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Abstract The spectral features of hyperspectral im-

ages, such as the spectrum at each pixel or the abun-

dance maps of the endmembers, describe the material

attributes of the structures. However, the spectrum

on each pixel, which usually has hundreds of spec-

tral bands, is redundant for classification task. In this

paper, we firstly use spectral unmixing to reduce the

dimensionality of the hyperspectal data in order to

compute the abundance maps of the endmembers, since

the number of endmembers in an image is much less

than the number of the spectral bands. In addition,

using only the spectral information, it is difficult to

distinguish some classes. Moreover, it is impossible

to separate objects made by the same material but

with different semantic meanings. Some geometrical

features are needed to separate such spectrally similar

classes. In this paper, we introduce a new geometrical

feature—the characteristic scales of structures—for the

classification of hyperspectral images. With the help of

the abundance maps obtained by spectral unmixing, we

propose a method based on topographic map of images

to estimate local scales of structures in hyperspectral

images. The experiments show that using geometrical

features actually improves the classification results, es-

pecially for the classes made by the same material but

with different semantic meanings. When compared to

the traditional contextual features (such as morpholog-
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ical profiles), the local scale provides satisfactory results

without significantly increasing the feature dimension.
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1 Introduction

Hyperspectral remote sensing images provide rich in-

formation on the ground with high spatial and spec-

tral resolutions. With the help of hundreds of spectral

bands, the ability to detect and identify individual ma-

terials greatly improves. However, there are two major

difficulties if the spectral bands are directly used to

classify hyperspectral images.

The first difficulty is the high dimension of hyper-

spectral data. Hyperspectral images usually contain

hundreds of spectral bands, which considerably in-

crease the complexity of the classifier. In addition, some

bands may be severely corrupted by noise or artifact,

which will introduce errors of classification. In [9], it has

been shown that the reduction of data dimensionality

is essential as a preprocessing. For this purpose, both

supervised and non supervised methods are proposed.

The supervised methods, such as band selection [7, 20],

or Decision Boundary Feature Extraction and Non-

Weighted Feature Extraction [8], transform the data

according to the training set in order to improve the

separability of the data. However, the supervised meth-

ods depend on the quality of the training set. The unsu-

pervised methods, such as PCA (principle component

analysis) or ICA (independent component analysis),

optimize some statistical criteria (such as the most
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uncorrelated components or the most independent

components) to project the data onto a sub-space with a

lower dimension. The application of these methods on

hyperspectral data can be found in [5, 6, 16]. However,

the components obtained by optimizing the statisti-

cal criteria do not necessarily have physical meanings.

Moreover, the values of the components extracted by

the PCA or ICA are not comparable, which leads

difficulties when we compute the geometrical features

based on these components. This will be discussed more

indetail in Section 3.2. In this paper, we propose to

use Vertex Component Analysis (VCA) to reduce the

dimension of hyperspectral data [15]. We suppose that

the spectrum of each pixel is a linear mixture of the

spectra of different chemical species (referred to as

endmembers). This linear mixture model is physically

valid for the reflectance of the surface of the Earth

without being affected by the aerosol. The VCA can

separate the spectra of these endmembers and estimate

their spatial abundances. Since the number of endmem-

bers is much lower than the number of spectral bands,

these abundance maps can be considered as a compact

representation of the spectral information provided by

the hyperspectral image. For the linear unmixing, the

VCA is retained because of its low computation cost.

The unmixing of a ROSIS image with 300 × 600 pixels

and with 103 bands takes only a few seconds. In ad-

dition, the choice of linear unmixing approach is not

crucial for the classification. In practice, we found that

if the number of endmembers is the same, the spectra

and the abundance maps of the endmembers are quite

similar.

Secondly, the spectral information alone sometimes

does not allow the separation of different structures.

For example, the roofs of some buildings and the roads

can be made by the same material (asphalt). Moreover,

some classes have very similar spectral property, such

as the shadows and the water. Therefore, contextual

information, is necessary to improve the classification

performance. This can be achieved by extracting geo-

metrical features. In order to extract the contextual in-

formation from remote sensing images, one can find the

methods based on Markov Random Field (MRF) [19].

However, the MRF based methods provide only statis-

tical information on the neighborhood of the consid-

ered pixel. Another family of methods for contextual

information extraction is based on morphological oper-

ators, which allow to extract descriptive features, such

as the geometrical features about the structures [17].

Fauvel et al. [5, 6] extract the extended morphological

profiles (EMP) of the principle components of hyper-

spectral images for the classification. It has been shown

that the morphological profiles are related both to the

size and the contrast of the structures [4]. However,

since morphological methods usually require a struc-

turing element, the features extracted by such methods

depend on the used structuring element. Moreover, in

order to describe the contextual information of the

structures with different scales, one has to use the struc-

turing element with a long discrete scale range. This fact

has two major drawbacks. Firstly, the scale range has to

be chosen manually and is not necessarily well suited

to the image. Secondly, it increases considerably the

feature dimension. For example, in order to describe

the geometrical information of one pixel on a principle

component, the EMP method in [5, 6] uses eight values.

In [10], based on topographic map of gray scale image,

the authors define a characteristic scale of each pixel

in panchromatic remote sensing images. The main idea

is that for each pixel, from all the structures containing

it, we extract the structure of which the contrast is the

most important; and the scale of this structure defines

the scale of this pixel. With the help of the abundance

maps obtained by VCA, we try to extend the algorithm

presented in [10] in order to extract a local characteris-

tic scale for each pixel on hyperspectral images in this

paper. The main advantages of our proposed method

when compared to EMP are two-fold. On one hand,

no structuring element is required for this method.

Secondly, we use only one value (the local scale) to

describe the geometrical feature of a spatial position

rather than the EMP which needs many values. Prelimi-

nary results presented in [11] shows that the integration

of the scale feature can improve the classification accu-

racy of hyperspectral image over urban areas.

Support Vector Machine (SVM) is proven to be

very efficient for the classification of remote-sensing

images [13]. In particular, [9] shows that the SVMs are

very suited for the classification of hyperspectral data

when compared to other supervised classifiers (such as

neutral networks, maximum likelihood, linear discrim-

inant analysis, etc.). Therefore, in this paper, SVM is

used to classify the spectral information obtained by the

VCA and the geometrical feature extracted on hyper-

spectral images.

The outline of this paper is illustrated by Fig. 1. In

Section 2, we introduce very briefly the Vertex Com-

ponent Analysis (VCA) for estimating the abundance

maps of endmembers in order to reduce the dimension

of hyperspectral data. In Section 3, we introduce the

method presented in [10] for extracting the local scale

of panchromatic images and extend this method to

hyperspectral images. In Section 4, we classify a hyper-

spectral image by using both the spectral features and

the scale feature in order to show the efficiency of the

local scale feature.
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Figure 1 Scheme of the paper.

2 Linear Unmixing of Hyperspectral Data

We note X the matrix representing the hyperspec-

tral image cube, where X = {x1, x2, . . . , xNa
} (Na is the

total number of pixels in the image) and xk =

{x1,k, x2,k, . . . , xNs,k}
T , xl,k is the value of the kth pixel

at the lth spectral band. We assume that the spectrum

of each pixel is a linear mixture of the spectra of Nc

endmembers, leading to the following model:

X = MS + N (1)

where M = {m1, m2, . . . , mNc
} is the mixing matrix,

where mn denotes the spectrum of the nth endmember.

S = {s1, s2, . . . , sNc
}T is the abundance matrix where

sn = {sn,1, sn,2, . . . , sn,Na
} (sn,k ∈ [0, 1] is the abundance

of the nth endmember at the kth pixel). N stands for an

additive noise of the image.

In order to extract the spectra of the endmembers

and to compute their abundance maps, linear unmixing

approaches are proposed, such as the N-Finder, PPI

and VCA. N-Finder, proposed in [21], attempts to find

the simplex with the maximal volume which contains all

the hyperspectral data set. N-Finder starts from a set

of candidates which are randomly selected. Therefore

the results of the N-Finder method depend on the ini-

tialization [18]. The Pure Pixel Index (PPI), proposed

in [1], generates a large number of random unit vectors

through the data set. Every pixel is then projected

on these unit vectors. The pixels which represent the

extrema of the projections have scores. And the pixels

with highest scores are considered as the pure pixel of

endmembers. However, the results of this method also

depends on the initialization and the computation if

time consuming. In addition, as been discussed in the

Section 1, the results of different linear unmixing meth-

ods are quite similar for the purpose of classification.

Therefore, in this paper, we retain the method VCA

which is very efficient and the results do not depend on

the initialization.

In [15], the Vertex Component Analysis (VCA) is

proposed as an efficient method for extracting the

endmembers which are linearly mixed. The main idea

is to extract the vertex of the simplex formed by M

which contains all the data vectors in X. The sum of the

abundances of the different endmembers at each pixel

is one, i.e.
∑Nc

n=1 sn,k = 1, which is called the sum-to-one

condition. Therefore the data vectors xl are always in-

side a simplex of which the vertex are the spectra of the

endmembers. VCA iteratively projects the data onto

the direction orthogonal to the subspace spanned by the

already determined endmembers. And the vertices cor-

responds to the projection of the endmember spectra.

The algorithm stops when the requested number p of

endmembers are extracted. Even though the number

of endmembers is much smaller than the number of

spectral bands, i.e. p << Ns, abundance maps of the p

endmembers can provide the same spectral information

as the original hyperspectral image with Ns spectral

bands. Therefore this linear unmixing step can be con-

sidered as a dimension reduction of the data. Moreover,

the values of the abundance maps for one given pixel,

which represent the proportions of different physical

components within this pixel, are comparable. This is an

essential issue for estimating the characteristic scale of

this pixel. On the contrary, the values obtained for one

pixel by other dimension reduction methods (such as

PCA or ICA) are not comparable. In the next section,

we demonstrate that the comparability of the propor-

tions of different components obtained by VCA is very

important for extracting the local scale of a structure.

3 Local Characteristic Scale for Hyperspectral Image

3.1 Local Scales for Panchromatic Images

In [10], the authors propose a method based on the

topographic map of the image to estimate the local

scale of each pixel in the case of gray scale remote

sensing images. The idea is that, for each pixel, the most

contrasted shape containing it is extracted, and the

scale of this shape defines the characteristic scale of this

pixel. The topographic map [3], which can be obtained
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by Fast Level Set Transformation (FLST) [14], repre-

sents an image by an inclusion tree of the shapes (which

are defined as the connected components of the level

sets). An example of such inclusion tree is shown in

Fig. 2. For each pixel (x, y), there is a branch of shapes

fi(x, y) ( fi−1 ⊂ fi) containing it. Note I( fi) the gray

level of the shape fi(x, y), S( fi) its area and P( fi) its

perimeter. The contrast of the shape fi(x, y) is defined

as C( fi) = |I( fi+1) − I( fi)|. The most contrasted shape

fî(x, y) of a given pixel is defined as the shape con-

taining this pixel, of which the contrast is the most

important, i.e.

fî(x, y) = arg max
j

{C( f j(x, y)} (2)

(a)

(b)

Figure 2 Example of FLST: a Synthetic image; b Inclusion tree
obtained with FLST. All the nodes correspond to the shapes
of constant values in the image. The leaves of the tree are the
smallest shapes with constant levels. For example, for the pixels
in Shape H, the smallest shape containing them is Shape H. As
we can see H is contained by F, therefore the parent of H is F. F
is included in B; the parent of F is B. And Shape A represents the
whole image; A is therefore the root of the tree.

Since the optical instruments always blur the data,

several shapes with very low contrasts can belong to

the same structure. In order to deal with the blur, the

authors of [10] propose a geometrical criterion to cu-

mulate the contrasts of the shapes corresponding to one

given structure. The idea is that the difference of the

areas of two successive shapes (for example fi and fi+1)

corresponding to one given structure is proportional to

the perimeter of the smaller shape, i.e.

S( fi+1) − S( fi) ∼ λP( fi), (3)

where λ is a constant, which will be detailed later in

this section. This criterion is based on the fact that the

boundaries of two successive shapes ( fi and fi+1, and

fi ∈ fi+1) corresponding to the same structure caused

by blur can be approximated by two parallel curves. If

fi is convex (which indicates that fi+1 is also convex),

the area of fi+1 is then

S( fi+1) = S( fi) + λP( fi) + πλ2, (4)

where λ is the distance between the boundaries of fi

and fi+1. It depends on the quantization of the image

and the PSF (Point Spread Function) of the sensor. It is

shown in [10] that for most of remote sensing images, λ

can be fixed to 1. Therefore if we ignore the term πλ2

(which is ignorable when compared to the area of the

shapes), and if the area of two successive shapes fi and

fi+1 satisfy the criterion of Eq. 3, we consider that these

two shapes correspond to the same structure and then

cumulate the corresponding contrasts. We thus define

the cumulated contrast of a shape fi as:

C̄( fi) =

i∑

k=a(i)

C( fk), (5)

where, for all i,

a(i) = min{ j|∀k = j + 1, . . . , i, S( fk) − S( fk−1)

≤ λP( fk−1)}.

If a(i) is not defined (that is if Eq. 3 is not satisfied),

then C̄( fi) = C( fi).

Finally the definition of the most contrasted shape

and of the local scale are no longer based on the cumu-

lated contrast, i.e.

fî(x, y) = arg max
j

{C̄( f j(x, y)}. (6)

And the scale of this pixel E(x, y) is defined as the

area of the most contrasted shape divided by its perime-

ter, i.e.

E(x, y) = S( fî(x, y))/P( fî(x, y)), (7)
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so that the geometry of fî(x, y) is taken into account. In

particular, long and thin shapes (e.g., the roads) corre-

spond to relatively small scales, even though their area

can be quite large.

It is shown in [10] that this local scale corresponds

very well to the size of a structure and it is a very

significant feature for characterizing a structure in re-

mote sensing images. Remark that the most contrasted

shapes extracted in an image form a partition of this

image. We can therefore have a simplified image by

defining the value of each pixel as the mean value of the

gray levels of the pixels in its most contrasted shape, i.e.

the value of (x, y) in the simplified image is:

Ī(x, y) =

∑
(k,l)∈ fî(x,y) I(k, l)

S( fî(x, y))
(8)

where I(k, l) is the gray level of the pixel (k, l) in the

original image. This value is more significant for char-

acterizing spectrally the pixel than its original gray level

since it takes into account the contextual information.

In practice, the algorithm for computing the local

scales is implemented by using MEGAWAVE.1 The

computation time for computing the local scales of an

image with 340 × 610 pixels is 5.61 m on a workstation

with 2 Xeon processor of 3.33 GHz and 16 GB RAM.

3.2 Extension to Hyperspectral Images

In order to extend the estimation of local scale to hyper-

spectral images, the scales on all the abundance maps

of the p endmembers obtained by VCA are first com-

puted. Therefore, for each spatial position (x, y) in an

hyperspectral image, there are p scale values. For the

pixel (x, y) on the nth abundance map, we note En(x, y)

its local scale calculated by Eq. 7, fî,n(x, y) the most

contrasted shape extracted by Eq. 6, and Īn(x, y) its

value of the simplified image defined by Eq. 8. The sim-

plest way to use the scale features of a pixel is to use all

the En(x, y) values as features for classification. How-

ever, the major drawback is that if an object is mainly

made by the nth endmember, the scale values calcu-

lated on the abundance maps of the other endmembers

for this object have no meaning. Therefore, we try to

define one single scale value for each pixel which cor-

responds to the scale of this pixel on the most significant

abundance map. More precisely, since the values of

different abundance maps are comparable, the charac-

1http://megawave.cmla.ens-cachan.fr/

teristic scale at the spatial position (x, y) for a hyper-

spectral image is defined as

Ê(x, y) = En̂(x, y) (9)

where n̂ = arg maxn{C̄( fî,n(x, y))}.

For the classification, we define two feature vectors,

namely �1(x, y) and �2(x, y). For one given pixel,

�1(x, y) contains the values of the simplified image

of all the abundance maps and �2(x, y) is defined as

�1(x, y) concatenated with the local scale (x, y) defined

by Eq. 9, i.e.

�1(x, y) = { Ī1(x, y), . . . ĪNc
(x, y)}, (10)

�2(x, y) = { Ī1(x, y), . . . ĪNc
(x, y), Ê(x, y)}. (11)

The feature vector �1 can be considered as a compact

and regularized representation of the spectral infor-

mation of the image. And feature vector �2 contains

the same spectral information but also one geometrical

attribute.

It has to be remarked that this extension can only

by applied on the abundance maps derived from the

hyperspectral images by using linear unmixing ap-

proaches. The extraction of geometrical features on the

components extracted by the PCA or the ICA is im-

possible, since the values of these components are not

comparable.

4 Experiments

In this section, we will use the feature vectors �1 and �2

to classify two hyperspectral images captured respec-

tively by ROSIS and HYDICE instruments. For com-

parison, the classification results are compared with the

results obtained by using the Extended Morphological

Profiles (EMP) computed on the components extracted

by the PCA and the KPCA (Kernel PCA) [6]. The

results obtained by using EMP computed on the abun-

dance maps extracted by the VCA are also shown. The

global classification results are evaluated by using the

Overall Accuracy (OA). The OA computed for the

class c is defined as:

OAc =
#{x|L(x) = L̂(x); L̂(x) = c}

#{x|L̂(x) = c}
, (12)

where L(x) is the class assigned by the classifier for the

pixel x, L̂(x) is the real class of the pixel x. The OA

computed for all the image is defined as:

OA =
∑

c

#{x|L(x) = L̂(x); L̂(x) = c}

#{x|L̂(x) = c}
. (13)

http://megawave.cmla.ens-cachan.fr/
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(a) (b) (c)

Figure 3 a Image of Pavia University (R-band 90, G-band 60,
B-band 40); b Training set; c Test set.

4.1 Results on ROSIS Data

In this section, we classify a hyperspectral image taken

by the instrument ROSIS (Reflective Optics System

Imaging Spectrometer) over the University of Pavia,

Italy (see Fig. 3a). The image (with a spatial resolution

of 1.3 m) contains 340 × 610 pixels and 103 spectral

bands covering visible and near infrared light. The

image is manually classified into nine classes and the

definitions of these classes are shown in Fig. 4. For clas-

sification purpose, the training set contains 3,921 pixels

(see Fig. 3b) while the test set contains 4,2776 pixels

(see Fig. 3c).

According to the experiment in [5], a sub-space of

dimension 3 is necessary to retain 99% of the variance

of the data. In addition, based on observation, there

are mainly three endmembers present (vegetation, bare

soil and metal roof). We extract hence three endmem-

bers and their abundance maps by using VCA (see

Section 2), which are shown in Fig. 5a–c. Afterwards

we compute the simplified images of these abundance

maps by using Eq. 8. The simplified images are shown in

Fig. 5d–f.

According to Eq. 9, we estimate the local scale for

each pixel of this image. The scale map is shown in

Fig. 6a. Therefore the feature vector �2(x, y) of a pixel

Figure 4 Definition of the classes.

(a) (b) (c)

(d) (e) (f)

Figure 5 a–c Abundance maps of the 3 endmembers extracted
by VCA; d–f the corresponding simplified images.

(x, y) defined by Eq. 11 contains only four values:

the three values of the simplified abundance maps

( Ī1(x, y), Ī2(x, y), Ī3(x, y)) and one scale value (Ê(x, y)).

We have classified the image by using the original

hyperspectral data (all 103 bands), the feature vectors

�1 and �2 defined by Eqs. 10 and 11 respectively.

Kernel methods are proved to be efficient algorithms

for hyperspectral image classification [2]. Therefore, we

use the Support Vector Machine (SVM) with Gaussian

kernel as classifier. The optimal scale parameter of

Gaussian kernel is selected by 5-fold cross validation on

the training set.

The overall accuracies and the classification accura-

cies of each class for both cases are shown in Table 1.

In [6], the authors proposed to use PCA and Kernel

PCA (KPCA) to reduce the dimension of hyperspectral

images. Extended Morphological Profiles (EMP) are

then extracted from the principle components obtained

by PCA (three principle components are extracted)

or KPCA (12 principle components are extracted) as

features for classifying the hyperspectral image. In ad-

dition, we have computed the EMP on the abundance

maps extracted by VCA. For each abundance map, we

have computed the EMP at four scales, for each scale,
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Table 1 Classification results on ROSIS data.

Feature Original data Feature vector �1 Feature vector �2 EMPPCA [6] EMPKPCA [6] EMPVCA

Number of features 103 3 4 27 108 27

Overall accuracy 76.01% 88.60% 91.54% 92.04% 96.55% 83.44%

Tree 98.59% 93.80% 94.52% 99.22% 99.35% 98.86%

Asphalt 78.16% 88.31% 96.27% 94.60% 96.23% 89.55%

Bitumen 89.02% 83.61% 99.32% 98.87% 99.10% 92.48%

Gravel 64.55% 95.43% 84.61% 73.13% 83.66% 71.84%

(Painted) metal sheets 99.47% 93.61% 99.55% 99.55% 99.48% 99.55%

Shadow 99.89% 98.10% 96.30% 90.07% 98.31% 94.93%

Self-blocking bricks 91.01% 99.48% 99.70% 99.10% 99.46% 99.02%

Meadows 64.23% 87.77% 85.80% 88.79% 97.58% 80.11%

Bare soil 82.72% 78.37% 96.56% 95.23% 92.88% 62.95%

there are two values of EMP which respectively corre-

spond to the profiles of the two complementary mor-

phological operators. The original abundance value of

each pixel is used for the classification, too. Therefore,

the feature dimension of the EMP extracted on the

abundance maps of the VCA is (4 × 2 + 1) × 3 = 27.

In Table 1, we show the classification results obtained

in [6] on the same data set by using SVM with Gaussian

kernel.

In Fig. 6b–d, the classification results obtained on the

whole image are shown. It can be seen that by using

�2 (which contains not only the spectral information

but also the geometrical information), the classification

results improve considerably when compared to the

results obtained using the original hyperspectral data

only. Recall that the length of the feature vector �2

for each pixel is only 4 which is much less than the

number of spectral bands (103). Moreover, the results

obtained by using PCA and EMP are very similar with

the results obtained by the features proposed, since we

have previously mentioned that the major information

described by EMP on a pixel is its local scale. Indeed,

the local scale of a pixel can be considered as the

width of the morphological filter by which the absolute

differential EMP value reaches its maximum [4, 10].

However, the number of features extracted by PCA

Figure 6 a Scale map of the
ROSIS hyperspectral image,
bright pixels correspond to
large scale while dark pixels
correspond to small scales; b
Supervised classification
results obtained on original
data set; c, d Supervised
classification results obtained
by using the feature sets �1

(defined by Eq. 10) and �2

(defined by Eq. 11); e–h:
Zoom around a building on
the: e original image; f
classification results of b; g
classification results of c; h
classification results of d.

(a) (b) (c) (d)

(e) (f) (g) (h)
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and EMP is 27, which is much larger than the number

of features in �2. Even though the results obtained by

using KPCA and EMP are better than the results ob-

tained by using �2, the feature dimension, which is 108,

is even higher than the dimension of the original data

(103). And the improvement of classification accuracies

is mainly concentrated on the class of Meadows, which

is not well defined in the ground truth. In contrary, the

classification results obtained by the EMp computed on

the abundance maps extracted by the VCA are worse

than using �2, even though the feature dimension of

the EMP is much larger (27).

One should remark that in the two cases where only

spectral information is used (i.e. the original spectrum

of each pixel and the feature vector �1), the accuracies

of the classes Asphalt and Bitumen are relatively low,

since they are made by the same material. According to

the ground truth of Fig. 3c, the only difference is that

Asphalt is used for the roads while Bitumen is used

for the building roofs. However, it can be seen from

Fig. 6a that the scale values of the pixels on the building

roofs are very different from the scales of the pixels on

the roads. Therefore the classification results of these

two classes by using the feature vectors �2 are much

more accurate. This phenomenon can be illustrated by

Fig. 6e–h, where we have zoomed the classification re-

sults obtained by using the original data, and the feature

vectors �1 and �2 on a building made by bitumen

which is surrounded by a road. It can be seen that the

building roof and the road are classified as the same

class in Fig. 6f and g. In contrary, by adding the local

scale feature, these two structures are well separated

(see Fig. 6h).

4.2 Results on HYDICE Data

The HYDICE sensor (Hyperspectral Digital Imagery

Collection Experiment) has collected hyperspectral

data from Washington DC Mall covering 210 spectral

bands in the range 0.4−2.4 µm (see Fig. 7a). The spatial

resolution of this image is approximately 3 m. For

these data, we have discarded 67 spectral bands which

contain either zero value or only noise due to water

absorption. The image contains 1,280 × 307 pixels, of

which 280 pixels are selected as training set and 6,929

pixels are selected as test set. These pixels are manually

classified into seven classes (see Fig. 7b and c and

Table 2).

For HYDICE data, we use the approach pro-

posed [12] for determining the number of significant

endmembers, which is 5. The authors of [12] suppose

that the differences of the eigenvalues of the covariance

and the correlation matrix are distributed by a Gaussian

(a) (b) (c)

Figure 7 a HYDICE data on Washington (R-band 30, G-band
90, B-band 150); b Training set; c Test set.

distribution centered at zero, if these eigenvalues cor-

respond to noise. If the eigenvalues do not correspond

to noise, the differences of the eigenvalues are positive.

Therefore the maximum of the likelihood function of

the distribution of the eigenvalues correspond to the

number of endmembers. We then use VCA to extract

five endmembers. Figure 8 presents the abundance

maps of the five endmembers extracted by using VCA

and the simplified abundance maps.

Table 2 Number of pixels and thematic color of each class in the
ground truth of HYDICE data.

Class

1. Roof

2. Road

3. Trail

4. Grass

5. Tree

6. Water

7. Shadow

Training set

40

40

40

40

40

40

40

Test set

3,794

376

135

1,888

365

1,184

57

Color
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Figure 8 a–e Five abundance
maps obtained by linear
unmixing on HYDICE data;
f–j the corresponding
segmented abundance maps.
For visualization, the gray
levels of each figure are
linearly normalized to
[0, 255].

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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Table 3 Classification results obtained on HYDICE data.

Feature Original data Feature vector �1 Feature vector �2 EMPPCA [6] EMPKPCA [6] EMPVCA

Number of features 191 5 6 360 108 45

Overall accuracy 99.43% 99.43% 99.43% 98.64% 98.73% 98.62%

Roof 99.92% 99.09% 99.09% 97.52% 97.52% 97.63%

Road 97.11% 98.56% 98.56% 99.52% 98.80% 99.04%

Trail 100% 100% 100% 100% 100% 100%

Grass 99.63% 100% 100% 100% 100% 100%

Tree 97.53% 100% 100% 99.51% 99.51% 100%

Water 99.91% 100% 100% 99.92% 99.92% 99.92%

Shadow 87.62% 94.85% 94.85% 89.69% 100% 84.54%

The training set contains 280 pixels and the test set

contains 8,079 pixels. We use SVM with Gaussian ker-

nel to classify this image, and 5-fold cross validation is

used for determining its optimal scale parameter.

In Table 3, the classification results obtained on the

HYDICE data by using respectively the original spec-

tra, the feature vector �1 (see Eq. 10) and the feature

vector �2 (see Eq. 11) are shown. For comparison,

the results obtained in [6] on the same data set by

using EMP on the principle components computed by

PCA and KPCA are also shown. The results obtained

by using EMP computed on the abundance maps of

the five endmembers are also shown. It can be seen

from Table 3 that all the classification accuracies are

very similar. This is because the test set is too small.

However, the classification results obtained by using

feature vectors �1 and �2 are slightly better than the

results obtained in [6], even though the feature length

of �1 and �2 is much lower.

In order to show the efficiency of the scale feature

for classification, in Fig. 9, the scale map computed by

Eq. 9 as well as the classification results on the whole

HYDICE image by using the original spectra, the fea-

ture set �1 and �2 are shown. From Fig. 9b and c where

Figure 9 a Local scale values
computed by Eq. 9 on
HYDICE data, bright pixels
correspond to large scales
while dark pixels correspond
to small scales;
b Classification results
obtained with only the
original spectral information;
c, d Classification results
obtained by using feature
vectors �1 and �2,
respectively.

(a) (b) (c) (d)
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only spectral information is used for classification, it

can be seen that the class of Water and the class of

Shadow are very often mixed, since their spectral prop-

erties are quite similar. However, since usually water

areas occupy much larger surface than shadow, the

scale values of the class of Water are larger than the

class of Shadow (see Fig. 9a). Therefore, if scale values

are added for classification, these two classes are better

separated in Fig. 9d.

5 Conclusion

In this article, we have proposed to integrate geomet-

rical feature, the characteristic scales of structures, for

the classification of hyperspectral images. In order to

reduce the dimension of the data, we used a linear

unmixing algorithm to extract the endmembers and

their abundance maps contained in a hyperspectral

image. The abundance maps can be considered as a

compact representation of spectral information of this

image, since the number of endmembers contained in a

hyperspectral image is much smaller than the number

of spectral bands. With the help of these abundance

maps, we extend the method proposed in [10] to hyper-

spectral images to estimate the characteristic scales of

the structures. SVMs are then used for classifying two

hyperspectral images over urban areas with the help

of the abundance maps and the characteristic scales.

The experiments show that with the use of the scale

feature, the classification results improve considerably,

especially for the objects made by the same material but

with different semantic meanings. By using the features

proposed, the classification results are very similar to

the results obtained by using the methods based on

PCA and EMP, even though the number of features

proposed is much lower.
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