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Supervised Learning of Perceptron and Output
Feedback Dynamic Networks: A Feedback
Analysis via the Small Gain Theorem

Markus Rupp and Ali H. Sayedviember, IEEE

Abstract—This paper provides a time-domain feedback analysis
of the perceptron learning algorithm and of training schemes for
dynamic networks with output feedback. It studies the robustness
performance of the algorithms in the presence of uncertainties
that might be due to noisy perturbations in the reference signals
or to modeling mismatch. In particular, bounds are established on
the step-size parameters in order to guarantee that the resulting
algorithms will behave as robust filters. The paper also establishes
that an intrinsic feedback structure can be associated with the

In recent work on the robustness analysis of adaptive

schemes [4]-[6], the authors have addressed the following
two issues.

1) We have shown how to select the adaptation gain in
order to guarantee a robust behavior in the presence
of noise and modeling uncertainties (i.e., in order to
guarantee a consistent performance in the sense that

training schemes. The feedback configuration is motivated via “small disturbances” would lead to “small estimation
energy arguments and is shown to consist of two major blocks: errors”).

a time-variant lossless (i.e., energy preserving) feedforward path  2) We have also shown how to select the adaptation gain
and a time-variant feedback path. The stability of the feedback in order to guarantee faster convergence speeds.

structure is then analyzed via the small gain theorem and choices L. o .
for the step-size parameter in order to guarantee faster con-  1he formulation in [4]-[6] highlights an intrinsic feedback

vergence are deduced by appealing to the mean-value theorem.structure for most adaptive schemes and it relies on tools
Simulation results are included to demonstrate the findings. from system theory, control, and signal processing such as:

Index Terms—Convergence speed, dynamic networks, feedback State-space descriptions, feedback analysis and the small gain

structure, /»—stability, mean-value theorem, perceptron learning, theorem, K°-design, and transmission lines and lossless sys-
positive realness, robust algorithm, small gain theorem. tems.

In this paper we address the implications of these results
to the training of perceptrons and recurrent neural networks.
}Ne start by considering the so-called perceptron learning

PPLIC.AﬂONS of neurgll net}Nor_ks span a variety 0algorithm (PLA, for short), which involves a nonlinear func-
areas in pattern recognition, filtering, and control. When

: S = . tional in the update equation due to the presence of an
supervised learning is employed, a training phase is alwaa/s. . . : : )
: : : Ctivation function (usually a sigmoid function). We show how
necessary. During this phase, a recursive update procedurte 1S tend the feedback ts of 141 and [5] i der t
used to estimate the weight vector of the linear combiner t g exten e feedback arguments of [4] and [5] in order to

“pest” fits the given data [1]-[3]. The recursive procedure ofte andle the presence of the nonlinearity and, as a fallout, we

requires that a suitable adaptation gain (or step-size parame?é‘ gest several choices for the step-size parameter in order

be chosen and, in most cases, heuristics and trial-and-em) uarantee faster convergence and robust performance. We

experiences are used to select a suitable step-size valuedsP e.stabllsh. the existence of a feedback structure that can be
the training period. associated with the P.LA. o . .

The “common’” practice has been to choose small adaptation' '€ feedback configuration is motivated via energy ar-
gains. But the smaller the adaptation gain the slower tf&Ments and is shown to consist of two major blocks: a
convergence speed. In several cases, especially in large-stigl§-variantosslesgi.e., energy preserving) feedforward path
applications with many weights and many training pattern%,”d a time-variant feedback path. The analysis applies to both

this may require a considerable amount of time and machif@ses When the feedback path is static or dynamic (which

power. occurs in the case of recurrent networks), and it provides
physical insights into the energy propagation through the
feedback system. This enables us to suggest modifications to
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A. The Perceptron Learning Algorithm (PLA)

[ Consider a collection of input vectofsi; } with the corre-

I sponding correct (or desired) output valyes:)}. The{y(i)}

I z _/— f(z) are assumed to belong to the range of the activation function
fI], i.e., there exists an unknown column vectersuch that

[ y(i) = flu;w] for somew. (2)

This is in agreement with the models used in [13] and [14].
Fig. 1. The perceptron structure. In supervised learning, the perceptron is presented with the
given input-output data{u,,%(:)}, and the objective is to

estimate the unknown weight vecter. The PLA computes

training phase in the presence of uncertainties. In this conteXeursive estimates of as follows. It starts with an arbitrary
certain positive-realness conditions arise in much the same. | guessw_, and applies the update rule

way as in the study of IIR adaptive filters and identification
schemes [9]-[11]. Here, however, as indicated in the remark w; = wi_1 + pul (y(i) — fluiwi_1]) (3)
after inequality (40), a less restrictive condition is tolerable in

view of the presence of the nonlinear activation function. Where f[z] is the sigmoid activation function or, more gener-
ally, any monotonically increasing function.

. For generality, we consider in this paper the possibility of
A. Notation . : . )
noisy perturbations in the reference signal. These can be due
Small boldface letters are used to denote vectors (a)g., to model mismatching or to measurement ndisFe denote

the letter 7™ to denote transposition, antk|| to denote the the perturbed references Kyi(i)} (which are now the given
Euclidean norm of a vectox. Also, subscripts are used forgata instead offly(4)}), say

time-indexing of vector quantities (e.gu;) and parenthesis . . . .
for time-indexing of scalar quantities (e.@:(:)). All vectors d(z) = fluiw] 4+ v(@) = y(@) +v(2) 4)

r lumn v rs ex for the row v . .
are cou ectors except for the row vectars wherewv(4) denotes the noise term. Correspondingly, we study

the following general form of recursion (3):

w; = wW;_1 + p(i uZT d(1) — flu;w;_ 5
Consider two setsS, andSy, of M -dimensional real-valued L pliug ) — /1 i) ®)
row vectorsu that are characterized by either propestyor where d(%) replacesy(¢) and where we have allowed for a

Il. THE PERCEPTRON

property B, say time-variant step-size parametef:).
We shall also, and without loss of generality, assume that
So = {u € R | u has propertyd} the {u;} are nonzero. For a nonzero step-si#é), a zerou,
S1 = {u € RM |u has propertj3}. simply corresponds to a nonactive update step since it keeps

the weight estimate unaltered, i.ev; = w;_;.
If the two sets are linearly separable, then a classification
scheme that can be used to decide whether a given ve®orError Measures

u belongs to one class or the other is to employ a perceptronr, following error quantities are useful for our later

de_\r/lr?e [1]_[3]t' ists of a li bi h | analysis:w; denotes the difference between the true weight

. Etpe@[ep rondconst|s S ofa“meacerbOm 'nerlg w 0_?6 colu and its estimatew;, w; = w — w;, eq(?) denotes thea
welght vector we denote bW ollowed by a non '_”ea”)ﬂz]_ Rriori estimation errorg, (i) = w;w;—1 = 2(4) — 2(¢), and
(also known as an activation function), as depicted in Fig. 1.

- ~ : ¢y(1) denotes the posterioriestimation errorg,(:) = u; w;.
The value assumed by = f[z] = f[uw] can be interpreted | "¢ uc from (5) that the weight-error vector satisfies the

as the likelihood that the input vector belongs to one class &

cursion:
another.
A common choice foif[z] is to employ the sigmoid function W; = Wi_1 — p(i)ul (d(i) — fluwi_1]). (6)
1
fa(z) = [P 8> 0. (1) C. Robustness Issues

In the sequel we focus on model (4) and study the robustness
This is a function that varies monotonically frointo 1 for pehavior of the update recursion (5). Intuitively, a robust
z € (=00, 00), and its transition region around= 0 is more algorithm is one for which the estimation errors are consistent
or less steep depending on whether the paranitigiarge or with the disturbances in the sense that “small” disturbances
small. In particular, fop? — oo, the sigmoid function collapseswould lead to “small” estimation errors, no matter what the

to the hard-limiting function disturbances are! This is not generally true for any adaptive
1+ Sgn(z) 0 if 2<0 1Assume for example that the reference system empfayéz) while the
foo(z) == 1 i - 0 trained perceptron employ; (z) with 3 = 4. The differences, which occur
2 mz>0. mainly aroundz = 0, can be described by an additive noise term.
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filter: the estimation errors can still be large even in thé we now compute the squared norm (i.e., energies) of both
presence of small disturbances (see, e.g., [12]). While a maides of (9), we conclude that the following equality always
precise mathematical formulation is provided in the sectioh®lds:
to follow, we stress here that the motivation for our analysis
is twofold. 1%l + p(@)lea (@) + 1) (1 = n(@)[will3)|ea(@)]?
1) To provide conditions on the adaptation gain (or step- = |[Wiz1]l® + p(d)|5(0) .
size parameter) in order to guarantee a robust behavior

during the training phase. By this we mean a trainin his equality allows us to conclude that the following energy
algorithm that results in “small” errors if the distur- ounds are always satisfied, where we have introduced the

— _ . 2
bances are “small.” It tuns out that such a desirapRRrameteri(i) = 1/ju". _ _
performance is not guaranteed for any choice of the Lemma 1: Consider the perceptron learning recursion
(3)-(4). It always holds, at each time instanthat

step-size.
2) To suggest choices for the step-size parameter thatwould ) ) e (<1 for0< (i) < lé)
result in faster convergence speeds. [Will® + p@lea@” JZ7 & 2
ssue | | [t + kORGP |5 3 o o = B
The robustness issue is addressed here in a purely deter- [[Wi-1 K >1 for p(i) > i)

ministic framework and without assuming prior knowledge of

noise statistics. This is especially useful in situations whevéhere (i) is the modified disturbance given by (8).

prior statistical information is missing since a robust design The first two inequalities in the statement of the lemma

would guarantee a desired level of robustness independenestablish that if the adaptation gain is chosen such;tfigt<

the noise statistics. In loose terms, robustness would imgiyi), then the mapping from the signa{sv;_1, \/p(4)0(i)}

that the ratio of an estimation error energy to the noise @ the signals{w;, \/p(i)e, ()} is contractive. [A linear map

disturbance energy will be guaranteed to be upper boundedthgt takesz to y, sayy = T[z], is said to be contractive if

a positive constant, say the constant one for all z we have||T[z]||* < ||z||*. That is, the output energy
does not exceed the input energy].

(7) Therefore, we see that the first two cases in the lemma
establish a local error-energy bound (or passivity relation)

From a practical point of view, a relation of the form (7) ighat highlights a robustness property of recursion (5): They

desirable since it guarantees that the resulting estimation ersgite that no matter what the value of the noise component

energy will be upper bounded by the disturbance energy, @) is, and no matter how far the estimate,_; is from

matter what the nature and the statistics of the disturbaners true vectorw, the sum of energiew; |13 + (i) |eq (1)]?,

are. One of the contributions of this work is to show how t@iill always be smaller than or equal to the sum of energies

select the adaptation gaipg:) in (5) in order to guarantee 1) ||w,_y||3 + u(3)|9(:)|*

a robust behavior and 2) faster convergence. This is addressemloreover, since this contractivity property holds for each

estimation error energ;g 1
disturbance energy —

in the next sections. time instants, it should also hold globally over an interval
of time. Indeed, assuming(i) < f(é) over0 < ¢ < N, it
Ill. A CONTRACTIVE MAPPING follows from Lemma 1 that
We first establish a passivity relation that shows how the N N
sum of the Euclidean norms of the weight-error vector and ||Wx||* + Zu(i)lea(i)|2 < |lwoil + Zu(i)|6(i)|2.
the a priori estimation error at time i=0 i=0
197 ]|2 + (i) |ea ()2 We may remark that other similar local and global passivity

relations can be established by usagosteriori(rather thara
compares with the sum of the Euclidean norms of the weiglgriori) estimation errors [6]. But we shall forgo the details here
error vector at time — 1 and a disturbance term that is definednd focus instead on a time-domain and feedback analysis of
in (8) further ahead the PLA.

IWi—1]I? + p(0)|o(0) .

The significance (and implications) of the relation to be . . .
established here will become clear as we progress in c*urThe bounds of Lemma L can be described in an alternatl\{e
discussions. orm that leads to an interesting feedback structure. For this

. . . L. rpose, we first note that it can also be shown that the update
We denote the differencé(i) — f[u;w;_1] in (6) by é,(3) Purpo: : : .
and note that it is equal tf(3) + #(i)], where the modified equation (5) can be written in the form (cf. the analysis in [4])
disturbancei(i) is defined by w; = wi_1 + )L [ea(i) — ep(i)] (10)
0(0) = —eald) + W] = fluiwia ] +0(0)- @) hore we have used the fact that

This allows us to rewrite (6) as ) ~ (i) . 11
Wi = Wig — pliyul e, (i). @ @0= el g Ul = fuwia] o). ()

T

IV. A TIME-DOMAIN FEEDBACK-ANALYSIS
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V. [5-STABILITY AND THE SMALL GAIN THEOREM

Define
Y(V) = max u(i)/A(D)
AW = o |1 - Pl |

That is, A(N) is the maximum absolute value of the gain of
i the feedback loop ovell < ¢ < N.
M It can be easily shown that &(V) < 1 (see, e.g., [4]) then

Fig. 2. A time-variant lossless mapping with gain feedback for the percep-
tron learning algorithm.

Consequently

Wi = Wit — ()l [ea(d) — ep(3)]. (12)

B(z) the following two relations hold:
. and

Relation (12) has the same form as the update (9), except

for a different disturbances(i) is now replaced by-e,(i))

and for a step-size that is equalji¢:) itself. Hence, the same

arguments that led to Lemma 1 would imply that the following

N
< = | Wl @), ;ﬁ(i)lv(i)IQI (14)
equality holds for all possible choices pf¢): Y2(N
L o+ 22 Zu ot
[Will* + A()]ea ()]

[Wi-1][? + B(0)|ep(9)]? (15)

— 1. (13)

Expression (14) compares the energiea pfiori estimation
[Wi_s, /i), (i)} to the Signals(ws, /7i(i)ea (i)} errors and the disturbances (but now normalizeg@:@y rather
. than p(é )). In partlcular it establlshes that the map from
If we further apply the mean-value theorem to the activatio
. : {1 W_1,V/A()v()} to {\/fi(-)e.(-)} is lo-stable (it maps a
function f[z], we can write
finite energy sequence to another finite energy sequence).
The condition A(N) < 1 is a manifestation of the so-
called small gain theorem in system analysis [15], [16]. In
simple terms, the theorem states that thestability of a
feedback configuration (that includes Fig. 2 as a special case)
requires that the product of the norms of the feedforward
) (4) 67 . and the feedback maps be strictly bounded by one. Here, the
—0Z ()ep(i) = li —v(i) — [1 - f’[n]lf—[,}ﬁi(i)ea(i). feedforward map ha{induced) norm equal to one (since it
Fz () (@) is lossless) while the-induced norm of the feedback map is

N).H th ditiod\(N) < 1 t Il
Combining with (13), this relation shows that the overaII map A(NV). Hence, the conditiorh(IV) < 1 guarantees an overa

contractive map.
ping from theoriginal (weighted) disturbances/ji( Note also that forA(N) < 1 to hold, we need to choose

the resultinga priori (weighted) estimation err0r§/‘ ea the step-sizqu(i) such that, for alk
can be expressed in terms of a feedback structure, as show '

in Fig. 2. _c
The stability of such feedback structures can be studied via 0 < u@f @] < 20) = w2
tools that are by now standard in system theory (e.g., the small
gain theorem [15], [16]). This is pursued in the next sectioh- On Convergence and Energy Propagation
where we derive conditions on the step-size paramégjefs } The flow of energy through the feedback connection of
and on the activation functiorf[z] in order to guarantee aFig. 2 provides further insights into the convergence speed
robust training algorithm, as well as faster convergence speesfsthe training algorithm. For this purpose, let us ignore the
This will be achieved by establishing conditions undefheasurement noise(:) and assume that we have noiseless
which the feedback configuration of Fig. 2 ig-stable in measurementg(:) = f[w;w]. It is known in the stochastic
the sense that it should map a finite-energy input noisetting that for Gaussian processes [18], as well as for spher-
sequence (which includes the noiseless case as a spectlly invariant random processes [19], the maximal speed of
case){\/ ()} to a finite-energya priori error sequence convergence for a gradient algorithm (wheffr] = x) is
{VE()ea ()} obtained foru(é) = (), i.e., for the so-called projection LMS

This establishes a lossless mappifig from the signals

flaiw] = fluiwi1] = f'[n(i)]eq(d)

for some pointx(i) along the segment connectingw and
u;w,_1. Therefore, (11) leads to

(16)
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o] T T T
Srei(i)
p=238
in dB
—50F |
-100 A
p=1
p=2
©=10.6
150 . . . . . . . , .
[} 100 200 300 400 500 600 700 800 900 1000

Number of iterations 1

Fig. 3. Learning curves for perceptron learning algorithm with= 0.4 andp = 0.6,1,2,2.8.

algorithm. We now argue that this conclusion is consistent witfor a large bound?_ ..., this condition can lead to small step-
the feedback configuration of Fig. 2. sizes and, hence, to slow convergence. For the commonly used
If p(2) is such thatu() f'[n(¢)] = (¢), then the feedback activation functions, the maximum value of the derivative
loop is disconnected. This means that there is no enermggcurs at the origin. For example, for the sigmoid function
flowing back into the lower input of the lossless section frorwe obtain f'[0] = /5/4. We can therefore takg¢y.x = 3/4

its lower outpute,(-). The losslessness of the feedforwardnd choose the step-size paramegiéi) according to0 <

path then implies that p(i) < 8/(B|lw||?). This is the same bound suggested in [14].
. . . However, the result in [14] was derived under the restrictive
Ey(i) = By(i - 1) — Ec(i) 17 assumption that the regression vectors do not change over time,

. p — ., l.e.,u; =u = cte for all . Our result thus extends the bound
where we are denoting by (i) the energy ofy//i(i) ea(i) to the general scenario of time-variant regression vectors. For

and by E,,(1) the energy ofw;. improved convergence one might then be tempted to employ
N T o :
But what if (i) f'[n(9)] # 7i(2)? In this case the feedback yi) = 4/(B[w|*). However, this value is very conservative

path is active and the convergence speed will be affectdt : . .
Indeed. we now have and usually leads to unsatisfactory results, as the simulations

further ahead demonstrate.

. . o u(d) 2 . For this reason, we take here an alternative route that
Eu(i)=Eu(i—1)— |1~ ‘1 - f [U(Z)]ﬁ E.(i) avoids upper-bounding the derivative of the activation func-
N . tion. Instead, we provide good estimates for the instantaneous
(i) derivatives f'[(¢)].

(18) To begin with, recall thatf’[n(¢)] is defined byf’[(i)] =

(flz())] = fluiwi—1])/(z — w;w;—1), where z(i) = w;w.

where we have defined the coefficienti). It is easy to Unfortunately,z(i) and f[2(i)] are not available since itself
verify that as long asu(i) is chosen to satisfy (16) with is not known. But one possibility to proceed here is to employ

(@) f'[n()] # i(i), we obtain0 < 7(i) < 1. That is, 7(i) d(:) as an estimate fof[z(i)] sinced(i) = f[z(i)]+v(4). This
is strictly less than one and the rate of decrease in the eneigspecially useful if the reference sequence is noise-free or

of w; is lowered. if the noise itself is sufficiently small. Now, with a “known”
fl#(?)], it becomes possible to solve fe(¢). This motivates
VI. OPTIMAL CHOICES OF STEP SIZES us to suggest the following expression for the optimal step-size

f hi i hod A
The above energy arguments suggest that faster converg&%@meter (we refer to this construction as methgd

11700 — wows
FHAD] — wswi—g T) (20)

occurs wheng(¢) is chosen such that(i) = f(é)/ f'[n(%)] P

(which is the middle point of the interval suggested by (16)). Hopt(#) = fi(i) min (i) — flwwi_1]

But 7(¢) is still unknown and we therefore need to come up ) )

with suitable approximations. where 7" is used as a threshold value in order to prevent
The first (but not the most suitable) choice that comes {%Ege step-sizes. For the sigmoid functi¢n in (1) we have

mind is to assume an upper bound @f{], say f'[s] < =] = —_ln[l/d(z) — 1]/8 which requires the evaluatlon_

. for all ». Then condition (16) can be replaced by th€f & logarithm at each step. In the case of a symmetric

conservative requirement sigmoid function, sayf (z) = [1+¢~"%*]/[1 - ¢~*577], the

calculation of an inverse tangent is required sirfce [z] =

0 < pu(i) < 2/(Flaaxlluil®). (19) 4/parctan(z].
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An alternative procedure is to approximafén(:)] by the The first simulation is for? = 0.4, for which the sigmoid
average off’[z(z)] (or = f'[d(4)]) and f'[u;w;_1]. This is function operates in an almost linear range. The resulting
a convenient approximation in light of the “piecewise-linearlearning curves are depicted in Fig. 3.
form of the activation function. We thus write As expected from (19), and since the sigmoid function op-

9 erates essentially in the linear region, the fastest convergence
0 < pu(d) < 20() 0577 . (21) speed occurs for = 107 (4/8 = 10), while instability occurs
S@]+ 11 _
for valuesy > 20f.
where, for the sigmoid function’[x] = 3f[z](1 = f[z]). The ~ The next simulation shows learning curves for= 2 (see
positive numbek is, similar to7” in method A, introduced in Fig. 4). With fixed step-sizes the fastest convergence was
order to avoid large step-sizes. found atp = 0.6, while for . = 1.2 the algorithm was

This approximation is however inconvenient in the caseédready unstable. The bound (19) for which the largest possible
whenn(4) happens to be close to zero, whil@) andu;w;_; step-size is given by, = 0.4444 is now too conservative
are reasonably far apart. To avoid a poor approximation &nd the proposed modifications (A), (B) and (C) lead to
these cases, we may modify the above construction as followsich faster convergence. For all methods, the step-size was
for improved convergence (i.e., with a disconnected feedba@kosen to be optimal (with” = 100 and ¢ = 0.02). Since

ww,—1] + e

loop) we set method (C) always showed the same behavior as (B) it is
. not depicted here. As the figure demonstrates, the first choice
i 2a(3) (22) leads to excellent convergence, however, at the expense of
I’LOPt(l’) / d s 1 . . . .
Fld@] + fluswi—1] + € calculating a logarithm at every time instant. The second

it (d(i) — 3)(Fluswia] — 1) > 0 or choic_e, althOL_Jgh not as perfect as the first one, sftill shoyvs
2 Wil g considerable improvement over the constant step-size choice.
. 7ii) For the third simulation3 = 4. According to (19), con-
Hopt (1) = = (23) vergence is expected fon < 8i/3 = 2 = 0.22222.

e As Fig. 5 shows, for: smaller than this bound convergence
otherwise. We refer to this construction as methodd®n- occurs. However, this bound is rather conservative and fastest
dition (23) corresponds to the sigmoid function in (1). For eonvergence occurs for larger step-size values, wiz; 0.4.
symmetrical function a similar expression can be obtained.A learning curve for = 0.8 still shows convergence but with

A third, and perhaps simpler method, is to first estimasme stopping effect. It seems noteworthy that even very large

f[n(2)] by the average of [d(¢)] and f [u; w;—1], i.e.Lf[n(i)] = step-sizes can still lead to convergence, although the parameter
0.5(f[d()]+ f[wiw,;—1]), and then sef’[n(1)] = Sf[n(9)](1— estimates seem to diverge. This effect was not observed for
fIn(4)]). This leads to_method Gwith the choice small 3 and seems to arise from the fact that the system
. behaves highly nonlinearly. This effect could also be observed
Jropt (i) = — “(")A ) (24) for 8 = 8, where it was even stronger.
Bfn@OIL = fin(@d]) +¢ Method (B), with the optimal choice for the step-size, was

Before extending the earlier results to dynamic network‘:%lpplled again and showed much faster convergence than any

. . : other choice of a constant step-size. Instability occurred for
we present some simulations that support our conclusions. .
approximately2.2;iqp..

VII. SIMULATION RESULTS FORPLA VIII. DYNAMIC NEURAL NETWORKS

In all experiments, we have chosen a bipolar white random
sequence with variance one as the input signal. The weights&oVector Notation

be identified werg[1,1,1,1,1,1,1,1,1}. The first coefficient  \yo show in the following sections how to extend the
was used for the offset term while the other eight were drivefy, v sis to the recurrent neural network (RNN) case, for which
by a bipolar input pattern. A neuron with these weights cgf)s paye selected Narendra and Parthasarathy’s network [7]
be interpreted as one that finds the patterns with more thgfee j; js very suitable for the feedback analysis of the earlier
three +1. . . sections.

The values of the inner signak are from the set g st we introduce, for convenience of exposition, the

{=7,=95, —3,—_1,1,3,5,7,9}._Since the 256 different input following vector and matrix notation. Define the column
patterns consisted of the bipolar valués1,+1}, we had

. L vectors:
|lwil|3 = M and z(é) = 0.1111 at every time instani. We
have chosen the sigmoid function (1) with= 0.4,2,4. We el v = lea(0),eq(1), -+, ea(N)] (25)
provide plots of learning curves, given in terms of the relative v = [0(0),v(1), - -, ()] (26)

system mismatch defined a&.(i) = E[||w:||3]/|Ww-1]3. . _
The curves are averaged over 50 Monte Carlo runs in ordétd the diagonal matrices
to approximates;.;(7). Not depicted here arg[¢,()]-curves. M 2 dine £12(0). (1), - -
Their behavior is very much like the system mismatch curves, o : d?ag {L_L( )y /f( ) _( )

however, in order to obtain smooth curves they require more My = diag {(0), (1), -, A(N)} (28)

; } (27)
averaging. Fx(n) £ diag {f'[7(0)], -+, f'[n(N)]}. (29)
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Fig. 4. Learning curves for perceptron learning algorithm with= 2 andy = 0.3,0.6,1 and popt for methods (A) and (B).
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Fig. 5. Learning curves for perceptron learning algorithm with= 4 andp = 0.1,0.2,0.4,0.8 and popt from method (B).

We write F\,(17) with a vector argumeng; to indicate the
dependence on the séb(i)}X . Xi =
It is easy to see that, due to the diagonal structure of b
My, My, andF'y (n), the two-induced norms of the matrices H\ y()
[[ - MyMy Fy ()] andMyM3! are equal toA(N) and  FIR \J _/_
~v(N), respectively.
———e A

B. Narendra and Parthasarathy’s Recurrent Network

Narendra and Parthasarathy’s recurrent network is a dy-
namic network whose current output is also a function &fg. 6. Narendra and Parthasarathy’s dynamic network.
earlier output values, in much the same way as the output of
an IR filter is dependent on the previous outputs [2]. Fig.
depicts a block diagram of a recurrent structure suggestedg
Narendra and Parthasarathy [2], [7], [8].

The network consists of two Iine_ar combi_ners with weight Vil = i—1) yi—2) - yli—M)]
vectorsa and b. The upper combiner receives an external
row input vectorx; and evaluates the inner producfhb. The where M is the order of the filter.
lower combiner receives the state vector of an FIR filter and The weight vector of the network of Fig. 6 is defined by
computes its inner product with. The FIR filter is fed with w? = [a? b?]. The objective of a training phase is to provide

e outputy(¢) of the network and, hence, its state vector is
Ven by
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Fig. 7. Narendra and Parthasarathy’s algorithm as a time-variant lossless mapping with dynamic feedback.

the network with a collection of input—output dafx;, d(¢)}, and, consequently, the update equation (31) leads to

in order to estimate the unknown vectersandb. Here
1
W = W, FaveVA i ;
d('L) f[xlb yi—la] U('L) = y('L) + U('L). g Wi_1 I’L(l’)uz f,_l[n(l)] — A(q_l) [GG(L)] U(l’) .

A recursive gradient-type scheme that can be used for {gjiowing the arguments of [4], we can therefore write:
training of such a network is the following. Let_; andb;_

denote estimates far andb at time: — 1, respectively. Let W, =W + /j(i)u;f[ea(i) + 7(4)] (34)
also (i) denote the corresponding output, viz.,

0) = fIxiai1 + §i1bi1] = fTuwi_i] (30) where the modified noise sequeni-)} is defined by

where (6)o(i) = p(i)v(i) — ﬁ(i)e;(i)
T e el O e - A )
W;f_lz; [}:;f: bzgr_l]_ and fi(i) = 1/|lw;||?. This recursion is of the same form as

(20). It then follows in a similar way that:
The estimates fan andb are recursively evaluated as follows:
start with arbitrary initial conditions foa andb, say an initial [Wril|? =+ fi(4)|ea ()| = |[Wi1||? + A(3)|5(0)|? (35)
weight vectorw_;, and use
N which establishes that the map frofw,_, \/E(i)v(i)} to

Wi = Wi—1 + p(0)ug (d(2) = fluwio]). () (%, VA()eal()}. denoted byT;, is lossless and that the
This can be regarded as an immediate extension of a so-caf¥§"all mapping from the original q'sturbangéﬂv(-) to the
Feintuch algorithm [17] in IR modeling (wherg[z] = = is resultlnga priori estimation erron/u(-)ea(-).can.be expressed
linear) to the case of Fig. 6, which now includes a nonlined} t€rms of the feedback structure shown in Fig. 7. We remark
activation functionf[-]. A discussion in the IIR case, with that the notation

linear f[-], can be found in [20]. Define,(:) = u;,w;_; and 1(4) 1 1
D = i) — 04 1— _ : .
eo(1) = y(é) — 4(4). Then N O A(q—l)[] 0]
e(i) £ 2(i) — 2(0) (32) _ _ .
b b R which appears in the feedback loop, should be interpreted as
= xib A yicial = by +Yiiai] follows: we first divide/7i(3) ca(é) by /i), followed by
=wWwi—1 + (Yi-1 — Vi-1)a the filter ————-+——— and then by a subsequent scaling
. _1 . P @]=AgT)
= g () + Alg™)eo() (33) py £
A(3)
where A(q!) stands for the linear operatad(q~!) = The feedback loop now consists of a dynamic system.

>°M axg™*, and a, are the coefficients of the FIR filter But we can still proceed to study the-stability of the
a. By invoking the mean-value theorem we can writeverall configuration in much the same way as we did in
eo(i) = f'[n(8)] e(é), or, equivalentlye(i) = f ~1[n(i)] e, (i), the former section. For this purpose, we use the vector and
for somen(i) in the interval connectingx;b + y;_;a] and matrix_ q_uantities introduc_:ed in (26)7(28) a_nd define a vector
[x;bi_1+¥i_12;_1]. This allows us to conclude from (33) that¥~, Similar to vy, but with the entriess(-) instead ofu(:).
We also use the diagonal matd, from (29), and the lower-
eo(i) = — : 1 [ea(i)] triangular matrixA » that describes the action of the FIR filter
f=n()] - A(g™) A on a sequence at its input; this is a strictly lower-triangular
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Toeplitz matrix with band of widthd\/ This condition has an interesting connection with the linear
filtering case. For Feintuch’s algorithm [17], the signéofs

0 . . "
a0 relevant to the stability of the algorithm. Here, the additional
Ay = al P term (A — 1) can compensate for this effect and even negative
2 1

values foré are allowed (see the simulation examples).
For a sigmoid functionf[z], we know thatf ~*[;(i)] lies
in the range[4/3,cc0). Therefore, in this case, a sufficient

It follows from (35) that we can write: < ) .
condition for (37) is given by the relation

_ 1 _ 1 — _ L ’
M} ¥n = MyMZ vy — [[- MMy [Fy! — Ax]? .
_ 1 _ 1 3 ) 41
x My?|MZeq N B < Eia(1-0) (41)
If we now define
_ 1 7 —1.—- 1
AN) 2 I-M @My [Fyl-Ax] M2, .
(N) N H . v My[Fy ] N ‘27‘“‘1 IX. SIMULATION RESULTS FORNARENDRA
Y(N) = [|[My MNHQJM AND PARTHASARATHY'S NETWORK

and impose the conditiol\(N) < 1, we obtain that a In the simulation that follows, a bipolar white random
single-neuron Narendra and Parthasarathy’s network will §§duence with variance one has been used for the entries of

l,-stable in the sense that the map fr({mv(-),fv—l} to the input Vectorx;. A plot_of the Ieaming curve is provided
{\/mea(_)} satisfies for the relative system mismatch defined as

[l MM e Seald) = Bl Y9
1— AN)

_ 1
| MZeq,

<
The curves are averaged over 50 Monte Carlo runs in order to
Moreover, the map fronf\/u(-)u(-), w_1} to {\/u(-)eq ()} _approximateS‘rel(i). Similar curves can be obtainedAfie? ()]

will also be I,-stable with is used instead.

) N For simulating the behavior of Narendra and Parthasarathy’s
72 (MW +~(NV) [ MR vy

HM%e < network, two different sets of values has been chosen with
NZa Nl = 1—A(N) ’ eight input weights, one offset, and two feedback weights
The robustness_ _(olrg—stablllty) condltlon_A(N) < 1 cor- _ wa=1{06,09 1,1,1,1,1,1,1,1,1}

responds to requiring the feedback matrix to be contractlvgﬁ

ie.,
i s wp ={09,0.9; 1,1,1,1,1,1,1,1,1}.
[T-MyM2 [Fy' —Ay] T My®

‘Q,ind <l (37)

The first weight vector corresponds Re— A} > 0.05,

If we limit ourselves, for simplicity, to the case of constanf v« the second weight vector corresponds td Re A} >
step-sizes:, then a sufficient condition for (37) is to require —0.0125. Fig. 8 shows the learning curves fér= 0.4 and

20, 1 T 1 [ = 4 when the setw, was used. In order to provide a
NFA’ - N(AJ\‘r +AN) - My >o0. (38) symmetrical feedback input the following sigmoid function
Let was applied
A =min{f )]} ¢! = max{a"()}. falz] = 1~ exp(=0.502)

1+ exp(—0.53z)
Then a sufficient condition for (38) is to require
- which has the same maximal derivative as the one defined
I An+ Ay S {ﬁ —(A- 1)}1 in (1), i.e., fi.. = B/4. Since the filter inputs are-{1,+1}
2 2¢ patterns and the output is also limited te1,1] we can use
¢ = 1/11 and according to bound (40) the training phase

which in turn is satisfied if ) . -
converges ify < 1.645 for 5 = 0.4 in the case ofw 4. Fig. 8

Re{l — A(7™)} > 2ﬁ —(A=-1), welo,27] depicts two learning curves for = 0.5 and p = 1.1 for
¢ which we found fastest convergence. Instability occurred for
If we have ana priori bound onRe{1 — A}, say i > 2.3 which is in good agreement with (40). The second
(non-SPR) filter showed very similar behavior. Because of
Re{l - A(¢*)} <6, we[0,27] (39 the negative real part, the limit step-size is smaller. However,

stable behavior as in the Feintuch algorithm does not occur
re. As a general rule of thumb one can say that the larger

the 3, and thus the larger the influence of the nonlinearity, the
< 20(A+6-1). (40) smaller the step-size that is is required for stability.

then a sufficient condition for (37) to be satisfied is to chooi@
i such that e
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Fig. 8. Learning curves for Narendra and Parthasarathy’s networl: (& 0.5, 3 = 0.4, (b) p = 1.1, 3 = 04, (c) p = 0.1, 3 = 4, (d)
w = 0.2, 3 = 4, (e) method (C),5 = 4.

Also, for both filters, modifications as described beforprovided in [21] by invoking results from ® filtering. This
in Section VI can be suggested but they may or may nahalysis ties up nicely with the result in [12] that establishes
bring advantages in general. This is not surprising since Wt the instantaneous gradient-based (LMS) adaptive filter is
need to compensate the filtering effect4fg—1) rather than a minimax filter; thus highlighting its robustness properties.
only the effect of the derivative’[n7]. However, for larger A related discussion on these issues can also be found in the
# the effect of the derivativef’[n] becomes stronger andcompanion paper [5].
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