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Abstract—This paper proposes a technique for jointly quan-
tizing continuous features and the posterior distributions of
their class labels based on minimizing empirical information
loss, such that the quantizer index of a given feature vector
approximates a sufficient statistic for its class label. Informally,
the quantized representation retains as much information as
possible for classifying the feature vector correctly. We derive an
alternating minimization procedure for simultaneously learning
codebooks in the Euclidean feature space and in the simplex
of posterior class distributions. The resulting quantizer can
be used to encode unlabeled points outside the training set
and to predict their posterior class distributions, and has an
elegant interpretation in terms of lossless source coding. The
proposed method is validated on synthetic and real datasets, and
is applied to two diverse problems: learning discriminative visual
vocabularies for bag-of-features image classification, and image
segmentation.

Index Terms—Pattern recognition, information theory, quanti-
zation, clustering, computer vision, scene analysis, segmentation.

I. INTRODUCTION

Many computational tasks involving continuous signals such

as speech or images can be made significantly easier by con-

verting the high-dimensional feature vectors describing these

signals into a series of discrete “tokens.” Nearest-neighbor

quantization, where a finite codebook is formed in the feature

space, and then each feature vector is encoded by the index

of its nearest codevector, is one of the most commonly used

ways of discretizing continuous feature spaces [11]. In modern

image and signal processing literature, codebooks are often

formed not only for the sake of compressing high-dimensional

data (the traditional goal of quantization), but also for the

sake of facilitating the subsequent step of learning a statistical

model for classification or inference. For example, bag-of-

features models for image classification [8], [39], [43] work

by quantizing high-dimensional descriptors of local image

patches into discrete visual codewords, representing images

by frequency counts of the codeword indices contained in

them, and then learning classifiers based on these frequency

histograms.

Quantizer design is typically viewed as an unsupervised

task and the standard objective function is to minimize the

expected distortion (i.e., squared Euclidean distance) between

the original features and the respective codevectors [11].

However, in order to work well for the end goal of predicting a
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high-level category or attribute, the quantizer should be learned

discriminatively. Generally speaking, the “ideal” discrimina-

tive quantizer is the one that retains all the information that

is useful for predicting the attribute. Such a quantizer may

be said to compute a sufficient statistic of the features for the

attribute labels [5], [20]. Informally, for any statistical decision

procedure about the attribute that uses the original features,

we can find another one that performs just as well using the

sufficient statistic.

This paper presents a novel method for learning codebooks

for nearest-neighbor quantization such that the quantized

representation of a feature approximates a sufficient statistic

for its attribute label. The learning scheme is derived from

information-theoretic properties of sufficient statistics [7], [20]

and is based on minimizing the loss of information about

the attribute that is incurred by the quantization operation (in

general, quantization is compression, and some information

will inevitably be lost). The objective function for information

loss minimization involves both the feature vector positions

and their class labels (and thus the quantizer must be trained

in a supervised fashion, using labeled data), but the resulting

nearest-neighbor codebook functions the same way as if it

was produced by an unsupervised method such as k-means,

and can be used to encode test data with unknown labels.

Moreover, our training procedure also outputs the posterior

distribution over class labels associated with each codevector.

Thus, after encoding a new unlabeled feature to its nearest

codevector, we can then use the learned class distribution for

that codevector to predict the label of the original feature.

Figure 1 schematically represents the sequence of processing

in our method, where we go from the original continuous

feature vector to its quantized representation, which in turn

allows us to infer a class label.

The rest of the paper is organized as follows. Section II puts

our method in the context of related work in the clustering

and vector quantization literature. Section III first outlines

the basics of information loss minimization and then presents

our novel method for codebook construction together with

the associated iterative minimization algorithm. Section IV

shows a validation of our method on both synthetic and real

data, and an application to producing effective codebooks

for bag-of-features image classification. Section V gives a

“bonus” application to segmenting images while using pixel

attributes as supervisory information. This application, which

is quite different from patch-based image classification, shows

the versatility of our proposed technique, and points out

interesting connections between information loss minimization

and segmentation objectives based on minimum description
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Fig. 1. Quantization for the sake of classification. X is a continuous random
variable representing the features, K is a discrete random variable representing
the index of the codevector nearest to X with respect to some codebook in
the feature space, and Y is a discrete random variable representing the “class”
or “attribute” of X that we want to predict. In an ideal case, K would be
a sufficient statistic of X for Y , i.e., we would be able to predict Y based
on K as well as we could have from X itself. However, some information
is bound to be lost in going from the continuous feature space to the finite
space of quantizer indices, and our goal is to learn a codebook that minimizes
the loss of information about Y incurred by this operation.

length [15]. Finally, Section VI concludes the presentation

with a summary of our contributions and an outline of possible

future directions. We also include appendices interpreting

information loss minimization in terms of lossless source cod-

ing [34] and proving generalization bounds on the performance

of our empirical objective function. A preliminary version of

this work has appeared in AISTATS 2007 [23].

II. PREVIOUS WORK

The main concern of our paper is empirical quantizer de-

sign [11], [24]: given a representative training sequence drawn

from the signal space, the goal is to learn a quantization rule

that performs well not only on the specific training examples,

but also on arbitrary, previously unseen test examples. In the

field of quantizer design, there exist a number of approaches

for using supervisory information to jointly learn quantizers

and classifiers. Our work relies on a few techniques that are

common in these approaches, in particular, forming Voronoi

partitions of the feature space, but our goal is different in that

we don’t want to learn a classifier per se, but a quantized

representation of the data that preserves the relevant informa-

tion for a given classification task, regardless of the actual

classifier used. Learning Vector Quantization [17], [18] is an

early heuristic approach for supervised quantizer design using

Voronoi partitions, based on self-organizing maps [19]. An

approach more directly related to ours is Generalized Vector

Quantization (GVQ) by Rao et al. [32]. GVQ is designed

for regression type problems where the goal is to encode

or estimate a random variable Y ∈ Y based on features

X ∈ X . This approach assumes a particular distortion or

loss function on Y and uses expected distortion between the

estimated and the actual values of Y on the training set as

an objective function. The mapping is found by breaking up

the space of X into Voronoi regions defined by a codebook

in X , and mapping each of these regions to a constant y.

The codebook minimizing the objective function is learned

using soft assignments and deterministic annealing. Inspired in

part by GVQ, we also use soft Voronoi partitions to make the

optimization problem more tractable. In other aspects, though,

our approach is completely different. In GVQ the distortion

measure on Y is assumed to be given a priori and the objective

function is derived from this distortion measure. By contrast,

we start from the statistical notion of sufficiency, which leads

to the relative entropy as a natural distortion measure on the

simplex of probability distributions over the attribute labels,

and to information loss as the objective criterion. Another

supervised quantizer design approach is the work of Oehler

and Gray [29]. However, this work is tailored for use with

Maximum A Posteriori (MAP) classification, whereas we use

a much more general information-theoretic formulation which

produces discriminative quantized representations that are (in

principle) effective for any classifier or statistical model at the

decision stage.

Quantizer design is conceptually related to the problem of

clustering, or partitioning a discrete space of some entities into

subsets, or clusters, such that the entities in the same cluster

are in some sense “similar” to one another. Clustering is often

used to train quantizers (i.e., k-means is a standard method

for learning codebooks for nearest-neighbor quantization),

but the majority of clustering methods make no distinction

between “training” and “testing,” and are not concerned with

finding partitions that can be extended outside the original

input set. There are several clustering methods motivated by

an information-theoretic interpretation of sufficient statistics

in terms of mutual information [10], [38], [40], [42]. The

information bottleneck (IB) method [40], [42] is a general

theoretical framework for clustering problems where the goal

is to find a compressed representation K of the data X under

the constraint on the mutual information I(K; Y ) between K
and another random variable Y , which is correlated with X
and is assumed to provide relevant information about X . For

example, X is a word and Y is the topic of the document

that contains it. The compressed representation K is found by

minimizing an objective function of the form

I(X ; K)− βI(K; Y ) (1)

over all randomized encodings of X into K . This objective

function is motivated by rate-distortion theory [3] and seeks

to trade off the number of bits needed to describe X via K
and the number of bits of information K contains about Y
(β is a variational parameter). In IB, in order to compute the

encoding of X to K , one must have full knowledge of P (y|x),
the conditional distribution of Y given X = x. By contrast,

the encoding rule learned by our method does not involve

P (y|x), and, in fact, can be used to predict this distribution

for points outside the training set. Moreover, IB does not make

any specific assumptions regarding the structure on X , which

can be either continuous or discrete, and can in principle result

in highly complex partitions, while we admit only Voronoi

partitions in order to make the operation of our classifier

outside the training data as simple as possible.

A few other information-theoretic clustering

algorithms [10], [38] have objective functions based on

the general principles set forth by the information bottleneck

framework. Our own approach is inspired in part by the

divisive information-theoretic algorithm of Dhillon et al. [10],

which is based on minimizing the information loss

I(X ; Y ) − I(K; Y ) . (2)

This objective function may be viewed as a special case of (1)

where cluster assignment is deterministic and the number of

clusters is fixed [10]. Eq. (2) can be interpreted as the differ-

ence between the amount of information provided by X about
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Y and the amount of information provided by K about Y , and

minimizing it leads to a clustering that throws away as little

information about Y as possible.1 Unfortunately, the algorithm

of [10] is not suitable for our target application of quantizer

design. For one, quantization requires an encoding rule that

works on continuous data, does not depend on the labels

other than those of the training examples, and can be applied

outside the training set. In addition, the algorithm for learning

the quantizer codebooks must simultaneously operate in two

spaces, the vector space where the natural distance measure

is Euclidean, and the space of attribute distributions that are

naturally compared using the KL-divergence (relative entropy).

Even though we also use information loss minimization as the

objective criterion, our algorithm introduced in Section III-B

significantly differs from that of [10] and successfully deals

with the added challenges of quantizer design.

III. THE APPROACH

We begin in Section III-A by giving a self-contained presen-

tation of the empirical loss minimization framework of Dhillon

et al. [10], who use it to design an iterative descent algorithm

similar to k-means. This algorithm is suitable for clustering

of discrete data, but not for our target problem of quantizer

design. Nevertheless, it provides a starting point for our

method of learning codebooks for nearest-neighbor encoding,

which is developed in Section III-B. Finally, Section III-C

discusses an optional modification to our objective function to

trade off information loss and distortion in the feature space.

A. Background: Minimization of Empirical Information Loss

Consider a pair (X, Y ) of jointly distributed random vari-

ables, where X ∈ X is a continuous feature and Y ∈ Y
is a discrete class label. In the classification setting, given

a training sequence {(Xi, Yi)}N
i=1 of i.i.d. samples drawn

from the joint distribution of (X, Y ), one typically seeks to

minimize the probability of classification error Pr[Ŷ (X) 6= Y ]
over some family of classifiers Ŷ : X → Y , such as k-

nearest-neighbor classifiers, decision trees or support vector

machines [14]. A more general approach is based on the

notion of sufficient statistics. Informally, a sufficient statistic

of X for Y contains as much information about Y as X
itself. Hence an optimal hypothesis testing procedure operating

on the sufficient statistic will perform as well as an optimal

predictor of Y directly from X [5], [20]. This framework in

principle allows us to learn compressed representations of X
that retain as much discriminative power as possible without

having to commit to any particular classifier.

We seek a partitioning of X into C disjoint subsets, such

that the random variable K ∈ {1, . . . , C} giving the subset

index of X would be a sufficient statistic of X for Y . By

definition, a function K of X is a sufficient statistic for Y if

X and Y are conditionally independent given K [5], [20].

In terms of mutual information [7], [20], this condition is

equivalent to I(K; Y ) = I(X ; Y ). In general, going from the

1Note that I(X; Y ) is fixed, so minimizing (2) is equivalent to maximizing
I(K;Y ), but we use (2) because it leads to a convenient computational
solution in terms of iterative minimization [10].

continuous data X to a quantized version K is bound to lose

some discriminative information, so K cannot a be sufficient

statistic in the strict mathematical sense. Instead, we would

like to minimize the information loss I(X ; Y )−I(K; Y ) over

all partitions of X into C disjoint subsets. Because our interest

here is in joint compression and classification of the features

X , the number of partition elements C will, in general, be

much larger than the number of class labels |Y|.
Let Px denote the conditional distribution P (y|X = x)

of Y given X = x, µ the marginal distribution of X , and

P =
∫

X Px dµ(x) the marginal distribution of Y . Then the

mutual information between X and Y can be written as

I(X ; Y ) =
∫

X D(Px‖P )dµ(x), where D(·‖·) is the relative

entropy or the Kullback–Leibler divergence [20] given by

D(Px‖P ) =
∑

y∈Y Px(y) log Px(y)
P (y) . Similarly, the mutual

information between the two discrete variables K and Y can

be written as I(K; Y ) =
∑C

k=1 P (k)D(Pk‖P ), where Pk is

the conditional distribution of Y given K = k.

Since the underlying distribution of (X, Y ) is unknown,

we have to minimize an empirical version of the loss for

a finite training sequence {(Xi, Yi)}N
i=1. We can use the

training sequence to approximate µ by the empirical distri-

bution µ̂ = 1
N

∑N
i=1 δXi

and to estimate each PXi
using

any consistent nonparametric estimator, such as the k-nearest-

neighbor rule P̂Xi
= 1

k

∑

j:Xj∈Nk(Xi)
δYj

, where Nk(Xi) is

the set of k nearest neighbors of Xi (including Xi itself), or

Parzen windows [31]. Also, let P̂ = 1
N

∑N
i=1 P̂Xi

denote the

corresponding estimate of P . Then the empirical version of

the mutual information between X and Y is given by

Î(X ; Y ) =
1

N

N
∑

i=1

D(P̂Xi
‖P̂ ) . (3)

Now let R1, . . . ,RC be a partitioning of the training set

{Xi}N
i=1 into C disjoint subsets, and define the map K(Xi) =

k if Xi ∈ Rk . Then the empirical version of I(K; Y ) is

Î(K; Y ) =

C
∑

k=1

Nk

N
D(πk‖P̂ ) , (4)

where Nk = |Rk| and

πk =
1

Nk

∑

Xi∈Rk

P̂Xi
. (5)

We can rewrite (3) as

Î(X ; Y ) =

C
∑

k=1

Nk

N

∑

Xi∈Rk

1

Nk
D(P̂Xi

‖P̂ ). (6)

Now, using the definition of D(·‖·) and (5), for each k =
1, . . . , C we can expand the second summation in (6) as

1

Nk

∑

Xi∈Rk

∑

y∈Y

P̂Xi
(y) log

P̂Xi
(y)

P̂ (y)
−
∑

y∈Y

πk(y) log
πk(y)

P̂ (y)

=
1

Nk

∑

Xi∈Rk

∑

y∈Y

P̂Xi
(y) log

P̂Xi
(y)

πk(y)

=
1

Nk

∑

Xi∈Rk

D(P̂Xi
‖πk).
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Using this together with (6) and (4), we obtain the following

expression for the empirical information loss:2

Î(X ; Y ) − Î(K; Y ) =
1

N

C
∑

k=1

∑

Xi∈Rk

D(P̂Xi
‖πk). (7)

It is not hard to show, either directly or using the fact that

the relative entropy D(·‖·) as a Bregman divergence on the

probability simplex P(Y) over Y [2], that

πk = argmin
π

∑

Xi∈Rk

D(P̂Xi
‖π), ∀k = 1, 2, . . . , C (8)

where the minimization is over all π in the interior of P(Y)
(i.e., π(y) > 0 for all y ∈ Y)3. πk is the unique minimizer in

(8), referred to as the Bregman centroid of Rk [2].

Given a disjoint partition R1, . . . ,RC of {Xi}n
i=1 and C

probability distributions q1, . . . , qC in the interior of P(Y),
define the objective function

1

N

C
∑

k=1

∑

Xi∈Rk

D(P̂Xi
‖qk). (9)

From the preceding discussion we see that, for a fixed partition

R1, . . . ,RC , this objective function is minimized by the

choice qk = πk, 1 ≤ k ≤ C. Moreover, it is not hard to show

that, for fixed q1, . . . , qC , the objective function is minimized

by the partition

Rk
△

= {Xi : D(P̂Xi
‖qk) ≤ D(P̂Xi

‖qj), j 6= k}, k = 1, . . . , C.

The optimization of (9) can therefore be performed by an

iterative descent algorithm initialized by some choice of

{πk} ⊂ Int(P(Y)), where each Xi is assigned to Rk with

the smallest D(P̂Xi
‖πk), and the class distribution centroids

πk are then recomputed by averaging the P̂Xi
’s over each Rk,

as in (5). This descent algorithm has the same structure as the

well-known k-means algorithm; in fact, as pointed out in [2],

both of them are special cases of a general descent algorithm

for minimizing the Bregman information loss with respect to

a suitable Bregman divergence, which is given by the squared

Euclidean distance in the case of k-means.

A top-down “divisive” version of the above algorithm

has been used by [10] to cluster words for text document

classification. However, this algorithm is unsuited for our goal

of quantizer design for several reasons. First, it produces

an arbitrary partition of the discrete input set without any

regard to spatial coherence, whereas we need a method that

takes advantage of the continuous structure of the feature

space. Second, data points are assigned to clusters by nearest-

neighbor with respect to KL-divergence between PX and πk,

which requires the knowledge of PX and thus cannot be

extended to unlabeled test points. By contrast, we actually

want the quantized representation of X to help us estimate

2Banerjee et al. [2] give a more general derivation of this expression
for empirical information loss in the context of clustering with Bregman

divergences [6], of which the relative entropy is a special case; the derivation
included in our paper is meant to make it self-contained.

3The requirement that π lie in the interior of the probability simplex is a
technical condition dictated by the properties of Bregman divergences [2]. It
is not a restrictive condition in practice, since one can always perturb π by a
small amount to force it into the interior.

Feature space Probability simplex P(Y)Probability simplex P(Y)   Probability simplex ( )

̟

X 

m k

P X

k

|| X − m   ||
k

2

D ( P   ||       ) X
 ̟
  k

Fig. 2. Schematic illustration of our optimization problem. Encoding takes
place in the feature space using the nearest-neighbor rule w.r.t. Euclidean
distance, but the value of the objective function is computed in the probability
space using KL-divergence. The goal is to position the codevectors mk in
the feature space to minimize the value of the objective function.

the attribute distribution for previously unseen and unlabeled

points, which means that at the very least, the encoding

must not depend on PX . As discussed in the next section,

we propose to resolve these difficulties by placing structural

constraints on the partitions and the encoding rule.

Note: in the subsequent sections, which are concerned with

deriving practical algorithms for empirical loss minimization,

we will be dealing only with the estimates of PXi
. For nota-

tional simplicity we shall drop the hats from these quantities.

B. Constraining the Encoder

In the setting of this paper, we assume that the data X comes

from a compact subset X of the Euclidean space R
d. We need

a way to specify a partitioning of X that can be extended

from the training set to the whole feature space, such that the

encoding rule does not depend on the attribute distribution of

a given point. We can obtain a suitable scheme by considering

Voronoi partitions of X with respect to a codebook of C
centers or prototypes in the feature space. Now the quantizer

design problem can be phrased as follows: we seek a codebook

M∗ = {m∗
1, . . . , m

∗
C} ⊂ X and a set of associated posterior

class distributions Π∗ = {π∗
1 , . . . , π∗

C} ⊂ Int(P(Y)) that

jointly minimize the empirical information loss4

C
∑

k=1

∑

Xi∈R(mk)

D(PXi
‖πk), (10)

where R(mk)
△

= {x ∈ X : ‖x − mk‖ ≤ ‖x − mj‖, ∀j 6= k}
is the Voronoi cell of mk. Figure 2 schematically illustrates

the structure of this optimization problem, involving two

corresponding codebooks in the feature space and in the

simplex of posterior class probabilities. The resulting encoding

rule is very simple: the partition (quantizer) index of a point

X ∈ X is the index of its nearest codevector mk ∈ M∗. Note

that this rule does not involve the (possibly unknown) label of

X , and is thus suitable for encoding unlabeled data. Moreover,

nearest-neighbor quantization naturally leads to classification:

having mapped X onto its partition index k, we can predict

4At this point, it is appropriate to ask about the generatization performance
of a minimizer of this empirical objective function: does it give us a good
approximation to a minimizer of the actual information loss for the underlying
distribution over all choices of (M, Π)? It is possible to show that, under a
mild regularity condition on the allowed codebooks in the probability simplex
over the class labels, an empirical minimizer of (10) minimizes the actual
information loss I(X; Y ) − I(K;Y ) over all Voronoi partitions of X with
C cells, with high probability. Appendix B contains a sketch of the proof.
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the label Ŷ of X by the maximum a posteriori probability

(MAP) criterion:

Ŷ = argmax
y∈Y

πk(y) . (11)

In practice, the performance of this simple decision rule

will be bounded from above by a local classifier that makes

MAP decisions using the “uncompressed” probabilities PX

estimated from the training data. This is not surprising, since

we are effectively replacing the full training set {Xi}N
i=1 by

a much smaller set of codebook entries {mk}C
k=1 and the

local probability estimates PX by the quantized estimates

πk. Of course, even then, our quantization procedure may

realize a significant savings in terms of search time and space

complexity for the purpose of nearest-neighbor classification.

In the experiments of Section IV-A, we use the MAP clas-

sification rule (11) because of its simplicity. However, in

Section IV-B we also show that the applicability of our learned

codebooks goes beyond simple nearest-neighbor classification

of individual features. For example, the codebooks may be

used to combine multiple features to make aggregate decisions,

e.g., assigning a single class label to a collection of features

representing an entire image.

To summarize, the objective function defined by (10) is a

big improvement over (9), since it gives us a simple encoding

rule that extends to unlabeled data. Unfortunately, it is still

unsatisfactory for computational reasons: while the optimal

choice of Π = {πk} for a given M = {mk} is given by

(5), optimizing the codebook M for a given Π is a difficult

combinatorial problem. Therefore we opt for a suboptimal

design procedure suitable for designing vector quantizers

with structurally constrained encoders [11], [32]. Namely, we

introduce a differentiable relaxation of the objective function

by allowing “soft” partitions of the feature space. Let wk(x)
denote the “weight” of assignment of a point x ∈ X to R(mk),
with

∑C
k=1 wk(x) = 1. As suggested by Rao et al. [32], a

natural choice for these weights is the Gibbs distribution

wk(x) =
e−β‖x−mk‖

2/2

∑

j e−β‖x−mj‖2/2
, (12)

where β > 0 is the parameter that controls the “fuzziness”

of the assignments, such that smaller β’s correspond to softer

cluster assignments, and the limit of infinite β yields hard

clustering. While in principle it is possible to use annealing

techniques to pass to the limit of infinite β [36], we have

found that a fixed value of β works well in practice (our

method for selecting this value in the experiments will be

discussed in Section IV). Note also that we deliberately avoid

any probabilistic interpretation of (12) even though it has the

form of the posterior probability for a Gaussian distribution

with β = 1
σ2 . As will be further discussed in Section IV-A,

ours is not a generative approach and does not assume any

specific probabilistic model underlying the data.

We are now ready to write down the relaxed form of our

objective function for a fixed β:

E(M, Π) =

N
∑

i=1

C
∑

k=1

wk(Xi)D(PXi
‖πk) . (13)

A local optimum of this function can be found via alternating

minimization, where we first hold Π fixed and update M to

reduce the objective function, and then hold M fixed and

update Π. For a fixed Π = {πk}, E(M, Π) is reduced by

gradient descent over the mk’s. The update for each mk has

the form

m
(t+1)
k = m

(t)
k − α

N
∑

i=1

C
∑

j=1

D(PXi
‖π(t)

j )
∂w

(t)
j (Xi)

∂m
(t)
k

, (14)

where α > 0 is the learning rate shared by all the centers and

found using line search [4], and

∂wj(x)

∂mk
= β[δjkwk(x) − wk(x)wj(x)](x − mk) (15)

where δjk is 1 if j = k and 0 otherwise. For a fixed

codebook M, the minimization over Π is accomplished in

closed form by setting the derivatives of the Lagrangian

E(M, Π) +
∑

k λk

∑

y πk(y) w.r.t. πk(y) to zero for all k
and all y ∈ Y and solving for πk(y) and for the Lagrange

multipliers λk. The resulting update is

π
(t+1)
k (y) =

∑N
i=1 w

(t+1)
k (Xi)PXi

(y)
∑

y′

∑N
i=1 w

(t+1)
k (Xi)PXi

(y′)
, ∀y ∈ Y. (16)

The two updates (14) and (16) are alternated for a fixed

number of iterations or until the reduction in the value of

the objective function falls below a specified threshold (this is

guaranteed to happen in a finite number of iterations, because

the sequence of objective function values produced by the

updates is monotonically decreasing and bounded from below

by 0, and therefore has a limit). This alternating minimization

can then be embedded in an annealing procedure if a better

approximation to the original combinatorial objective function

is sought.

C. Trading off Information Loss and Distortion

The loss minimization approach presented in the previous

section does not pay any attention to the distortion ‖X−mk‖2

incurred by encoding some data point to its nearest centroid.

In practice, the regions produced by the above optimization

procedure may be arbitrarily large or elongated, as some

centroids either come too closely together or migrate far

outside the smallest convex polytope enclosing the training

set. However, for problems that combine the objectives of

faithful compression with accurate classification, it is desirable

to avoid such artifacts and to make sure that the codebook

represents the data with relatively low distortion. To help meet

this objective, we propose in this section an optional variant

of our basic objective function (13) to trade off information

loss and mean squared distortion in a Lagrangian formulation:

Ẽ(M, Π) = E(M, Π) + λF (M, Π) , (17)

where λ is a tradeoff parameter, and

F (M, Π) =

N
∑

i=1

C
∑

k=1

wk(Xi)‖Xi − mk‖2 (18)

is the standard distortion function for soft clustering [11]. An

analogous Lagrangian approach has been used by Oehler and
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Gray [29] for joint compression and classification of images,

where the objective function is a sum of a Bayes weighted

risk term and a mean squared error term. The updates for the

mk are given by

m
(t+1)
k = m

(t)
k − α

N
∑

i=1

C
∑

j=1

D(PXi
‖π(t)

j )
∂w

(t)
j (Xi)

∂m
(t)
k

−αλ

N
∑

i=1

C
∑

j=1

[

‖Xi − mj‖2
∂w

(t)
j (Xi)

∂m
(t)
k

+2δjkw
(t)
j (Xi)(mj − Xi)

]

.

The updates for πk are given by (16) as before.

The behavior of the modified objective function (17) is

demonstrated experimentally in Figure 6 in Section IV-A; in

all the other experiments we stick with the original objective

function (13).

IV. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation on several

synthetic and real datasets. Section IV-A validates the basic

behaviour of our approach using nearest-neighbor classifica-

tion of quantized features as a sample task, and Section IV-B

applies our framework to the task of bag-of-features image

classification.

A. Synthetic and Real Data

Table 3 is a summary of the datasets used in the exper-

iments of this section. For each dataset, the table lists the

average performance of a k-nearest-neighbor classifier trained

on random subsets consisting of half the samples. We use a

“nominal” value of k = 10, which worked well for all our

experiments. Recall from Section III-B that the performance

of a k-nearest-neighbor classifier is an effective upper bound

on the performance of MAP classification with our codebook

using eq. (11). For the three synthetic datasets, the table also

lists the theoretically computed optimal Bayes upper bound.

Note that for these datasets, the performance of the 10-nearest-

neighbor (10NN) classifier comes quite close to the Bayes

bound.

The two main implementation issues for our method are

estimation of posterior probabilities PXi
and the choice of the

“softness” constant β. For all the experiments described in

this section, we estimate PXi
by averaging the point masses

associated with the labels of the ten nearest neighbors of Xi

and its own label Yi, but we have also found the point mass

estimate PXi
= δYi

to produce very similar performance. We

set β to d
σ̂2 , where d is the dimensionality of the data and σ̂2

is the mean squared error of the k-means clustering that we

use to initialize the loss minimization procedure.

A good “floor” or a baseline for our method is provided

by standard k-means quantization, where the data centers

m1, . . . mC are learned without taking class labels into ac-

count, and the posterior distributions P (y|k) = πk are ob-

tained afterwards by the averaging rule (5). As an alternative

baseline that does take advantage of class information for

learning the data centers, but does not directly minimize

information loss, we chose a generative framework where each

class conditional density P (x|y) is modeled as a mixture of

C Gaussians, and mixture components are shared between all

the classes:

P (x|y) =
C
∑

k=1

P (x|k)P (k|y) . (19)

P (x|k) is a Gaussian with mean mk and a spherical covariance

matrix σ2I, σ2 = 1
β . The parameters of this model, i.e., the

means mk and the class-specific mixture weights P (k|y), are

learned using the EM algorithm [4]. (Alternatively, one could

use GMVQ, a hard clustering algorithm for Gauss mixture

modeling [1].) Instead of fixing a global value of σ2, we also

experimented with including the variances σ2
k as parameters

in the optimization, but this had little effect on classification

performance, or even resulted in overfitting for the more high-

dimensional datasets.

Figure 4 shows results on three two-dimensional two-class

synthetic datasets. Part (a) shows the centers and partitions

produced by k-means and used to initialize both EM and

info-loss optimizations. Part (b) shows the resulting info-loss

partitions. In all three cases, our method partitions the data

space in such a way as to separate the two classes as much as

possible. For example, the “concentric” dataset (left column)

consists of uniformly sampled points, such that the “red” class

is contained inside a circle and the “blue” class forms a ring

around it. The regions produced by k-means do not respect

the circular class boundary, whereas the regions produced by

the info-loss method conform to it quite well. It is important

to keep in mind, however, that separating classes is not the

primary goal of information loss minimization. Instead, the

criterion given by (13) is more general, seeking to partition the

data into regions where the posterior distributions PXi
of the

individual data points are as homogeneous as possible, mea-

sured in terms of their similarity to the “prototype” distribution

πk. When the classes in the dataset are separable, this criterion

naturally leads to regions whose prototype distributions are

nearly “pure,” i.e., dominated by a single class.

Figure 4 (c) compares the classification performance of the

three clustering methods. For k-means and info-loss, MAP

classification is performed using Eq. (11) while for EM, it is

derived from the probabilistic model (19). For the “concentric”

dataset, the info-loss classification rate falls somewhat as the

codebook size increases from 16 to 128. This is because

the decision regions in this case are simple enough to be

approximated well even with C = 8, and increasing C causes

the method to overfit. Finally, Figure 4 (d) compares the

performance of the three methods w.r.t. minimizing informa-

tion loss or equivalently, maximizing the mutual information

I(K; Y ) between the region index and the class label. Again,

info-loss outperforms both k-means and EM.

Figure 5 shows analogous results for the three real datasets

in our study. As in Figure 4, info-loss outperforms the two

baseline methods. Recall from Table 3 that these datasets

have as many as 11 classes and 256 dimensions, so our

method appears to scale quite well as the number of classes
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Dataset # classes # samples dim. 10NN rate Bayes rate

Concentric1 (synthetic) 2 2,500 2 98.01 ± 0.44 100
Nonlinear (synthetic) 2 10,000 2 95.65 ± 0.19 96.32

Clouds1 (synthetic) 2 5,000 2 88.32 ± 0.43 90.33

Texture1 (real) 11 5,500 40 97.35 ± 0.27 -

Satimage2 (real) 6 6,435 36 89.18 ± 0.45 -

USPS3 (real) 10 9,298 256 94.46 ± 0.29 -
1

http://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA/databases/
2

http://www.ics.uci.edu/˜mlearn/MLSummary.html
3

ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/

Fig. 3. Summary of the datasets used in our experiments. The nonlinear dataset was generated by us, and the rest were downloaded from the corresponding
URLs. Texture contains features of small image patches taken from 11 classes from the Brodatz album. Satimage is Landsat satellite measurements for 6
classes of soil. The features in USPS are grayscale pixel values for 16 × 16 images of 10 digits from postal envelopes.

Concentric Nonlinear Clouds

(a) Centers and partitions produced by k-means (C = 32)

(b) Centers and partitions produced by our info-loss method (C = 32)
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(d) Mutual information vs. codebook size

Fig. 4. Results on synthetic data (best viewed in color). For (b), our method is initialized with the cluster centers produced by k-means in (a). For (c)
and (d), we have performed 10 runs with different random subsets of half the samples used to train the models and the rest used as test data for reporting
classification accuracy and mutual information. The height of the error bars is twice the standard deviation for each measurement. In (d), information loss is
given by the vertical distance between I(X; Y ) and I(K; Y ).
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Fig. 5. Results for three real image datasets. First row: classification rate vs. codebook size. Second row: mutual information vs. codebook size. As in Figure
4, means and standard deviations are reported over 10 runs with half the dataset randomly selected for training and half for testing.

and the dimensionality of the feature space increase. It is

worth noting that in all our experiments, EM achieves only a

small improvement over k-means, so it seems to be relatively

ineffective as a way of incorporating class information into

clustering. This weakness may be due to the fact that the

generative model (19) encodes a strong relationship between

the density of the data and its class structure. By contrast, our

info-loss framework is much more flexible, because it makes

minimal assumptions about the data density, approximating

it by the empirical distribution, and does not require any

correspondence between the modes of this density and the

posterior class distribution. As far as our method is concerned,

the data can be generated using one process, such as a mixture

of Gaussians, and the class distribution can be “painted on”

by a completely different process.

Finally, Figure 6 demonstrates the tradeoff between quan-

tizer distortion and information loss for the Lagrangian ob-

jective function (17) of Section III-C. We can see that for

the texture dataset, it is possible to achieve “the best of both

worlds”: for intermediate values of the tradeoff parameter (i.e.,

λ = 1), classification accuracy is not significantly affected,

while the mean squared Euclidean distortion in the feature

space is almost as low as for the pure k-means algorithm.

B. Constructing Codebooks for Bag-of-Features Image Clas-

sification

Section IV-A has used classification as an example task to

validate the basic behavior of our information loss minimiza-

tion framework. However, it is important to emphasize that

learning stand-alone classifiers is not our primary intended

goal. Instead, we propose information loss minimization as a

method for producing discriminative quantized representations

of continuous data that can be incorporated into more complex

statistical models. Such models may not even be aimed at

classifying the individual features directly, but at combin-

ing them into higher-level representations, e.g., combining

multiple phonemes to form an utterance or multiple local

image patches to form a global image model. Accordingly,

we demonstrate in this section the use of our method to

build effective discrete visual vocabularies for bag-of-features

image classification [8], [39], [43]. Analogously to bag-of-

words document classification [37], this framework represents

images by histograms of discrete indices of the “visual words”

contained in them. Despite the extreme simplicity of this

model — in particular, its lack of information about the

spatial layout of the patches — it is currently one of the

leading state-of-the-art approaches to image classification [43].

The performance of bag-of-features methods depends in a

fundamental way on the visual vocabulary or codebook that

is used to quantize the image features into descrete visual

words. In recent literature, the problem of effective design of

these codebooks has been gaining increasing attention (see,

e.g., [21], [27] and references therein).

Figure 7 shows the dataset that we use to investigate the

performance of our quantization method for forming bag-of-

features representations. This dataset consists of 4485 images

taken from fifteen different scene categories, and is quite

challenging — for example, it is difficult to distinguish indoor

categories such as bedroom and living room. This dataset has

been used by Lazebnik et al. [22], who report a bag-of-features

classification rate of 72.2% with a k-means vocabulary of size

200 and training sets consisting of 100 images per class.5 In

the present experiments, we follow the setup of [22] for feature

extraction and training. Namely, the image features are 128-

dimensional SIFT descriptors [25] of 16×16 patches sampled

on a regular 8 × 8 grid. Let us underscore that classifying

individual image patches or features is not our goal in this

section. In fact, this task is quite difficult because small image

windows are inherently ambiguous. For example, a uniform

white patch may belong to a cloud in any outdoor class,

or to a white wall in an indoor class. Not surprisingly, the

10NN classification rate for the individual image features in

5Another reference performance figure for a 13-class subset of this dataset
is 65.2% by Fei-Fei and Perona [13].
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λ distortion info. loss class. rate

0 0.424 ± 0.04 0.282 ± 0.04 94.0 ± 1.1

0.1 0.386 ± 0.02 0.273 ± 0.03 94.5 ± 0.8

0.5 0.276 ± 0.02 0.329 ± 0.07 92.7 ± 2.6

1.0 0.247 ± 0.01 0.375 ± 0.04 90.7 ± 2.3

5.0 0.201 ± 0.01 0.479 ± 0.08 87.0 ± 3.1

10.0 0.192 ± 0.01 0.561 ± 0.06 84.2 ± 2.2

∞ 0.184 ± 0.01 0.705 ± 0.05 75.6 ± 1.9 0.2 0.3 0.4
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Fig. 6. Trading off quantizer distortion and information loss for the texture dataset with C = 32. Left: mean squared distortion, information loss, and
classification rate as a function of λ, where λ = 0 corresponds to pure info-loss clustering and λ = ∞ corresponds to k-means. Right: classification error
plotted as a function of distortion. The values of λ corresponding to each data point are shown on the plot.

office kitchen living room

bedroom store industrial

tall building∗ inside city∗ street∗

highway∗ coast∗ open country∗

mountain∗ forest∗ suburb

Fig. 7. Example images from the scene category database. The starred categories originate from Oliva and Torralba [30]. The entire dataset is publicly
available at http://www-cvr.ai.uiuc.edu/ponce grp/data.

C = 32 C = 64 C = 128 C = 256

NB
k-means

56.2 ± 0.9 60.3 ± 1.7 62.7 ± 0.7 64.9 ± 0.4

NB
info-loss

60.8 ± 0.9 62.9 ± 1.4 64.8 ± 0.8 66.6 ± 0.7

SVM
k-means

59.5 ± 0.6 65.8 ± 0.5 70.4 ± 0.8 73.3 ± 0.3

SVM
info-loss

63.9 ± 0.4 68.0 ± 0.5 71.6 ± 0.7 74.7 ± 0.4

32 64 128 256
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NB k−means
NB info−loss

SVM k−means
SVM info−loss

Fig. 8. Performance of bag-of-features classification for four different dictionary sizes (32, 64, 128, 256), two different methods of dictionary formation
(k-means, info-loss), and two different classification methods (NB, SVM). For ease of visualization, the plot on the right reproduces the same information as
the table on the left. The results are averaged over five runs with different random training/test splits. On the plot, the height of each error bar is twice the
corresponding standard deviation.

this dataset is only 16%. However, even though a single small

patch has only a limited predictive power about the class of the

image that it comes from, a “signature” vector of frequency

counts of such patches over an entire image contains a lot

more information.

To create a bag-of-features representation, we first form a

visual codebook or vocabulary by running either k-means or

our info-loss algorithm on 22, 500 patches randomly sampled

from all the classes in the training set, which constists of 100

images per class. For the info-loss algorithm, each training

patch is given the class label of the image that it was extracted

from. Finally, we encode the patches in each image I into the

index of its closest codebook center or “vocabulary word,”

and represent the image as a vector of frequency counts

Nk(I) of each index k. Figure 8 shows results of classifying

histograms based on the two types of codebooks. We use

two different classifiers, Naive Bayes (NB) and support vector

machines (SVM). Naive Bayes performs maximum likelihood
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top k-means codevectors top info-loss codevectors πk(y)

office
0.37 0.35 0.31 0.22 0.20 0.20 0.19 0.19 0.19 0.18 0.48 0.46 0.37 0.32 0.32 0.30 0.29 0.26 0.26 0.25
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0.7
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Fig. 9. Left and middle columns: top ten k-means and info-loss codewords for each class, with the corresponding posterior class probabilities indicated
below. Right column: plots of the top ten probabilities for both codebooks shown on the same axes for easy comparison. The solid red line is for the info-loss
codebook, and the dash-dot blue line is for the k-means codebook.

classification according to the multinomial event model [26]:

P (I|y) =
∏

k

P (k|y)Nk(I) , (20)

where in the case of a codebook output by our method, P (k|y)
is obtained directly by Bayes rule from the centroid πk. For

support vector machines, we use the histogram intersection

kernel [28], [41] defined by

K (N(I1), N(I2)) =

C
∑

k=1

min (Nk(I1), Nk(I2)) .

As seen from Figure 8, codebooks produced by our method

yield an improvement over k-means, which, though not large

in absolute terms (2% to 4%) is consistent and statistically

significant, given the extremely small variation of classification

rates over multiple runs. Moreover, the improvement is higher

for smaller vocabulary sizes and for Naive Bayes, which is a

weaker classification method that relies more directly on the

quality of the probability estimates output by the quantizer.

As a caveat, we should note that this figure only considers

codebook sizes up to 256, at which point the performance of

both the info-loss and the k-means codebooks continues to

increase, and, in fact, the k-means codebook shows a trend

of “catching up” to the info-loss one. This is not surprising:

once the compression rate becomes high enough, both the

info-loss and the k-means codebooks will have sufficiently

many codevectors to capture all the relevant class information.

However, the info-loss codebook has the potential of achieving

similar levels of classification performance at much lower

rates than standard k-means, which can result in considerable

computational savings in practice.

Figure 9 shows a more detailed visualization of the code-
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Fig. 10. Histograms of maxy πk(y), or the maximum posterior probability
of observing any class given a codeword k.

k-means info-loss

Fig. 11. Codebooks for C = 32.

books produced by k-means and information loss minimiza-

tion for vocabulary size 256. This figure shows the top

ten codewords for each class, i.e., the codewords with the

highest posterior probabilities πk(y) for a given class y. This

probability value is shown below each codeword. The leftmost

column shows a plot of these values for both k-means and info-

loss codebook on the same axis for easier comparison. We can

see that the posterior probabilities for the info-loss keywords

tend to be higher than those for the k-means codebooks.

Intuitively, k-means codewords are more “mixed” and info-

loss codewords are more “pure,” as we have observed earlier

in the synthetic examples of Section IV-A, Figure 4. The

increased “purity” of info-loss codewords is also reflected in

Figure 10, which shows histograms of maximum posterior

probability values for the two codebooks (a similar plot was

used by Larlus and Jurie [21] to demonstrate the effectiveness

of their latent mixture vocabularies for object classification).

We can also observe the improved quality of the info-

loss codebook by examining the appearance of individual

codewords. For example, top “mountain” codewords for the k-

means codebook include some generic uniform patches, while

all the top info-loss codewords have diagonal edges that are

very characteristic of mountain slopes. Note, however, that

the discriminativeness of a given codeword depends primarily

not on its appearance, but on the shape of its Voronoi cell,

which is jointly determined by the positioning of multiple

codewords. Thus, for example, the top “bedroom” codeword

for both codebooks has a very similar appearance, but the

posterior probability of “bedroom” for the k-means codeword

is only 0.46, whereas for the info-loss codeword it is 0.70.

This said, there does exist a perceptual difference in the two

types of codebooks, and it is especially apparent for small

codebook sizes, as seen in Figure 11 for C = 32. The info-

loss codebook tends to contain more high-contrast patches

with salient edges or texture patterns. Intuitively, such patterns

are more informative about the image category than more

generic, low-contrast patches that make up the standard k-

means codebook.

V. BONUS APPLICATION: IMAGE SEGMENTATION

This section sketches an additional application of our ap-

proach to image segmentation. This application, which (at

least, on the surface) seems significantly different from patch-

based image classification, illustrates the potentially broad

applicability of the information loss minimization framework.

Moreover, it serves to point out interesting theoretical con-

nections between information loss minimization and recently

introduced objective functions for segmentation [15] that are

motivated by the minimum description length principle [34].

In the segmentation setting, the feature space X is the

space of two-dimensional coordinates of all the pixels in an

image, and the label space Y consists of discretized appearance

attributes such as intensity, color, or texture. The interpretation

of the objective function (13) for segmentation is as follows:

we seek a Voronoi partitioning of the image induced by a

set of two-dimensional centers M = {m1, . . . , mC}, such

that if mk is the center closest to some pixel X (i.e., X
falls into the kth Voronoi cell), then the local appearance

distribution PX in the neighborhood of X is predicted as

well as possible by the appearance “centroid” πk associated

with mk. Note that in image segmentation, there is no distinct

testing regime, i.e., no image pixels with unknown appearance

attributes. Instead, we are interested in compressing the known

attributes of all the image pixels using a much smaller set

of appearance centroids. Note that the Voronoi regions into

which our procedure partitions the image can be thought of

as superpixels [33], or coherent and relatively homogeneous

units of image description.

In our implementation, the appearance attribute or label Y
of each pixel X is its color or grayscale value discretized to

100 levels (for color images, minimum variance quantization

is used6, and for grayscale images, uniform quantization is

used). Next, we obtain the label distribution PX by taking a

histogram of the labels Y over the 3 × 3 pixel neighborhood

centered at X . The Voronoi centers are initialized on a regular

20×20 grid, resulting in a codebook of size C = 400, and the

optimization is run for 50 iterations (even though the objective

function continues to decrease slowly during further iterations,

this does not produce any significant perceptual improvement).

Figure 12 shows results of our segmentation algorithm

applied to six different images. Overall, the results are very

intuitive, with the centers arranging themselves to partition

each image into approximately uniform regions. There are

occasional artifacts, such as in the third image from the top,

where the cell boundaries do a poor job of following the

smooth curve of the top of the dog’s head. Such artifacts

are due to the optimization process getting trapped in local

minima, or to the difficulty of fitting curved image edges

with piecewise-linear segmentation boundaries. They can be

alleviated relatively easily through the use of an adaptive or

hierarchical framework, which would work by introducing

additional centers into regions where the value of the error

function is above an acceptable threshold. For the sake of

this paper, however, our results are not meant to compete

6In Matlab, this is accomplished by the command rgb2ind(I,N) where
I is the image and N is the number of color levels.
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Original image Segmentation Average info. loss Resampled image

Fig. 12. Segmentation results for six images. First column: original image. Second column: centers mk and the induced Voronoi partition after 50 iterations.
Third column: map of average information loss inside each cell (higher intensity corresponds to higher loss). Note that higher loss occurs in parts of the
image that are less homogeneous and have a higher level of detail. Fourth column: image created by sampling each pixel from the appearance distribution
πk of its Voronoi region.

with state-of-the-art segmentation algorithms, but to serve as a

proof of concept and another demonstration of our information

loss minimization framework in action.

In existing literature, KL-divergence has been used for

segmentation by Heiler and Schnörr [15], who have proposed

a variational framework to partition an image into two regions,

Ωin and Ωout, by a smooth curve C. Their objective function

is as follows:
∫

C

ds +

∫

Ωin

D(Px‖Pin)dx +

∫

Ωout

D(Px‖Pout)dx ,

where Pin and Pout are the prototype appearance distribu-

tions of Ωin and Ωout, respectively. Apart from the initial

term,
∫

C ds, which controls the complexity of the separating

boundary, note the similarity of this objective function to ours,

given by eq. (13). Heiler and Schnörr motivate their objective

function in terms of minimum description length [34], [12].

Namely, the quantity D(PX‖Pin/out) represents the excess

description length of encoding a pixel with true distribution

PX using a code that is optimal for the distribution Pin/out.

We develop this interpretation further in Appendix A, where

we show connections between information loss minimization

and lossless source coding. Apart from similarly motivated

objective functions, however, our approach is completely dif-

ferent from that of [15]: we solve for positions of multiple

image centers, not for a single smooth curve, and are thus not

limited to two regions (although a downside of our approach

is that we cannot obtain curved boundaries); we use gradient

descent instead of variational optimization; our appearance

attributes are discrete color histograms, instead of closed-form

parametric distributions of natural image statistics [16]. A final

crucial difference is that our objective function is not tailored
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exclusively to image segmentation, but is derived for the much

more general problem of supervised learning of quantizer

codebooks.

VI. DISCUSSION

This paper has considered the problem of quantizing contin-

uous feature spaces while preserving structure that is necessary

for predicting a given target attribute. The basic idea behind

our method is that the compressed representation of the data

should be a sufficient statistic for the attribute, i.e., it should

preserve all information about that attribute. By definition

of sufficient statistics, this means that the data X and the

attribute label Y should be conditionally independent given the

quantizer index K . Accordingly, encoding and classification in

our method follow the Markov chain X → K → Y , so that as-

signing a point to its nearest codevector in feature space imme-

diately leads to an estimate of its posterior class distribution. In

the realistic setting of non-ideal or lossy compression, we can

only obtain an approximate sufficient statistic, which leads to

an objective function based on information loss minimization

(this function also has an alternative motivation in terms

of lossless source coding, as explained in Appendix A). In

designing our method, we have drawn on techniques from the

fields of supervised quantizer design and information-theoretic

clustering. However, unlike existing quantizer design methods,

ours incorporates a generic information-theoretic criterion that

does not need to assume specific classification rules and/or

loss functions; and, unlike existing approaches to information-

theoretic clustering, ours takes advantage of spatial coherence

of vector space data and can be used to encode previously

unseen test data with unknown attribute labels.

Let us make a few additional observations about our

approach. The learning step (Section III-B) simultaneously

solves for codebooks in the feature space and in the sim-

plex of probability distributions. The feature space codebook

M = {m1, . . . , mC} can be thought of as a compressed

version of the training set that still provides approximately the

same performance in terms of nearest-neighbor classification.

In turn, the codebook Π = {π1, . . . , πC} can be thought of as

a piecewise-constant estimate of the posterior class distribution

as a function of X . Starting with some approximate “local”

estimates PXi
, which can even be point masses, we find a

constant estimate πk by averaging these local estimates over

a region of X carefully selected to minimize the loss of

information in going from PXi
to πk . The estimate πk can

be used directly for MAP classification as in Section IV-A, or

incorporated into a more complex statistical modeling frame-

work, as demonstrated in Section IV-B for bag-of-features

image classification and for image segmentation. Finally, note

that we can gain additional flexibility at the learning stage

by modifying the objective function to control the tradeoff

between the supervised criterion of information loss and the

unsupervised criterion of squared Euclidean distortion (Section

III-C).

We close by outlining some directions for future work.

First of all, constraining the encoder to a nearest-neighbor

one is overly restrictive in some situations: the resulting

partition cells are convex polytopes, even though cells with

curved boundaries may perform better. Therefore, it would

be of interest to relax the nearest-neighbor constraint and

allow more general encoders. For instance, one could use

Gauss Mixture Vector Quantization (GMVQ) [1] to model

the distribution of the features as a Gauss mixture, thus

allowing for partition cells with quadratic boundaries. Going

beyond information loss minimization, our approach readily

extends to any Bregman divergence [6], [2], not just the

relative entropy. In fact, the Bregman centroid (5) is the

unique solution to an optimization problem of the type of (8)

with any other Bregman divergence [2]. For the application

of image segmentation, KL-divergence may not be the most

effective way to compare appearance attributes, and a different

divergence may be more suitable.

In the longer term, we are interested in considering a

wider class of problems of task-specific compression. In this

paper, we have only addressed the relatively simple scenario

where the compression is accomplished by nearest-neighbor

quantization and the target task is to predict a discrete label.

We can imagine more complex tasks, such as compressing

video streams for the purpose of sending them over a network

and performing stereo reconstruction on the other end. Clearly,

it is desirable to perform compression in a way that does not

destroy any relevant information for the reconstruction task —

otherwise, the compression artifacts may show up as spurious

structure in the 3D reconstruction. While this example is

obviously much more challenging than the basic setting of this

paper, the principle of information loss minimization should

be powerful and general enough to serve as a guide towards

effective solutions for these kinds of real-world problems.

APPENDIX A

LOSSLESS SOURCE CODING INTERPRETATION

If we formulate the problem of inferring the class label Y
from the observed feature X in the Bayesian decision-theoretic

framework [35], then the main object of interest is the posterior

distribution, i.e., the conditional distribution Px of Y given

X = x. Let us consider the problem of using the training

sequence {(Xi, Yi)}N
i=1 to learn the posterior distribution Px

for every x ∈ X .

This learning scheme would output a mapping π : X →
P(Y), such that for every x ∈ X , π = π(x) is an approxima-

tion to Px. The quality of this approximation can be judged in

terms of the relative entropy D(Px‖π). The goal is to choose

the mapping π to minimize the average
∫

X

D(Px‖π(x))dµ(x). (21)

The above quantity admits an information-theoretic interpreta-

tion in terms of lossless source coding [7] of the class labels.

Based on the standard correspondence between discrete

probability distributions and lossless codes [7], knowing Px is

equivalent to knowing the optimal lossless code for Y given

X = x. This code encodes each Y = y with a codeword

of length − log Px(y) and has average codeword length equal

to H(Px), the entropy of Px. Suppose we observe X = x
and are asked to supply a lossless code for Y . We do not
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know the true distribution Px, but rather approximate it by

π = π(x) and then encode Y with a lossless code optimized

for π. Given each y ∈ Y , this code produces a binary codeword

of the length − log π(y). The excess average codeword length

or redundancy of this code relative to the optimal code for Px

is given by EPx
[− logπ(Y )] − H(Px) = D(Px‖π(x)), and

the expression in (21) is then equal to the average redundancy

with respect to X .

Suppose that, in choosing the map π, we are constrained

to having only C possible codes for Y associated with

a partition of the feature space into C cells R1, . . . ,RC

and the corresponding probability distributions {πk}C
k=1. In

this scenario, the optimal set of codes (or, equivalently,

the distributions πk) is the one with minimal average re-

dundancy
∑C

k=1

∫

Rk
D(Px‖πk)dµ(x). When we restrict the

quantizers to nearest-neighbor ones and when we do not

possess full knowledge of the distribution of (X, Y ), but

instead have access to a training sequence {(Xi, Yi)}N
i=1,

this problem reduces to minimizing the objective function

in (10). Finally, when the probabilities PXi
are estimated

by point masses δYi
, the objective function simplifies to

−∑C
k=1

∑

Xi∈Rk
log πk(Yi). This has the interpretation of

minimizing the sum of total description lengths of the labels

Yi corresponding to the Xi’s in each partition cell Rk.

APPENDIX B

A UNIFORM DEVIATION BOUND FOR EMPIRICAL

INFORMATION LOSS

In this appendix, we sketch the derivation of a uniform

bound on the absolute deviation of the empirical information

loss from the actual information loss over all choices of

Voronoi partitions of the feature space and the corresponding

codebooks of posteriors over class labels, for a fixed number

of codevectors. Let {(Xi, Yi)}N
i=1 be a training sequence of

independent samples from the joint distribution of X and Y .

For a fixed C, let M = {m1, . . . , mC} ⊂ X be a codebook

in the feature space, and let Π = {π1, . . . , πC} ⊂ Int(P(Y))
be a codebook in the probability simplex over the class label

space. Denote by Rk the Voronoi cell of mk and define

L(M, Π)
△

=

C
∑

k=1

∫

X

I{x∈Rk}D(Px‖πk)dµ(x), (22)

where I{·} is the indicator function, and

L̂(M, Π)
△

=
1

N

C
∑

k=1

N
∑

i=1

I{Xi∈Rk}D(P̂Xi
‖πk). (23)

Observe that (22) is precisely the information loss due to

the partitioning of the feature space X into Voronoi cells

R1, . . . ,RC and then assigning the posterior πk to all fea-

tures in Rk . Similarly, (23) is an empirical version of this

information loss. We assume that the estimator P̂x of Px is

such that, for any δ > 0, the probability

P (N, δ)
△

= Pr

(

sup
x∈X

∑

y∈Y

|Px(y) − P̂x(y)| > δ

)

→ 0 (24)

as N → ∞ (this assumption can be weakened, but the

resulting proof will be quite technical).

We now derive a uniform bound on the absolute deviation

between (22) and (23) over all choices of M and Π, provided

that the components of Π are not too close to the boundary of

the probability simplex over Y . Namely, given some θ > 0, let

us consider only those Π for which πk(y) ≥ θ for all 1 ≤ k ≤
C and all y ∈ Y . Let us define Uk(x)

△

= I{x∈Rk}D(Px‖πk)

and ∆k(x)
△

= D(Px‖πk) − D(P̂x‖πk). Then

sup
M,Π

∣

∣

∣
L(M, Π) − L̂(M, Π)

∣

∣

∣

= sup
M,Π

∣

∣

∣

∣

∣

C
∑

k=1

{

1

N

N
∑

i=1

E[Uk(Xi)] − I{Xi∈Rk}D(P̂Xi
‖πk)

}∣

∣

∣

∣

∣

≤ sup
M,Π

∣

∣

∣

∣

∣

C
∑

k=1

{

1

N

N
∑

i=1

E[Uk(Xi)] − Uk(Xi)

}∣

∣

∣

∣

∣

+ sup
M,Π

∣

∣

∣

∣

∣

C
∑

k=1

1

N

N
∑

i=1

I{Xi∈Rk}∆k(Xi)

∣

∣

∣

∣

∣

≤
√

2 log
1

θ

C
∑

k=1

√

√

√

√sup
M

∣

∣

∣

∣

∣

1

N

N
∑

i=1

I{Xi∈Rk} − µ(Rk)

∣

∣

∣

∣

∣

(25)

+

C
∑

k=1

sup
Π

∣

∣

∣

∣

∣

1

N

N
∑

i=1

∆k(Xi)

∣

∣

∣

∣

∣

, (26)

where we have used the Cauchy–Schwarz inequality to get

(25). Now fix some δ ∈ (0, 1/2). The supremum in (25) is

over the collection of all Voronoi cells in R
d induced by C

points. This collection is contained in the collection of all

sets in R
d that are bounded by at most C + 1 hyperplanes.

The shatter coefficient of the latter collection is bounded by
(

Ne
d+1

)(d+1)(C−1)

(see, e.g., Section 19.1 in [9]). Therefore,

using the Vapnik–Chervonenkis inequality [9, Theorem 12.5]

and the union bound, we have

Pr

(

sup
M

∣

∣

∣

∣

∣

1

N

N
∑

i=1

I{Xi∈Rk} − µ(Rk)

∣

∣

∣

∣

∣

≤ δ2

2
, ∀k

)

≥ 1 − 8C

(

Ne

d + 1

)(d+1)(C−1)

e−Nδ4/128. (27)

Turning to (26), we first write for a fixed k
∣

∣

∣

∣

∣

1

N

N
∑

i=1

∆k(Xi)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

N

N
∑

i=1

[

H(P̂Xi
) − H(PXi

)
]

∣

∣

∣

∣

∣

+ log(1/θ)
1

N

N
∑

i=1

∑

y∈Y

|PXi
(y) − P̂Xi

(y)|,

where H(·) denotes the Shannon entropy [7]. Because δ <
1/2, we can show that, on the event that

1

N

N
∑

i=1

∑

y∈Y

|PXi
(y) − P̂Xi

(y)| ≤ δ (28)

we will have

1

N

∣

∣

∣

∣

∣

N
∑

i=1

[

H(PXi
) − H(P̂Xi

)
]

∣

∣

∣

∣

∣

≤ −δ log(δ/|Y|)
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(see, e.g., [7, Theorem 17.3.2]). Hence, provided (28) holds,

C
∑

k=1

sup
Π

∣

∣

∣

∣

∣

1

N

N
∑

i=1

∆k(Xi)

∣

∣

∣

∣

∣

≤ −Cδ log(θδ/|Y|).

From (24) it follows that (28) will happen with probability at

least 1 − P (N, δ), which, along with (27), implies that, for

any δ ∈ (0, 1/2),

sup
M,Π

|L(M, Π) − L̂(M, Π)| ≤ −Cδ log(θ2δ/|Y|) (29)

with probability at least 1 − 8C[Ne/(d +
1)](d+1)(C−1)e−Nδ4/128 − P (N, δ). In particular, (29)

implies that if (M∗, Π∗) minimizes L̂(M, Π), then
∣

∣L(M∗, Π∗) − inf
M,Π

L(M, Π)
∣

∣ ≤ −2Cδ log(θ2δ/|Y|).

In other words, the pair (M∗, Π∗) that minimizes empirical

information loss performs close to the actual optimum with

high probability. Note that the right-hand side of (29) tends to

zero as δ → 0, but increases with C. This is to be expected

because increasing C will result in smaller information loss

(i.e., smaller bias), but this will be accompanied by an in-

crease in the difference between the true and the empirical

information loss (i.e., larger variance). By properly choosing

C as a function of the sample size N to control the bias-

variance trade-off, it will be possible to use the quantized

representation of the features to learn a consistent classifier,

where consistency is understood in the sense of asymptotically

approaching the Bayes rate inf Ŷ Pr[Ŷ (X) 6= Y ].
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