation angle and the speed of the robot in the path, again. 

After training, the test phase is done for assessing the quality of learning. We compare the performance of our pr

oposed method (SFSL) versus FSL. The major criteria in evaluation RL algorithms are learning speed, the number 

of failures, and action quality in the test [2,14,17,32,33]. Here, we evaluate the algorithms by 3 measures: LDI as 

learning speed, “Failure Rate” as the number of failures (hitting obstacles) in the training and testing phases, and 

“traversed distnace” by the robot as a criterion for action quality in the testing phase. The tests are done in 2 new env

ironments (see Figure. 9). To calculate the traversed distance, the total distance that the robot travels from start point 

to goal is considered. In practice, we count all of the encoder pulses of robot‟s wheels during episode and then 
multiply it by 0.013 where it is the related coefficient for converting encoder pulse to travelled distance of each 

wheel in centimeter scale. 

The evaluation of the experiments is done by the average of evaluation criteria over 5 independent runs. Every 

run includes a “learning phase” and a “testing phase”. In the learning phase for FSL,
ij

w ‟s initialized to zero. 

Table 1 shows the experimental results. The average LDI is computed by taking the average of 5 independent 

runs of each method. The “Failure Rate 1” and “Failure Rate 2” are the average number of failures during the 

training and testing phases, respectively.  The “Avg.Distance” is the average of traversed distance by the robot 

within the test environments.  
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TABLE 1.Experiment results for robot navigation 

 

  Avg.Distance 

 

 Failure Rate 2 

 

 

 Failure Rate 1 

 

 

Avg.LDI 

 

   Methods 

 
107.09 

 

1 

 

     8.8 

 

 

25.4 
 

SFSL 

 

124.001 

 

2 

 

87.3 

 

37.6 

 

FSL 

As seen in Table1, SFSL outperforms FSL, significantly. The learning speed of SFSL is 27% faster than FSL. 

The number of failures in training (Failure Rate1) for SFSL has been decreased 89% compared to FSL. The number 

of failures in the test (Failure Rate2) has been decreased, too. The robot could reach the goal in both methods in the 

testing phase; the traversed distance (Avg. Distances) for SFSL is 13% less than FSL. Figure 9 shows the traversed 

path by the E-puck robot in two testing environments for SFSL. As seen in this figure, the robot has reached to the 

goal, moving among the obstacles.  

 

FIGURE 9.The traversed path by E-puck robot in two testing environments (The black cylinder is the goal, the colored cubes are 

obstacles and the green line shows the traversed path by the robot) 

The changes of the value of candidate actions )( ij
w  can be examined during learning by Figure 10. It shows the 

changes of values )13,..,2,1,( ,23 jw
j

in 23-rd fuzzy rule. As seen in Figure 10 (a), the value of the first candidate 

action (o1= -45
o
) has the highest amount. Figure 10 (b) shows the changes in the beginning of learning; as seen, a 

short time after learning starts (about 250 time-steps) the value of the action o1= -45
o
 has surpassed from others. 

Moreover, the order of values of the candidate actions does not change after 250-th time-step.  
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(a) The changes of the value of candidate actions in 3000 time-steps 

 

(b) The zooming curves in the begining 

FIGURE 10.Changes of values )13,..,2,1,( ,23 jw
j

in 23-rd fuzzy rule. 

6. CONCLUSION 

In this paper, a new approach for combination of supervised learning and fuzzy reinforcement learning was 

proposed. The proposed method was used to drive an E-puck robot in various environments with obstacles. The 

command control was generated based on subsumption architecture. A zero order T-S fuzzy controller was 

employed as obstacle avoidance module in this architecture. The aim of learning was to find the best conclusion part 

for each rule of the controller. The proposed method uses the training (supervisory) data to obtain an approximated 

value (worth) of each candidate action of the fuzzy rules as initial value. Afterwards, FSL was used as a continuous 

RL algorithm for online final tuning of conclusion parts of the fuzzy controller. The results of experiments on the 

real robot revealed a significant improvement in decreasing the learning time and the number of failures. These 

           

w 

w 
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advantages were achieved because of the training data were used for initializing the value (worth) of candidate 

actions for each state, in contrast to the conventional methods that use training data for determining controller‟s 
output value for each state. Therefore, not only destructive effects of inconsistent data were prevented but also the 

hidden knowledge in this data was extracted. As another advantage, the proposed structure does not need a module 

for combining behaviors, in each time only the output of one of modules is applied to the robot. Therefore, the 

computational cost and designing complexity have been reduced. 
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