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Supervised Learning of Perceptron and Output
Feedback Dynamic Networks: A Feedback

Analysis via the Small Gain Theorem
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Abstract—This paper provides a time-domain feedback analysis
of the perceptron learning algorithm and of training schemes for
dynamic networks with output feedback. It studies the robustness
performance of the algorithms in the presence of uncertainties
that might be due to noisy perturbations in the reference signals
or to modeling mismatch. In particular, bounds are established on
the step-size parameters in order to guarantee that the resulting
algorithms will behave as robust filters. The paper also establishes
that an intrinsic feedback structure can be associated with the
training schemes. The feedback configuration is motivated via
energy arguments and is shown to consist of two major blocks:
a time-variant lossless (i.e., energy preserving) feedforward path
and a time-variant feedback path. The stability of the feedback
structure is then analyzed via the small gain theorem and choices
for the step-size parameter in order to guarantee faster con-
vergence are deduced by appealing to the mean-value theorem.
Simulation results are included to demonstrate the findings.

Index Terms—Convergence speed, dynamic networks, feedback
structure, l2–stability, mean-value theorem, perceptron learning,
positive realness, robust algorithm, small gain theorem.

I. INTRODUCTION

A PPLICATIONS of neural networks span a variety of
areas in pattern recognition, filtering, and control. When

supervised learning is employed, a training phase is always
necessary. During this phase, a recursive update procedure is
used to estimate the weight vector of the linear combiner that
“best” fits the given data [1]–[3]. The recursive procedure often
requires that a suitable adaptation gain (or step-size parameter)
be chosen and, in most cases, heuristics and trial-and-error
experiences are used to select a suitable step-size value for
the training period.

The “common” practice has been to choose small adaptation
gains. But the smaller the adaptation gain the slower the
convergence speed. In several cases, especially in large-scale
applications with many weights and many training patterns,
this may require a considerable amount of time and machine
power.
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In recent work on the robustness analysis of adaptive
schemes [4]–[6], the authors have addressed the following
two issues.

1) We have shown how to select the adaptation gain in
order to guarantee a robust behavior in the presence
of noise and modeling uncertainties (i.e., in order to
guarantee a consistent performance in the sense that
“small disturbances” would lead to “small estimation
errors”).

2) We have also shown how to select the adaptation gain
in order to guarantee faster convergence speeds.

The formulation in [4]–[6] highlights an intrinsic feedback
structure for most adaptive schemes and it relies on tools
from system theory, control, and signal processing such as:
state-space descriptions, feedback analysis and the small gain
theorem, H -design, and transmission lines and lossless sys-
tems.

In this paper we address the implications of these results
to the training of perceptrons and recurrent neural networks.
We start by considering the so-called perceptron learning
algorithm (PLA, for short), which involves a nonlinear func-
tional in the update equation due to the presence of an
activation function (usually a sigmoid function). We show how
to extend the feedback arguments of [4] and [5] in order to
handle the presence of the nonlinearity and, as a fallout, we
suggest several choices for the step-size parameter in order
to guarantee faster convergence and robust performance. We
also establish the existence of a feedback structure that can be
associated with the PLA.

The feedback configuration is motivated via energy ar-
guments and is shown to consist of two major blocks: a
time-variantlossless(i.e., energy preserving) feedforward path
and a time-variant feedback path. The analysis applies to both
cases when the feedback path is static or dynamic (which
occurs in the case of recurrent networks), and it provides
physical insights into the energy propagation through the
feedback system. This enables us to suggest modifications to
the training algorithm, in terms of selections of the adaptation
gain, in order to accelerate the convergence speed during the
training phase.

In the later sections of the paper, we extend the time-domain
feedback analysis of the PLA to dynamic neural networks (also
recurrent neural networks or RNN’s) with output feedback [7],
[8], and provide a study of the robustness performance of the
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Fig. 1. The perceptron structure.

training phase in the presence of uncertainties. In this context,
certain positive-realness conditions arise in much the same
way as in the study of IIR adaptive filters and identification
schemes [9]–[11]. Here, however, as indicated in the remark
after inequality (40), a less restrictive condition is tolerable in
view of the presence of the nonlinear activation function.

A. Notation

Small boldface letters are used to denote vectors (e.g.,),
the letter “ ” to denote transposition, and to denote the
Euclidean norm of a vector . Also, subscripts are used for
time-indexing of vector quantities (e.g., ) and parenthesis
for time-indexing of scalar quantities (e.g., ). All vectors
are column vectors except for the row vectors.

II. THE PERCEPTRON

Consider two sets, and , of -dimensional real-valued
row vectors that are characterized by either propertyor
property , say

has property

has property

If the two sets are linearly separable, then a classification
scheme that can be used to decide whether a given vector

belongs to one class or the other is to employ a perceptron
device [1]–[3].

The perceptron consists of a linear combiner, whose column
weight vector we denote by , followed by a nonlinearity
(also known as an activation function), as depicted in Fig. 1.
The value assumed by can be interpreted
as the likelihood that the input vector belongs to one class or
another.

A common choice for is to employ the sigmoid function

(1)

This is a function that varies monotonically fromto for
, and its transition region around is more

or less steep depending on whether the parameteris large or
small. In particular, for , the sigmoid function collapses
to the hard-limiting function

if
if

A. The Perceptron Learning Algorithm (PLA)

Consider a collection of input vectors with the corre-
sponding correct (or desired) output values . The
are assumed to belong to the range of the activation function

, i.e., there exists an unknown column vectorsuch that

for some (2)

This is in agreement with the models used in [13] and [14].
In supervised learning, the perceptron is presented with the

given input-output data , and the objective is to
estimate the unknown weight vector. The PLA computes
recursive estimates of as follows. It starts with an arbitrary
initial guess and applies the update rule

(3)

where is the sigmoid activation function or, more gener-
ally, any monotonically increasing function.

For generality, we consider in this paper the possibility of
noisy perturbations in the reference signal. These can be due
to model mismatching or to measurement noise.1 We denote
the perturbed references by (which are now the given
data instead of ), say

(4)

where denotes the noise term. Correspondingly, we study
the following general form of recursion (3):

(5)

where replaces and where we have allowed for a
time-variant step-size parameter .

We shall also, and without loss of generality, assume that
the are nonzero. For a nonzero step-size , a zero
simply corresponds to a nonactive update step since it keeps
the weight estimate unaltered, i.e., .

B. Error Measures

The following error quantities are useful for our later
analysis: denotes the difference between the true weight

and its estimate , denotes thea
priori estimation error, , and

denotes thea posterioriestimation error,
It follows from (5) that the weight-error vector satisfies the
recursion:

(6)

C. Robustness Issues

In the sequel we focus on model (4) and study the robustness
behavior of the update recursion (5). Intuitively, a robust
algorithm is one for which the estimation errors are consistent
with the disturbances in the sense that “small” disturbances
would lead to “small” estimation errors, no matter what the
disturbances are! This is not generally true for any adaptive

1Assume for example that the reference system employsf1(z) while the
trained perceptron employsf�(z) with � = 4. The differences, which occur
mainly aroundz = 0, can be described by an additive noise term.
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filter: the estimation errors can still be large even in the
presence of small disturbances (see, e.g., [12]). While a more
precise mathematical formulation is provided in the sections
to follow, we stress here that the motivation for our analysis
is twofold.

1) To provide conditions on the adaptation gain (or step-
size parameter) in order to guarantee a robust behavior
during the training phase. By this we mean a training
algorithm that results in “small” errors if the distur-
bances are “small.” It turns out that such a desirable
performance is not guaranteed for any choice of the
step-size.

2) To suggest choices for the step-size parameter that would
result in faster convergence speeds.

The robustness issue is addressed here in a purely deter-
ministic framework and without assuming prior knowledge of
noise statistics. This is especially useful in situations where
prior statistical information is missing since a robust design
would guarantee a desired level of robustness independent of
the noise statistics. In loose terms, robustness would imply
that the ratio of an estimation error energy to the noise or
disturbance energy will be guaranteed to be upper bounded by
a positive constant, say the constant one

estimation error energy
disturbance energy

(7)

From a practical point of view, a relation of the form (7) is
desirable since it guarantees that the resulting estimation error
energy will be upper bounded by the disturbance energy, no
matter what the nature and the statistics of the disturbances
are. One of the contributions of this work is to show how to
select the adaptation gains in (5) in order to guarantee 1)
a robust behavior and 2) faster convergence. This is addressed
in the next sections.

III. A C ONTRACTIVE MAPPING

We first establish a passivity relation that shows how the
sum of the Euclidean norms of the weight-error vector and
the a priori estimation error at time

compares with the sum of the Euclidean norms of the weight-
error vector at time and a disturbance term that is defined
in (8) further ahead

The significance (and implications) of the relation to be
established here will become clear as we progress in our
discussions.

We denote the difference in (6) by
and note that it is equal to , where the modified
disturbance is defined by

(8)

This allows us to rewrite (6) as

(9)

If we now compute the squared norm (i.e., energies) of both
sides of (9), we conclude that the following equality always
holds:

This equality allows us to conclude that the following energy
bounds are always satisfied, where we have introduced the
parameter .

Lemma 1: Consider the perceptron learning recursion
(3)–(4). It always holds, at each time instant, that

for
if
for

where is the modified disturbance given by (8).
The first two inequalities in the statement of the lemma

establish that if the adaptation gain is chosen such that
, then the mapping from the signals

to the signals is contractive. [A linear map
that takes to , say , is said to be contractive if
for all we have That is, the output energy
does not exceed the input energy].

Therefore, we see that the first two cases in the lemma
establish a local error-energy bound (or passivity relation)
that highlights a robustness property of recursion (5): They
state that no matter what the value of the noise component

is, and no matter how far the estimate is from
the true vector , the sum of energies ,
will always be smaller than or equal to the sum of energies

.
Moreover, since this contractivity property holds for each

time instant , it should also hold globally over an interval
of time. Indeed, assuming over , it
follows from Lemma 1 that

We may remark that other similar local and global passivity
relations can be established by usinga posteriori(rather thana
priori ) estimation errors [6]. But we shall forgo the details here
and focus instead on a time-domain and feedback analysis of
the PLA.

IV. A T IME-DOMAIN FEEDBACK-ANALYSIS

The bounds of Lemma 1 can be described in an alternative
form that leads to an interesting feedback structure. For this
purpose, we first note that it can also be shown that the update
equation (5) can be written in the form (cf. the analysis in [4])

(10)

where we have used the fact that

(11)
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Fig. 2. A time-variant lossless mapping with gain feedback for the percep-
tron learning algorithm.

Consequently

(12)

Relation (12) has the same form as the update (9), except
for a different disturbance ( is now replaced by )
and for a step-size that is equal to itself. Hence, the same
arguments that led to Lemma 1 would imply that the following
equality holds for all possible choices of :

(13)

This establishes a lossless mapping from the signals
to the signals .

If we further apply the mean-value theorem to the activation
function , we can write

for some point along the segment connecting and
. Therefore, (11) leads to

Combining with (13), this relation shows that the overall map-
ping from theoriginal (weighted) disturbances to
the resultinga priori (weighted) estimation errors
can be expressed in terms of a feedback structure, as shown
in Fig. 2.

The stability of such feedback structures can be studied via
tools that are by now standard in system theory (e.g., the small
gain theorem [15], [16]). This is pursued in the next section
where we derive conditions on the step-size parameters
and on the activation function in order to guarantee a
robust training algorithm, as well as faster convergence speeds.

This will be achieved by establishing conditions under
which the feedback configuration of Fig. 2 is-stable in
the sense that it should map a finite-energy input noise
sequence (which includes the noiseless case as a special
case) to a finite-energya priori error sequence

.

V. -STABILITY AND THE SMALL GAIN THEOREM

Define

That is, is the maximum absolute value of the gain of
the feedback loop over .

It can be easily shown that if (see, e.g., [4]) then
the following two relations hold:

(14)

and

(15)

Expression (14) compares the energies ofa priori estimation
errors and the disturbances (but now normalized by rather
than ). In particular, it establishes that the map from

to is -stable (it maps a
finite energy sequence to another finite energy sequence).

The condition is a manifestation of the so-
called small gain theorem in system analysis [15], [16]. In
simple terms, the theorem states that the-stability of a
feedback configuration (that includes Fig. 2 as a special case)
requires that the product of the norms of the feedforward
and the feedback maps be strictly bounded by one. Here, the
feedforward map has (-induced) norm equal to one (since it
is lossless) while the-induced norm of the feedback map is

. Hence, the condition guarantees an overall
contractive map.

Note also that for to hold, we need to choose
the step-size such that, for all

(16)

A. On Convergence and Energy Propagation

The flow of energy through the feedback connection of
Fig. 2 provides further insights into the convergence speed
of the training algorithm. For this purpose, let us ignore the
measurement noise and assume that we have noiseless
measurements . It is known in the stochastic
setting that for Gaussian processes [18], as well as for spher-
ically invariant random processes [19], the maximal speed of
convergence for a gradient algorithm (where ) is
obtained for , i.e., for the so-called projection LMS
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Fig. 3. Learning curves for perceptron learning algorithm with� = 0:4 and � = 0:6; 1; 2; 2:8.

algorithm. We now argue that this conclusion is consistent with
the feedback configuration of Fig. 2.

If is such that , then the feedback
loop is disconnected. This means that there is no energy
flowing back into the lower input of the lossless section from
its lower output . The losslessness of the feedforward
path then implies that

(17)

where we are denoting by the energy of
and by the energy of .

But what if ? In this case the feedback
path is active and the convergence speed will be affected.
Indeed, we now have

(18)

where we have defined the coefficient . It is easy to
verify that as long as is chosen to satisfy (16) with

, we obtain . That is,
is strictly less than one and the rate of decrease in the energy
of is lowered.

VI. OPTIMAL CHOICES OF STEP SIZES

The above energy arguments suggest that faster convergence
occurs when is chosen such that
(which is the middle point of the interval suggested by (16)).
But is still unknown and we therefore need to come up
with suitable approximations.

The first (but not the most suitable) choice that comes to
mind is to assume an upper bound on , say

for all Then condition (16) can be replaced by the
conservative requirement

(19)

For a large bound , this condition can lead to small step-
sizes and, hence, to slow convergence. For the commonly used
activation functions, the maximum value of the derivative
occurs at the origin. For example, for the sigmoid function
we obtain . We can therefore take
and choose the step-size parameter according to

This is the same bound suggested in [14].
However, the result in [14] was derived under the restrictive
assumption that the regression vectors do not change over time,
i.e., for all . Our result thus extends the bound
to the general scenario of time-variant regression vectors. For
improved convergence one might then be tempted to employ

However, this value is very conservative
and usually leads to unsatisfactory results, as the simulations
further ahead demonstrate.

For this reason, we take here an alternative route that
avoids upper-bounding the derivative of the activation func-
tion. Instead, we provide good estimates for the instantaneous
derivatives .

To begin with, recall that is defined by
, where .

Unfortunately, and are not available since itself
is not known. But one possibility to proceed here is to employ

as an estimate for since This
is especially useful if the reference sequence is noise-free or
if the noise itself is sufficiently small. Now, with a “known”

, it becomes possible to solve for . This motivates
us to suggest the following expression for the optimal step-size
parameter (we refer to this construction as method A)

(20)

where is used as a threshold value in order to prevent
large step-sizes. For the sigmoid function in (1) we have

which requires the evaluation
of a logarithm at each step. In the case of a symmetric
sigmoid function, say , the
calculation of an inverse tangent is required since

.
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An alternative procedure is to approximate by the
average of (or ) and . This is
a convenient approximation in light of the “piecewise-linear”
form of the activation function. We thus write

(21)

where, for the sigmoid function, . The
positive number is, similar to in method A, introduced in
order to avoid large step-sizes.

This approximation is however inconvenient in the cases
when happens to be close to zero, while and
are reasonably far apart. To avoid a poor approximation in
these cases, we may modify the above construction as follows:
for improved convergence (i.e., with a disconnected feedback
loop) we set

(22)

if or

(23)

otherwise. We refer to this construction as method B. Con-
dition (23) corresponds to the sigmoid function in (1). For a
symmetrical function a similar expression can be obtained.

A third, and perhaps simpler method, is to first estimate
by the average of and , i.e.,

, and then set
. This leads to method C, with the choice

(24)

Before extending the earlier results to dynamic networks,
we present some simulations that support our conclusions.

VII. SIMULATION RESULTS FORPLA

In all experiments, we have chosen a bipolar white random
sequence with variance one as the input signal. The weights to
be identified were . The first coefficient
was used for the offset term while the other eight were driven
by a bipolar input pattern. A neuron with these weights can
be interpreted as one that finds the patterns with more than
three .

The values of the inner signal are from the set
. Since the 256 different input

patterns consisted of the bipolar values , we had
and at every time instant. We

have chosen the sigmoid function (1) with . We
provide plots of learning curves, given in terms of the relative
system mismatch defined as .
The curves are averaged over 50 Monte Carlo runs in order
to approximate . Not depicted here are -curves.
Their behavior is very much like the system mismatch curves,
however, in order to obtain smooth curves they require more
averaging.

The first simulation is for , for which the sigmoid
function operates in an almost linear range. The resulting
learning curves are depicted in Fig. 3.

As expected from (19), and since the sigmoid function op-
erates essentially in the linear region, the fastest convergence
speed occurs for , while instability occurs
for values .

The next simulation shows learning curves for (see
Fig. 4). With fixed step-sizes the fastest convergence was
found at , while for the algorithm was
already unstable. The bound (19) for which the largest possible
step-size is given by is now too conservative
and the proposed modifications (A), (B) and (C) lead to
much faster convergence. For all methods, the step-size was
chosen to be optimal (with and ). Since
method (C) always showed the same behavior as (B) it is
not depicted here. As the figure demonstrates, the first choice
leads to excellent convergence, however, at the expense of
calculating a logarithm at every time instant. The second
choice, although not as perfect as the first one, still shows
considerable improvement over the constant step-size choice.

For the third simulation . According to (19), con-
vergence is expected for .
As Fig. 5 shows, for smaller than this bound convergence
occurs. However, this bound is rather conservative and fastest
convergence occurs for larger step-size values, viz., .
A learning curve for still shows convergence but with
some stopping effect. It seems noteworthy that even very large
step-sizes can still lead to convergence, although the parameter
estimates seem to diverge. This effect was not observed for
small and seems to arise from the fact that the system
behaves highly nonlinearly. This effect could also be observed
for , where it was even stronger.

Method (B), with the optimal choice for the step-size, was
applied again and showed much faster convergence than any
other choice of a constant step-size. Instability occurred for
approximately .

VIII. D YNAMIC NEURAL NETWORKS

A. Vector Notation

We show in the following sections how to extend the
analysis to the recurrent neural network (RNN) case, for which
we have selected Narendra and Parthasarathy’s network [7]
since it is very suitable for the feedback analysis of the earlier
sections.

But first we introduce, for convenience of exposition, the
following vector and matrix notation. Define the column
vectors:

(25)

(26)

and the diagonal matrices

(27)

(28)

(29)
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Fig. 4. Learning curves for perceptron learning algorithm with� = 2 and� = 0:3; 0:6; 1 and�opt for methods (A) and (B).

Fig. 5. Learning curves for perceptron learning algorithm with� = 4 and� = 0:1;0:2;0:4;0:8 and�opt from method (B).

We write with a vector argument to indicate the
dependence on the set .

It is easy to see that, due to the diagonal structure of
, and , the two-induced norms of the matrices

and are equal to and
, respectively.

B. Narendra and Parthasarathy’s Recurrent Network

Narendra and Parthasarathy’s recurrent network is a dy-
namic network whose current output is also a function of
earlier output values, in much the same way as the output of
an IIR filter is dependent on the previous outputs [2]. Fig. 6
depicts a block diagram of a recurrent structure suggested by
Narendra and Parthasarathy [2], [7], [8].

The network consists of two linear combiners with weight
vectors and . The upper combiner receives an external
row input vector and evaluates the inner product . The
lower combiner receives the state vector of an FIR filter and
computes its inner product with. The FIR filter is fed with

Fig. 6. Narendra and Parthasarathy’s dynamic network.

the output of the network and, hence, its state vector is
given by

where is the order of the filter .
The weight vector of the network of Fig. 6 is defined by

. The objective of a training phase is to provide
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Fig. 7. Narendra and Parthasarathy’s algorithm as a time-variant lossless mapping with dynamic feedback.

the network with a collection of input–output data, ,
in order to estimate the unknown vectorsand . Here

A recursive gradient-type scheme that can be used for the
training of such a network is the following. Let and
denote estimates for and at time , respectively. Let
also denote the corresponding output, viz.,

(30)

where

The estimates for and are recursively evaluated as follows:
start with arbitrary initial conditions for and , say an initial
weight vector , and use

(31)

This can be regarded as an immediate extension of a so-called
Feintuch algorithm [17] in IIR modeling (where is
linear) to the case of Fig. 6, which now includes a nonlinear
activation function . A discussion in the IIR case, with
linear , can be found in [20]. Define and

. Then

(32)

(33)

where stands for the linear operator
, and are the coefficients of the FIR filter

. By invoking the mean-value theorem we can write
, or, equivalently,

for some in the interval connecting and
. This allows us to conclude from (33) that

and, consequently, the update equation (31) leads to

Following the arguments of [4], we can therefore write:

(34)

where the modified noise sequence is defined by

and . This recursion is of the same form as
(10). It then follows in a similar way that:

(35)

which establishes that the map from to
, denoted by , is lossless, and that the

overall mapping from the original disturbance to the
resultinga priori estimation error can be expressed
in terms of the feedback structure shown in Fig. 7. We remark
that the notation

which appears in the feedback loop, should be interpreted as
follows: we first divide by , followed by
the filter , and then by a subsequent scaling

by .

The feedback loop now consists of a dynamic system.
But we can still proceed to study the-stability of the
overall configuration in much the same way as we did in
the former section. For this purpose, we use the vector and
matrix quantities introduced in (26)–(28) and define a vector

, similar to , but with the entries instead of .
We also use the diagonal matrix from (29), and the lower-
triangular matrix that describes the action of the FIR filter

on a sequence at its input; this is a strictly lower-triangular
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Toeplitz matrix with band of width

...
...

...
...

It follows from (35) that we can write:

If we now define

and impose the condition , we obtain that a
single-neuron Narendra and Parthasarathy’s network will be

-stable in the sense that the map from to
satisfies

(36)

Moreover, the map from to
will also be -stable with

The robustness (or -stability) condition cor-
responds to requiring the feedback matrix to be contractive,
i.e.,

(37)

If we limit ourselves, for simplicity, to the case of constant
step-sizes , then a sufficient condition for (37) is to require

(38)

Let

Then a sufficient condition for (38) is to require

which in turn is satisfied if

If we have ana priori bound on , say

(39)

then a sufficient condition for (37) to be satisfied is to choose
such that

(40)

This condition has an interesting connection with the linear
filtering case. For Feintuch’s algorithm [17], the sign ofis
relevant to the stability of the algorithm. Here, the additional
term can compensate for this effect and even negative
values for are allowed (see the simulation examples).

For a sigmoid function , we know that lies
in the range . Therefore, in this case, a sufficient
condition for (37) is given by the relation

(41)

IX. SIMULATION RESULTS FORNARENDRA

AND PARTHASARATHY’S NETWORK

In the simulation that follows, a bipolar white random
sequence with variance one has been used for the entries of
the input vector . A plot of the learning curve is provided
for the relative system mismatch defined as

The curves are averaged over 50 Monte Carlo runs in order to
approximate . Similar curves can be obtained if
is used instead.

For simulating the behavior of Narendra and Parthasarathy’s
network, two different sets of values has been chosen with
eight input weights, one offset, and two feedback weights

and

The first weight vector corresponds Re ,
while the second weight vector corresponds to Re

. Fig. 8 shows the learning curves for and
when the set was used. In order to provide a

symmetrical feedback input the following sigmoid function
was applied

which has the same maximal derivative as the one defined
in (1), i.e., . Since the filter inputs are {1, 1}
patterns and the output is also limited to [1,1] we can use

and according to bound (40) the training phase
converges if for in the case of . Fig. 8
depicts two learning curves for and for
which we found fastest convergence. Instability occurred for

which is in good agreement with (40). The second
(non-SPR) filter showed very similar behavior. Because of
the negative real part, the limit step-size is smaller. However,
unstable behavior as in the Feintuch algorithm does not occur
here. As a general rule of thumb one can say that the larger
the , and thus the larger the influence of the nonlinearity, the
smaller the step-size that is is required for stability.
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Fig. 8. Learning curves for Narendra and Parthasarathy’s network (a)� = 0:5; � = 0:4, (b) � = 1:1; � = 0:4, (c) � = 0:1; � = 4, (d)
� = 0:2; � = 4, (e) method (C),� = 4.

Also, for both filters, modifications as described before
in Section VI can be suggested but they may or may not
bring advantages in general. This is not surprising since we
need to compensate the filtering effect of rather than
only the effect of the derivative . However, for larger

the effect of the derivative becomes stronger and
may exceed the filter effect. This situation is of particular
interest since the network with constant step-size has very
poor convergence behavior [see Fig. 8 curves (c) and (d)].
Simulations were performed with the recurrent network by
employing the optimal choices of Section VI. Fig. 8 curve
(e) shows that method (C) [also (A) and (B)] can be used to
accelerate the training phase considerably (for large).

X. CONCLUDING REMARKS

We have provided a time-domain feedback analysis of
training algorithms for perceptron and dynamic networks with
output feedback. The derivation highlights a feedback structure
in terms of a lossless feedforward path and either a memoryless
or a dynamic feedback loop. The interconnection is amenable
to analysis to standard tools in system theory, such as the
small gain theorem, and indicates choices for the step-size
parameters in order to guarantee both robustness and faster
convergence speed. Several simulation examples are provided
to support the theoretical findings.

In the dynamic network case, certain positive-realness con-
ditions arise in much the same way as in the study of IIR
adaptive filters and identification schemes. Here, however, as
indicated in the remark after (40), a less restrictive condition
is tolerable in view of the presence of the nonlinear activation
function.

We may also mention that the analysis in this paper has
focused on the case of single neurons (perceptrons and RNN’s)
and has addressed questions related to the three issues of
robustness, optimal step-sizes, and convergence. A local ro-
bustness analysis of the backpropagation algorithm that is
employed in the training of multilayer perceptrons has been

provided in [21] by invoking results from H filtering. This
analysis ties up nicely with the result in [12] that establishes
that the instantaneous gradient-based (LMS) adaptive filter is
a minimax filter; thus highlighting its robustness properties.
A related discussion on these issues can also be found in the
companion paper [5].
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