
 1

Abstract - This paper presents a supervised learning based power

management framework for a multi-processor system, where a

power manager (PM) learns to predict the system performance

state from some readily available input features (such as the

occupancy state of a global service queue) and then uses this

predicted state to look up the optimal power management action

(e.g., voltage-frequency setting) from a precomputed policy table.

The motivation for utilizing supervised learning in the form of a

Bayesian classifier is to reduce the overhead of the PM which has

to repetitively determine and assign voltage-frequency settings for

each processor core in the system. Experimental results

demonstrate that the proposed supervised learning based power

management technique ensures system-wide energy savings under

rapidly and widely varying workloads.

Index Terms — Bayesian classification, dynamic power

management, machine learning, multi-processor system,

supervised learning

I. INTRODUCTION

ngoing demand for high performance – yet thermally

sustainable - processing have resulted in the introduction

of chip multiprocessor architectures to enable continued

performance scaling without having to increase the chip clock

frequencies beyond a few GHz. At the same time, there are

strong motivations (i.e., dollar cost of energy consumption,

thermal power budget constraint, service life of the system in

between batter recharges in case of mobile platforms) to make

multi-core processing platforms power and energy efficient.

Conventional dynamic power management (DPM) methods

have not been able to take full advantage of power-saving

techniques such as dynamic voltage and frequency scaling

(DVFS). This is because i) the system-level power manager has

a limited opportunity to utilize DVFS due to the energy and

delay overheads incurred during power mode transitions [1],

and ii) the power management algorithm (process), which

continuously monitors the workloads of multiple processors,

analyzes the information to make decisions, and issues DVFS

commands to each processor, can give rise to a considerable

computational overhead and/or complicate the task

scheduling [2]. The higher the number of cores in the processor

is, the more severe these issues become. Therefore, the ability

of a DPM framework to scale well on a multicore processor by

eliminating these overheads is becoming a critical

requirement [3] [4].

In the literature, DPM is typically referred to a strategy

whereby a resource manager (hardware, firmware, or the

operating system) turns of or off the processing cores when

they are idle (or new tasks arrive). In contrast, DVFS is defined

as a technique which dynamically varies the supply voltage and

operating frequency values applied to the processing cores in

response to load conditions or workload characteristics. It is

easy to see that DPM can be easily combined with DVFS, i.e., a

power manager may not only issue commands to various

processing cores to turn on or off, but also change their

power-performance state by issuing DVFS commands. In our

paper, however, we do not consider power gating as an option,

i.e., when we speak of DPM, we mean DPM using DVFS as the

power optimization level only.

The problem of determining a power management policy

that applies DVFS to a multicore processor has recently

received a lot of attention – see, for example, [5]- [10].

Although these techniques perform system-level DPM or

DVFS for multicore processors, little attention has been paid to

improve decision-making strategy which minimizes the

overhead of a power manager (PM), i.e., to devise a

learning-based power management policy that can quickly

analyze some easily available input features (i.e., quantifiable

features of the system under consideration) and accurately

predict the overall system performance state, which is

subsequently used to choose and issue the “optimal action”.

Traditional approaches for DPM, which are based on models

of service requestor (SR), service provider (SP), and service

queue (SQ), tend to work very well if the workload of the

system does not change rapidly. In such a case, the energy and

delay overheads of power mode transitions can become quite

significant, rendering the DPM strategy ineffective. Indeed,

adaptive power management techniques are unsuccessful in

reducing the total chip power dissipation when the overhead of

power-mode transitions is not controlled in a multicore

processor, which is subjected to frequent changes in the load

conditions [10]. Our thesis is that knowing (or predicting) in

real time which frequency and voltage levels to use, and when

to apply a new performance setting in a multicore processor,

must be done with the aid of a self-improving (i.e., intelligent

and autonomous) power manager that can detect the load

conditions and react appropriately.

In this paper, we address a dynamic power management

problem where a PM continuously issues power mode

transition commands to maximally exploit the power-saving

opportunities. The overhead associated with the functioning of

the PM to monitor the workload of the system and make

decisions about performance mode (voltage and frequency

level) of different cores in a multicore processing system tends

to be high. This paper thus describes a supervised learning [11]

based DVFS for the multicore processor, which enables the PM

to predict the performance state of the processor for each

incoming task by inspecting some readily available input

features, followed by a Bayesian classification technique.

Supervised learning (SL) refers to the formal theory of

developing computational models for learning behaviors of

agents as part of the machine learning discipline [11] [12]. The

key rational for utilizing SL for power management is to reduce

Supervised Learning Based Power Management for

Multicore Processors

Hwisung Jung, Student member and Massoud Pedram, Fellow, IEEE

O

 2

the overhead of the PM. Experimental results demonstrate the

effectiveness of the proposed power management framework

and show that it achieves sizeable system-wide energy savings

under rapidly varying workloads in a wired communication

application scenario.

In the remainder of this paper we use the terms chip multi

processor (CMP) and multi-processor system (MPS)

interchangeably. Moreover, we assume that the different cores

within a CMP or the different processors within a MPS can be

independently turned on/off or voltage and frequency scaled.

We realize that the current generation of CMP designs (see for

example Intel Nehalem [53]) do not offer per-core dynamic

voltage and frequency scaling, but expect that the future

generations of the CMP designs will support this important

power/performance scaling feature. Regardless, the proposed

approach can be applied to different processors in a MPS (e.g.,

a Blade server used in datacenters).

The remainder of this paper is organized as follows. Section

II provides background of this paper while section III describes

some related work. Section IV provides the details of proposed

supervised learning based power management framework. An

extraction strategy for input features and output measures is

described in section V. In section VI, we present a stochastic

policy optimization technique. Experimental results and

conclusion are given in section VII and section VIII.

II. BACKGROUND

Consider a power-managed MPS, where each processor is

equipped with multiple power-saving modes (i.e., different

DVFS settings). A system-level PM dynamically assigns the

DVFS setting for each processor based on its workload as is

shown in Fig. 1 for a distributed shared-memory MPS.

The figure also shows a dynamic load balancing block which

enables high-throughput and low-latency data flow for each

processor and a control unit which ensures cache coherency.

The flow queue (i.e., receive queue) interacts with the PM by

providing information about a processor’s workload for the

purpose of controlling the performance state of the processor.

The PM, which profiles and analyzes the workload

characteristics i.e., the arrival rate of tasks by examining the

flow queue, determines and executes a power management

policy (i.e., one that maps workloads to power state transition

commands) so as to minimize the system energy dissipation.

Details of the processor functionality are omitted here for

brevity. Interested readers may refer to [13] [14] [15].

When tasks are given to a MPS, the dynamic load balancing

block (i.e., SR) dispatches each task into some flow queue (i.e.,

local SQ). Each processor (i.e., SP) reads the assigned tasks

from its SQ. At regular time instances (or aperiodic times

dictated by interrupts), called decision epochs, the PM

determines the workload of the processor by checking the

occupancy state of its SQ, and subsequently, assigns a DVFS

value to the processor. Note that the decision epochs are

separated by a fixed (or some average) time interval; the shorter

this time interval is, the higher the delay and energy dissipation

overheads of the PM are. This is because the DVFS method

utilizing a DC-DC converter with multiple regulated output

voltage levels and a PLL with multiple output frequencies incur

non-negligible mode transition latency and energy

overheads [16]. At the same time, the shorter this interval is, the

more responsive the PM is to changes in the workload. The

shortcoming of the conventional DVFS procedure is the

following. When the workload (the occupancy number of the

SQ) changes, each processor has to send an interrupt to the PM

to request a DVFS adjustment for the corresponding processor,

which significantly increases the computational overhead of

the PM in a MPS with a large number of processors.

Alternatively, the PM on a regular basis examines the state of

the SQ in front of each processor in order to determine the

DVFS value for that processor, and subsequently, schedules a

sequence of DVFS assignments for every processor. Either

approach creates a significant overhead. A key contribution of

our work is that an incoming task is directly labeled with an

optimal DVFS value through the Bayesian classification

process while it is still in the SQ.

III. RELATED WORK

Dynamic power management techniques based on machine

leaning [18] have been the subject of a number of recent

investigations [21]- [25]. In the following, we provide a quick

review of some works that are directly related to ours.

An adaptive power management technique based on

machine learning was presented in [21], where the authors

described a system that learns when to turn off functional

blocks of the system based on different usage patterns, e.g.,

history of active application or the CPU utilization factor. In

this model-based approach, system dynamics and user patterns

are captured to choose power-saving actions.

The authors in [22] [23] described a power management

technique that employs a machine learning algorithm to

choose an optimal policy from a set of power management

policies available to a system. The proposed algorithm, which

relies on processor runtime statistics, evaluates performance of

the policies during each idle period to decide which policy to

adopt next. Our proposed technique differs from [23] in that we

use a supervised learning algorithm for deriving a

self-improving policy.

An automated approach to identify a task-specific power

management policy was proposed in [24], where an

enforcement-learning based operating system automatically

learns which action to take for a specific workload given to a

Dynamic load balancing

Proc

I/F

Flow

Queue

Processor

L1 Memory

Control Unit
Coherence

control bus

I & D

bus

Multicore Processor

Power manager

Performance

monitor

DVFS

assignment

Policy

calculation

Proc

I/F

Flow

Queue

Processor

L1 Memory

Proc

I/F

Flow

Queue

Processor

L1 Memory

Proc

I/F

Flow

Queue

Processor

L1 Memory

Dynamic load balancing

Proc

I/F

Flow

Queue

Processor

L1 Memory

Control Unit
Coherence

control bus

I & D

bus

Multicore Processor

Power manager

Performance

monitor

DVFS

assignment

Policy

calculation

Proc

I/F

Flow

Queue

Processor

L1 Memory

Proc

I/F

Flow

Queue

Processor

L1 Memory

Proc

I/F

Flow

Queue

Processor

L1 Memory

Fig. 1. Example of a power-managed multi- processor system.

 3

system. The authors applied the proposed technique to hard

disk power management in a mobile device, enabling the

operating system to record hard disk accesses and monitor I/O

related system parameters. In this approach, a classification

algorithm that dynamically selects an appropriate spin-down

policy is implemented.

The authors of [25] presented a machine learning approach

to perform dynamic voltage scaling (DVS) on an integrated

CPU-core and on-chip L2-cache. The proposed approach

identifies application phases at runtime and issues appropriate

DVS commands. The DVS policy itself is derived through a

learning process performed on a representative workload. More

precisely, first a training data set is generated by representing

the workload as a CPU/cache frequency combination and the

optimal DVS command for each such combination. Next a

machine learning technique is applied to obtain a policy in the

form of propositional (if-then) rules.

All of the above-mentioned power management approaches

are based on machine learning techniques, where an agent (i.e.,

power manager) is trained based on a number of representative

workloads or user patterns in order to learn the performance

state of a target system for the purpose of taking a DVS or

DVFS action. Unfortunately, little attention has been paid to

power management policy optimization under a cost function

and to the accurate classification of the performance state of the

system. Furthermore, as explained previously, the aforesaid

techniques are inefficient for MPS architecture due to

computational overheads for deriving an optimal policy for

each processor, exacerbating with scheduling of a series of

DVFS assignments for every processor.

IV. LEARNING-BASED POWER MANAGEMENT FRAMEWORK

In this section, we present a theoretical framework to construct

a supervised learning-based power management framework.

A. Background on Supervised Learning

Supervised learning [11] is an effective and practical technique

for discovering relations and extracting knowledge in cases

where the mathematical model of the problem may be too

expensive to construct, or not available at all. Alternatively, it

may be used to derive a self-improving decision-making

strategy instead of making decisions based on the current

perceived state of the system.

The goal of the supervised learning is to learn a mapping

from x ∈ X to y ∈ Y, given training sets that consist of input and

output pairs. Here X = {x1, x2, …, xn} denotes a set of input

features, and Y = {y1, y2, …, yn} is a set of outputs measures.

The input feature set contains quantifiable features of the

system under consideration. The output measure set can be a

continuous value (called regression) or a class label of the input

(called classification), which thus results in a numerical or

categorical measure. If the output measure is numerical

(categorical), then the learning will become a regression

(classification) problem.

In this paper, each output measure is labeled with a

pre-defined class (e.g., performance level). The learning is

performed on a collection of training sets. Thus, training an

agent (e.g., a PM) involves finding a mapping from input

features to output measures so as to enable the agent to

accurately predict the class of an output measure when a new

input feature is given. Fig. 2 shows the concept of supervised

learning, where the agent predicts the classes of output

measures yk when input features xk are given after learning with

the training sets, where k = 1, …, n.

The key steps of the supervised learning may be stated as

follows:

i) Determine inputs and outputs of the learner: Relevant input

features and output measures (and the corresponding class

labels) are chosen,

ii) Generate the training set: The training set – which is simply

a collection of input features and corresponding output

features and class labels - is designed so as to capture the

important characteristics of the system,

iii) Training: This step results in the design of the classifier

based on the training set,

iv) Classification: The classifier is used on arbitrary input

features to predict the class labels of the output measures.

Considering algorithms for supervised learning, there are a

number of methods for classification such as rule based learner,

decision tree based learner, instance based learner, probability

based learner, and kernel based learner. Details of each

classification learner are omitted here for brevity. Interested

readers may refer to [26] [27] [28] [29].

In our problem setup, we have found that the probability

based learner (i.e., Bayesian classifier) is more efficient than

other methods since it can efficiently classify the output

features corresponding to a new input feature into a finite

number of class labels. The key to speed of the classification

step is the pre-computation of prior and conditional

probabilities based on a training step (see below).

B. Learning-based Power Management Framework

It is useful to describe how the supervised learning can be

adapted to the power management technique. Fig. 3 presents a

top level structure of the proposed PM which incorporates a

Bayesian learning framework. The learning framework

consists of two phases: extraction and classification phases.

Feature

extraction

Training set

collection
Classification

DVFS

sets
output

measure

Extraction phase Classification phase

input

feature

Measure

extraction

Policy

generation

Feature

extraction

Training set

collection
Classification

DVFS

sets
output

measure

Extraction phase Classification phase

input

feature

Measure

extraction

Policy

generation

Fig. 3. Structure of the proposed power manager.

Input feature

ix

Output measure

iy

(),
iix y

Training set

class

After learning

Input feature

kx

Output measure

ky

Predict class

Input feature

ix

Output measure

iy

(),
iix y

Training set

class

After learning

Input feature

kx

Output measure

ky

Predict class

Fig. 2. Concept of supervised learning.

 4

Essentially, we aim to use the supervised learning to enable

the PM to automatically discover the relations between input

features and output measures and to predict the processor’s

performance level (power dissipation and execution time per

task) by using the classification. Key functions implemented

inside the PM are as follows:

- Feature extraction: choose the input feature (i.e.,

characteristics of the tasks and the state of the SQ),

- Measure extraction: choose the output measure (i.e., the

power dissipation and execution time of the tasks),

- Training set generation: assemble the input feather and

output measure into the training sets,

- Supervised learning: map the input feature to the output

measure based on the training sets, and

- Classification: select the most likely class given the input

feature.

The proposed supervised learning-based power management

technique mainly comprise of three parts: extraction,

classification, and policy generation. The procedures for

extraction and classification are explained next. Details of the

extraction strategy for input features and output measures are

further described in section IV, whereas the policy optimization

technique is presented in section V.

1) Input Feature and Output Measure Extraction

The first step is the extraction phase which extracts input

features and output measures, where system knowledge is

required to produce well-prepared training sets. During the

process of feature extraction, in the context of the power

management problem, the PM gathers input features such as the

type of tasks (e.g., high-priority or low-priority), the state of the

SQ, and the arrival rate of tasks, which affect the performance

level of the SP. In addition, the PM observes

performance-related information (e.g., the system power

dissipation and the execution time of tasks) as the output

measures. The class of each output measure, considered as an

attribute, is as a pre-defined level or range, such as a range of

system power dissipations or time durations for task execution.

TABLE I

EXAMPLE TRAINING SET FOR THE DPM PROBLEM

Queue

occupancy

Output measures

Task type

Input features

Arrival

rate of task

Power

dissipation

Execution

time

pow1

low-priority

high-priority

high-priority

low-priority

high-priority

low-priority

low-priority

low-priority

low-priority

pow2

pow3

pow2

pow1

pow1

pow2

pow2

pow1

exe1

exe1

exe3

exe3

exe1

exe2

exe2

exe2

exe1

med

low

med

low

low

med

med

med

med

low

low

med

med

med

med

med

med

high

Queue

occupancy

Output measures

Task type

Input features

Arrival

rate of task

Power

dissipation

Execution

time

pow1

low-priority

high-priority

high-priority

low-priority

high-priority

low-priority

low-priority

low-priority

low-priority

pow2

pow3

pow2

pow1

pow1

pow2

pow2

pow1

exe1

exe1

exe3

exe3

exe1

exe2

exe2

exe2

exe1

med

low

med

low

low

med

med

med

med

low

low

med

med

med

med

med

med

high

TABLE I shows an example of training sets which consist of

selected input feature and output measure pairs. Notice that the

queue occupancy and the arrival rate of task are assigned

attributes (i.e., low, med, or high), where low = [0 33%], med =

(33% 67%], and high = (67% 100%] when applied to the SQ

occupancy, and low = [0 0.33], med = (0.33 0.67], and high =

(0.67 1] when applied to the arrival rate. Each output measure is

labeled with a specific class from the set L. In our problem

setup, the class set L is defined as L1 = {pow1, pow2, pow3}

where pow1 < pow2 < pow3, and L2 = {exe1, exe2, exe3} where

exe1 < exe2 < exe3. Note that each class is defined as a range of

values, e.g., pow1 = [34mW 41mW], pow2 = (41mW 47mW],

pow3 = (47mW 54mW], exe1 = [14.1ns 21.5ns], exe2 = (21.5ns

28.5ns], and exe3 = (28.5ns 35.7ns]. In addition to our input

features, the power dissipation and execution time may be

determined by many other factors, including the cache hit/miss

ratio, cache hierarchy, and so on. The extent to which these

factors impact the performance of the SP is highly dependent

on the architecture and/or the system configuration (e.g.,

whether the SP’s allow single or multiple thread execution). In

this paper, we consider single-threaded core architectures only.

The training set size affects the accuracy of classification, i.e.,

variance of the predicted value increases as the training set size

is reduced, resulting in an increased bias. In this paper, the

training set size is determined by calculating a conditional

probability while varying the set size, as described in the

experimental results section.

2) Classification

The goal of classification is to predict the most likely class label

of the output features given the input features. In the context of

PM for a CMP system, the goal is to devise a power

management policy for issuing DVFS commands that minimize

the total energy dissipation of the CMP system based on the

load conditions and workload characteristics.

Having obtained the training set, the second step is the

classification phase, which uses supervised learning to train an

accurate classifier. The classifier’s goal is to organize a new

input feature {x1, x2, …, xn} into a finite number of classes l

from the set L for each one of the output features in the set {y1,

y2, …, yn}.

Specifically, in the Bayesian classifier, the classification task

is essentially the assignment of the maximum a posteriori

(MAP) class given the data x = (x1, x2, …, xn) and the prior of

class assignments to yi by maximizing the posterior probability

Prob(yi = l | x1, x2,…, xn) of assigning class l to output feature yi

given the new evidence x, such as

1 2

1 2

1 2

arg max (| , , ,)

(, , , |) ()
arg max

(, , ,)

MAP i n
l

n i i

l n

y Prob y l x x x

Prob x x x y l Prob y l

Prob x x x

= =

= ⋅ =
=

…

…
…

 (1)

The denominator Prob(x1, x2, …, xn), which is the marginal

probability of witnessing the new evidence x under all possible

hypotheses, is irrelevant for decision making since it is the

same for every class assignment. Prob(yi = l), which is the prior

(pre-evidence) probability of the hypothesis that the class of yi

is l, is easily calculated from the training set. Hence, we only

need Prob(x1, x2,…, xn | yi = l), which is the conditional

probability of seeing the input feature vector x given that the

 5

class of yi is l. The factor 1 2

1 2

(, , , |)

(, , ,)

n i

n

Prob x x x y l

Prob x x x

=…
…

represents

the impact of the new evidence x on the hypothesis that yi=l. If

it is likely that the evidence will be observed when this

hypothesis is true, then this factor will be large. Note that

multiplying the prior probability by this factor results in a large

posterior probability of the hypothesis given the evidence. The

Bayes' theorem thus measures how much new evidence should

alter belief in some hypothesis.

Now Prob(x1, x2,…, xn | yi = l) may be expanded as Prob(x1 |

x2,…, xn , yi = l)×Prob(x2, x3,…, xn | yi = l). The second factor

above can be decomposed in the same way, and so on.

Furthermore, assuming that all input features are conditionally

independent given the class, i.e., Prob(x1 | x2, …, xn , yi = l) =

Prob(x1 | yi = l). Therefore, we obtain: Prob(x1, x2,…, xn | yi = l)

= ∏j Prob(xj | yi = l), and we compute the maximum a posteriori

class as follows:

1

arg max () (|)

n

MAP i j i

l j

y Prob Proby l x y l
=

= = ⋅ =∏ (2)

When used in real applications, the Bayesian classifier first

partitions the training set into several subdatasets by the class

label of the target output measure. Then, in each subdataset

labeled by l for output measure yi, the maximum likelihood

(ML) estimator Prob(xj = ajk | yi=l) can be given by the

frequency njkl / nl, where njkl is the number of the occurrences of

the event {xj = ajk} in subdataset denoted by class label l; nl is

the number of the samples in the same subdataset.

An example of how to classify the input features is given

next. Suppose that we have a set of three input features and a set

of two output features as shown in Table 1, where {x1, x2, x3} =

{task type, queue occupancy, arrival rate}, and {y1, y2} =

{power dissipation, execution time}. We first compute the

per-input-feature conditional probabilities required for the

classification task. For the example training set, we have:

Prob(x1 = low | y1 = pow1) = Prob(x1 = low | y1 = pow2) = 3/4,

Prob(x1 = high | y1 = pow1) = Prob(x1 = high | y1 = pow2) = 1/4,

and Prob(x1 = high | y1 = pow3) = 1. There may be some cases

where particular input features do not occur together with an

output measure due to an insufficient number of data points in

the training set. In this case, a standard way to deal with zero

conditional probabilities is to eliminate them by smoothing [18]

as follows

()
(|)

()

,
j

i

i

j i

x

freq x y l
Prob x y l

freq y l n

λ

λ

= +
= =

= +
 (3)

where λ is a smoothing constant (λ > 0), and nx is the number of

different attributes of xi that have been observed. For the

example training set, using equation (3) with λ = 1, we have:

Prob(x1 = low | y1 = pow3) = Prob(x2 = med | y1 = pow3) = 1/4.

We will also need the prior probabilities for the various output

feature classifications, which are calculated from the training

set data. In this example, Prob(y1 = pow1) = Prob(y1 = pow2) =

4/9, and Prob(y1 = pow3) = 1/9. After calculating the

conditional and prior probabilities, the PM can decide the best

power management policy by predicting the MAP class for a

new input feature vector.

Let a new input feature (x1 = low, x2 = med, x3 = med), which

was not in the training set, be presented to the PM, which

classifies the input feature based on equation (2) as follows.

i) Firstly, for the hypothesis y1 = pow1, the posterior

probability is: Prob(y1 = pow1)⋅Prob(x1 = low, x2 = med, x3

= med | y1 = pow1) = (4/9)⋅(3/4)⋅(1/2)⋅(1) = 1/6 because

Prob(x1 = low | y1 = pow1) = 3/4, Prob(x2 = med | y1 = pow1)

= 1/2 and Prob(x3 = med | y1 = pow1) = 1.

ii) Secondly, for the hypothesis y1 = pow2, the posterior

probability is: Prob(y1 = pow2)⋅Prob(x1 = low, x2 = med, x3

= med | y1 = pow2) = (4/9)⋅(3/4)⋅(1)⋅(1/4) = 1/12 because

Prob(x1 = low | y1 = pow2) = 3/4, Prob(x2 = med | y1 = pow2)

= 1 and Prob(x3 = med | y1 = pow2) = 1/4.

iii) Lastly, for the hypothesis y1 = pow3, the posterior

probability is: Prob(y1 = pow3)⋅Prob(x1 = low, x2 = med, x3

= med | y1 = pow3) = (1/9)⋅(1/4)⋅(1/4)⋅(1) = 1/144 because

Prob(x1 = low | y1 = pow3) = 1/4, Prob(x2 = med | y1 = pow3)

= 1/4 and Prob(x3 = med | y1 = pow3) = 1.

Consequently, the MAP class of the power dissipation for the

new input feature vector is pow1. Similarly, computing MAP of

the execution time results in posterior probabilities of

hypotheses y2 = exe1, y2 = exe2, and y2 = exe3 being 1/24, 2/9, and

1/18. Thus, the PM concludes that the MAP class of the

execution time is exe2.

The PM predicts the MAP performance level of the

processor when a new task arrives in the SQ. The classification

based on the Bayesian classifier is robust to noisy and/or

extraneous input features. It is also fast because it only requires

a single pass through the training data to initialize the prior and

conditional probabilities while requiring only a few

multiplications and comparison to determine the MAP

performance level of the processor at runtime.

3) Discriminative Bayesian Classifier

As we have seen above, a Bayesian classifier assumes a

conditional independency among the input features. When used

for classification, the Bayesian classifier predicts a new data

point as the class with the highest posterior probability by

writing the classification rule in a decomposable form using the

conditional independence assumption (see equation (2)).

A key advantage of the Bayesian classifier is the ability to

deal with the missing information during classification (i.e.,

missing input features that are relevant to the identification of

output features). For example, some information such as cache

miss statistics or branch mis-prediction rate, which affect the

processor performance are considered as missing input features

in our problem setup. Assume the input feature set {x1, x2, …,

xn} be X. When the values of a subset of X, for example M, are

unknown or missing, the marginalization inference can be

obtained immediately as follows:

 arg max () (|)
MAP i j i

l j X M

y Prob Proby l x y l
∈ −

= = ⋅ =∏ (4)

No further computation is needed in handling this missing

information problem, because each term Prob(xj | yi=l) has been

calculated in training the Bayesian classifier. However, there

are shortcomings in this simple classifier. More precisely, this

 6

approach models the joint probability in each subset separately

and then applies the Bayes rule to obtain the posterior

classification rule. Consequently, this construction procedure -

sometime called a generative classifier - discards some

discriminative information for classification [17]. Without

considering the other classes of data, this method only tries to

approximate the information within each subdataset. On the

other hand, a discriminative classifier, which directly estimates

Prob(yi|xj), preserves inter-subdataset information well by

directly constructing decision rules among all available

data [18]. Therefore, the Bayesian classifier may be extended to

provide a global scheme to preserve the discriminative

information among all the data. See [19] for a detailed

description of a discriminative Bayesian classifier, which

combines both merits of discriminative methods (e.g., support

vector machines [20]) and the simple Bayesian classifiers

described above. A more detailed discussion of discriminative

Bayesian classifiers falls outside the scope of the present paper.

V. EXTRACTION STRATEGY

In this section, we present the extraction strategy for input

features and output measures.

A. Extracting Input Features

Input feature selection plays an important role in the

classification procedure which maps input features onto output

measures. There are some relevant input features that have

important information regarding the output measures, whereas

there may be some irrelevant ones containing little information

regarding the output measures. Finding every input feature that

contains relevant information about the resulting output

measure is difficult and in many cases unnecessary. For

example, capturing the amount of cache interference

experienced among tasks that are co-scheduled on the same

shared cache is difficult. Typically, a task is written to expose

software “threads” of execution; the OS then maps these

threads onto processors in the case of MPSs. The PM gathers

available information on input features (e.g., types of the tasks,

state of the SQ, and arrival rate of tasks) as explained in the

previous section. At the same time, the PM needs to watch for

the missing input features (e.g., the amount of cache

interference) which affect the performance-related output

measures as well.

There are two approaches to compensate for the missing

input features [32]: input feature-compensate method and

classification-compensate method. The first approach estimates

values of hidden input features by using the

expectation-maximization (EM) algorithm [33] and then

performs classification on the complete input features. Note

that the EM algorithm is a general technique that can be used to

determine the maximum likelihood estimate (MLE) of the

parameters of an underlying distribution from some given data

when the measured data is incomplete. The second approach

passes the incomplete input features directly to the classifier

which is then adjusted to operate on the incomplete input

features. A brief description of each method follows.

1) Input Feature-Compensate Method

Let x denote the known (measured) input feature and let m

denote the missing input feature. Together x and m form the

complete input feature. Notice that m can be a hidden source of

variation that affects the output measures. Then, we have

Prob(x, m | θ), the joint probability density function of the

complete input features with parameters given by vector θ (θ
may for example correspond to the mean value and variance of

a Gaussian distribution). This function can also be considered

as the complete data likelihood, that is, it can be thought of as a

function of θ and expressed as

(, |) (| ,) (|)Prob x m Prob m x Prob xθ θ θ= ⋅ (5)

by using the Bayes rule.

The EM algorithm iteratively improves an initial estimate θ0

by constructing new estimate θ1, θ2, etc., where an individual

re-estimation step that derives θn+1 from θn takes the following

form:

1
arg max ()

n
Q

θ
θ θ+ = (6)

where Q(θ) is the expected value of the log-likelihood of

complete input feature. Since we do not know the complete

data, we cannot determine the exact value of the likelihood, but

given the input feature x, we can calculate a posteriori estimates

of the probabilities for the various values of m. For each set of

m values, there is a likelihood value for θ, and we can hence

calculate an expected value of the likelihood with the given

values of x’s. Q is given by

()() log (, |)

m

Q E Prob x m xθ θ= (7)

where it is understood that this denotes the conditional

expectation of log Prob(x, m | θ) being taken with the θ used in

Prob(m | x, θ) fixed at θn. In other words, θn+1 is the value that

maximizes the conditional expectation of log-likelihood of the

complete input feature given the measured variables under the

previous parameter values. The expectation Q(θ) may be

rewritten as:

() (|) log (, |)Q Prob m x Prob x m dmθ θ

∞

−∞
= ∫ (8)

These two steps (Expectation and Maximization) are

repeated until | θn+1 - θn| ≤ ω, where ω is some user specified

tolerance level [34]. It can be shown that the EM iteration does

not decrease the measured input feature likelihood function.

The EM algorithm finds θ that maximizes the complete-input

feature likelihood, which in turn removes the effect of hidden

variables (i.e., the missing input features).

2) Classification-Compensate Method

In this method, the incomplete input features are used directly

for the classification. Every input feature x is assigned a

probability α to show how reliable and critical it is for the

output measure. Likewise, each of the missing input features is

assigned a probability (1 - α). Assuming that all measured input

features and missing input features are independent, the total

likelihood of each input feature simply becomes a weighted

sum of the likelihood of the input features. Mathematically, this

can be expressed as

 7

 ()
1 2

1

1

(, , , |)

(|) () (|)

n i

n

j i j i
j

Prob x x x y l

Prob x y l Prob m y lα α
=

⋅ −

=

= ∏ = + ⋅ =

…
 (9)

where y is the output measure and l is the class, provided that

we have the missing input features m = (m1, m2, …, mn). In

practice, we substitute (9) into (2) to compute the maximum a

posteriori (MAP) during the classification.

B. Extracting Output Measures

 Modern processors include hardware features for monitoring

performance characteristics of the processor [30], which

enables the PM to collect performance-related information.

When an application runs by itself on a single processor system,

the resources in that system are dedicated to its execution. Thus

it is relatively easy to truthfully characterize and model

resultant application performance behavior. However, when

multiple applications run simultaneously on a MPS, it is

comparatively difficult to determine the resources that end up

being given to each individual application, which means that

the performance behavior of each application on the MPS may

not be measured accurately. Thus, the PM is forced to observe

the output measure in a probabilistic way.

Let r denote an input feature state (ri, i=1,…, h) where state r

corresponds to a particular assignment of various attributes to

input features (x1, x2, …, xn). Let o denote an observation which

corresponds to output measures (y1, y2, …, yn) with various

classes. Fig. 4 (a) illustrates observations for each output

measure given an input feature state. Note that oy1(r1)

represents the observation o in y1 (output measure) given the

input feature state r1. For example, the power dissipation (oy1),

one of output measures under consideration, of a processor

given an input feature state r1 (e.g., low priority task, medium

queue occupancy, and high arrival rate of task) is normally

distributed with mean of 38mW and variance of 2 i.e., N(38, 2).

 oy1(r1) = N(μ1 , σ1
2)

P
ro

b
ab

il
it

y

μ1
y1

P
ro

b
ab

il
it

y

μ2
y2

P
ro

b
ab

il
it

y

μn
yn

oy2 (r1) = N(μ2 , σ2
2) oyn (r1) = N(μn , σn

2)

μa μb

oy1(r1)

δ1
y1

oy1(r2)

μc

oy1(r3)

δ2

P
ro

b
ab

il
it

y

(a)

(b)

oy1(r1) = N(μ1 , σ1
2)

P
ro

b
ab

il
it

y

μ1
y1

P
ro

b
ab

il
it

y

μ2
y2

P
ro

b
ab

il
it

y

μn
yn

oy2 (r1) = N(μ2 , σ2
2) oyn (r1) = N(μn , σn

2)

μa μb

oy1(r1)

δ1
y1

oy1(r2)

μc

oy1(r3)

δ2

P
ro

b
ab

il
it

y

(a)

(b)

Fig. 4. (a) Observations for each output measure, and (b) Decision

boundaries for an output measure among various input feature states

For accurate classification, the decision boundaries of the

output measure in Bayesian classifier have to coincide with or

be close to the performance specification criteria or boundaries.

Fig. 4 (b) shows an example of decision boundaries for an

output measure (e.g., oy1) among various input feature states

(e.g., r1, r2, and r3), where our goal here is to find the distinction

points δ1 and δ2.

By doing so, we can define the class as a range of values, as

explained before. Let fr1, fr2, and fr3 denote the probability

density functions of output measure for the input feature states

r1, r2, and r3, respectively. Based on the illustration (see Fig. 4

(b)), δ1 and δ2 are determined from the following:

1

1

2

1 2

2

2 3

() ()

() ()

fr x dx fr x dx

fr x dx fr x dx

δ

δ

δ

δ

∞

−∞

∞

−∞

=

=

∫ ∫

∫ ∫

(10a)

(10b)

Assuming normal distribution function for the output measure

in our problem setup, we can rewrite (10a) and (10b) as:

2 2

2 21

1

() ()

2 21 1

2 2
a b

a b

a b

x x

e dx e dx

μ μ
δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫

2 2

2 22

2

() ()

2 21 1

2 2
b c

b c

b c

x x

e dx e dx

μ μ
δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫

(11a)

(11b)

where μa, μb, and μc are the mean values of the output measure

for the input feature states, and σa, σb, and σc are their standard

deviations. Solving these integral equations, we obtain:

 1 2,a b b a b c c b

a b b c

μ σ μ σ μ σ μ σδ δ
σ σ σ σ

+ +
= =

+ +

(12)

TABLE II shows an example of the decision boundaries for

various probability density functions of the output measure (i.e.,

power dissipation), while varying values of standard deviations,

where oy1(r1) = N(μa, σa
2), oy1(r2) = N(μb, σb

2), and oy1(r3) = N(μc,

σc
2), where each case is represented graphically in Fig. 5. To

simplify the comparison among these, we assume that the mean

values for the output measure are fixed (e.g., μa =37.5, μb = 44.0,

μc = 50.5).

TABLE II

EXAMPLES OF DECISION BOUNDARIES

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc
σa σb σc

case (a) case (b) case (c)

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc
σa σb σc

case (a) case (b) case (c)

Without loss of generality, we assume, μb > μa. Next we

introduce “distinction index (DI)” [35] as the performance

criterion for boundary selection in output measure by the

following:

b a

b a

DI
μ μ
σ σ

−
=

+

(13)

which indicates that the larger the value of DI is, the better the

distinction between the output measures will be. For example,

in case (c), DI1 that represents the distinction between oy1(r1)

and oy1(r2) is 1.44, which is greater than DI2 (between oy1(r2)

and

 8

(a) (b) (c)

Fig. 4. Examples of decision boundaries for various probability density functions of output measures (cf. TABLE II).

 oy1(r3)). This indicates that we can achieve better accuracy in

classification when we are given input feature states r1 and r2

rather than r2 and r3.

In conclusion, to ensure high accuracy in classification, the

selection of distinction points has to be considered for the

establishment of the discriminant function of the classifier.

VI. POWER MANAGEMENT POLICY

Finding an optimal power management policy in a

learning-based framework requires an autonomous decision

making strategy which maps the output classes to actions. The

actions commanded by the PM change the performance state of

the system and lead to quantifiable penalties (or rewards). We

consider the case where an action incurs a cost (e.g., energy

dissipation), where the PM’s goal is to devise a policy for

issuing a command that minimizes this expected cost.

Assume that the target processor system has k (power-delay

or PD for short) states denoted by s1, …, sk, where s1 <…< sk in

terms of the PD product (PDP) in the respective states. The PM

can choose an action from a finite set of supply voltage-clock

frequency (VF) settings A = {a1, …, an}, where a1 <…< an in

terms of the VF values (notice that a lower V requires a

correspondingly lower F for the processor while a higher V

allows a higher F, hence VF pairs may be considered as a single

optimization variable in this setup).

There is a state transition probability for transitioning from

state s to another state s’ after executing an action a, i.e., T(s’, a,

s) = Prob(s’ | a, s). Furthermore, we make a common

assumption that the cost function is additive (the PDP which is

the same as energy dissipation is clearly additive). Considering

the minimization of the total energy dissipation as an objective,

we define the energy dissipation of a system at a given time t as

follows. First, assume that the predicted classes for the output

measures (i.e., power dissipation and execution time) are p and

d, where p ∈ L1 and d ∈ L2 as defined in our problem setup.

Note that p and d may be considered as ranges of power and

execution time values, i.e., p = [p− p+] and d = [d− d+]. Then, the

expected cost of current state, C(s, a), where a is the action

prescribed by the PM in state s=<p, d>, is defined as a specific

range such that

[](,) (,) (,)C s a p d e s a p d e s a− − + +∈ ⋅ + ⋅ + (14a)

where e(s, a) is the expected energy dissipation to transit from

state s to some next state under action a, which is in turn

calculated from T(s’, a, s) and the state transition energy

dissipation overhead. The above expression means that cost lies

between expected minimum and maximum costs. To obtain a

scalar cost function, we define:

(,) (,)
2

p d p d
C s a e s a− − + +⋅ + ⋅

= + (14b)

We develop a policy generation technique by using

well-known dynamic programming method making use of

principles of overlapping subproblems, optimal substructures,

and memorization. We speak of the minimum cost of a system

state as the expected infinite discounted sum of cost that the

system will accrue if it starts in that state and executes the

optimal policy [36]. Generally, using π as a decision policy, this

minimum cost is written as

*

0

() min ()t

t

s E c t
π

γ
∞

=

⎛ ⎞Ψ = ⋅⎜ ⎟
⎝ ⎠
∑ (15a)

where γ is a discount factor, where 0 ≤ γ < 1, and c(t) is the cost

at time t.

In our problem setup, the minimum cost function is unique

and can be defined

* *

'

() min (,) (', ,) (')
a

s S

s C s a T s a s s s Sγ
∈

⎛ ⎞
Ψ = + Ψ ∀ ∈⎜ ⎟

⎝ ⎠
∑

(15b)

which asserts that the cost of a state s is the expected

instantaneous cost plus the expected discounted cost of the next

state, using the best available action. From Bellman’s principle

of optimality [37], given the optimal cost function, we specify

the optimal policy as

* *

'

() arg min (,) (', ,) (')
a s S

s C s a T s a s sπ γ
∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑
(16)

Simply stated, the power manager determines the optimal

action based on equation (16) at each event occurrence (i.e.,

decision epochs). The task of casting the decision epochs to

absolute time units is achieved by the system developer. Unlike

AC line-powered systems, we focus on battery operated

systems that strive to conserve energy to extend the battery life.

 9

 1: initialize Ψ(s) arbitrarily

2: loop until a stopping criterion is met

3: loop for ∀s ∈ S

4: loop for ∀a ∈ A

5:

6:

7: end loop

8: end loop

9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

1: initialize Ψ(s) arbitrarily

2: loop until a stopping criterion is met

3: loop for ∀s ∈ S

4: loop for ∀a ∈ A

5:

6:

7: end loop

8: end loop

9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

Fig. 5. The value iteration algorithm.

Given C(s, a) and T(s’, a, s), another way to find an optimal

policy is to find the minimum cost function. It can be

determined by an iterative algorithm (cf. Fig. 5) called value

iteration that can be shown to converge to the correct *Ψ values.

It is not obvious when to stop this algorithm. A key result

bounds the performance of the current greedy policy as a

function of the Bellman residual of the current cost

function [38]. It states that if the maximum difference between

two successive cost functions is less than ε, then the cost of the

greedy policy (i.e., the policy obtained by choosing, in every

state, the action that minimizes the estimated discounted cost,

using the current estimate of the cost function) differs from the

cost function of the optimal policy by no more than

2εγ / (1−γ) at any state. This provides a stopping criterion for

the algorithm.

Results of the policy generation are stored in a state-action

mapping table so that the PM does not need to compute the

optimal action in each system state at runtime. Instead the

optimal action generation is reduced to a simple table lookup.

In practice, the PM examines the input features each time a new

task arrives in the SQ, estimates the most likely state of the

system, and looks up and issues the corresponding “optimal”

action from the mapping table.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

We apply the proposed DPM technique to a multicore network

processor which includes a dynamic load balancing (DLB,

a.k.a., Application Delivery Controller or ADC) block and four

processing cores (cf. Fig. 1). The DLB block, which guarantees

in-order delivery of tasks, enables tasks from a single network

interface to be processed in parallel on multiple cores. There

are various ways to distribute incoming tasks (a.k.a.

connections or requests) to cores (a.k.a. back-end service hosts

or servers), including the following methods [39]:

- Least workload: assigns the task to the host with the least

workload (connections),

- Fastest host: assigns the task to the core that currently has

the best performance,

- Observed performance: assigns the task to a core that has

the highest performance rating, based on a combination of

least workload and best response time,

- Predictive method: assigns the task to a core that has the

highest predicted performance rating over time, and

- Dynamic ratio: determines the capabilities of the core to

create a dynamic performance ratio accounting for host

affinity to a connection and the resultant cache locality; the

tasks are then distributed to the cores based on this ratio.

Among these, we consider RSS (receiver-side scaling) [40],

which falls in the category of dynamic ratio techniques.1 The

RSS technique is capable of re-balancing the received

processing load across multiple processor cores while

maintaining in-order delivery of the data. RSS enables in-order

packet delivery by ensuring that packets for a single connection

are always processed by one processor. This RSS feature

requires that the network adapter examine each packet header

and then use a hashing function to compute a signature for the

packet. To ensure that the load is balanced across the cores, the

hash result is used as an index into an indirection table. Because

the indirection table contains the specific core that is to run the

associated deferred procedure call and the host protocol stack

can change the contents of the indirection table at any time, the

host protocol stack can dynamically balance the processing

load on each core. As a typical application, we execute

TCP/IP-related tasks (e.g., TCP segmentation and checksum

offloading [41]). We vary the workload by changing the packet

size from 64 bytes (e.g., 338,000 packets/sec) to 1,025 bytes

(e.g., 84,819 packet/sec) [42].

For the simulation setup, we analyzed performance

characteristics of each processor core in terms of the power

dissipation and execution time. We relied on detailed gate-level

realization of a 32bit RISC-type processor compatible with [43]

in TSMC 65nmLP library in order to accurately evaluate the

power dissipation of a core. By varying the voltage and

frequency values during the simulation, we achieved power and

delay numbers with Power Compiler [44] for the core after

running the same tasks. Furthermore, we utilized a

back-annotated SAIF (Switching Activity Interchange File),

which captures switching activity factor with test patterns,

based on the RTL simulation to achieve accurate power

numbers. For simplicity, we defined a set of four actions, i.e., a0

= [0V, 0Hz], a1 = [1.00V, 150MHz], a2 = [1.08V, 200MHz],

and a3 = [1.20V, 250MHz], assuming that the voltage of the

core is determined based on the operating frequency. Note that

a0 is used to indicate a power-off (power gating) state in which

high Vth sleep transistors are used to disconnect the circtuit

power supply from logic gates when the circuit becomes

inactive.

B. Detailed Results

In the first experiment, we generated a training set by running a

set of tasks on the processor core as follows. First, we

considered a scenario whereby the core accepts two types of

tasks: low-priority and high-priority, where a high-priority task

can move ahead of all low-priority tasks waiting in the queue.

Next, we defined a set of input features {type of task,

occupancy state of the SQ, arrival rate of task} and output

measures {power dissipation [mW], execution time [ns]},

1 In the current world of high-speed networking, where multiple processing

cores reside within a single system, the ability of the networking protocol stack

of the operating system to scale well on a multi-core system is inhibited because

the architecture of conventional Network Driver Interface Specification (NDIS

5.1 and earlier versions) limits receive protocol processing to a single core.

Receive-Side Scaling (RSS) resolves this issue by allowing the network load

from a network adapter to be balanced across multiple cores.

 10

similar to TABLE I. During the training phase, voltage and

frequency values are assigned to the processor core based on

simple requirements such as:

- The core runs faster when high-priority tasks with medium

or high arrival rates arrive under low or medium queue

occupancy,

- The core runs slower when low-priority tasks with low or

medium arrival rates arrive under medium or high queue

occupancy.

Fig. 6 shows various input features during the training phase,

whereas Fig. 7 depicts the corresponding output measures for

100 training sets. Note that profiling output measure (e.g.,

power dissipation) at runtime is feasible with support of

specific hardware such as external current sensors or internal

architectural counters for each core. An external current

sensor [46], supplied by a voltage regulator which also

provides power to the corresponding core, enables online

current measurement, which is accumulated in the current

accumulator, digitally multiplied by voltage value, and fed into

a power dissipation accumulator. On the other hand, internal

architectural counters used to compute the power consumed by

cores count a number of relevant events and appropriately

weight the counter values. For example, the total numbers of

load/store instructions, arithmetic/logic instructions,

floating-point operations, and retirement executions for each

core are counted and summed up after being multiplied by

appropriate weights [47].

Fig. 6. Input features during training phase.

Fig. 7. Output measures during training phase.

The decision boundaries for an output measure are obtained

as follows. First, we assign various labels to the input features

based on our simulation results. After running a number of

simulations, we derive probabilistic density functions for the

power consumption of the core (cf. Fig. 8) for three

observations: o1 = N(35.8, 2.2), o2 = N(44.2, 3), and o3 = N(50.5,

1.8). Next, the two separation points between neighboring

observations are calculated as: δ1 = 39.4 and δ2 = 48.1. The

minimum power (30.3mW) and maximum power (56.0mW)

consumption values for active mode of the processor core

operation are used as the lower and upper bounds of the power

dissipation range. The decision boundaries for the execution

delay are also obtained in a similar manner. Consequently, the

classes of output measures are defined according to TABLE III.

Fig. 8. Probability density functions for power dissipation.

TABLE III

CLASSES OF OUTPUT MEASURES

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0 39.4]

exe2 exe3

(39.4 48.1] (48.1 56.0] [14.1 21.5] (21.5 28.5] (28.5 35.7]

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0 39.4]

exe2 exe3

(39.4 48.1] (48.1 56.0] [14.1 21.5] (21.5 28.5] (28.5 35.7]

To ensure high accuracy in classification, we define

classification error [48] as follows. The error in classification is

calculated as

 ((),) (,)ER L f x y Prob x y dx dy= ∫ (17)

where f(x) denotes the predicted output measure while y is the

actual output measure. L(.,.) is a general loss function. For our

target application, we use a 0-1 loss function, i.e.,

 0 ()
((),)

1

if y f x
L f x y

otherwise

=⎧
= ⎨

⎩
 (18)

where () arg max (|)
Y

f x Prob Y X x= = in this case. The

class-conditional classification accuracy is then given by 1 –

ER. It is a measure of the performance of the classifier.

Considering the input feature that we used as an example in

section III, the accuracy reaches around 88% in classification.

In addition, the training set size can greatly impact the

classification accuracy, so we performed simulations to

 11

determine an appropriate size by varying the set size from 50 to

3000 as shown in Fig. 9. We have thus empirically determined

that a training set size of 1000 is adequate. Note that substantial

reductions in training set size may be possible if interest is

focused on a single class (e.g., only power dissipation) [49].

Fig. 9. Selection of the training set size.

It is worthwhile to consider a scenario whereby the

characteristics of the task may change over time [51] [52]. If the

workload characteristics change over time, the performance of

the classification can degrade. This is because, having relied on

biased input features during the training phase, the classifier

may not be able to correctly predict the output measure class of

a given input feature. For example, consider different sets of

training data as shown in TABLE IV. Suppose we train three

classifiers based on training set A, set B, or set C. Next we

randomly generated 100 tasks and perform classification for

each incoming task, followed by an optimal action for each task

based on the classification result.

Fig. 10. Comparison of energy dissipations, where actions are

commanded by a classifier based on different training sets.

Fig. 10 shows the normalized energy dissipation by the issued

actions commanded by the three aforesaid classifiers. The

results are quite different for the three classifiers; this shows the

importance of using a representative training set.

To validate the above statement, we considered a scenario

whereby a classifier is trained based on some expected input

characteristics but is subsequently used to classify input

features with different characteristics. In particular, we first

trained a classifier with training set B and used it to determine

the output measure class of elements in set C (modeling the

case whereby the input characteristics changed over time from

those of set B to those of set C). Fig. 11 shows the comparison

in energy dissipation for 100 tasks between this case and one in

which a classifier (“with update”) was trained based on set C

and then ran on data with similar characteristics as those of set

C. It is clearly seen that the classifier “with update”

outperforms that “without update”. Finally, notice that we

could have trained a better classifier by using data from all

three training sets A, B, and C. TABLE V shows the

normalized total energy dissipation for 100 tasks by various

classifiers, where each classifier is trained with the specific

training set. It is clearly seen that the classifier trained with all

training sets consumes less energy, compared to other

classifiers.

Fig. 11. Evaluation of energy dissipation for a given scenario.

TABLE V

NORMALIZED TOTAL ENERGY DISSIPATION FOR VARIOUS CLASSIFIERS

 Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Next we investigated the energy-efficiency of the proposed

DPM technique by comparing it with i) the Stochastic PM

technique of [54] which uses a stochastic optimization

approach for power control based on the service request rates

and ii) the Global PM technique of [55] which uses a feedback

mechanism to sense per-core power and performance states.

The cost function of [54] is the power-delay product, which

makes the comparison easy. For simplicity, the waiting time at

the queue was considered to be fixed. To do a fair comparison,

TABLE IV

DIFFERENT CHARACTERISTICS OF TRAINING SETS

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%

 12

the power and performance states of [55] were represented by

the power and delay levels defined in our experimental setup.

Here we assumed that the latency overhead of DVFS is on the

order of several tens of microseconds. We used four VF values

where a0 < a1 < a2 < a3, with a0 corresponding to a power-off

state, a1 denoting the lowest (operational) power and

performance state, and a3 denoting the highest power and

performance state.

Stochastic PM technique: It employs a DPM assignment

strategy such that a power manager is triggered to issue a DVFS

command based on a precomputed and stored policy table. The

key into this hash table is the current state of the system which

is a pair representing the current power-performance state of

the processor and the request arrival rate. The policy table itself

is computed off-line using the stochastic optimization

framework of [54] where the objective is total expected system

power and the constraint is an upper bound on delay. In our

simulations, the state transition (i.e., power mode transition)

probabilities are calculated from offline simulations. For

example, when the system state changes into the lowest power

mode (e.g., pow1) the power manager assigns a command as

follows:

if the processor is idle (i.e., task arrival rate = 0), a0

else if 0 ≤ arrival rate of tasks ≤ 0.33, a1

else if 0.33 < arrival rate of tasks ≤ 0.67, a2

else if 0.67 < arrival rate of tasks < 1, a3 .

Global PM technique: It employs a feedback-control DPM

strategy based on the Priority policy of [55] where the power

manager assigns different priorities to different tasks so as to

meet a specific global power budget by adjusting power modes

of individual processing cores. Similar to [55], processor core 4

has the highest priority (will run as fast as possible) while

processor core 1 has the lowest priority (will be the first to slow

down in case of a power budget overshoot).

Bayesian PM: Employ the Bayesian learning-based DPM

method described in this paper.

We generated a number of tasks by selecting the arrival rate

of tasks randomly, where 0 ≤ the arrival rate of tasks < 1, and

applied the above-mentioned DPM policies to the processor.

Fig. 12. Energy dissipation comparison for a given experimental

setup.

The simulation results in Fig. 12, which report the

(normalized) energy dissipation of each task (numbered from 1

to 50) for the processor, show that the proposed DPM

technique, i.e., Bayesian PM exhibits sizeable energy savings

up to 24% and 15% (on average) compared to [54] and [55],

respectively. Considering the performance of the processor, the

overhead of performing classification in the Bayesian PM is

negligible since it does not affect the execution time of the

processors (i.e., the classification and table lookup are

performed during the queuing period before any VF change).

Experimental results in TABLE VI, which also reports the

characteristics of the workload distribution for each processor

(e.g., Proc1 receives 50 tasks whereas Proc4 receives 200

tasks), demonstrate that, compared to the Stochastic and Global

PM policies, the proposed Bayesian classification–based power

management policy achieves system-wide energy (normalized)

savings of up to 20.5% and 11.5% (these are the normalized

averages on four processors when α = 1), respectively. It is also

seen that if we consider the missing input feature (e.g., α = 0.95

and α = 0.90), there is little performance degradation.

TABLE VI

ENERGY SAVINGS IN THE MPS

Processor

Proc3

Proc1

Proc2

Proc4

Number

of tasks
Energy

(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5

97.8 19.5%1.00

0.95

0.90

189.2

150.6 20.4%1.00

0.95

0.90

243.4

197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy

(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

Processor

Proc3

Proc1

Proc2

Proc4

Number

of tasks
Energy

(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5

97.8 19.5%1.00

0.95

0.90

189.2

150.6 20.4%1.00

0.95

0.90

243.4

197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy

(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

VIII. CONCLUSION

The paper addressed the problem of dynamic power

management, where a system-level PM continually intervenes

to exploit power-saving opportunities subject to performance

requirements. The overhead associated with regular activity of

the PM to monitor the workload of a system and make

decisions about power management of different functional

blocks in the system tends to undermine the overall power

savings of the DPM approaches. This paper thus described a

supervised learning based DPM framework for a MPS, which

enables the PM to predict the performance state of the system

for each incoming task by a simple and efficient analysis of

some readily available input features. Experimental results

have demonstrated that the proposed DPM framework results

in significant energy savings for various workloads in MPSs.

REFERENCES

[1] D. I, Q. Xie, and P.H. Chou, “Scalable Modeling and Optimization of

Mode Transitions based on Decoupled Power Management Architecture,”

Proc. of Design Automation Conference, Jun. 2003, pp. 119-124.

 13

[2] Y-H. Lu and G. De. Micheli, “Comparing System-Level Power

Management Policies,” IEEE Design & Test of Computers, Vol. 18, Issue

2, pp. 10-19, Mar-Apr. 2001.

[3] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar, K.

Krishnan, and A. Kumar., “Power and Thermal Management in Intel Core

Duo Processor,” Intel Technology Journal, Vol. 10, Issue 2, pp. 109-122,

May 2006.

[4] H. Jung and M. Pedram, “Continuous Frequency Adjustment Technique

based on Dynamic Workload Prediction,” Proc. of International

Conference on VLSI Design, Jan. 2008, pp.415-420.

[5] A. Iyer and D. Marculescu, “Power Efficiency of Voltage Scaling in

Multiple Clock, Multiple Voltage Cores,” Proc. of International

Conference on Computer Aided Design, Nov. 2002, pp. 379-386.

[6] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen., “Single

ISA Heterogeneous Multicore Architecture: The Potential for Processor

Power Reduction,” Proc. of Symposium on Microarchitecture, Dec. 2003,

pp. 81-93.

[7] Q. Wu, P. Juang, M. Martonosi, and D.W. Clark, “Voltage and Frequency

Control with Adaptive Reaction Time in Multiple-Clock Domain

Processors,” Proc. of Symposium on High-Performance Computer

Architecture, Feb. 2005, pp. 178-189.

[8] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi, “

Profile-based Optimization of Power Performance by using Dynamic

Voltage Scaling of a PC cluster,” Proc. of Parallel and Distributed

Processing Symposium, Apr. 2006, pp. 8-16.

[9] B. Mochocki, D. Rajan, X.S. Hu, C. Poellabacer, K. Otten, and T.

Chantem, “Network-Aware Dynamic Voltage and Frequency Scaling,”

Proc. of Real Time and Embedded Technology and Application

Symposium, Apr. 2007, pp. 215-224.

[10] E. Chung, L. Benini, and G. De. Micheli, “Dynamic Power Management

Using Adaptive Learning Tree,” Proc. of International Conference on

Computer Aided Design, Nov. 1999, pp. 274-279.

[11] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning, The

MIT Press, 2006.

[12] S. Ma and C. Ji, “Performance and Efficiency: Recent Advances in

Supervised Learning,” Proc. of IEEE, Vol. 87, No. 9, pp.1519 – 1535,

Sep. 1999.

[13] P. Teich, “Multi-Core Processor Technology: Maximizing CPU

Performance in a Power-Constrained World,” presentation slide of

Microsoft Windows Hardware Engineering Conference, Apr. 2005.

[14] H. Zhong, S. A. Lieberman, and S. A. Mahke, “Extending Multicore

Architectures to Exploit Hybrid Parallelism in Single-Thread

Applications,” Proc. of Int’l Symposium on High Performance Computer

Architecture, Mar. 2007, pp.25-36.

[15] V. Paxson, R. Sommer, and N. Weaver, “An Architecture for Exploiting

Multi-Core Processors to Parallelize Network Intrusion Prevention,”

Proc. of .IEEE Sarnoff Symposium, Apr. 2007, pp.1-7.

[16] T.D. Burd and R.W. Brodersen, “Design Issues for Dynamic Voltage

Scaling,” Proc. of International Symposium on Low Power Electronics

and Design, Aug. 2000, pp. 9-14.

[17] A. Mittal and A. Kassim, Bayesian Network Technologies: Applications

and Graphical Models, IGI Publishing, 2007.

[18] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[19] K. Huang, Z. Xu, I. King, M. R. Lyu, Z. Zhou, “A Novel Discriminative

Naive Bayesian Network for classification,” In Bayesian Network

Technologies: Applications and Graphical Models. Ankush Mittal,

Ashraf Kassim, Tele Tan (Eds.), March, 2007, pp 1-12, Idea Group Inc.

[20] Vapnik, V.N, The nature of statistical learning theory (2nd ed.). New

York: Springer-Verlag. 1999.

[21] G. Theocharous, S. Mannor, N. Shah, P. Gandhi, B. Kveton, S. Siddiqi,

and C. Yu, “Machine Learning for Adaptive Power Management,” Intel

Technology Journal, Vol. 10, Issue 4, pp.299 – 310, Jul. 2006.

[22] G. Dhiman, and T. S. Rosing, “Dynamic Power Management Using

Machine Learning,” Proc. of Int’l Conference on Computer Aided

Design, Nov. 2006, pp. 747-754.

[23] G. Dhiman, and T. S. Rosing, “Dynamic voltage frequency scaling for

multi-tasking systems using online learning,” Proc. of International

Symposium on Low Power Electronics and Design, Jul. 2007,

pp.207-212.

[24] A. Weissel, and F. Bellosa, “Self-Learning Hard Disk Power

Management for Mobile Devices,” Proc. of Int’l Workshop on Software

Support for Portable Storage, Oct. 2006, pp. 33 – 40.

[25] C. Rusu, N. AbouGhazaleh, A. Ferreira, R. Xu, B. Childers, R. Melhem,

and D. Mosse, “Integrated CPU and L2 cache Frequency/Voltage Scaling

using Supervised Learning,” Proc. of Workshop on Statistical and

Machine Learning Approaches applied to Architectures and Compilation,

Jul. 2007, pp. 41 – 50.

[26] W. Cohen, “Fast Effective Rule Induction,” Proc. of 12th Int’l Conference

on Machine Learning, Dec. 1995. pp. 115-123.

[27] R. Quinlan, C4.5: Program for Machine Learning, Morgan Kaufmann

Publisher, 1993.

[28] A. Statnikov, C.F. Aliferis, I. Tsamardinos, D.P. Hardin, and S. Levy, A

Comprehensive Evaluation of Multicategory Classification Methods for

Microarray Gene Expression Cancer Diagnosis, Bioinformatics, 2004.

[29] C. Cortes and V. Vapnik, “Support-Vector Networks,” Journal of

Machine Learning, Vol. 20, No. 3, pp. 273-297, 1995.

[30] R. Knauerhase, P. Brett, T. Li, B. Hohlt, and S. Hahn, “Using OS

Observations to Improve Performance in Multi-core Systems, ” Proc. of

IEEE Micro, Vol. 28, Issue 3, pp. 54-66, May-Jun. 2008.

[31] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell,

“CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP

Platforms,” Proc. of Int’l Conference on Parallel Architecture and

Compilation Techniques, Oct. 2007, pp. 339-349.

[32] M.L. Seltzer, B. Raj, and R.M. Stern, “A Bayesian classifier for

spectrographic mask estimation for missing feature speech recognition,”

Journal of Speech Communication, Vol. 43, pp. 379-393, Mar. 2004.

[33] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from

Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical

Society, Series B, 39(1), pp. 1-38, 1977.

[34] J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application

to Parameter Estimation for Gaussian Mixture and Hidden Markov

Model,” Technical Report, TR-97-021, U.C. Berkeley, 1998.

[35] R. A. Fisher, Statistical Methods and Scientific Inference, Macmillan Pub

Co. 1973.

[36] A. Gosavi, Simulation-based Optimization: Parameter Optimization

Techniques and Reinforcement Learning, Kluwer Academic, 2003.

[37] R.E. Bellman, Dynamic Programming, Princeton University Press, 1957.

[38] R. J. Williams and L.C. Baird, “Tight performance bounds on greedy

policies based on imperfect value functions,” Technical Report

NU-CCS-93-14, Northeastern University, Nov. 1993.

[39] Ken Salchow, “Load Balancing 101,” white papers from F5 Inc.,

http://www.f5.com/pdf/white-papers/evolution-adc-wp.pdf and

http://www.theacademy.ca/load-balancing101-wp.pdf .

[40] White paper, “Scalable Networking: Eliminating the receive processing

bottleneck – Introduction RSS,” WinHEC 2004 version, Apr. 2004

http://www.microsoft.com/whdc/.

[41] IEEE 802.3 Ethernet document. http://www.ieee802.org.

[42] H. Jung, and M. Pedram, “A Unified Framework for System-level Design:

Modeling and Performance Optimization of Scalable Networking

Systems,” Proc. of Int’l Symposium on Quality of Electronic Designs,

Mar. 2007, pp.198-203.

[43] OpenRISC processor. http://www.opencores.org. Opencore, 2009.

[44] Synopsys compiler. http://www.synopsys.com. Synopsys, 2009.

[45] B. Calhoun, J. Kao, and A. Chandrakasan, Leakage in Nanometer CMOS

Technologies, Springer, 2006.

[46] White paper, “Bi-directional current/power monitor with I2C Interface,”

Sep. 2008, http://focus.ti.com.

[47] V. Srinivasan, D. Brooks, M. Gschwind, and P. Bose, “Optimizing

Pipelines for Power and Performance,” Proc. of International Symposium

on Microarchitecture, Nov. 2002, pp.333-344.

[48] V. Pronk, S.V.R. Gutta, and W.F.J. Verhaegh, “Incorporating Confidence

in a Naïve Bayesian Classifier,” Lecture Notes in Computer Science: User

Modeling 2005, pp.317-326, Aug. 2005.

 14

[49] G.M. Foody, A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd,

“Training set size requirements for the classification of a specific class,”

Journal of remote sensing of environment, Vol. 104, Issue 1, pp. 1 – 14,

Sep. 2006.

[50] C. McNairy and R. Bhaita, “Montecito: A Dual-Core, Dual-Thread

Itanium Processor,” IEEE Micro, Vol. 25, Issue 2, pp. 10-20, Mar-Apr.,

2005.

[51] S. Chaudhuri and V. Narasayya, “An Efficient Cost-driven Index Tuning

Wizard for Microsoft SQL Server,” Proc. of 23rd International

Conference on Very Large Databases, Sep. 1997, pp. 146-155.

[52] I. Ahmand, “Easy and Efficient Disk I/O Workload Characterization in

VMware ESX Server,” Proc. of International Symposium on Workload

Characterization, Sep. 2007, pp. 149-158.

[53] E. Castro-Leon, S. Nayak, and D. Shenkar, “Data Center Power and

Thermal Management using Intel Data Center Manager Software

Development Kit”, http://software.intel.com. Jul. 2009.

[54] Q. Qiu and M. Pedram, “Dynamic Power Management based n

Continuous Time Markov Decision Process,” Proc. of Design Automation

Conference, Jun. 1999, pp.555-561.

[55] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose and M. Martonosi, “An

Analysis of Efficient Multi-Core Power Management Policies:

Maximizing Performance for a Given Power Budget,” Proc. of Int’l

Symposium on Microarchitecture, 2006, pp.347-358

