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Abstract

Background—Infectious diseases result in millions of deaths each year. Physical interactions

between pathogen and host proteins often form the basis of such infections. While a number of

methods have been proposed for predicting protein–protein interactions (PPIs), they have

primarily focused on intra-species protein–protein interactions.

Methodology—We present an application of a supervised learning method for predicting

physical interactions between host and pathogen proteins, using the human–HIV system. Using a

Support Vector Machine with a linear kernel, we explore the use of a number of features including

domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI

network. We achieve the best cross-validation performance when we use a combination of all

three of these features. At a precision value of 70% we obtain recall values greater than 40%,

depending on the ratio of positive examples to negative examples used during training. We use a

classifier trained using these features to predict new PPIs between human and HIV proteins. We

focus our discussion on those predicted interactions that involve human proteins known to be

critical for HIV replication and propagation. Examples of predicted interactions with support in

the literature include those necessary for viral attachment to the host membrane and subsequent

invasion of the host cell.

Significance—Unlike intra-species PPIs, host–pathogen PPIs have not yet been experimentally

detected on a large scale, though they are likely to play important roles in pathogenesis and

disease outcomes. Computational methods that can robustly and accurately predict host–pathogen

PPIs hold the promise of guiding future experiments and gaining insights into potential

mechanisms of pathogenesis.
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1. Introduction

Infectious diseases cause millions of deaths each year. Despite enormous effort, many

mechanisms of infection and pathogenesis still remain poorly understood. A potentially

powerful application of protein–protein interaction (PPI) networks lies in using them to

obtain insights into the molecular mechanisms underlying infectious diseases, especially

since interactions between pathogen proteins and host proteins play key roles in initiating

and sustaining infection. In a recent study, we surveyed the landscape of human proteins that

interact with viruses and other pathogens (Dyer et al., 2008). We collected host–pathogen

PPIs from seven public databases. Apart from strains of HIV and four other viruses, we

found that for every other pathogen, at most 100 physical interactions are currently known

between proteins in that pathogen and human proteins. Therefore, the severe lack of large-

scale datasets detailing interactions between host and pathogen proteins is a significant

hurdle to progress in host–pathogen systems biology. Consequently, it becomes imperative

to develop computational methods that can robustly and accurately predict host–pathogen

PPIs. Such predictors can guide cost effective experimental strategies to detect host–

pathogen PPIs, drive research on how pathogens infect host cells, and help identify potential

targets for therapeutics.

While a number of methods have been proposed for predicting PPIs, they have primarily

focused on intra-species PPIs (Jansen et al., 2003; Ng et al., 2003; Pellegrini et al., 1999; Qi

et al., 2006; Sharan et al., 2005; Sprinzak and Margalit, 2001; Yu et al., 2004; Zhang et al.,

2004). Applying these methods to host–pathogen systems is made difficult by two factors.

First, as we have already noted, experimental studies on most human pathogens have so far

detected very small numbers of PPIs, making it difficult to build comprehensive training

sets. Second, a number of data types used as features by previous methods, such as gene

expression and knockout phenotypes, are not readily available for host–pathogen systems.

We are aware of only a few computational methods for predicting host–pathogen PPIs (HP

PPIs). Despite these limitations, methods using sequence-signature pairs and homology have

been used to predict HP-PPIs (Davis et al., 2007; Dyer et al., 2007; Krishnadev and

Srinivasan, 2008; Lee et al., 2008; Qi et al., 2010).

In this paper, we build a supervised predictor for human–HIV PPIs. We have selected this

system because (i) HIV is a retrovirus that can lead to a failure of the immune system

(AIDS), which kills millions of people yearly and (ii) successful prediction of PPIs for this

well-studied host–pathogen system will set the stage for subsequent work on other less-

studied systems.

We obtained known human–HIV PPIs from a number of small-scale experiments and from

manually curated data. We used these data to train a Support Vector Machine (SVM)

classifier using different combinations of features, including domain profiles, frequencies of

protein sequence k-mers, and network characteristics of the human interactors in a human

PPI network. We compared the performance of an SVM with a linear kernel on different

combinations of features. We found that using a combination of protein sequence four-mers,

protein domains, and PPI network information achieves the best performance, with precision

greater than 70% for recall greater than 40%, depending on the ratio of positive examples to

negative examples used during training.

We used this predictor to identify potentially novel viral interacting partners for human

proteins. We focused our attention on those human proteins that are known to play an

important role in HIV infection (Brass et al., 2008). Many predicted interactions involving

these human proteins had considerable support in the literature. These interactions illustrate

how the virus has evolved to manipulate host cellular processes to carry out successful
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pathogenesis. For example, predicted interactions with human cell surface proteins and

human nuclear pore proteins are known to play a critical role in the initial invasion of the

cell and subsequent movement of viral material across the nuclear membrane. We discuss in

depth predicted interactions involving these and other host proteins.

2. Results and discussion

Our analysis contained two components. First, we compared SVM results using different

feature combinations to identify which subset of features achieved the best performance.

Second, we used this set of features to predict new PPIs between human and HIV proteins.

The complete list of predicted interactions can be seen in Supplementary Files S1–S3. Each

file corresponds to a different ratio of positive examples to negative examples, as further

explained below.

2.1. Predictive feature sets

SVMs need both positive and negative examples in the training set. We generated three sets

of negative examples (NEs), containing 25, 50, and 100 times the number of pairs of

positive examples (PEs). Please see Section 3.4.1 for details. We refer to these datasets

using the phrases “1:25 PE:NE ratio,” “1:50 PE:NE ratio,” and “1:100 PE:NE ratio.”

We measured the performance of SVMs trained using different amino acid k-mer sizes using

4-fold cross validation (see Fig. 1(a)–(c)). We computed the area under the precision/recall

curve (AUC-PR) in order to compare the performance of different feature sets

quantitatively. High AUC scores are characteristic of good predictors. At the 1:25 PE:NE

ratio the 4-mer model performed the best with an AUC-PR of 0.373. At the 1:50 PE:NE

ratio the 4-mer and 5-mer models had the same AUC-PR score of 0.251. Finally, at the

1:100 PE:NE ratio, the 5-mer model had the best AUC-PR score of 0.204. Subsequent

analyses showed that the 4-mer model has the best area under the receiver operation

characteristic curves (AUC, data not shown). Since the 4-mer model consistently had the

highest or close to the best AUC-PR and AUC in all these tests, we used it in the rest of the

analysis.

Fig. 1(d)–(f) displays the precision/recall curves for each of the PE:NE ratios and with

different combinations of features: domains (D), protein sequence 4-mers (K), and network

properties (N). We performed the analysis for all possible combinations of features, except

for the single feature N, since the coverage of this feature was very sparse. As described in

we also computed the AUC-PR values to quantitatively compare the performance of the

different feature sets. At all three PE:NE ratios, the model trained using domains, amino acid

4-mers, and network properties (DKN) had the highest AUC-PR scores. The scores were

0.707, 0.630, and 0.505 for the 1:25, 1:50, and 1:100 ratios, respectively.

Since we used randomly chosen protein pairs as negative examples, we estimated the

robustness of our results to the specific choice of negative examples. We repeated our

analysis with ten different randomly generated sets of negative examples. Given our finding

that the DKN feature set had the highest AUC-PR score across all three PE:NE ratios, we

performed this analysis solely on this feature set. The results show that the variability over

different sets of NEs is very small, as can seen by the small error bars in Supplementary Fig.

S1 in the precision–recall curves, for values of recall at least 0.1. We concluded that the

precise set of randomly selected negative examples did not have much influence on the

results.
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2.2. Feature importance

Since we used SVMs with linear kernels, we reasoned that the magnitude of the coefficients

of the separating hyperplane may allow us to estimate each feature’s importance. Although

the separating plane is defined by all features with non-zero coefficients, focusing on

features with the largest coefficients yields a qualitative feel for the relative contributions of

different features. For each PE:NE ratio, we constructed the SVM model corresponding to

the DKN feature set. Several domain pairs appear in the top ten features for all PE:NE

ratios. The top ranked feature is the human domain “Four-helical cytokine, core

(IPR012351)” and the HIV domain “HIV transactivating regulatory protein Tat

(IPR001831)”. Cytokines are a class of proteins that are used extensively in cellular

communication and signaling, and in the activation of apoptotic pathways. The viral protein

Tat is known to play a critical role in the disruption of normal cell signaling pathways such

as the apoptotic pathway (Cossarizza, 2008). Another example is the third ranked domain

pair consisting of the human domain “Clathrin adaptor (IPR000804)” and the HIV domain

“HIV negative factor Nef (IPR001558)”. The viral Nef protein has been shown to play an

important role in disrupting the AP2M1 clathrin adapter pathway by inducing the formation

of clathrin-coated pits in the presence of CD4 in an effort to accelerate the rate of

endocytosis (Foti et al., 1997; Swigut et al., 2001).

While we have not found evidence that these interactions are mediated by the domains, our

observations could act as the basis for future mechanistic studies of how HIV proteins

interact with human proteins. Supplementary Files S4–S6 contain the lists of all the features

used in the three training sets along with the coefficients in the separating hyperplane.

To study the robustness of these results, we performed the following analysis. For each

PE:NE ratio, we used the training set to compute the coefficients for each feature. Next we

randomly shuffled the labels between the true positive and true negative interactions and

repeated the analysis. After performing this step 100 times, we computed the p-value of each

feature as the number of random iterations that produced a coefficient at least as large in

magnitude as the coefficient computed with the true training set. We observed that none of

the top 25+ features had a p greater than 0, i.e., we were not able to generate a random set of

data that could generate a feature coefficient at least as large as in the real dataset.

2.3. Literature-based validation of predicted PPIs

Recently Brass et al. (2008) performed a genomic siRNA screen to identify HIV

dependency factors (HDFs). By measuring levels of viral protein expression or production

of infectious viral particles in human cells after knocking down individual genes, they

searched for human genes that are required for HIV to undergo viral replication. Since

silencing these genes is not lethal to the cell, HDFs may include many potential host-based

therapeutic targets.

In this section, we focus our discussion on PPIs predicted by our approach where the human

protein is an HDF found by Brass et al. (2008). We predicted 46 human–HIV PPIs involving

HDFs at the 1:25 PE:NE ratio. We considered a protein pair to be a predicted interaction if

the SVM trained on all positive and negative examples assigned that pair a positive score.

This score corresponds to a precision of 74.3% and a recall of 65.5%. See Table 1 for a

summary of our predictions and Fig. 2 for a visualization of HDFs for which we predict

PPIs. Below we discuss predicted interactions involving HDFs that have support in the

literature. We did not include the NCBI human–HIV PPI database (Fu et al., 2009) in our set

of positive examples. While some of the interactions from our positive examples may be

included in this database, we found the NCBI database to be a fertile source for validating
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our predictions. We were able to find literature support for many of our predictions and we

discuss those here.

Manipulation of intracellular signaling pathways via cell-surface receptors is a well-

established characteristic of HIV infection (Popik and Pitha, 2000). We made several

predictions for host proteins found on the cell surface and participating in various signaling

pathways. For example, we predicted interactions involving host HDFs Epidermal Growth

Factor (EGF) and EGF Receptor (EGFR). These proteins play a critical role in the regulation

of cell growth, proliferation, and differentiation. In particular the EGF–Tat and EGFR–Gag

interactions have been shown to be critical for promoting cell growth via the host EGF

pathway leading to enhanced HIV replication (Nabell et al., 1994; Valiathan and Resh,

2004). We predict both interactions.

CD4 positive helper T cells are the primary substrates of HIV. T cells are responsible for

activating and directing other immune cells that lack cytotoxic and phagocytic activities, i.e.,

these cells cannot kill infected cells or pathogens directly. We made several predictions for

both the host CD4 proteins, which are supported by the literature. Predicted interacting

partners for the host CD4 protein include the viral proteins Vpu and Nef. These interactions

have been linked to a depletion of CD4 proteins on the cell surface (Chen et al., 1996).

Reduction in the number of CD4+ cells weakens the host’s immune system and makes it

more susceptible to infections. Although the direct mechanism is not clear, it has been

shown that down regulation of CD4 is required for HIV infection (Tanaka et al., 2003).

We predicted that human HDFs PPP2R2A and PSME2 proteins interact with the HIV Tat

protein. Both human proteins are localized to the cytoplasm. PPP2R2A is one of four major

Ser/Thr phosphatases that plays a role in the negative control of cell growth and division.

During pathogenesis, the interaction between PPP2R2A and Tat has been observed to play a

key role in Tat’s ability to act as a transcription factor in the increased production of viral

material (Ruediger et al., 1997). Host PSME2 is a subunit of the protein complex

responsible for activating the proteosome complex and enhancing the generation of major

histocompatability complex class I binding peptides. Viral Tat has been shown to interfere

with the antigen presentation via this interaction (Huang et al., 2002; Seeger et al., 1997),

leading to a failure of the human immune system to recognize HIV infected cells.

Since viruses lack the machinery needed to replicate their genomes, viral genetic material

must first cross the barrier from the cytoplasm into the nucleus in order to make use of the

host’s transcriptional machinery. The nuclear pore complex is a large protein complex that

spans the nuclear membrane and allows for the transport of molecules across the nuclear

envelope including proteins and RNA. We predicted interactions between several viral

proteins and host HDFs that are known to be part of the nuclear pore complex including

NUP107, NUP133, NUP153, NUP155, and NUP160. One of the predicted interactors is the

viral Vpr protein. Viral Vpr has been shown to localize at the nuclear envelope and interact

with several nuclear proteins (Le Rouzic et al., 2002). This interaction has been linked with

Vpr’s ability to drive the cell into G2 cell cycle arrest resulting in the activation of apoptotic

pathways (Andersen et al., 2006). We also predicted interactions of these host HDFs with

the viral Tat protein. While no direct interaction has been observed between viral Tat and

these nuclear pore proteins, Tat has been shown to possess a Nuclear Localization Sequence

(NLS) and is capable of transporting material across the nuclear membrane through the

nuclear pore (Efthymiadis et al., 1998). Thus, the predicted interactions involving the viral

Tat protein and these host HDFs may be worthy candidates for experimental validation.

Within the nucleus of the host cell, we made several predictions involving host HDF

proteins. A goal of these interactions may be to modulate and manipulate host immune
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response pathways in order to assure continued survival of the virus. One example that

highlights this strategy is the predicted interaction between the host HDF RelA and the viral

Vpr proteins. RelA is part of the NFκB complex. NFκB is a transcription factor that

regulates many biological processes such as inflammation, immunity, and apoptosis. The

interaction with Vpr has been shown to inhibit the nuclear translocation of NFκB, thus

preventing the host from mounting a successful immune response (Venkatachari et al.,

2007).

HIV also makes use of host proteins to drive the expression of its own genetic material. One

such example is the host CCNT1 protein, which is a cyclin. Cyclins function as regulators of

cyclin dependent kinases, which play an important role in cell cycle progression. Two of the

predicted partners of CCNT1 are the viral proteins Tat and Vpr. CCNT1 serves as an

essential cofactor for Tat. The interaction between these two has been shown to increase

Tat’s affinity for the transactivating response RNA element (TAR) allowing the

transcription of viral genes (Bieniasz et al., 1999). The viral Vpr protein has been shown to

interact with CCNT1 in tandem with viral Tat to modulate transcription of the viral genome

(Sawaya et al., 2000). HIV must also recruit host polymerases to translate viral genetic

material. We predict an interaction between the human POLR3A, a DNA-dependent RNA

polymerase, and the viral Tat protein. The HIV Tat protein has been shown to upregulate

transcription by POLR3A, leading to an increased production of viral proteins (Jang et al.,

1992).

3. Materials and methods

We first describe the classifier we used to predict human–HIV HP-PPIs. Next, we present

the features we included in this classifier. Finally, we describe our validation protocol.

3.1. Support Vector Machines

The Support Vector Machine (SVM) is a powerful and popular approach in machine

learning for classification problems. Given a training set S with each vector in S associated

with a label equal to 1 or −1, an SVM classifier computes a hyperplane separating the

vectors in S with label 1 from the vectors with label −1, optionally after projecting the

vectors to a higher-dimensional feature space. The projection is often represented compactly

by a kernel function. An important feature of SVMs is that the separating plane has

maximum margin, which is the distance from the separating plane to the closest vector.

In this study, we used an SVM classifier with a linear kernel, i.e., we performed no

projection. We also evaluated SVM classifiers with radial basis kernels. We omit these

results since the improvement over the linear kernel was marginal. For each host–pathogen

protein pair (p, q), we computed a vector of different protein features f(p,q), as explained in

the next section. Let S be a training set consisting of (f(p,q), l) pairs, where l ∈ {−1, 1} is the

class label of the PPI (p, q). In our case, the labels 1 and −1 corresponded to the classes

“PPI” and “non-PPI,” respectively.

3.2. PPI features

We considered three types of protein features in this study: domains (D), protein sequence k-

mers (K), and properties in the intra-species human PPI network (N). We explain the

rationale for including each of these features below.

3.2.1. Domains (D)—Physical interactions between proteins are often mediated by

specific domains (Pawson and Nash, 2003). Previous research has demonstrated the utility
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of protein-domain information in predicting both intra-species PPIs (Ng et al., 2003;

Sprinzak and Margalit, 2001) and host–pathogen PPIs (Dyer et al., 2007).

Let Mp be the set of domains present in a protein p and let M be the set of all domains, over

all proteins in our dataset. Our feature vector contained one binary feature for every pair of

domains in M × M. For a PPI (p, q), we set the features corresponding to each of the domain

pairs in Mp × Mq to be 1 and the remaining features to be 0. We encoded the domain features

using pairs of domains since the interaction is often contingent on the presence of the pair.

An alternative method that we considered was to compute the probability that a protein pair

would contain a pair of domains given that the proteins interacted in the training set. We

refrained from using this approach because these probabilities cannot be computed

accurately for the currently sparse human–HIV PPI datasets.

3.2.2. Protein sequence k-mers (K)—Since the sequence of a protein determines its

structure and consequently its function, it may be possible to predict PPIs using the amino

acid sequence of a protein pair. Shen et al. (2007) introduced the “conjoint triad model” for

predicting PPIs using only amino acid sequences. Shen et al. (2007) partitioned the twenty

amino acids into seven classes based on their electrostatic and hydrophobic properties. For

each protein, they counted the number of times each distinct three-mer (set of three

consecutive amino acids) occurred in the sequence. To account for protein size, they

normalized these counts by linearly transforming them to lie between 0 and 1 (see (Shen et

al., 2007) for details). They represented the protein with a 343-element feature vector, where

the value of each feature is the normalized count for each of the 343 (73) possible amino

acid three-mers. In this paper we explored the use of two-, three-, four-, and five-mers. For

each host–pathogen protein pair, we concatenated the feature vectors of the individual

proteins. Therefore, each host–pathogen protein pair had a feature vector of length at most

98, 646, 4802, and 33614, in the cases of two-, three-, four-, and five-mers, respectively.

3.2.3. Network properties (N)—Recent studies have suggested that pathogens have

evolved to interact with human proteins which are hubs (proteins with many interacting

partners) (Dyer et al., 2008; Calderwood et al., 2007) and bottlenecks (proteins that are

central to many paths in the network) (Dyer et al., 2008) in the human PPI network. We

represented the human PPI network as an undirected graph G= (V,E), where V was the set of

human proteins and E was the set of PPIs between them. We defined the degree of a protein

in a PPI network as the number of interactions in which it participates, not including self-

interactions. We defined the betweenness centrality bc(v) of a protein v as the fraction of

shortest paths in G between all protein pairs (u, w) that pass through the protein v. Given u,

v, w ∈ V, let σuw denote the number of shortest paths between proteins u and w. Let σuw(v)

denote the number of these that pass through v. Then the betweenness centrality of v is

In our analysis, we divided bc(v) by the number of pairs of nodes in G, yielding a quantity

between 0 and 1. We used the algorithm devised by Brandes (2001) to compute the

betweenness centrality of all nodes in G. For each host–pathogen protein pair, we included

two features corresponding to these properties: an integer-valued feature for a human

protein’s degree and a real-valued feature for its betweenness centrality.
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3.3. Evaluation of performance

We tested the predictive power of six combinations of features: D, DK, DKN, DN, K, and

KN using four-fold cross validation. To obtain feature vectors for a particular combination,

we simply concatenated the vectors for the individual features. We did not test the predictive

power of the N feature set alone because the coverage of these features is small. We used the

SVMLight package (Joachims, 1999) for training and testing SVMs. In this package, the

parameter C controls the trade-off between maximizing the margin of the separating plane

and minimizing the mis-classification error. We systematically varied C, trying alternate

powers of 2 between 2−5 and 217 (i.e., 2−5, 2−3, …, 215, 217). For each choice of C, we

counted the number of true positives (TP), false positives (FP), true negatives (TN), and

false negatives (FN) and computed accuracy (TP + TN/(TP + FP + TN + FN)), precision

(TP/(TP + FP)) and recall (TP/(TP + FN)). For each feature combination, we based further

analyses and predictions on the value of C that yielded the maximum accuracy for that

combination. We plotted precision/recall curves by varying the threshold on the score

assigned to protein pairs by the SVM classifier; we considered protein pairs above the

threshold to be interacting and those below the threshold as non-interacting.

3.4. Data sets used

We used the Uniprot database (Bairoch et al., 2005) as a source for protein sequence

information. We used InterProScan (Quevillon et al., 2005) to determine protein domains.

All data used in this study were downloaded in February 2008.

3.4.1. Gold standard datasets—We gathered 1028 human–HIV (isolate HXB2 group

M subtype B) PPIs from four public databases: the Biomolecular Interaction Network

Database (Gilbert, 2005), the Database of Interacting Proteins (Salwinski et al., 2004),

IntAct (Hermjakob et al., 2004), and Reactome (Joshi-Tope et al., 2005). These PPIs formed

our positive examples. We also constructed a human intra-species PPI network containing

78,804 PPIs using these four databases along with three additional sources: the Human

Protein Reference Database (Mishra et al., 2006), the Molecular INTeraction Database

(Zanzoni et al., 2002), and the Munich Information Center for Protein Sequences (Guldener

et al., 2006). We used the intra-species network to compute each human protein’s degree

and centrality.

Selection of negative examples is a well-recognized challenge for PPI prediction since

biological datasets rarely include pairs of proteins that are known not to interact (Ben-Hur

and Noble, 2006). The number of truly interacting pairs of human–HIV proteins is likely to

be far less than the total set of protein pairs. Therefore, we generated negative examples by

randomly pairing human and HIV proteins. In doing so, we ensured that no randomly

generated protein pair was already known to interact, i.e., was a positive example. Since we

did not know the true number of non-interacting pairs of human–HIV proteins, we tested our

prediction methodology with different numbers of negative examples. Specifically, we

generated 25, 50, and 100 times as many negative examples as positive examples. Our

rationale for trying different PE:NE ratios was that we could observe how the precision and

recall of our methodology varies with increasing PE:NE ratio. We used these trends to guide

our decisions on which combinations of feature sets achieved the best performance, as

explained in Section 3. We note that the true PE:PN ratio is likely to be much smaller than

1:100. As more human–HIV PPIs are detected experimentally, our methods will be able to

handle lower PE:PN ratios.
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4. Conclusions

We have presented an application of a supervised machine learning method to predict

human–pathogen PPIs. Our goal was to predict new physical interactions between human

and pathogen proteins that may be critical to pathogenesis. Important aspects of our work

include the comparison of different features and their combinations and observing the

performance of the predictor for multiple PE:NE ratios. We applied our methodology to the

human–HIV system. We found that a model trained using domain-profiles, sequence four-

mers, and network characteristics of the human proteins achieved the best performance upon

cross validation. When we used this model to predict PPIs involving human proteins known

to be critical for HIV infection, we succeeded in predicting many interactions supported by

the literature. We expect that other predicted interactions will provide further insights into

why these host proteins are critical for HIV. A key extension of this work is to integrate

additional types of data (e.g., gene expression) so as to improve the robustness and accuracy

of our predictions. It is unclear at this moment how big a host–pathogen interactome will be,

especially in the case of RNA viruses such as HIV that have a small number of proteins. As

more interactions are identified it will become possible to robustly estimate the size of the

host–pathogen interactome in a similar manner to estimates of the sizes of intra-species

interactomes (Stumpf et al., 2008). Another important analysis will be to extend this work to

other host–pathogen systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Precision/recall curves for different PE:NE ratios. (a)–(c) Results for four different amino

acid k-mer sizes. (d)–(f) Results for combinations of amino acid 4-mers with other features.

For each feature set, the AUC-PR score is shown within parentheses.
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Fig. 2.

Image taken with permission from Brass et al. (2008) and modified. Nodes are HDFs found

by Brass et al. (2008). Green nodes are HDFs for which we predict PPIs at the 1:25 PE:NE

ratio. Red nodes are HDFs for which we do not predict PPIs. For the sake of clarity, we do

not show predicted HIV interactors in the image. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of the article.)
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Table 1

Summary of the number of predicted PPIs. For each PE:NE ratio, we list the total number of predicted

interactions and the number of these that involve HDFs.

PE:NE ratio

1:25 1:50 1:100

# Predicted PPIs 1111 506 182

# Predicted PPIs involving HDFs 46 33 16

Infect Genet Evol. Author manuscript; available in PMC 2012 July 1.


