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Abstract - This paper presents a supervised learning based power 

management framework for a multi-processor system, where a 

power manager (PM) learns to predict the system performance 

state from some readily available input features (such as the 

occupancy state of a global service queue) and then uses this 

predicted state to look up the optimal power management action 

(e.g., voltage-frequency setting) from a precomputed policy table. 

The motivation for utilizing supervised learning in the form of a 

Bayesian classifier is to reduce the overhead of the PM which has 

to repetitively determine and assign voltage-frequency settings for 

each processor core in the system. Experimental results 

demonstrate that the proposed supervised learning based power 

management technique ensures system-wide energy savings under 

rapidly and widely varying workloads. 

 

Index Terms — Bayesian classification, dynamic power 

management, machine learning, multi-processor system, 

supervised learning  

I. INTRODUCTION 

ngoing demand for high performance – yet thermally 

sustainable - processing have resulted in the introduction 

of chip multiprocessor architectures to enable continued 

performance scaling without having to increase the chip clock 

frequencies beyond a few GHz. At the same time, there are 

strong motivations (i.e., dollar cost of energy consumption, 

thermal power budget constraint, service life of the system in 

between batter recharges in case of mobile platforms) to make 

multi-core processing platforms power and energy efficient.  

Conventional dynamic power management (DPM) methods 

have not been able to take full advantage of power-saving 

techniques such as dynamic voltage and frequency scaling 

(DVFS). This is because i) the system-level power manager has 

a limited opportunity to utilize DVFS due to the energy and 

delay overheads incurred during power mode transitions  [1], 

and ii) the power management algorithm (process), which 

continuously monitors the workloads of multiple processors, 

analyzes the information to make decisions, and issues DVFS 

commands to each processor, can give rise to a considerable 

computational overhead and/or complicate the task 

scheduling  [2]. The higher the number of cores in the processor 

is, the more severe these issues become. Therefore, the ability 

of a DPM framework to scale well on a multicore processor by 

eliminating these overheads is becoming a critical 

requirement  [3] [4]. 

In the literature, DPM is typically referred to a strategy 

whereby a resource manager (hardware, firmware, or the 

operating system) turns of or off the processing cores when 

they are idle (or new tasks arrive). In contrast, DVFS is defined 

as a technique which dynamically varies the supply voltage and 

operating frequency values applied to the processing cores in 

response to load conditions or workload characteristics. It is 

easy to see that DPM can be easily combined with DVFS, i.e., a 

power manager may not only issue commands to various 

processing cores to turn on or off, but also change their 

power-performance state by issuing DVFS commands. In our 

paper, however, we do not consider power gating as an option, 

i.e., when we speak of DPM, we mean DPM using DVFS as the 

power optimization level only. 

The problem of determining a power management policy 

that applies DVFS to a multicore processor has recently 

received a lot of attention – see, for example,  [5]- [10]. 

Although these techniques perform system-level DPM or 

DVFS for multicore processors, little attention has been paid to 

improve decision-making strategy which minimizes the 

overhead of a power manager (PM), i.e., to devise a 

learning-based power management policy that can quickly 

analyze some easily available input features (i.e., quantifiable 

features of the system under consideration) and accurately 

predict the overall system performance state, which is 

subsequently used to choose and issue the “optimal action”. 

Traditional approaches for DPM, which are based on models 

of service requestor (SR), service provider (SP), and service 

queue (SQ), tend to work very well if the workload of the 

system does not change rapidly. In such a case, the energy and 

delay overheads of power mode transitions can become quite 

significant, rendering the DPM strategy ineffective. Indeed, 

adaptive power management techniques are unsuccessful in 

reducing the total chip power dissipation when the overhead of 

power-mode transitions is not controlled in a multicore 

processor, which is subjected to frequent changes in the load 

conditions  [10]. Our thesis is that knowing (or predicting) in 

real time which frequency and voltage levels to use, and when 

to apply a new performance setting in a multicore processor, 

must be done with the aid of a self-improving (i.e., intelligent 

and autonomous) power manager that can detect the load 

conditions and react appropriately.  

In this paper, we address a dynamic power management 

problem where a PM continuously issues power mode 

transition commands to maximally exploit the power-saving 

opportunities. The overhead associated with the functioning of 

the PM to monitor the workload of the system and make 

decisions about performance mode (voltage and frequency 

level) of different cores in a multicore processing system tends 

to be high. This paper thus describes a supervised learning  [11] 

based DVFS for the multicore processor, which enables the PM 

to predict the performance state of the processor for each 

incoming task by inspecting some readily available input 

features, followed by a Bayesian classification technique.  

Supervised learning (SL) refers to the formal theory of 

developing computational models for learning behaviors of 

agents as part of the machine learning discipline  [11] [12]. The 

key rational for utilizing SL for power management is to reduce 
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the overhead of the PM. Experimental results demonstrate the 

effectiveness of the proposed power management framework 

and show that it achieves sizeable system-wide energy savings 

under rapidly varying workloads in a wired communication 

application scenario. 

In the remainder of this paper we use the terms chip multi 

processor (CMP) and multi-processor system (MPS) 

interchangeably. Moreover, we assume that the different cores 

within a CMP or the different processors within a MPS can be 

independently turned on/off or voltage and frequency scaled. 

We realize that the current generation of CMP designs (see for 

example Intel Nehalem  [53]) do not offer per-core dynamic 

voltage and frequency scaling, but expect that the future 

generations of the CMP designs will support this important 

power/performance scaling feature. Regardless, the proposed 

approach can be applied to different processors in a MPS (e.g., 

a Blade server used in datacenters).  

The remainder of this paper is organized as follows. Section 

II provides background of this paper while section III describes 

some related work. Section IV provides the details of proposed 

supervised learning based power management framework. An 

extraction strategy for input features and output measures is 

described in section V. In section VI, we present a stochastic 

policy optimization technique. Experimental results and 

conclusion are given in section VII and section VIII. 

II. BACKGROUND  

Consider a power-managed MPS, where each processor is 

equipped with multiple power-saving modes (i.e., different 

DVFS settings). A system-level PM dynamically assigns the 

DVFS setting for each processor based on its workload as is 

shown in Fig. 1 for a distributed shared-memory MPS.  

The figure also shows a dynamic load balancing block which 

enables high-throughput and low-latency data flow for each 

processor and a control unit which ensures cache coherency. 

The flow queue (i.e., receive queue) interacts with the PM by 

providing information about a processor’s workload for the 

purpose of controlling the performance state of the processor. 

The PM, which profiles and analyzes the workload 

characteristics i.e., the arrival rate of tasks by examining the 

flow queue, determines and executes a power management 

policy (i.e., one that maps workloads to power state transition 

commands) so as to minimize the system energy dissipation. 

Details of the processor functionality are omitted here for 

brevity. Interested readers may refer to  [13] [14] [15].  

When tasks are given to a MPS, the dynamic load balancing 

block (i.e., SR) dispatches each task into some flow queue (i.e., 

local SQ). Each processor (i.e., SP) reads the assigned tasks 

from its SQ. At regular time instances (or aperiodic times 

dictated by interrupts), called decision epochs, the PM 

determines the workload of the processor by checking the 

occupancy state of its SQ, and subsequently, assigns a DVFS 

value to the processor. Note that the decision epochs are 

separated by a fixed (or some average) time interval; the shorter 

this time interval is, the higher the delay and energy dissipation 

overheads of the PM are. This is because the DVFS method 

utilizing a DC-DC converter with multiple regulated output 

voltage levels and a PLL with multiple output frequencies incur 

non-negligible mode transition latency and energy 

overheads  [16]. At the same time, the shorter this interval is, the 

more responsive the PM is to changes in the workload. The 

shortcoming of the conventional DVFS procedure is the 

following. When the workload (the occupancy number of the 

SQ) changes, each processor has to send an interrupt to the PM 

to request a DVFS adjustment for the corresponding processor, 

which significantly increases the computational overhead of 

the PM in a MPS with a large number of processors. 

Alternatively, the PM on a regular basis examines the state of 

the SQ in front of each processor in order to determine the 

DVFS value for that processor, and subsequently, schedules a 

sequence of DVFS assignments for every processor. Either 

approach creates a significant overhead. A key contribution of 

our work is that an incoming task is directly labeled with an 

optimal DVFS value through the Bayesian classification 

process while it is still in the SQ. 

III. RELATED WORK  

Dynamic power management techniques based on machine 

leaning  [18] have been the subject of a number of recent 

investigations  [21]- [25]. In the following, we provide a quick 

review of some works that are directly related to ours. 

An adaptive power management technique based on 

machine learning was presented in  [21], where the authors 

described a system that learns when to turn off functional 

blocks of the system based on different usage patterns, e.g., 

history of active application or the CPU utilization factor. In 

this model-based approach, system dynamics and user patterns 

are captured to choose power-saving actions. 

The authors in  [22] [23] described a power management 

technique that employs a machine learning algorithm to 

choose an optimal policy from a set of power management 

policies available to a system. The proposed algorithm, which 

relies on processor runtime statistics, evaluates performance of 

the policies during each idle period to decide which policy to 

adopt next. Our proposed technique differs from  [23] in that we 

use a supervised learning algorithm for deriving a 

self-improving policy.  

An automated approach to identify a task-specific power 

management policy was proposed in  [24], where an 

enforcement-learning based operating system automatically 

learns which action to take for a specific workload given to a 
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Fig. 1.  Example of a power-managed multi- processor system. 
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system. The authors applied the proposed technique to hard 

disk power management in a mobile device, enabling the 

operating system to record hard disk accesses and monitor I/O 

related system parameters. In this approach, a classification 

algorithm that dynamically selects an appropriate spin-down 

policy is implemented.  

The authors of  [25] presented a machine learning approach 

to perform dynamic voltage scaling (DVS) on an integrated 

CPU-core and on-chip L2-cache. The proposed approach 

identifies application phases at runtime and issues appropriate 

DVS commands. The DVS policy itself is derived through a 

learning process performed on a representative workload. More 

precisely, first a training data set is generated by representing 

the workload as a CPU/cache frequency combination and the 

optimal DVS command for each such combination. Next a 

machine learning technique is applied to obtain a policy in the 

form of propositional (if-then) rules. 

All of the above-mentioned power management approaches 

are based on machine learning techniques, where an agent (i.e., 

power manager) is trained based on a number of representative 

workloads or user patterns in order to learn the performance 

state of a target system for the purpose of taking a DVS or 

DVFS action. Unfortunately, little attention has been paid to 

power management policy optimization under a cost function 

and to the accurate classification of the performance state of the 

system. Furthermore, as explained previously, the aforesaid 

techniques are inefficient for MPS architecture due to 

computational overheads for deriving an optimal policy for 

each processor, exacerbating with scheduling of a series of 

DVFS assignments for every processor. 

IV. LEARNING-BASED POWER MANAGEMENT FRAMEWORK 

In this section, we present a theoretical framework to construct 

a supervised learning-based power management framework. 

A. Background on Supervised Learning 

Supervised learning  [11] is an effective and practical technique 

for discovering relations and extracting knowledge in cases 

where the mathematical model of the problem may be too 

expensive to construct, or not available at all. Alternatively, it 

may be used to derive a self-improving decision-making 

strategy instead of making decisions based on the current 

perceived state of the system.  

The goal of the supervised learning is to learn a mapping 

from x ∈ X to y ∈ Y, given training sets that consist of input and 

output pairs. Here X = {x1, x2, …, xn} denotes a set of input 

features, and Y = {y1, y2, …, yn} is a set of outputs measures. 

The input feature set contains quantifiable features of the 

system under consideration. The output measure set can be a 

continuous value (called regression) or a class label of the input 

(called classification), which thus results in a numerical or 

categorical measure. If the output measure is numerical 

(categorical), then the learning will become a regression 

(classification) problem. 

In this paper, each output measure is labeled with a 

pre-defined class (e.g., performance level). The learning is 

performed on a collection of training sets. Thus, training an 

agent (e.g., a PM) involves finding a mapping from input 

features to output measures so as to enable the agent to 

accurately predict the class of an output measure when a new 

input feature is given. Fig. 2 shows the concept of supervised 

learning, where the agent predicts the classes of output 

measures yk when input features xk are given after learning with 

the training sets, where k = 1, …, n.  

The key steps of the supervised learning may be stated as 

follows: 

i) Determine inputs and outputs of the learner: Relevant input 

features and output measures (and the corresponding class 

labels) are chosen, 

ii) Generate the training set: The training set – which is simply 

a collection of input features and corresponding output 

features and class labels - is designed so as to capture the 

important characteristics of the system, 

iii) Training: This step results in the design of the classifier 

based on the training set, 

iv) Classification: The classifier is used on arbitrary input 

features to predict the class labels of the output measures. 

Considering algorithms for supervised learning, there are a 

number of methods for classification such as rule based learner, 

decision tree based learner, instance based learner, probability 

based learner, and kernel based learner. Details of each 

classification learner are omitted here for brevity. Interested 

readers may refer to  [26] [27] [28] [29].  

In our problem setup, we have found that the probability 

based learner (i.e., Bayesian classifier) is more efficient than 

other methods since it can efficiently classify the output 

features corresponding to a new input feature into a finite 

number of class labels. The key to speed of the classification 

step is the pre-computation of prior and conditional 

probabilities based on a training step (see below).  

B. Learning-based Power Management Framework 

It is useful to describe how the supervised learning can be 

adapted to the power management technique. Fig. 3 presents a 

top level structure of the proposed PM which incorporates a 

Bayesian learning framework. The learning framework 

consists of two phases: extraction and classification phases.  
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Fig. 3.  Structure of the proposed power manager. 
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Fig. 2.  Concept of supervised learning. 
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Essentially, we aim to use the supervised learning to enable 

the PM to automatically discover the relations between input 

features and output measures and to predict the processor’s 

performance level (power dissipation and execution time per 

task) by using the classification. Key functions implemented 

inside the PM are as follows: 

- Feature extraction: choose the input feature (i.e., 

characteristics of the tasks and the state of the SQ), 

- Measure extraction: choose the output measure (i.e., the 

power dissipation and execution time of the tasks),  

- Training set generation: assemble the input feather and 

output measure into the training sets, 

- Supervised learning: map the input feature to the output 

measure based on the training sets, and 

- Classification: select the most likely class given the input 

feature. 

The proposed supervised learning-based power management 

technique mainly comprise of three parts: extraction, 

classification, and policy generation. The procedures for 

extraction and classification are explained next. Details of the 

extraction strategy for input features and output measures are 

further described in section IV, whereas the policy optimization 

technique is presented in section V. 

1) Input Feature and Output Measure Extraction 

The first step is the extraction phase which extracts input 

features and output measures, where system knowledge is 

required to produce well-prepared training sets. During the 

process of feature extraction, in the context of the power 

management problem, the PM gathers input features such as the 

type of tasks (e.g., high-priority or low-priority), the state of the 

SQ, and the arrival rate of tasks, which affect the performance 

level of the SP. In addition, the PM observes 

performance-related information (e.g., the system power 

dissipation and the execution time of tasks) as the output 

measures. The class of each output measure, considered as an 

attribute, is as a pre-defined level or range, such as a range of 

system power dissipations or time durations for task execution. 

TABLE I                                                  

EXAMPLE TRAINING SET FOR THE DPM PROBLEM 
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TABLE I shows an example of training sets which consist of 

selected input feature and output measure pairs. Notice that the 

queue occupancy and the arrival rate of task are assigned 

attributes (i.e., low, med, or high), where low = [0 33%], med = 

(33% 67%], and high = (67% 100%] when applied to the SQ 

occupancy, and low = [0 0.33], med = (0.33 0.67], and high = 

(0.67 1] when applied to the arrival rate. Each output measure is 

labeled with a specific class from the set L. In our problem 

setup, the class set L is defined as L1 = {pow1, pow2, pow3} 

where pow1 < pow2 < pow3, and L2 = {exe1, exe2, exe3} where 

exe1 < exe2 < exe3. Note that each class is defined as a range of 

values, e.g., pow1 = [34mW 41mW], pow2 = (41mW 47mW], 

pow3 = (47mW 54mW], exe1 = [14.1ns 21.5ns], exe2 = (21.5ns 

28.5ns], and exe3 = (28.5ns 35.7ns]. In addition to our input 

features, the power dissipation and execution time may be 

determined by many other factors, including the cache hit/miss 

ratio, cache hierarchy, and so on. The extent to which these 

factors impact the performance of the SP is highly dependent 

on the architecture and/or the system configuration (e.g., 

whether the SP’s allow single or multiple thread execution). In 

this paper, we consider single-threaded core architectures only. 

The training set size affects the accuracy of classification, i.e., 

variance of the predicted value increases as the training set size 

is reduced, resulting in an increased bias. In this paper, the 

training set size is determined by calculating a conditional 

probability while varying the set size, as described in the 

experimental results section. 

2) Classification 

The goal of classification is to predict the most likely class label 

of the output features given the input features. In the context of 

PM for a CMP system, the goal is to devise a power 

management policy for issuing DVFS commands that minimize 

the total energy dissipation of the CMP system based on the 

load conditions and workload characteristics. 

Having obtained the training set, the second step is the 

classification phase, which uses supervised learning to train an 

accurate classifier. The classifier’s goal is to organize a new 

input feature {x1, x2, …, xn} into a finite number of classes l 

from the set L for each one of the output features in the set {y1, 

y2, …, yn}. 

Specifically, in the Bayesian classifier, the classification task 

is essentially the assignment of the maximum a posteriori 

(MAP) class given the data x = (x1, x2, …, xn) and the prior of 

class assignments to yi by maximizing the posterior probability 

Prob(yi = l | x1, x2,…, xn) of assigning class l to output feature yi 

given the new evidence x, such as 

1 2

1 2

1 2

arg max ( | , , , )

( , , , | ) ( )
arg max

( , , , )

MAP i n
l

n i i

l n

y Prob y l x x x

Prob x x x y l Prob y l

Prob x x x

= =

= ⋅ =
=

…

…
…

 (1) 

The denominator Prob(x1, x2, …, xn), which is the marginal 

probability of witnessing the new evidence x under all possible 

hypotheses, is irrelevant for decision making since it is the 

same for every class assignment. Prob(yi = l), which is the prior 

(pre-evidence) probability of the hypothesis that the class of yi 

is l, is easily calculated from the training set. Hence, we only 

need Prob(x1, x2,…, xn | yi = l), which is the conditional 

probability of seeing the input feature vector x given that the 
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class of yi is l.  The factor 1 2

1 2

( , , , | )

( , , , )

n i

n

Prob x x x y l

Prob x x x

=…
…

represents 

the impact of the new evidence x on the hypothesis that yi=l. If 

it is likely that the evidence will be observed when this 

hypothesis is true, then this factor will be large. Note that 

multiplying the prior probability by this factor results in a large 

posterior probability of the hypothesis given the evidence. The 

Bayes' theorem thus measures how much new evidence should 

alter belief in some hypothesis. 

Now Prob(x1, x2,…, xn | yi = l) may be expanded as Prob(x1 | 

x2,…, xn , yi = l)×Prob(x2, x3,…, xn | yi = l). The second factor 

above can be decomposed in the same way, and so on. 

Furthermore, assuming that all input features are conditionally 

independent given the class, i.e., Prob(x1 | x2, …, xn , yi = l) = 

Prob(x1 | yi = l). Therefore, we obtain: Prob(x1, x2,…, xn | yi = l) 

= ∏j Prob(xj | yi = l), and we compute the maximum a posteriori 

class as follows: 

       
1

arg max ( ) ( | )

n

MAP i j i

l j

y Prob Proby l x y l
=

= = ⋅ =∏  (2) 

When used in real applications, the Bayesian classifier first 

partitions the training set into several subdatasets by the class 

label of the target output measure. Then, in each subdataset 

labeled by l for output measure yi, the maximum likelihood 

(ML) estimator Prob(xj = ajk | yi=l) can be given by the 

frequency njkl / nl, where njkl is the number of the occurrences of 

the event {xj = ajk} in subdataset denoted by class label l; nl is 

the number of the samples in the same subdataset. 

An example of how to classify the input features is given 

next. Suppose that we have a set of three input features and a set 

of two output features as shown in Table 1, where {x1, x2, x3} = 

{task type, queue occupancy, arrival rate}, and {y1, y2} = 

{power dissipation, execution time}. We first compute the 

per-input-feature conditional probabilities required for the 

classification task. For the example training set, we have: 

Prob(x1 = low | y1 = pow1) = Prob(x1 = low | y1 = pow2) = 3/4, 

Prob(x1 = high | y1 = pow1) = Prob(x1 = high | y1 = pow2) = 1/4, 

and Prob(x1 = high | y1 = pow3) = 1. There may be some cases 

where particular input features do not occur together with an 

output measure due to an insufficient number of data points in 

the training set. In this case, a standard way to deal with zero 

conditional probabilities is to eliminate them by smoothing  [18] 

as follows 

( )
( | )

( )

,
j

i

i

j i

x

freq x y l
Prob x y l

freq y l n

λ

λ

= +
= =

= +
 (3) 

where λ is a smoothing constant (λ > 0), and nx is the number of 

different attributes of xi that have been observed. For the 

example training set, using equation (3) with λ = 1, we have: 

Prob(x1 = low | y1 = pow3) = Prob(x2 = med | y1 = pow3) = 1/4. 

We will also need the prior probabilities for the various output 

feature classifications, which are calculated from the training 

set data. In this example, Prob(y1 = pow1) = Prob(y1 = pow2) = 

4/9, and Prob(y1 = pow3) = 1/9. After calculating the 

conditional and prior probabilities, the PM can decide the best 

power management policy by predicting the MAP class for a 

new input feature vector. 

Let a new input feature (x1 = low, x2 = med, x3 = med), which 

was not in the training set, be presented to the PM, which 

classifies the input feature based on equation (2) as follows.  

i) Firstly, for the hypothesis y1 = pow1, the posterior 

probability is: Prob(y1 = pow1)⋅Prob(x1 = low, x2 = med, x3 

= med | y1 = pow1) = (4/9)⋅(3/4)⋅(1/2)⋅(1) = 1/6 because 

Prob(x1 = low | y1 = pow1) = 3/4, Prob(x2 = med | y1 = pow1) 

= 1/2 and Prob(x3 = med | y1 = pow1) = 1.  

ii) Secondly, for the hypothesis y1 = pow2, the posterior 

probability is: Prob(y1 = pow2)⋅Prob(x1 = low, x2 = med, x3 

= med | y1 = pow2) = (4/9)⋅(3/4)⋅(1)⋅(1/4) = 1/12 because 

Prob(x1 = low | y1 = pow2) = 3/4, Prob(x2 = med | y1 = pow2) 

= 1 and Prob(x3 = med | y1 = pow2) = 1/4.  

iii) Lastly, for the hypothesis y1 = pow3, the posterior 

probability is: Prob(y1 = pow3)⋅Prob(x1 = low, x2 = med, x3 

= med | y1 = pow3) = (1/9)⋅(1/4)⋅(1/4)⋅(1) = 1/144 because 

Prob(x1 = low | y1 = pow3) = 1/4, Prob(x2 = med | y1 = pow3) 

= 1/4 and Prob(x3 = med | y1 = pow3) = 1.  

Consequently, the MAP class of the power dissipation for the 

new input feature vector is pow1. Similarly, computing MAP of 

the execution time results in posterior probabilities of 

hypotheses y2 = exe1, y2 = exe2, and y2 = exe3 being 1/24, 2/9, and 

1/18. Thus, the PM concludes that the MAP class of the 

execution time is exe2. 

The PM predicts the MAP performance level of the 

processor when a new task arrives in the SQ. The classification 

based on the Bayesian classifier is robust to noisy and/or 

extraneous input features. It is also fast because it only requires 

a single pass through the training data to initialize the prior and 

conditional probabilities while requiring only a few 

multiplications and comparison to determine the MAP 

performance level of the processor at runtime. 

3) Discriminative Bayesian Classifier 

As we have seen above, a Bayesian classifier assumes a 

conditional independency among the input features. When used 

for classification, the Bayesian classifier predicts a new data 

point as the class with the highest posterior probability by 

writing the classification rule in a decomposable form using the 

conditional independence assumption (see equation (2)).  

A key advantage of the Bayesian classifier is the ability to 

deal with the missing information during classification (i.e., 

missing input features that are relevant to the identification of 

output features). For example, some information such as cache 

miss statistics or branch mis-prediction rate, which affect the 

processor performance are considered as missing input features 

in our problem setup. Assume the input feature set {x1, x2, …, 

xn}  be X. When the values of a subset of X, for example M, are 

unknown or missing, the marginalization inference can be 

obtained immediately as follows: 

   arg max ( ) ( | )
MAP i j i

l j X M

y Prob Proby l x y l
∈ −

= = ⋅ =∏  (4) 

No further computation is needed in handling this missing 

information problem, because each term Prob(xj | yi=l) has been 

calculated in training the Bayesian classifier. However, there 

are shortcomings in this simple classifier. More precisely, this 
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approach models the joint probability in each subset separately 

and then applies the Bayes rule to obtain the posterior 

classification rule. Consequently, this construction procedure - 

sometime called a generative classifier - discards some 

discriminative information for classification  [17]. Without 

considering the other classes of data, this method only tries to 

approximate the information within each subdataset. On the 

other hand, a discriminative classifier, which directly estimates 

Prob(yi|xj), preserves inter-subdataset information well by 

directly constructing decision rules among all available 

data  [18]. Therefore, the Bayesian classifier may be extended to 

provide a global scheme to preserve the discriminative 

information among all the data. See  [19] for a detailed 

description of a discriminative Bayesian classifier, which 

combines both merits of discriminative methods (e.g., support 

vector machines  [20]) and the simple Bayesian classifiers 

described above. A more detailed discussion of discriminative 

Bayesian classifiers falls outside the scope of the present paper. 

V. EXTRACTION STRATEGY 

In this section, we present the extraction strategy for input 

features and output measures. 

A. Extracting Input Features 

Input feature selection plays an important role in the 

classification procedure which maps input features onto output 

measures. There are some relevant input features that have 

important information regarding the output measures, whereas 

there may be some irrelevant ones containing little information 

regarding the output measures. Finding every input feature that 

contains relevant information about the resulting output 

measure is difficult and in many cases unnecessary. For 

example, capturing the amount of cache interference 

experienced among tasks that are co-scheduled on the same 

shared cache is difficult. Typically, a task is written to expose 

software “threads” of execution; the OS then maps these 

threads onto processors in the case of MPSs. The PM gathers 

available information on input features (e.g., types of the tasks, 

state of the SQ, and arrival rate of tasks) as explained in the 

previous section. At the same time, the PM needs to watch for 

the missing input features (e.g., the amount of cache 

interference) which affect the performance-related output 

measures as well. 

There are two approaches to compensate for the missing 

input features  [32]: input feature-compensate method and 

classification-compensate method. The first approach estimates 

values of hidden input features by using the 

expectation-maximization (EM) algorithm  [33] and then 

performs classification on the complete input features. Note 

that the EM algorithm is a general technique that can be used to 

determine the maximum likelihood estimate (MLE) of the 

parameters of an underlying distribution from some given data 

when the measured data is incomplete. The second approach 

passes the incomplete input features directly to the classifier 

which is then adjusted to operate on the incomplete input 

features. A brief description of each method follows. 

1) Input Feature-Compensate Method 

Let x denote the known (measured) input feature and let m 

denote the missing input feature. Together x and m form the 

complete input feature. Notice that m can be a hidden source of 

variation that affects the output measures. Then, we have 

Prob(x, m | θ), the joint probability density function of the 

complete input features with parameters given by vector θ (θ 
may for example correspond to the mean value and variance of 

a Gaussian distribution). This function can also be considered 

as the complete data likelihood, that is, it can be thought of as a 

function of θ and expressed as 

    
( , | ) ( | , ) ( | )Prob x m Prob m x Prob xθ θ θ= ⋅  (5) 

by using the Bayes rule. 

The EM algorithm iteratively improves an initial estimate θ0 

by constructing new estimate θ1, θ2, etc., where an individual 

re-estimation step that derives θn+1 from θn takes the following 

form: 

    

1
arg max ( )

n
Q

θ
θ θ+ =  (6) 

where Q(θ) is the expected value of the log-likelihood of 

complete input feature. Since we do not know the complete 

data, we cannot determine the exact value of the likelihood, but 

given the input feature x, we can calculate a posteriori estimates 

of the probabilities for the various values of m. For each set of 

m values, there is a likelihood value for θ, and we can hence 

calculate an expected value of the likelihood with the given 

values of x’s. Q is given by 

          
( )( ) log ( , | )

m

Q E Prob x m xθ θ=  (7) 

where it is understood that this denotes the conditional 

expectation of log Prob(x, m | θ) being taken with the θ used in 

Prob(m | x, θ) fixed at θn. In other words, θn+1 is the value that 

maximizes the conditional expectation of log-likelihood of the 

complete input feature given the measured variables under the 

previous parameter values. The expectation Q(θ) may be 

rewritten as: 

       
( ) ( | ) log ( , | )Q Prob m x Prob x m dmθ θ

∞

−∞
= ∫  (8) 

These two steps (Expectation and Maximization) are 

repeated until | θn+1 - θn| ≤ ω, where ω is some user specified 

tolerance level  [34]. It can be shown that the EM iteration does 

not decrease the measured input feature likelihood function. 

The EM algorithm finds θ that maximizes the complete-input 

feature likelihood, which in turn removes the effect of hidden 

variables (i.e., the missing input features). 

2) Classification-Compensate Method 

In this method, the incomplete input features are used directly 

for the classification. Every input feature x is assigned a 

probability α to show how reliable and critical it is for the 

output measure. Likewise, each of the missing input features is 

assigned a probability (1 - α). Assuming that all measured input 

features and missing input features are independent, the total 

likelihood of each input feature simply becomes a weighted 

sum of the likelihood of the input features. Mathematically, this 

can be expressed as  
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       ( )
1 2

1

1

( , , , | )

( | ) ( ) ( | )

n i

n

j i j i
j

Prob x x x y l

Prob x y l Prob m y lα α
=

⋅ −

=

= ∏ = + ⋅ =

…
 (9) 

where y is the output measure and l is the class, provided that 

we have the missing input features m = (m1, m2, …, mn). In 

practice, we substitute (9) into (2) to compute the maximum a 

posteriori (MAP) during the classification. 

B. Extracting Output Measures 

 Modern processors include hardware features for monitoring 

performance characteristics of the processor  [30], which 

enables the PM to collect performance-related information. 

When an application runs by itself on a single processor system, 

the resources in that system are dedicated to its execution. Thus 

it is relatively easy to truthfully characterize and model 

resultant application performance behavior. However, when 

multiple applications run simultaneously on a MPS, it is 

comparatively difficult to determine the resources that end up 

being given to each individual application, which means that 

the performance behavior of each application on the MPS may 

not be measured accurately. Thus, the PM is forced to observe 

the output measure in a probabilistic way. 

Let r denote an input feature state (ri, i=1,…, h) where state r 

corresponds to a particular assignment of  various attributes to 

input features (x1, x2, …, xn). Let o denote an observation which 

corresponds to output measures (y1, y2, …, yn) with various 

classes. Fig. 4 (a) illustrates observations for each output 

measure given an input feature state. Note that oy1(r1) 

represents the observation o in y1 (output measure) given the 

input feature state r1. For example, the power dissipation (oy1), 

one of output measures under consideration, of a processor 

given an input feature state r1 (e.g., low priority task, medium 

queue occupancy, and high arrival rate of task) is normally 

distributed with mean of 38mW and variance of 2 i.e., N(38, 2). 
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Fig. 4. (a) Observations for each output measure, and (b) Decision 

boundaries for an output measure among various input feature states 

For accurate classification, the decision boundaries of the 

output measure in Bayesian classifier have to coincide with or 

be close to the performance specification criteria or boundaries. 

Fig. 4 (b) shows an example of decision boundaries for an 

output measure (e.g., oy1) among various input feature states 

(e.g., r1, r2, and r3), where our goal here is to find the distinction 

points δ1 and δ2.  

By doing so, we can define the class as a range of values, as 

explained before. Let fr1, fr2, and fr3 denote the probability 

density functions of output measure for the input feature states 

r1, r2, and r3, respectively. Based on the illustration (see Fig. 4 

(b)), δ1 and δ2 are determined from the following: 

1

1

2

1 2

2

2 3

( ) ( )

( ) ( )

fr x dx fr x dx

fr x dx fr x dx

δ

δ

δ

δ

∞

−∞

∞

−∞

=

=

∫ ∫

∫ ∫
 

(10a) 

 

(10b) 

Assuming normal distribution function for the output measure 

in our problem setup, we can rewrite (10a) and (10b) as: 

    

2 2

2 21

1

( ) ( )

2 21 1

2 2
a b

a b

a b

x x

e dx e dx

μ μ
δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫  

     

2 2

2 22

2

( ) ( )

2 21 1

2 2
b c

b c

b c

x x

e dx e dx

μ μ
δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫  

(11a) 

 

 

(11b) 

 

 

where μa, μb, and μc are the mean values of the output measure 

for the input feature states, and σa, σb, and σc are their standard 

deviations. Solving these integral equations, we obtain: 

         1 2,a b b a b c c b

a b b c

μ σ μ σ μ σ μ σδ δ
σ σ σ σ

+ +
= =

+ +
 

(12) 

TABLE II shows an example of the decision boundaries for 

various probability density functions of the output measure (i.e., 

power dissipation), while varying values of standard deviations, 

where oy1(r1) = N(μa, σa
2), oy1(r2) = N(μb, σb

2), and oy1(r3) = N(μc, 

σc
2), where each case is represented graphically in Fig. 5. To 

simplify the comparison among these, we assume that the mean 

values for the output measure are fixed (e.g., μa =37.5, μb = 44.0,  

μc = 50.5). 

TABLE II                                                  

EXAMPLES OF DECISION BOUNDARIES 

 

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc
σa σb σc

case (a) case (b) case (c)

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc
σa σb σc

case (a) case (b) case (c)

 

Without loss of generality, we assume, μb > μa. Next we 

introduce “distinction index (DI)”  [35] as the performance 

criterion for boundary selection in output measure by the 

following: 

b a

b a

DI
μ μ
σ σ

−
=

+
 

(13) 

which indicates that the larger the value of DI is, the better the 

distinction between the output measures will be. For example, 

in case (c), DI1 that represents the distinction between oy1(r1) 

and oy1(r2) is 1.44, which is greater than DI2 (between oy1(r2) 

and 
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(a)                                                                   (b)                                                                        (c) 

Fig. 4. Examples of decision boundaries for various probability density functions of output measures (cf. TABLE II). 

 

 oy1(r3)). This indicates that we can achieve better accuracy in 

classification when we are given input feature states r1 and r2 

rather than r2 and r3. 

In conclusion, to ensure high accuracy in classification, the 

selection of distinction points has to be considered for the 

establishment of the discriminant function of the classifier. 

VI. POWER MANAGEMENT POLICY  

Finding an optimal power management policy in a 

learning-based framework requires an autonomous decision 

making strategy which maps the output classes to actions. The 

actions commanded by the PM change the performance state of 

the system and lead to quantifiable penalties (or rewards). We 

consider the case where an action incurs a cost (e.g., energy 

dissipation), where the PM’s goal is to devise a policy for 

issuing a command that minimizes this expected cost. 

Assume that the target processor system has k (power-delay 

or PD for short) states denoted by s1, …, sk, where s1 <…< sk in 

terms of the PD product (PDP) in the respective states. The PM 

can choose an action from a finite set of supply voltage-clock 

frequency (VF) settings A = {a1, …, an}, where a1 <…< an in 

terms of the VF values (notice that a lower V requires a 

correspondingly lower F for the processor while a higher V 

allows a higher F, hence VF pairs may be considered as a single 

optimization variable in this setup).  

There is a state transition probability for transitioning from 

state s to another state s’ after executing an action a, i.e., T(s’, a, 

s) = Prob(s’ | a, s). Furthermore, we make a common 

assumption that the cost function is additive (the PDP which is 

the same as energy dissipation is clearly additive). Considering 

the minimization of the total energy dissipation as an objective, 

we define the energy dissipation of a system at a given time t as 

follows. First, assume that the predicted classes for the output 

measures (i.e., power dissipation and execution time) are p and 

d, where p ∈ L1 and d ∈ L2 as defined in our problem setup. 

Note that p and d may be considered as ranges of power and 

execution time values, i.e., p = [p− p+] and d = [d− d+]. Then, the 

expected cost of current state, C(s, a), where a is the action 

prescribed by the PM in state s=<p, d>, is defined as a specific 

range such that 

[ ]( , ) ( , ) ( , )C s a p d e s a p d e s a− − + +∈ ⋅ + ⋅ +  (14a) 

 

 

where e(s, a) is the expected energy dissipation to transit from 

state s to some next state under action a, which is in turn 

calculated from T(s’, a, s) and the state transition energy 

dissipation overhead. The above expression means that cost lies 

between expected minimum and maximum costs. To obtain a 

scalar cost function, we define: 

( , ) ( , )
2

p d p d
C s a e s a− − + +⋅ + ⋅

= +  (14b) 

We develop a policy generation technique by using 

well-known dynamic programming method making use of 

principles of overlapping subproblems, optimal substructures, 

and memorization. We speak of the minimum cost of a system 

state as the expected infinite discounted sum of cost that the 

system will accrue if it starts in that state and executes the 

optimal policy  [36]. Generally, using π as a decision policy, this 

minimum cost is written as 

*

0

( ) min ( )t

t

s E c t
π

γ
∞

=

⎛ ⎞Ψ = ⋅⎜ ⎟
⎝ ⎠
∑  (15a) 

where γ is a discount factor, where 0 ≤ γ < 1, and c(t) is the cost 

at time t.   

In our problem setup, the minimum cost function is unique 

and can be defined 

* *

'

( ) min ( , ) ( ', , ) ( ')
a

s S

s C s a T s a s s s Sγ
∈

⎛ ⎞
Ψ = + Ψ ∀ ∈⎜ ⎟

⎝ ⎠
∑  

(15b) 

which asserts that the cost of a state s is the expected 

instantaneous cost plus the expected discounted cost of the next 

state, using the best available action. From Bellman’s principle 

of optimality  [37], given the optimal cost function, we specify 

the optimal policy as 

* *

'

( ) arg min ( , ) ( ', , ) ( ')
a s S

s C s a T s a s sπ γ
∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑  
(16) 

Simply stated, the power manager determines the optimal 

action based on equation (16) at each event occurrence (i.e., 

decision epochs). The task of casting the decision epochs to 

absolute time units is achieved by the system developer. Unlike 

AC line-powered systems, we focus on battery operated 

systems that strive to conserve energy to extend the battery life. 
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 1:  initialize Ψ(s) arbitrarily

2:      loop until a stopping criterion is met 

3:          loop for ∀s ∈ S

4:               loop for ∀a ∈ A

5:                     

6:                          

7: end loop

8:           end loop

9:       end loop

'

( , ) ( , ) ( ', , ) ( ')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
( ) min ( , )

a
s Q s aΨ =

1:  initialize Ψ(s) arbitrarily

2:      loop until a stopping criterion is met 

3:          loop for ∀s ∈ S

4:               loop for ∀a ∈ A

5:                     

6:                          

7: end loop

8:           end loop

9:       end loop

'

( , ) ( , ) ( ', , ) ( ')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
( ) min ( , )

a
s Q s aΨ =

 

Fig. 5.  The value iteration algorithm. 

Given C(s, a) and T(s’, a, s), another way to find an optimal 

policy is to find the minimum cost function. It can be 

determined by an iterative algorithm (cf. Fig. 5) called value 

iteration that can be shown to converge to the correct *Ψ  values. 

It is not obvious when to stop this algorithm. A key result 

bounds the performance of the current greedy policy as a 

function of the Bellman residual of the current cost 

function  [38]. It states that if the maximum difference between 

two successive cost functions is less than ε, then the cost of the 

greedy policy (i.e., the policy obtained by choosing, in every 

state, the action that minimizes the estimated discounted cost, 

using the current estimate of the cost function) differs from the 

cost function of the optimal policy by no more than 

2εγ / (1−γ) at any state. This provides a stopping criterion for 

the algorithm. 

Results of the policy generation are stored in a state-action 

mapping table so that the PM does not need to compute the 

optimal action in each system state at runtime. Instead the 

optimal action generation is reduced to a simple table lookup. 

In practice, the PM examines the input features each time a new 

task arrives in the SQ, estimates the most likely state of the 

system, and looks up and issues the corresponding “optimal” 

action from the mapping table. 

VII. EXPERIMENTAL RESULTS 

A. Experimental Setup 

We apply the proposed DPM technique to a multicore network 

processor which includes a dynamic load balancing (DLB, 

a.k.a., Application Delivery Controller or ADC) block and four 

processing cores (cf. Fig. 1). The DLB block, which guarantees 

in-order delivery of tasks, enables tasks from a single network 

interface to be processed in parallel on multiple cores. There 

are various ways to distribute incoming tasks (a.k.a. 

connections or requests) to cores (a.k.a. back-end service hosts 

or servers), including the following methods  [39]:  

- Least workload: assigns the task to the host with the least 

workload (connections), 

- Fastest host: assigns the task to the core that currently has 

the best performance, 

- Observed performance: assigns the task to a core that has 

the highest performance rating, based on a combination of 

least workload and best response time, 

- Predictive method: assigns the task to a core that has the 

highest predicted performance rating over time, and 

- Dynamic ratio: determines the capabilities of the core to 

create a dynamic performance ratio accounting for host 

affinity to a connection and the resultant cache locality; the 

tasks are then distributed to the cores based on this ratio. 

Among these, we consider RSS (receiver-side scaling)  [40], 

which falls in the category of dynamic ratio techniques.1 The 

RSS technique is capable of re-balancing the received 

processing load across multiple processor cores while 

maintaining in-order delivery of the data. RSS enables in-order 

packet delivery by ensuring that packets for a single connection 

are always processed by one processor. This RSS feature 

requires that the network adapter examine each packet header 

and then use a hashing function to compute a signature for the 

packet. To ensure that the load is balanced across the cores, the 

hash result is used as an index into an indirection table. Because 

the indirection table contains the specific core that is to run the 

associated deferred procedure call and the host protocol stack 

can change the contents of the indirection table at any time, the 

host protocol stack can dynamically balance the processing 

load on each core. As a typical application, we execute 

TCP/IP-related tasks (e.g., TCP segmentation and checksum 

offloading  [41]). We vary the workload by changing the packet 

size from 64 bytes (e.g., 338,000 packets/sec) to 1,025 bytes 

(e.g., 84,819 packet/sec)  [42]. 

For the simulation setup, we analyzed performance 

characteristics of each processor core in terms of the power 

dissipation and execution time. We relied on detailed gate-level 

realization of a 32bit RISC-type processor compatible with  [43] 

in TSMC 65nmLP library in order to accurately evaluate the 

power dissipation of a core. By varying the voltage and 

frequency values during the simulation, we achieved power and 

delay numbers with Power Compiler  [44] for the core after 

running the same tasks. Furthermore, we utilized a 

back-annotated SAIF (Switching Activity Interchange File), 

which captures switching activity factor with test patterns, 

based on the RTL simulation to achieve accurate power 

numbers. For simplicity, we defined a set of four actions, i.e., a0 

= [0V, 0Hz], a1 = [1.00V, 150MHz], a2 = [1.08V, 200MHz], 

and a3 = [1.20V, 250MHz], assuming that the voltage of the 

core is determined based on the operating frequency. Note that 

a0 is used to indicate a power-off (power gating) state in which 

high Vth sleep transistors are used to disconnect the circtuit 

power supply from logic gates when the circuit becomes 

inactive. 

B. Detailed Results 

In the first experiment, we generated a training set by running a 

set of tasks on the processor core as follows. First, we 

considered a scenario whereby the core accepts two types of 

tasks: low-priority and high-priority, where a high-priority task 

can move ahead of all low-priority tasks waiting in the queue. 

Next, we defined a set of input features {type of task, 

occupancy state of the SQ, arrival rate of task} and output 

measures {power dissipation [mW], execution time [ns]}, 

 
1 In the current world of high-speed networking, where multiple processing 

cores reside within a single system, the ability of the networking protocol stack 

of the operating system to scale well on a multi-core system is inhibited because 

the architecture of conventional Network Driver Interface Specification (NDIS 

5.1 and earlier versions) limits receive protocol processing to a single core. 

Receive-Side Scaling (RSS) resolves this issue by allowing the network load 

from a network adapter to be balanced across multiple cores. 
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similar to TABLE I. During the training phase, voltage and 

frequency values are assigned to the processor core based on 

simple requirements such as: 

- The core runs faster when high-priority tasks with medium 

or high arrival rates arrive under low or medium queue 

occupancy, 

- The core runs slower when low-priority tasks with low or 

medium arrival rates arrive under medium or high queue 

occupancy. 

Fig. 6 shows various input features during the training phase, 

whereas Fig. 7 depicts the corresponding output measures for 

100 training sets. Note that profiling output measure (e.g., 

power dissipation) at runtime is feasible with support of 

specific hardware such as external current sensors or internal 

architectural counters for each core. An external current 

sensor  [46], supplied by a voltage regulator which also 

provides power to the corresponding core, enables online 

current measurement, which is accumulated in the current 

accumulator, digitally multiplied by voltage value, and fed into 

a power dissipation accumulator. On the other hand, internal 

architectural counters used to compute the power consumed by 

cores count a number of relevant events and appropriately 

weight the counter values. For example, the total numbers of 

load/store instructions, arithmetic/logic instructions, 

floating-point operations, and retirement executions for each 

core are counted and summed up after being multiplied by 

appropriate weights  [47].  

 

Fig. 6.  Input features during training phase. 
 

 

Fig. 7.  Output measures during training phase. 

The decision boundaries for an output measure are obtained 

as follows. First, we assign various labels to the input features 

based on our simulation results. After running a number of 

simulations, we derive probabilistic density functions for the 

power consumption of the core (cf. Fig. 8) for three 

observations: o1 = N(35.8, 2.2), o2 = N(44.2, 3), and o3 = N(50.5, 

1.8). Next, the two separation points between neighboring 

observations are calculated as: δ1 = 39.4 and δ2 = 48.1. The 

minimum power (30.3mW) and maximum power (56.0mW) 

consumption values for active mode of the processor core 

operation are used as the lower and upper bounds of the power 

dissipation range. The decision boundaries for the execution 

delay are also obtained in a similar manner. Consequently, the 

classes of output measures are defined according to TABLE III. 

 

Fig. 8.  Probability density functions for power dissipation. 
 

TABLE III                                                

CLASSES OF OUTPUT MEASURES 

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0  39.4]

exe2 exe3

(39.4  48.1] (48.1  56.0] [14.1  21.5] (21.5  28.5] (28.5  35.7]

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0  39.4]

exe2 exe3

(39.4  48.1] (48.1  56.0] [14.1  21.5] (21.5  28.5] (28.5  35.7]

To ensure high accuracy in classification, we define 

classification error  [48] as follows. The error in classification is 

calculated as 

                        ( ( ), ) ( , )ER L f x y Prob x y dx dy= ∫  (17) 

where f(x) denotes the predicted output measure while y is the 

actual output measure. L(.,.) is a general loss function. For our 

target application, we use a 0-1 loss function, i.e.,  

                          0 ( )
( ( ), )

1

if y f x
L f x y

otherwise

=⎧
= ⎨

⎩
 (18) 

where ( ) arg max ( | )
Y

f x Prob Y X x= = in this case. The 

class-conditional classification accuracy is then given by 1 – 

ER. It is a measure of the performance of the classifier. 

Considering the input feature that we used as an example in 

section III, the accuracy reaches around 88% in classification. 

In addition, the training set size can greatly impact the 

classification accuracy, so we performed simulations to 
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determine an appropriate size by varying the set size from 50 to 

3000 as shown in Fig. 9. We have thus empirically determined 

that a training set size of 1000 is adequate. Note that substantial 

reductions in training set size may be possible if interest is 

focused on a single class (e.g., only power dissipation)  [49]. 

 

Fig. 9.  Selection of the training set size. 

It is worthwhile to consider a scenario whereby the 

characteristics of the task may change over time  [51] [52]. If the 

workload characteristics change over time, the performance of 

the classification can degrade. This is because, having relied on 

biased input features during the training phase, the classifier 

may not be able to correctly predict the output measure class of 

a given input feature. For example, consider different sets of 

training data as shown in TABLE IV. Suppose we train three 

classifiers based on training set A, set B, or set C. Next we 

randomly generated 100 tasks and perform classification for 

each incoming task, followed by an optimal action for each task 

based on the classification result. 
 

 

Fig. 10.  Comparison of energy dissipations, where actions are 

commanded by a classifier based on different training sets. 

Fig. 10 shows the normalized energy dissipation by the issued 

actions commanded by the three aforesaid classifiers. The 

results are quite different for the three classifiers; this shows the 

importance of using a representative training set. 

To validate the above statement, we considered a scenario 

whereby a classifier is trained based on some expected input 

characteristics but is subsequently used to classify input 

features with different characteristics.  In particular, we first 

trained a classifier with training set B and used it to determine 

the output measure class of elements in set C (modeling the 

case whereby the input characteristics changed over time from 

those of set B to those of set C). Fig. 11 shows the comparison 

in energy dissipation for 100 tasks between this case and one in 

which a classifier (“with update”) was trained based on set C 

and then ran on data with similar characteristics as those of set 

C.  It is clearly seen that the classifier “with update” 

outperforms that “without update”. Finally, notice that we 

could have trained a better classifier by using data from all 

three training sets A, B, and C. TABLE V shows the 

normalized total energy dissipation for 100 tasks by various 

classifiers, where each classifier is trained with the specific 

training set. It is clearly seen that the classifier trained with all 

training sets consumes less energy, compared to other 

classifiers. 
 

Fig. 11.  Evaluation of energy dissipation for a given scenario. 
 

TABLE V                                                  

NORMALIZED  TOTAL ENERGY DISSIPATION FOR VARIOUS CLASSIFIERS 

 Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Next we investigated the energy-efficiency of the proposed 

DPM technique by comparing it with i) the Stochastic PM 

technique of  [54] which uses a stochastic optimization 

approach for power control based on the service request rates 

and ii) the Global PM technique of  [55] which uses a feedback 

mechanism to sense per-core power and performance states. 

The cost function of  [54] is the power-delay product, which 

makes the comparison easy. For simplicity, the waiting time at 

the queue was considered to be fixed. To do a fair comparison, 

TABLE IV                                                 

DIFFERENT CHARACTERISTICS OF TRAINING SETS 

 

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%
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the power and performance states of  [55] were represented by 

the power and delay levels defined in our experimental setup. 

Here we assumed that the latency overhead of DVFS is on the 

order of several tens of microseconds. We used four VF values 

where a0 < a1 < a2 < a3, with a0 corresponding to a power-off 

state, a1 denoting the lowest (operational) power and 

performance state, and a3 denoting the highest power and 

performance state. 

Stochastic PM technique: It employs a DPM assignment 

strategy such that a power manager is triggered to issue a DVFS 

command based on a precomputed and stored policy table. The 

key into this hash table is the current state of the system which 

is a pair representing the current power-performance state of 

the processor and the request arrival rate.  The policy table itself 

is computed off-line using the stochastic optimization 

framework of  [54] where the objective is total expected system 

power and the constraint is an upper bound on delay. In our 

simulations, the state transition (i.e., power mode transition) 

probabilities are calculated from offline simulations. For 

example, when the system state changes into the lowest power 

mode (e.g., pow1) the power manager assigns a command as 

follows: 

if the processor is idle (i.e., task arrival rate = 0), a0 

else if  0 ≤ arrival rate of tasks ≤ 0.33, a1 

else if 0.33 < arrival rate of tasks ≤ 0.67, a2  

else if 0.67 < arrival rate of tasks < 1, a3 . 

Global PM technique: It employs a feedback-control DPM 

strategy based on the Priority policy of  [55] where the power 

manager assigns different priorities to different tasks so as to 

meet a specific global power budget by adjusting power modes 

of individual processing cores. Similar to  [55], processor core 4 

has the highest priority (will run as fast as possible) while 

processor core 1 has the lowest priority (will be the first to slow 

down in case of a power budget overshoot). 

Bayesian PM: Employ the Bayesian learning-based DPM 

method described in this paper. 

We generated a number of tasks by selecting the arrival rate 

of tasks randomly, where 0 ≤ the arrival rate of tasks < 1, and 

applied the above-mentioned DPM policies to the processor.  

Fig. 12.  Energy dissipation comparison for a given experimental 

setup. 

The simulation results in Fig. 12, which report the 

(normalized) energy dissipation of each task (numbered from 1 

to 50) for the processor, show that the proposed DPM 

technique, i.e., Bayesian PM exhibits sizeable energy savings 

up to 24% and 15% (on average) compared to  [54] and  [55], 

respectively. Considering the performance of the processor, the 

overhead of performing classification in the Bayesian PM is 

negligible since it does not affect the execution time of the 

processors (i.e., the classification and table lookup are 

performed during the queuing period before any VF change).  

Experimental results in TABLE VI, which also reports the 

characteristics of the workload distribution for each processor 

(e.g., Proc1 receives 50 tasks whereas Proc4 receives 200 

tasks), demonstrate that, compared to the Stochastic and Global 

PM policies, the proposed Bayesian classification–based power 

management policy achieves system-wide energy (normalized) 

savings of up to 20.5% and 11.5% (these are the normalized 

averages on four processors when α = 1), respectively. It is also 

seen that if we consider the missing input feature (e.g., α = 0.95 

and α = 0.90), there is little performance degradation. 

TABLE VI                                                 

ENERGY SAVINGS IN THE MPS 

Processor

Proc3

Proc1

Proc2

Proc4

Number 

of tasks
Energy

(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5

97.8 19.5%1.00

0.95

0.90

189.2

150.6 20.4%1.00

0.95

0.90

243.4

197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy

(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

Processor

Proc3

Proc1

Proc2

Proc4

Number 

of tasks
Energy

(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5

97.8 19.5%1.00

0.95

0.90

189.2

150.6 20.4%1.00

0.95

0.90

243.4

197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy

(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

VIII. CONCLUSION 

The paper addressed the problem of dynamic power 

management, where a system-level PM continually intervenes 

to exploit power-saving opportunities subject to performance 

requirements. The overhead associated with regular activity of 

the PM to monitor the workload of a system and make 

decisions about power management of different functional 

blocks in the system tends to undermine the overall power 

savings of the DPM approaches. This paper thus described a 

supervised learning based DPM framework for a MPS, which 

enables the PM to predict the performance state of the system 

for each incoming task by a simple and efficient analysis of 

some readily available input features. Experimental results 

have demonstrated that the proposed DPM framework results 

in significant energy savings for various workloads in MPSs. 
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