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Abstract

Recent years have witnessed the growing popularity of
hashing in large-scale vision problems. It has been shown
that the hashing quality could be boosted by leveraging su-
pervised information into hash function learning. However,
the existing supervised methods either lack adequate per-
formance or often incur cumbersome model training. In this
paper, we propose a novel kernel-based supervised hashing
model which requires a limited amount of supervised infor-
mation, i.e., similar and dissimilar data pairs, and a feasi-
ble training cost in achieving high quality hashing. The idea
is to map the data to compact binary codes whose Ham-
ming distances are minimized on similar pairs and simul-
taneously maximized on dissimilar pairs. Our approach is
distinct from prior works by utilizing the equivalence be-
tween optimizing the code inner products and the Hamming
distances. This enables us to sequentially and efficiently
train the hash functions one bit at a time, yielding very
short yet discriminative codes. We carry out extensive ex-
periments on two image benchmarks with up to one million
samples, demonstrating that our approach significantly out-
performs the state-of-the-arts in searching both metric dis-
tance neighbors and semantically similar neighbors, with
accuracy gains ranging from 13% to 46%.

1. Introduction

Recently, hashing has become a popular method applied
to large-scale vision problems including object recognition
[15][16], image retrieval [7][19], local descriptor compres-
sion [3][14], image matching [4][14], etc. In these prob-
lems, hashing is exploited to expedite similarity computa-
tion and search. Since the encoding of high-dimensional
image feature vectors to short binary codes as proposed
in [16], compact hashing has enabled significant efficiency
gains in both storage and speed. In many cases, hashing
with only several tens of bits per image allows search into a
collection of millions of images in a constant time [16][17].

The early exploration of hashing focuses on using ran-
dom projections to construct randomized hash functions.
One of the well-known representatives is Locality-Sensitive
Hashing (LSH) which has been continuously expanded to
accommodate more distance/similarity metrics including ℓ𝑝
distance for 𝑝 ∈ (0, 2] [1], Mahalanobis distance [7], and
kernel similarity [6]. Because of theoretical guarantees that
original metrics are asymptotically preserved in the Ham-
ming (code) space with increasing code length, LSH-related
methods usually require long codes to achieve good preci-
sion. Nonetheless, long codes result in low recall since the
collision probability that two codes fall into the same hash
bucket decreases exponentially as the code length increases.

In contrast to the data-independent hash schemes em-
ployed in LSH-related methods, recent endeavors aim at
data-dependent hashing which poses a compact set of hash
bits. Through encoding high-dimensional data points into
compact codes, nearest neighbor search can be accom-
plished with a constant time complexity as long as the
neighborhood of a point is well preserved in the code space.
In addition, compact codes are particularly useful for saving
storage in gigantic databases. To design effective compact
hashing, a number of methods such as projection learning
for hashing [17][2][14], Spectral Hashing (SH) [18], An-
chor Graph Hashing (AGH) [8], Semi-Supervised Hashing
(SSH) [17], Restricted Boltzmann Machines (RBMs) (or se-
mantic hashing) [13], Binary Reconstruction Embeddings
(BRE) [5], and Minimal Loss Hashing (MLH) [11] have
been proposed. We summarize them into three categories,
unsupervised, semi-supervised, and supervised methods.

For unsupervised hashing, principled linear projections
like PCA Hashing (PCAH) [17] and its rotational variant [2]
were suggested for better quantization rather than random
projections. Nevertheless, only a few orthogonal projec-
tions are good for quantization as the variances of data usu-
ally decay rapidly as pointed out by [17]. An alternative so-
lution is to seek nonlinear data representation from the low-
energy spectrums of data neighborhood graphs [18][8]. Ex-
actly solving eigenvectors or eigenfunctions of large-scale



graphs is computationally prohibitive. In response, [18][8]
proposed several approximate solutions by adopting restric-
tive assumptions about the data distribution or the neighbor-
hood structure.

While unsupervised hashing is promising to retrieve met-
ric distance neighbors, e.g., ℓ2 neighbors, a variety of prac-
tical applications including image search prefer semanti-
cally similar neighbors [16]. Therefore, recent works in-
corporated supervised information to boost the hashing per-
formance. Such supervised information is customarily ex-
pressed as pairwise labels of similar and dissimilar data
pairs in availability. One representative work is Semi-
Supervised Hashing (SSH) [17] which minimized the em-
pirical error on the labeled data while maximizing entropy
of the generated hash bits over the unlabeled data. An-
other work, namely Weakly-Supervised Hashing [9], han-
dled higher-order supervised information.

Importantly, we argue that supervised hashing could at-
tain higher search accuracy than unsupervised and semi-
supervised hashing if the supervised information were thor-
oughly taken advantage of. Though the simple supervised
method Linear Discriminant Analysis Hashing (LDAH)
[14] can tackle supervision via easy optimization, it lacks
adequate performance because of the use of orthogonal pro-
jections in hash functions. There exist more sophisticated
supervised methods such as RBM [13], BRE [5] and MLH
[11] that have shown higher search accuracy than unsuper-
vised hashing approaches, but they all impose difficult op-
timization and slow training mechanisms. This inefficiency
issue has greatly diminished the applicability of the exist-
ing supervised hashing methods to large-scale tasks. We
discover that the expensive training costs are caused by
the overcomplicated hashing objective functions used in the
prior works. To this end, high-quality supervised hashing
with a low training cost is fundamentally important, yet still
unavailable to the best of our knowledge.

In this paper, we show that the supervised information
can be incorporated in a more effective and efficient man-
ner. Specifically, we propose a novel and elegant objec-
tive function for learning the hash functions. The prior
supervised methods [5][11] both tried to control the Ham-
ming distances in the code space such that they correlate
well with the given supervised information. Unfortunately,
it is very difficult to directly optimize Hamming distances
that are nonconvex and nonsmooth [5]. By utilizing the
algebraic equivalence between a Hamming distance and a
code inner product, the proposed objective function dexter-
ously manipulates code inner products, leading to implicit
yet more effective optimization on Hamming distances. We
also exploit the separable property of code inner products
to design an efficient greedy algorithm which sequentially
solves the target hash functions bit by bit. To accommodate
linearly inseparable data, we employ a kernel formulation

for the target hash functions, so we name the proposed ap-
proach Kernel-Based Supervised Hashing (KSH). We eval-
uate the performance of KSH in searching both metric dis-
tance neighbors and semantically similar neighbors on two
large image benchmarks up to one million samples, con-
firming its dramatically higher accuracy compared with the
state-of-the-art unsupervised, semi-supervised, and super-
vised hashing methods.

2. Kernel-Based Supervised Hashing

2.1. Hash Functions with Kernels

Given a data set 𝒳 = {𝒙1, ⋅ ⋅ ⋅ ,𝒙𝑛} ⊂ ℝ
𝑑, the pur-

pose of hashing is to look for a group of appropriate hash
functions ℎ : ℝ𝑑 �→ {1,−1}1, each of which accounts for
the generation of a single hash bit. We use a kernel func-
tion 𝜅 : ℝ𝑑 × ℝ

𝑑 �→ ℝ to construct such hash functions
because the kernel trick has been theoretically and empiri-
cally proven to be able to tackle practical data that is mostly
linearly inseparable. Following the Kernelized Locality-
Sensitive Hashing (KLSH) [6] algorithm, we first define a
prediction function 𝑓 : ℝ𝑑 �→ ℝ with the kernel 𝜅 plugged
in as follows

𝑓(𝒙) =

𝑚∑
𝑗=1

𝜅(𝒙(𝑗),𝒙)𝑎𝑗 − 𝑏, (1)

where 𝒙(1), ⋅ ⋅ ⋅ ,𝒙(𝑚) are 𝑚 samples uniformly selected at
random from 𝒳 , 𝑎𝑗 ∈ ℝ is the coefficient, and 𝑏 ∈ ℝ is the
bias. Based on 𝑓 , the hash function for a single hash bit is
constructed by ℎ(𝒙) = sgn(𝑓(𝒙)) in which the sign func-
tion sgn(𝑥) returns 1 if input variable 𝑥 > 0 and returns -1
otherwise. Note that 𝑚 is fixed to a constant much smaller
than the data set size 𝑛 in order to maintain fast hashing.

An important criterion guiding the design of hash func-
tions is that the generated hash bit should take as much in-
formation as possible, which implies a balanced hash func-
tion that meets

∑𝑛
𝑖=1 ℎ(𝒙𝑖) = 0 [18][17][8]. For our

problem, this balancing criterion makes 𝑏 be the median of{∑𝑚
𝑗=1 𝜅(𝒙(𝑗),𝒙𝑖)𝑎𝑗

}𝑛

𝑖=1
. As a fast alternative to the me-

dian, we adopt the mean 𝑏 =
∑𝑛

𝑖=1

∑𝑚
𝑗=1 𝜅(𝒙(𝑗),𝒙𝑖)𝑎𝑗/𝑛

like [17][2]. Through substituting 𝑏 in eq. (1) with the mean
value, we obtain

𝑓(𝒙) =
𝑚∑
𝑗=1

(
𝜅(𝒙(𝑗),𝒙)− 1

𝑛

𝑛∑
𝑖=1

𝜅(𝒙(𝑗),𝒙𝑖)

)
𝑎𝑗

= 𝒂⊤�̄�(𝒙), (2)

where 𝒂 = [𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑚]⊤ and �̄� : ℝ𝑑 �→ ℝ
𝑚 is a vectorial

map defined by

�̄�(𝒙) = [𝜅(𝒙(1),𝒙)− 𝜇1, ⋅ ⋅ ⋅ , 𝜅(𝒙(𝑚),𝒙)− 𝜇𝑚]⊤, (3)

1We treat ‘0’ bit as ‘-1’ during training; in the implementation of data
coding and hashing, we use ‘0’ back.
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Figure 1. The core idea of our proposed supervised hashing. (a) Three data points with supervised pairwise labels: “1” (similar) and “-1”
(dissimilar); (b) optimization on Hamming distances; (c) optimization on code inner products (𝑟 is the bit number). The latter two are
equivalent due to the one-to-one correspondence between a Hamming distance and a code inner product.

in which 𝜇𝑗 =
∑𝑛

𝑖=1 𝜅(𝒙(𝑗),𝒙𝑖)/𝑛 can be precomputed.
In KLSH, the coefficient vector 𝒂 came as a random di-
rection drawn from a Gaussian distribution. Since 𝒂 com-
pletely determines a hash function ℎ(𝒙), we seek to learn
𝒂 by leveraging supervised information so that the resulted
hash function is discriminative.

2.2. Manipulating Code Inner Products

Suppose that 𝑟 hash bits are needed. Accordingly, we
have to find 𝑟 coefficient vectors 𝒂1, ⋅ ⋅ ⋅ ,𝒂𝑟 to construct 𝑟
hash functions

{
ℎ𝑘(𝒙) = sgn(𝒂⊤

𝑘 �̄�(𝒙))
}𝑟
𝑘=1

. In the cus-
tomary setting for supervised hashing [5][13][17][11], the
supervised information is given in terms of pairwise la-
bels: 1 labels specify similar (or neighbor) pairs collected
in set ℳ, and -1 labels designate dissimilar (or nonneigh-
bor) pairs collected in set 𝒞. Such pairs may be acquired
from neighborhood structures in a predefined metric space,
or from semantic relevancy when semantic-level labels of
some samples are available. Without loss of generality,
we assume that the first 𝑙 (𝑚 < 𝑙 ≪ 𝑛) samples 𝒳𝑙 =
{𝒙1, ⋅ ⋅ ⋅ ,𝒙𝑙} are implicated in ℳ and 𝒞. To explicitly
record the pairwise relationships among 𝒳𝑙, we define a la-
bel matrix 𝑆 ∈ ℝ

𝑙×𝑙 as

𝑆𝑖𝑗 =

⎧⎨
⎩

1, (𝒙𝑖,𝒙𝑗) ∈ ℳ
−1, (𝒙𝑖,𝒙𝑗) ∈ 𝒞
0, otherwise.

(4)

Note that 𝑆𝑖𝑖 ≡ 1 since (𝒙𝑖,𝒙𝑖) ∈ ℳ. The intermediate
label 0 implies that the similar/dissimilar relationship about
some data pair is unknown or uncertain. The 0 labels mostly
appear in the metric-based supervision (see Sec 3).

Our purpose of supervised hashing is to generate dis-
criminative hash codes such that similar pairs can be per-
fectly distinguished from dissimilar pairs by using Ham-
ming distances in the code space. Specifically, we hope that
the Hamming distances between the labeled pairs in ℳ∪𝒞
correlate with the labels in 𝑆, that is, a pair with 𝑆𝑖𝑗 = 1
will have the minimal Hamming distance 0 while a pair with

𝑆𝑖𝑗 = −1 will take on the maximal Hamming distance, i.e.,
the number of hash bits 𝑟. Fig. 1(b) illustrates our expecta-
tion for optimizing the Hamming distances.

However, directly optimizing the Hamming distances is
nontrivial because of the complex mathematical formula
𝒟ℎ(𝒙𝑖,𝒙𝑗) = ∣{𝑘∣ℎ𝑘(𝒙𝑖) ∕= ℎ𝑘(𝒙𝑗), 1 ≤ 𝑘 ≤ 𝑟}∣. In
this paper, we advocate code inner products that are easier
to manipulate and optimize.
Code Inner Products vs. Hamming Distances
Let us write the 𝑟-bit hash code of sample 𝒙 as 𝑐𝑜𝑑𝑒𝑟(𝒙) =
[ℎ1(𝒙), ⋅ ⋅ ⋅ , ℎ𝑟(𝒙)] ∈ {1,−1}1×𝑟, and then deduce the
code inner product as follows

𝑐𝑜𝑑𝑒𝑟(𝒙𝑖) ∘ 𝑐𝑜𝑑𝑒𝑟(𝒙𝑗)

= ∣{𝑘∣ℎ𝑘(𝒙𝑖) = ℎ𝑘(𝒙𝑗), 1 ≤ 𝑘 ≤ 𝑟}∣
− ∣{𝑘∣ℎ𝑘(𝒙𝑖) ∕= ℎ𝑘(𝒙𝑗), 1 ≤ 𝑘 ≤ 𝑟}∣

=𝑟 − 2 ∣{𝑘∣ℎ𝑘(𝒙𝑖) ∕= ℎ𝑘(𝒙𝑗), 1 ≤ 𝑘 ≤ 𝑟}∣
=𝑟 − 2𝒟ℎ(𝒙𝑖,𝒙𝑗), (5)

where the symbol ∘ stands for the code inner product. Crit-
ically, eq. (5) reveals that the Hamming distance and the
code inner product is in one-to-one correspondence, hence
enabling equivalent optimization on code inner products.

Given the observation of 𝑐𝑜𝑑𝑒𝑟(𝒙𝑖) ∘ 𝑐𝑜𝑑𝑒𝑟(𝒙𝑗) ∈
[−𝑟, 𝑟] and 𝑆𝑖𝑗 ∈ [−1, 1], we let 𝑐𝑜𝑑𝑒𝑟(𝒙𝑖) ∘ 𝑐𝑜𝑑𝑒𝑟(𝒙𝑗)/𝑟
fit 𝑆𝑖𝑗 as shown in Fig. 1(c). This makes sense because
𝑐𝑜𝑑𝑒𝑟(𝒙𝑖)∘ 𝑐𝑜𝑑𝑒𝑟(𝒙𝑗)/𝑟 = 𝑆𝑖𝑗 = 1 leads to 𝒟ℎ(𝒙𝑖,𝒙𝑗) =
0 and 𝑐𝑜𝑑𝑒𝑟(𝒙𝑖) ∘ 𝑐𝑜𝑑𝑒𝑟(𝒙𝑗)/𝑟 = 𝑆𝑖𝑗 = −1 leads to
𝒟ℎ(𝒙𝑖,𝒙𝑗) = 𝑟 by eq. (5). In a natural means, we pro-
pose a least-squares style objective function 𝒬 to learn the
codes of the labeled data 𝒳𝑙:

min
𝐻𝑙∈{1,−1}𝑙×𝑟

𝒬 =

∥∥∥∥1𝑟𝐻𝑙𝐻
⊤
𝑙 − 𝑆

∥∥∥∥
2

F

, (6)

where 𝐻𝑙 =

⎡
⎣𝑐𝑜𝑑𝑒𝑟(𝒙1)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑐𝑜𝑑𝑒𝑟(𝒙𝑙)

⎤
⎦ denotes the code matrix of 𝒳𝑙,

and ∥.∥F represents the Frobenius norm.



We can generalize sgn() to take the elementwise sign
operation for any vector or matrix input, and then express
the code matrix 𝐻𝑙 as (given ℎ𝑘(𝒙) = sgn(𝒂⊤

𝑘 �̄�(𝒙)) =
sgn(�̄�⊤(𝒙)𝒂𝑘))

𝐻𝑙 =

⎡
⎣ℎ1(𝒙1), ⋅ ⋅ ⋅ , ℎ𝑟(𝒙1)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
ℎ1(𝒙𝑙), ⋅ ⋅ ⋅ , ℎ𝑟(𝒙𝑙)

⎤
⎦ = sgn(�̄�𝑙𝐴), (7)

where �̄�𝑙 = [�̄�(𝒙1), ⋅ ⋅ ⋅ , �̄�(𝒙𝑙)]
⊤ ∈ ℝ

𝑙×𝑚 and 𝐴 =
[𝒂1, ⋅ ⋅ ⋅ ,𝒂𝑟] ∈ ℝ

𝑚×𝑟. After substituting 𝐻𝑙 in eq. (6) with
eq. (7), we obtain an analytical form of the objective func-
tion 𝒬:

min
𝐴∈ℝ𝑚×𝑟

𝒬(𝐴) =

∥∥∥∥1𝑟 sgn(�̄�𝑙𝐴)(sgn(�̄�𝑙𝐴))⊤ − 𝑆

∥∥∥∥
2

F

.

(8)

The novel objective function 𝒬 is simpler than those of BRE
[5] and MLH [11], because it offers a clearer connection
and easier access to the model parameter 𝐴 through manip-
ulating code inner products. In contrast, BRE and MLH
optimize Hamming distances by pushing them close to raw
metric distances or larger/smaller than appropriately chosen
thresholds, either of which formulated a complicated objec-
tive function and incurred a tough optimization process, yet
cannot guarantee the optimality of its solution.

2.3. Greedy Optimization

The separable property of code inner products allows us
to solve the hash functions in an incremental mode. With
simple algebra, we rewrite 𝒬 in eq. (8) as

min
𝐴

∥∥∥∥∥
𝑟∑

𝑘=1

sgn(�̄�𝑙𝒂𝑘)(sgn(�̄�𝑙𝒂𝑘))
⊤ − 𝑟𝑆

∥∥∥∥∥
2

F

, (9)

where the 𝑟 vectors 𝒂𝑘’s, each of which determines a single
hash function, are separated in the summation. This inspires
a greedy idea for solving 𝒂𝑘’s sequentially. At a time, it
only involves solving one vector 𝒂𝑘 provided with the previ-
ously solved vectors 𝒂∗

1, ⋅ ⋅ ⋅ ,𝒂∗
𝑘−1. Let us define a residue

matrix 𝑅𝑘−1 = 𝑟𝑆 − ∑𝑘−1
𝑡=1 sgn(�̄�𝑙𝒂

∗
𝑡 )(sgn(�̄�𝑙𝒂

∗
𝑡 ))

⊤

(𝑅0 = 𝑟𝑆). Then 𝒂𝑘 can be pursued by minimizing the
following cost∥∥sgn(�̄�𝑙𝒂𝑘)(sgn(�̄�𝑙𝒂𝑘))

⊤ −𝑅𝑘−1

∥∥2
F

=
(
(sgn(�̄�𝑙𝒂𝑘))

⊤sgn(�̄�𝑙𝒂𝑘)
)2

− 2(sgn(�̄�𝑙𝒂𝑘))
⊤𝑅𝑘−1sgn(�̄�𝑙𝒂𝑘) + tr(𝑅2

𝑘−1)

=− 2(sgn(�̄�𝑙𝒂𝑘))
⊤𝑅𝑘−1sgn(�̄�𝑙𝒂𝑘) + 𝑙2 + tr(𝑅2

𝑘−1)

=− 2(sgn(�̄�𝑙𝒂𝑘))
⊤𝑅𝑘−1sgn(�̄�𝑙𝒂𝑘) + 𝑐𝑜𝑛𝑠𝑡. (10)

Discarding the constant term, we arrive at a cleaner cost

𝑔(𝒂𝑘) = −(sgn(�̄�𝑙𝒂𝑘))
⊤𝑅𝑘−1sgn(�̄�𝑙𝒂𝑘). (11)

A nice feature is that 𝑔(𝒂𝑘) is lower-bounded as eq. (10) is
always nonnegative. However, minimizing 𝑔 is not easy to
achieve because it is neither convex nor smooth. In what
follows, we propose two optimization schemes to approxi-
mately minimize 𝑔.

Spectral Relaxation. Motivated by the spectral methods
for hashing [18][8], we apply the spectral relaxation trick to
drop the sign functions involved in 𝑔, resulting in a con-
strained quadratic problem

max
𝒂𝑘

(�̄�𝑙𝒂𝑘)
⊤𝑅𝑘−1(�̄�𝑙𝒂𝑘)

s.t. (�̄�𝑙𝒂𝑘)
⊤(�̄�𝑙𝒂𝑘) = 𝑙 (12)

where the constraint (�̄�𝑙𝒂𝑘)
⊤(�̄�𝑙𝒂𝑘) = 𝑙 makes 𝑙 elements

in the vector �̄�𝑙𝒂𝑘 fall into the range of [−1, 1] roughly, so
that the solution of the relaxed problem eq. (12) is in the
similar range to the original problem eq. (11). Eq. (12) is a
standard generalized eigenvalue problem �̄�⊤

𝑙 𝑅𝑘−1�̄�𝑙𝒂 =
𝜆�̄�⊤

𝑙 �̄�𝑙𝒂, and 𝒂𝑘 is thus sought as the eigenvector associ-
ated with the largest eigenvalue. A proper scaling is con-
ducted on the solved eigenvector, saved as 𝒂0

𝑘, to satisfy the
constraint in eq. (12).

Although spectral relaxation results in fast optimization,
it might deviate far away from the optimal solution under
larger 𝑙 (e.g., ≥ 5,000) due to the amplified relaxation error
(see Sec 4.2). It is therefore used as the initialization to a
more principled optimization scheme described below.

Sigmoid Smoothing. Since the hardness of minimiz-
ing 𝑔 lies in the sign function, we replace sgn() in 𝑔 with
the sigmoid-shaped function 𝜑(𝑥) = 2/(1 + exp(−𝑥))− 1
which is sufficiently smooth and well approximates sgn(𝑥)
when ∣𝑥∣ > 6. Afterward, we propose to optimize the
smooth surrogate 𝑔 of 𝑔:

𝑔(𝒂𝑘) = −(𝜑(�̄�𝑙𝒂𝑘))
⊤𝑅𝑘−1𝜑(�̄�𝑙𝒂𝑘), (13)

where 𝜑() operates elementwisely like sgn(). The gradient
of 𝑔 with respect to 𝒂𝑘 is derived as

∇𝑔 = −�̄�⊤
𝑙 ((𝑅𝑘−1𝒃)⊙ (1− 𝒃⊙ 𝒃)) , (14)

where the symbol ⊙ represents the Hadamard product (i.e.,
elementwise product), 𝒃 = 𝜑(�̄�𝑙𝒂𝑘) ∈ ℝ

𝑙, and 1 denotes a
constant vector with 𝑙 1 entries.

Since the original cost 𝑔 is lower-bounded, its smooth
surrogate 𝑔 is lower-bounded as well. Consequently, we are
capable of minimizing 𝑔 using the regular gradient descent
technique. Note that the smooth surrogate 𝑔 is still noncon-
vex, so it is unrealistic to look for a global minima of 𝑔. For
fast convergence, we adopt the spectral relaxation solution
𝒂0
𝑘 as a warm start and apply Nesterov’s gradient method

[10] to accelerate the gradient decent procedure. In most
cases we can attain a locally optimal 𝒂∗

𝑘 at which 𝑔(𝒂∗
𝑘) is

very close to its lower bound, which will be corroborated
by the subsequent experiments.



Algorithm 1 Kernel-Based Supervised Hashing (KSH)

Input: a training sample set 𝒳 = {𝒙𝑖 ∈ ℝ
𝑑}𝑛𝑖=1, a pairwise

label matrix 𝑆 ∈ ℝ
𝑙×𝑙 defined on 𝑙 samples 𝒳𝑙 = {𝒙𝑖}𝑙𝑖=1,

a kernel function 𝜅 : ℝ𝑑 × ℝ
𝑑 �→ ℝ, the number of support

samples 𝑚 (< 𝑙), and the number of hash bits 𝑟.
Preprocessing: uniformly randomly select 𝑚 samples from 𝒳 ,
and compute zero-centered 𝑚-dim kernel vectors �̄�(𝒙𝑖) (𝑖 =
1, ⋅ ⋅ ⋅ , 𝑛) using the kernel function 𝜅 according to eq. (3).
Greedy Optimization:
initialize 𝑅0 = 𝑟𝑆 and 𝑇𝑚𝑎𝑥 = 500;
for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑟 do

solve the generalized eigenvalue problem
�̄�⊤

𝑙 𝑅𝑘−1�̄�𝑙𝒂 = 𝜆�̄�⊤
𝑙 �̄�𝑙𝒂, obtaining the largest eigenvec-

tor 𝒂0
𝑘 such that (𝒂0

𝑘)
⊤�̄�⊤

𝑙 �̄�𝑙𝒂
0
𝑘 = 𝑙;

use the gradient descent method to optimize
min𝒂−(𝜑(�̄�𝑙𝒂))

⊤𝑅𝑘−1𝜑(�̄�𝑙𝒂) with the initial solution
𝒂0
𝑘 and 𝑇𝑚𝑎𝑥 budget iterations, achieving 𝒂∗

𝑘;
𝒉0 ←− sgn(�̄�𝑙𝒂

0
𝑘), 𝒉

∗ ←− sgn(�̄�𝑙𝒂
∗
𝑘);

if (𝒉0)⊤𝑅𝑘−1𝒉
0 > (𝒉∗)⊤𝑅𝑘−1𝒉

∗ then
𝒂∗
𝑘 ←− 𝒂0

𝑘, 𝒉∗ ←− 𝒉0;
end if
𝑅𝑘 ←− 𝑅𝑘−1 − 𝒉∗(𝒉∗)⊤;

end for
Coding: for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, do
𝑐𝑜𝑑𝑒𝑟(𝒙𝑖)←−

[
sgn(�̄�⊤(𝒙𝑖)𝒂

∗
1), ⋅ ⋅ ⋅ , sgn(�̄�⊤(𝒙𝑖)𝒂

∗
𝑟)
]
.

Output: 𝑟 hash functions {ℎ𝑘(𝒙) = sgn(�̄�⊤(𝒙)𝒂∗
𝑘)}𝑟𝑘=1 as

well as 𝑛 hash codesℋ = {𝑐𝑜𝑑𝑒𝑟(𝒙𝑖)}𝑛𝑖=1.

Finally, we describe the whole flowchart of the proposed
supervised hashing approach that we name Kernel-Based
Supervised Hashing (KSH) in Algorithm 1. We also name
another approach KSH0 whose hash functions just use the
initial spectral relaxation solutions {𝒂0

𝑘}.

3. Analysis

Our approaches KSH0 and KSH can both deal with se-
mantic and metric supervision once the definitions about
similar and dissimilar pairs are offered to learning. For ex-
ample, a similar pair (𝒙𝑖,𝒙𝑗) is confirmed if 𝒙𝑖 and 𝒙𝑗

share at least one common semantic label or are nearest
neighbors to each other under a predefined metric (e.g., ℓ2);
likewise, a dissimilar pair (𝒙𝑖,𝒙𝑗) is determined if 𝒙𝑖 and
𝒙𝑗 take different labels or are far away in the metric space.

In the semantic case, one can easily achieve the full en-
tries (either 1 or -1) of the label matrix 𝑆 since the impli-
cated samples are all known to have semantic labels. But
in the metric case, one needs to pre-compute two distance
thresholds, one for similar pairs and the other for dissimi-
lar pairs, to judge if two samples are metric neighbors or not
by comparing their distance with the thresholds [18][5][17].
For the metric supervision, most entries in the label matrix
𝑆 have 0 labels, which reveals that most distances fall into
the middle ground between the two thresholds. To reduce
the potential false alarms, our approaches implicitly push

the Hamming distances of these 0-labeled pairs to 𝑟/2 as
their code inner products have been pushed to zeros (see
eq. (5)), which is reasonable since such pairs are not nearest
neighbors in the metric space.

The time complexities for training KSH0 and KSH are
both bounded by 𝑂((𝑛𝑚+𝑙2𝑚+𝑚2𝑙+𝑚3)𝑟) which scales
linearly with 𝑛 given 𝑛 ≫ 𝑙 > 𝑚. In practice, training
KSH0 is very fast and training KSH is about two times faster
than two competing supervised hashing methods BRE and
MLH. For each query, the hashing time of both KSH0 and
KSH is constant 𝑂(𝑑𝑚+𝑚𝑟).

4. Experiments

We run large-scale image retrieval experiments on two
image benchmarks: CIFAR-102 and one million subset of
the 80 million tiny image collection [15]. CIFAR-10 is a la-
beled subset of the 80M tiny images, consisting of a total of
60K 32×32 color images from ten object categories each of
which contains 6K samples. Every image in this dataset is
assigned to a mutually exclusive class label and represented
by a 512-dimensional GIST feature vector [12]. The second
dataset that we call Tiny-1M was acquired from [17], which
does not include any semantic label but has been partially
annotated to similar and dissimilar data pairs according to
the ℓ2 distance. Each image in Tiny-1M is represented by a
384-dimensional GIST vector.

We evaluate the proposed KSH0 and KSH, and com-
pare them against eight state-of-the-art methods includ-
ing four unsupervised methods LSH [1], PCAH [17], SH
[18], and KLSH [6], one semi-supervised method SSH (the
nonorthogonal version) [17], and three supervised methods
LDAH [14], BRE [5], and MLH [11]. We used the publicly
available codes of SH, KLSH, BRE and MLH. All our ex-
periments were run on a workstation with a 2.53 GHz Intel
Xeon CPU and 48GB RAM.

Since KLSH, KSH0 and KSH refer to kernels, we feed
them the same Gaussian RBF kernel 𝜅(𝒙,𝒚) = exp(−∥𝒙−
𝒚∥/2𝜎2) and the same 𝑚 = 300 support samples on each
dataset. The kernel parameter 𝜎 is tuned to an appropriate
value on each dataset. It is noted that we did not assume a
specific kernel, and that any kernel satisfying the Mercer’s
condition can be used in KLSH, KSH0 and KSH. We follow
two search procedures hash lookup and Hamming ranking
using 8 to 48 hash bits. Hash lookup takes constant search
time over a single hash table for each compared hashing
method. We carry out hash lookup within a Hamming ra-
dius 2 and report the search precision. Note that we follow
[17] to treat failing to find any hash bucket for a query as
zero precision, different from [18][5][11] which ignored the
failed queries in computing the mean hash lookup precision
over all queries. To quantify the failing cases, we report the

2http://www.cs.toronto.edu/˜kriz/cifar.html



Table 1. Ranking performance on CIFAR-10 (60K). 𝑙 denotes the number of labeled examples for training (semi-)supervised hashing
methods. Four unsupervised methods LSH, PCAH, SH and KLSH do not use any labels. All training/test time is recorded in second.

Method 𝑙 = 1, 000 𝑙 = 2, 000

MAP Train Time Test Time MAP Train Time Test Time
12 bits 24 bits 48 bits 48 bits 48 bits 12 bits 24 bits 48 bits 48 bits 48 bits

LSH [1] 0.1133 0.1245 0.1188 0.5 0.8×10−5 —
PCAH [17] 0.1368 0.1333 0.1271 1.5 0.9×10−5 —

SH [18] 0.1330 0.1317 0.1352 3.0 4.0×10−5 —
KLSH [6] 0.1212 0.1425 0.1602 1.6 4.3×10−5 —

SSH [17] 0.1514 0.1595 0.1755 2.1 0.9×10−5 0.1609 0.1758 0.1841 2.2 0.9×10−5

LDAH [14] 0.1380 0.1334 0.1267 0.7 0.9×10−5 0.1379 0.1316 0.1257 1.1 0.9×10−5

BRE [5] 0.1817 0.2024 0.2060 494.7 2.9×10−5 0.1847 0.2024 0.2074 1392.3 3.0×10−5

MLH [11] 0.1545 0.1932 0.2074 3666.3 1.8×10−5 0.1695 0.1953 0.2288 3694.4 2.0×10−5

KSH0 0.1846 0.2047 0.2181 7.0 3.3×10−5 0.2271 0.2461 0.2545 9.4 3.5×10−5

KSH 0.2325 0.2588 0.2836 156.1 4.3×10−5 0.2700 0.2895 0.3153 564.1 4.5×10−5
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Figure 2. The results on CIFAR-10. Six (semi-)supervised hashing methods use 1K labeled examples. (a) Mean precision of Hamming
radius 2 hash lookup; (b) hash lookup success rate; (c) mean precision-recall curves of Hamming ranking with 48 bits.

hash lookup success rate: the proportion of the queries re-
sulting in successful hash lookup in all queries. As well,
Hamming ranking, fast enough with short hash codes in
practice, measures the search quality through ranking the
retrieved samples according to their Hamming distances to
a specific query.

4.1. CIFAR-10

This dataset is partitioned into two parts: a training set of
59K images and a test query set of 1K images evenly sam-
pled from ten classes. We uniformly randomly sample 100
and 200 images from each class respectively, constituting
1K and 2K labeled subsets for training (semi-)supervised
hashing methods SSH, LDAH, BRE, MLH, KSH0 and
KSH. The pairwise label matrices 𝑆 are immediately ac-
quired since the exact labels are available. To run BRE and
MLH that admit 1,0 labels, we assign the labels of similar
pairs to 1 and those of dissimilar pairs to 0. In terms of true
semantic neighbors, we report the mean precision of Ham-
ming radius 2 hash lookup, the success rate of hash lookup,
the mean average precision (MAP) of Hamming ranking,
and the mean precision-recall curves of Hamming ranking
over 1K query images. All of the evaluation results are
shown in Table 1 and Fig. 2. For every compared method,
we also report the training time for compressing all train-

ing images into compact codes as well as the test time for
coding each query image.

As shown in Table 1 and Fig. 2, KSH achieves the high-
est search accuracy (hash lookup precision, MAP, and PR-
curve) and the second best is KSH0. The gain in MAP
of KSH ranges from 27% to 46% over the best competi-
tor except KSH0. The prominent superiority of KSH cor-
roborates that the proposed hashing objective 𝒬 and two
optimization techniques including spectral relaxation and
sigmoid smoothing are so successful that the semantic su-
pervision information is maximally utilized. In the hash
lookup success rate, KSH is lower than LSH but still su-
perior to the others. More notably, KSH with only 48 bi-
nary bits and a limited amount of supervised information
(1.7% and 3.4% labeled samples) significantly outperforms
ℓ2 linear scan (0.1752 MAP) in the GIST feature space, ac-
complishing up to 1.8 times higher MAP. Compared to BRE
and MLH, KSH0 (several seconds) and KSH (several min-
utes) are much faster in supervised training. The test time of
KSH0 and KSH is acceptably fast, comparable to the non-
linear hashing methods SH, KLSH and BRE.

4.2. Tiny-1M

The one million subset of the 80 million tiny image
benchmark [15] was sampled to construct the training set,



Table 2. Ranking performance on Tiny-1M. 𝑙 denotes the number of pseudo-labeled examples for training (semi-)supervised hashing
methods. Four unsupervised methods LSH, PCAH, SH and KLSH do not use any labels. All training/test time is recorded in second.

Method 𝑙 = 5, 000 𝑙 = 10, 000

MP/50K Train Time Test Time MP/50K Train Time Test Time
12 bits 24 bits 48 bits 48 bits 48 bits 12 bits 24 bits 48 bits 48 bits 48 bits

LSH 0.1107 0.1421 0.1856 3.0 0.3×10−5 —
PCAH 0.2371 0.2159 0.1954 7.1 0.4×10−5 —

SH 0.2404 0.2466 0.2414 47.1 3.3×10−5 —
KLSH 0.1834 0.2490 0.3008 9.9 2.6×10−5 —

SSH 0.1985 0.2923 0.3785 14.8 0.6×10−5 0.1718 0.2767 0.3524 16.9 0.6×10−5

LDAH 0.2365 0.2208 0.2077 5.8 0.6×10−5 0.2373 0.2238 0.2072 13.3 0.6×10−5

BRE 0.2782 0.3400 0.3961 18443.0 3.3×10−5 0.2762 0.3403 0.3889 27580.0 3.3×10−5

MLH 0.2071 0.2592 0.3723 4289.2 1.4×10−5 0.1875 0.2873 0.3489 4820.8 1.8×10−5

KSH0 0.1889 0.2295 0.2346 56.0 3.1×10−5 0.1886 0.1985 0.2341 84.5 3.2×10−5

KSH 0.3164 0.3896 0.4579 2210.3 3.2×10−5 0.3216 0.3929 0.4645 2963.3 3.3×10−5
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Figure 3. The results on Tiny-1M. Six (semi-)supervised hashing methods use 5K pseudo-labeled examples. (a) Mean precision of Ham-
ming radius 2 hash lookup; (b) hash lookup success rate; (c) mean precision curves of Hamming ranking with 48 bits; (d) mean recall
curves of Hamming ranking with 48 bits.

and a separate subset of 2K images was used as the test set
[17]. The 10K×10K pairwise pseudo label matrix 𝑆 was
constructed according to the ℓ2 distance. Concretely, [17]
randomly selected 10K images from the training set and
computed their Euclidean distance matrix 𝐷 from which 𝑆
was obtained by using the rule: 𝑆𝑖𝑗 = 1 if 𝐷𝑖𝑗 is within 5%
of the whole 1M distances and 𝑆𝑖𝑗 = −1 if 𝐷𝑖𝑗 is more than
95%. The top 5% distances from a query were also used as
the groundtruths of nearest metric neighbors. As most en-
tries in 𝑆 are zeros, to follow [5] each 0 label is replaced
by 1 − �̂�𝑖𝑗/2 in which 0 ≤ �̂�𝑖𝑗 ≤ 2 is the normalized ℓ2
distance. Like above experiments, we treat 1,-1 labels in 𝑆

as 1,0 labels for running BRE and MLH.
In terms of ℓ2 metric neighbors (each query has 50K

groundtruth neighbors), we evaluate the mean precision of
Hamming radius 2 hash lookup, the success rate of hash
lookup, the mean top-50K precision (MP/50K) of Hamming
ranking, and the mean precision/recall curves of Hamming
ranking. The results are shown in Table 2 and Fig. 3. To
illustrate the overfitting phenomenon in (semi-)supervised
hashing methods, we inspect the half supervision, i.e., the
5K pseudo-labeled images, and the full 10K labeled images,
respectively. KSH refrains from overfitting, showing higher
MP when absorbing more supervision. On the contrary,
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Figure 4. Top six neighbors of four query images, returned by
SSH, BRE, MLH and KSH using 5K pseudo-labeled training im-
ages and 48 binary bits on the Tiny-1M dataset.

SSH, BRE and MLH all suffer from overfitting to different
extents – their MP drops faced with increased supervision.

Again, we can see that KSH consistently attains the high-
est search accuracy (hash lookup precision, MP, P-curve,
and R-curve) and the same highest hash lookup success rate
as LSH. The gain in MP of KSH ranges from 13% to 19%
over the best competitor. Referring to Sec 2.3, the spec-
tral relaxation solutions employed by KSH0 might become
poor when 𝑙 is larger, which is verified in these experiments
where KSH0 performs as poorly as LDAH. It is noticeable
that KSH with only 48 binary bits and a very limited amount
of supervised information (0.5% and 1% pseudo-labeled
samples) can retrieve about 46% groundtruth ℓ2 neighbors
(see Table 2) and reach higher precision by using longer
bits. Therefore, we can say that KSH well preserves the
ℓ2 metric similarities in the Hamming code space. Besides
the quantitative evaluations, Fig. 4 showcases some exem-
plar query images and their retrieved neighbors with 48 bits,
where KSH still exhibits the best search quality in visual
relevance. To obtain the exact rank of the retrieved neigh-
bors, we perform ℓ2 linear scan in a short list of top 0.01%
Hamming ranked neighbors like [5]. Such search time is
close to real time, costing only 0.06 second per query.

5. Conclusions

We accredit the success of the proposed KSH approach
to three primary aspects: 1) kernel-based hash functions
were exploited to handle linearly inseparable data; 2) an
elegant objective function designed for supervised hashing
was skillfully formulated based on code inner products; and
3) a greedy optimization algorithm was deployed to solve
the hash functions efficiently. Extensive image retrieval re-

sults shown on large image corpora up to one million have
demonstrated that KSH surpasses the state-of-the-art hash-
ing methods by a large margin in searching both metric
neighbors and semantic neighbors. We thus believe that
hashing via optimizing code inner products is a promising
direction, generating clearly higher quality than the hashing
methods relying on optimizing Hamming distances.

Last but not least, although in this paper we select image
retrieval as the testbed of the proposed hashing approach,
we want to further highlight that it is a general method and
can be applied to a large spectrum of information retrieval
problems such as duplicate document detection.
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