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Statistica Sinica

Supervised learning via the “hubNet” procedure

Leying Guan1, Zhou Fan1, Robert Tibshirani1,2

Departments of Statistics1 and Biomedical Data Sciences2, Stanford University

Abstract: We propose a new method for supervised learning. The hubNet proce-

dure fits a hub-based graphical model to the predictors, to estimate the amount

of “connection” that each predictor has with other predictors. This yields a set

of predictor weights that are then used in a regularized regression such as the

lasso or elastic net. The resulting procedure is easy to implement, can often yield

higher or competitive prediction accuracy with fewer features than the lasso, and

can give insight into the underlying structure of the predictors.

HubNet can be generalized seamlessly to supervised problems such as regu-

larized logistic regression (and other GLMs), Cox’s proportional hazards model,

and nonlinear procedures such as random forests and boosting. We prove re-

covery results under a specialized model and illustrate the method on real and

simulated data.

HubNet; Adaptive Lasso; Graphical Model; Unsupervised Weights

1. Introduction

We consider the usual linear regression model: given n realizations of

p predictors X = {xij} for i = 1, 2, . . . , n and j = 1, 2, . . . , p, the response
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Y = (y1, . . . , yn) is modeled as

yi = β0 +
∑

j

xijβj + ǫi (1.1)

with ǫ ∼ (0, σ2). The ordinary least squares (OLS) estimates of βj are

obtained by minimizing the residual sum of squares. There has been much

work on regularized estimators that offer an advantage over the OLS es-

timates, both in terms of accuracy of prediction on future data and in-

terpretation of the fitted model. One major focus has been on the lasso

(Tibshirani, 1996), which minimizes

J(β0, β) =
1

2
‖Y − β0 −Xβ‖22 + λ‖β‖1 (1.2)

where β = (β1, . . . , βp), and the tuning parameter λ ≥ 0 controls the spar-

sity of the final model. This parameter is often selected by cross-validation.

The objective function J(β0, β) is convex, which means that the solutions

can be found efficiently even for very large n and p, in contrast to combi-

natorial methods like best subset selection. A body of mathematical work

shows that under certain conditions, the lasso often will provide good re-

covery of the underlying true model and will produce predictions that are

mean-square consistent (Knight and Fu, 2000; Meinshausen and Bühlmann,

2006; Zhao and Yu, 2006; Bunea et al., 2007; Zhang and Huang, 2008; Mein-

shausen and Yu, 2009; Bickel et al., 2009; Wainwright, 2009). The elastic

2

Statistica Sinica: Newly accepted Paper 

(accepted version subject to English editing)



net of Zou and Hastie (2005) generalizes the lasso by adding an ℓ2 penalty,

1

2
‖Y − β0 −Xβ‖22 + λ(α‖β‖1 + (1− α)‖β‖22), (1.3)

where α ∈ [0, 1] is a second tuning parameter. This approach sometimes

yields lower prediction error than the lasso, especially in settings with highly

correlated predictors.

Zou (2006) introduced the adaptive lasso, which minimizes

1

2
‖Y − β0 −Xβ‖22 + λ

∑

j

wj|βj| (1.4)

for feature weights wj. The feature weights can be chosen in various ways:

For example, when n > p, we can first compute the OLS estimates β̂j

and then set wj = 1/|β̂j|. For p > n, we can set wj by first computing

univariate regression coefficients (Huang et al., 2008). Other similar “two-

step” procedures include variants of the non-negative garrote (Breiman,

1995; Yuan and Lin, 2007) and the adaptive elastic net (Zou and Zhang,

2009). One less-than-ideal property of these methods of feature weighting

is that there is to no underlying generative model leading to the weights.

Perhaps as a result, it is difficult to simulate datasets that show substantial

gains relative to the usual lasso.

In this paper, we provide a new perspective by choosing weights in the

adaptive lasso in an unsupervised manner. All of the above two-step proce-

3

Statistica Sinica: Newly accepted Paper 

(accepted version subject to English editing)



dures select weights by computing an initial estimate β̂ using the response

Y . We instead propose to use the partial correlations of the features in X

to select good weights.

Our proposal is based on an underlying conceptual model in which there

is a core subset S of “hub” features that explains both the other features

and Y . For example, each member of S might be the RNA or protein

expression of a “driver” gene in a pathway which simultaneously influences

other gene expressions and the phenotype under study. Our method, called

hubNet, fits an (unsupervised) graphical model to the features in a way

that tries to discover these “hubs”. These features are then given higher

weight in the adaptive lasso. The hubNet procedure can sometimes yield

lower prediction error and better support recovery than the lasso, and the

discovered hubs can provide insight on the underlying structure of the data.

The idea of first identifying structure in X before performing regression

is similar to principal components regression (PCR), and the hub features

identified by hubNet may be thought of as analogous to the principal di-

rections in PCR. An important difference is that hubNet assigns weights to

the original features, rather than combining them into new principal direc-

tions. This preserves the interpretability of the features, and also allows the

method to be more robust to the possibility that some of the structure in

4
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1.1 Illustrative example: Olive oil data

X may be unrelated to Y . Furthermore, performing PCR may be problem-

atic if p is large, unless sparsity assumptions are imposed on the principal

component loadings using sparse PCA methods (e.g., Zou et al. (2006);

d’Aspremont et al. (2007)). Sparse PCA assumes a sparse covariance ma-

trix for the p features, whereas our model assumes row-wise sparsity for the

inverse covariance. The latter may be more suitable for certain applications.

This paper is organized as follows. In Section 2, we introduce our un-

derlying model and the hubNet procedure. Section 3 examines applications

to real datasets. Some theoretical results on the recovery of the underlying

model are given in Section 4, while further topics, such as extensions to

random forests, are discussed in Section 5.

1.1. Illustrative example: Olive oil data

The data for this example, from Forina et al. (1983), consists of mea-

surements of 8 fatty acid concentrations for 572 olive oils, with each olive

oil classified into one of two geographic regions. The goal is to determine

the geographic region based on these 8 predictors. We randomly divided

the data into training and test sets of equal size. Results from hubNet and

lasso-regularized logistic regression are given in Figure 1. HubNet yields a

more parsimonious model than the lasso, with perhaps lower error. More

details are given in the caption. (Extension of hubNet to logistic regression

5

Statistica Sinica: Newly accepted Paper 

(accepted version subject to English editing)



is straightforward and discussed in Section 2.3.)
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Figure 1: Results from hubNet and lasso-regularized logistic regression. HubNet

focuses on just two predictors—2 and 4, which have apparent connections to the

other six. In the process, it yields a more parsimonious model than the lasso,

with perhaps a lower CV and test error.

2. The hubNet procedure

Let Y = (y1, . . . , yn) and let X = {xij} be the n× p matrix of features.

Define the core set S to be a subset of {1, 2, . . . p}, with corresponding
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feature matrix XS. Our proposal is based on the following model:

Y = β0 +XSβ + ǫ (2.5)

Xj = XSΓj + ǫj, j /∈ S (2.6)

where each Γj is an s× 1 coefficient vector. This model postulates that the

outcome Y is a function of an (unknown) core set of predictors S, and that

the predictors not in S are also a function of this same core set.

If this model holds, even approximately, then we can examine the par-

tial correlations among the features to determine the features more likely

to belong to this core set S, and hence do a better job of predicting Y .

Following this logic, our proposal for estimating β in (2.5) consists of three

steps:

The hubNet procedure

1. Fit a model of the form X ≈ XB with Bii = 0 using the “edge-out”

procedure detailed in Section 2.1 below. Note that Γj in the generating

model (2.6) correspond to coefficients of B in rows S and columns SC .

2. Let sj = ‖B̂j,.‖2 (j = 1, . . . , p) and construct feature weights wj = 1/sj .

3. Fit the adaptive lasso using feature weights wj (e.g., using wj as “penalty

factors” in the glmnet R package.) [If sj = 0, then wj = ∞ and Xj is not

used.]
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The hubNet procedure has a number of attractive features:

(a) The construction of weights is completely unsupervised, separating it from

the fitting of the response model in step 3. Thus for example, cross-validation can

be applied in step 3, and we can use cross-validation to choose between hubNet

and lasso for a given problem. In addition, tools for post-selection inference for

the lasso can be directly applied.

(b) The supervised fitting in step 3 is simply a lasso (or elastic net) with feature

weights, and hence fast off-the-shelf solvers can be used.

(c) Examination of the estimated hub structure for the chosen predictors can

shed light on the structure of the final model.

(d) The procedure can be directly applied to generalized regression settings,

such as generalized linear models and the proportional hazards model for survival

data, using an appropriate method in step 3.

The challenging task of the hubNet procedure is to perform step 1 in a way

that identifies the hub features. Applying the graphical lasso for this step, or

performing an individual lasso regression to predict each feature using the others,

can produce a sparse estimate ofB corresponding to an edge-sparse feature graph.

However, we would like a procedure that further encourages the appearance of

hub nodes, i.e., features having many non-zero partial correlations with other

features. These hub nodes then represent our estimate of the core set S. Tan et al.
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2.1 The edge-out procedure

(2014) propose a method called hglasso for learning graphical models with hubs.

Their procedure uses an ADMM algorithm having computational complexity

O(p3) per iteration, which is too slow for problems with p = 1000 or greater. We

instead use a generalization of the (unpublished) “edge-out” method of Friedman

et al. (2010), which has complexity O(min(np2, sp2)) per iteration. Simulations

comparing this edge-out method, hglasso, and individual lasso regressions for

estimating B are given in the supplementary material.

2.1. The edge-out procedure

To estimate B in step 1 of the hubNet procedure, we use the edge-out esti-

mator

B̂eo = argmin
B∈Rp×p:Bii=0 ∀i

1

2
‖X−XB‖2F + θ

p
∑

i=1

(

γ‖Bi,.||1 + (1− γ)
√

p− 1‖Bi,.‖2
)

.(2.7)

Here, θ, γ > 0 are tuning parameters, ‖ ·‖F denotes the Frobenius norm, and Bi,.

denotes the ith row of B.

By constraining the diagonal entries of B to 0, the edge-out estimator si-

multaneously regresses each feature onto the remaining features of X. These

regressions are coupled by the ℓ2 penalties ‖Bi,·‖2, which are group-lasso penal-

ties that encourage zeroing-out of entire rows of B. It is this coupling that leads

to the appearance of hub nodes in the resulting estimate. The additional ℓ1

penalties ‖Bi,·‖1 encourage additional sparsity in the non-zero rows of B; we

include this primarily for purposes of interpretability, to identify which features

9
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2.2 Choosing tuning parameters for edge-out

are influenced by the hubs. (The original hubNet proposal of Friedman et al.

(2010) used only the ℓ2 penalty, i.e., γ = 0.)

The estimate B̂eo is not symmetric. We expect the “hub” features in the

core set S to correspond to the rows of B having many non-zero entries, and

hence the row sums should give higher weight to these features. Our procedure

for minimizing this objective is outlined in the supplementary material.

2.2. Choosing tuning parameters for edge-out

We have two proposals for setting the tuning parameter θ in the edge-out

method. The first is K-fold cross-validation, applied to the objective function

1
2
||X−XB||2F . The second uses a form of generalized cross validation

GCV(X̂) =
||X− X̂||22
np− df(X̂)

.

If there is only an ℓ1 penalty, we use for df(X̂) the number of non-zero entries

|B̂|0. If there is also an ℓ2 penalty, we propose the following adjustment based

on our updating formula:

df(X̂) =

p
∑

i=1

‖B̂i,.||2
‖B̂i,.‖2 + θ(1− γ)

√
p− 1

‖B̂i,.‖0.

Note that this is not an exact formula for degrees of freedom, but rather a rough

estimate.
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2.3 Extension to generalized regression models

2.3. Extension to generalized regression models

The hubNet procedure can be extended in a straightforward manner to the

class of generalized linear models and other settings such as Cox’s proportional

hazards model. If the outcome Y depends on a parameter vector η, we assume

that a core set of predictors S determines both η and the other predictors:

η = β0 +XSβ

Xj = XSΓj + ǫj , j /∈ S (2.8)

As in the linear case, we fit a model X = XB using the edge-out procedure,

and use the absolute row sums of B̂ as predictor weights in an ℓ1-regularized

(generalized) regression of Y on X.

For logistic regression, an alternative strategy would assume that a model of

the form Xj = XSΓ
k
j + ǫkj for j /∈ S holds within each class k = 1, 2. We may

then estimate a hub model from the pooled within class covariance matrix of X,

and use the absolute row sums as predictor weights.

2.4. Simulated data example.

Figure 2 shows hubNet applied to a simulated data example. Here n =

60, p = 40, and the first 3 predictors are the core set, explaining both Y and

predictors 4 through 12. The estimated coefficients and various error rates of

hubNet over 20 realizations are shown, in comparison to the elastic net, adaptive

lasso, and lasso. We see that hubNet does a much better job at recovering the
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true coefficients, which in turn leads to substantially lower prediction error. In

Figure 3 we have generated data from an adversarial setting where the first 3

predictors are hub predictors, but the signal is a function of predictors 4 to 6.

As expected, the hubNet procedure does poorly; however, its CV error is also

high, so this poor behavior would be detectable in practice. Detailed comparisons

between hubNet and other methods are given in the supplementary material – we

found that hubNet produces better results not only when the generative model

is true but also in several other settings with correlated predictors.

3. Application to real datasets

We compare hubNet with the lasso, elastic net, and/or principal components

regression (PCR) on several real datasets. We tested ordinary PCR as well as

sparse PCR using 10, 50, and 100 non-zero loadings. Results are shown for 100

non-zero loadings, corresponding to the lowest obtained test errors with cross-

validated tuning parameter λ. Results for the other settings of PCR are reported

in the supplementary materials.

Lipidomic breast cancer data: This data, from the lab of RT’s collaborator

Livia Schiavinato Eberlin at UT Austin, consists of 806 features measured on

15,359 pixels in tissue images from 24 breast cancer patients. The pixels are

divided into two classes, normal and cancer, and we fit a regularized logistic re-

gression model using each procedure. Cross-validation classification errors are
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Figure 2: Estimates from 20 simulations from a favorable underlying hub model;

n = 60, p = 40, and the first 3 predictors are hub predictors that contain the

signal and also influence predictors 4 through 12. The top left panel shows the

fraction of simulations for which the estimated coefficient was non-zero. The

top right panel displays the mean-squared test error with the tuning parameter

chosen by cross-validation for each method. The bottom left panel shows the

minimum CV error for each realization: note that the adaptive lasso CV error

is not a valid estimate of error since the weights are estimated in a supervised

manner. The bottom right panel shows the number of false positive predictors, in

the smallest model where in the procedure has “screened”, i.e. contains all of the

true predictors.
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Figure 3: Estimates from 20 simulations from an adverserial underlying hub

model; n = 60, p = 40, first 3 predictors are hub predictors, but the signal is a

function of predictors 4 to 6. See previous figure caption for details of panels.

shown in Figure 4 as λ varies. Table 1 reports results for λ selected using 5-fold

cross-validation.

B cell lymphoma gene expression data: This data from Rosenwald et al.

(2002) consists of survival times (observed or right-censored) and 7399 gene ex-

pression features for 240 patients with diffuse large B-cell lymphoma (DLBCL).

We divided the data with survival time Y > 0 into 156 training and 79 test

samples, and trained a regularized proportional hazards model using each proce-

dure. The p-value of the log-likelihood ratio (LR) statistic of this trained model

evaluated on the test set is shown in the left subplot of Figure 5 as λ varies.

Table 1 reports results for λ selected using 20-fold cross-validation.
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Figure 4: Cross-validation classification error rates for breast cancer data. (The

error bar represents one standard deviation of cross-validation error.)
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Figure 5: Results for B-cell lymphoma (left) and kidney cancer (right): p-values

of LR statistics

Kidney cancer gene expression data: This data from Zhao et al. (2005) con-

sists of survival times and 14,814 gene expression features for 177 patients with

conventional renal cell carcinoma. We divided the data into 88 training samples

and 89 test samples and trained a regularized proportional hazards model using

each procedure. For computational reasons, hubNet was fit using the 7999 fea-

tures with largest absolute row sum in the pairwise correlation matrix; lasso and

elastic net were fit using all features. Test set LR p-values are shown in the right

subplot of Figure 5 as λ varies, and Table 1 reports results for λ selected using

8-fold cross validation.
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Table 1: Comparisons among lasso, elasticNet and hubNet on three real data

sets.

cvm(se) Num. features test error common features (lasso)

Breast Cancer Data lasso 5.15%(3.86%) 46 – –

p = 806 elasticNet 5.85%(3.97%) 303 – 46

ntrain = 15359 hubNet 3.52%(2.92%) 92 – 26

cvm(se) Num. features test p-value common features (lasso)

Kidney Cancer Data lasso 9.90(0.59) 20 0.29 –

p = 14814 elasticNet 9.92(0.56) 24 0.11 4

ntrain = 88, ntest = 89 hubNet 9.98(0.40) 1 0.008 0

SPCR(100 non-zeros) 10.0(0.40) 1 0.137 –

cvm(se) Num. features test p-value common features (lasso)

DLBCL-patient Data lasso 10.9(0.39) 29 0.076 –

p = 7399 elasticNet 10.9(0.39) 37 0.052 28

ntrain = 156, ntest = 79 hubNet 10.9(0.36) 21 0.020 1

SPCR(100 non-zeros) 11.07(0.26) 1 0.473 –

Table 1 summarizes the cross-validation errors, test errors, number of se-

lected features, and number of such features in common with those selected by

lasso.

4. Theory

In this section we study the recovery of the core set S assuming that our

generating model (2.5, 2.6) holds. We first establish conditions under which the

unsupervised edge-out procedure alone can recover S, and then discuss recovery

of S by the second adaptive lasso step even if the edge-out procedure does not

yield perfect recovery.

We assume the asymptotic regime n, p → ∞ where s ≪ min(n, p), as well
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4.1 Recovery of the core set using the edge-out procedure

as a fully random design where the rows of X are independent and distributed

as N(0,Σ), normalized so that Σjj = 1 for all j = 1, . . . , p. Without loss

of generality, we suppose S contains the first s predictors. By (2.6), if X :=

(XS , XSC ) ∼ N(0,Σ), then

XS ∼ N(0,ΣSS),

Xj |XS
ind∼ N(XT

S Γj , σ
2
j ), j ∈ SC (4.9)

where σ2
j = Var(ǫj) ∈ (0, 1). Specifically, Γ := (Γs+1, . . . ,Γp) is given by

Σ−1
SSΣSSC . We assume that this model holds in all of the results that follow.

4.1. Recovery of the core set using the edge-out procedure

We analyze recovery of S by the edge-out procedure applied with only the

group-lasso penalty term in (2.7), corresponding to the setting γ = 0. For any

matrix M, denote by Mi,. and M.,j the ith row and jth column of M. We use

the following operator norms which measure the maximum ℓ1 and ℓ2 norm of

any row of M:

‖M‖∞ := sup
‖x‖∞=1

‖Mx‖∞ = max
i

‖Mi,.‖1, ‖M‖∞,2 := sup
‖x‖2=1

‖Mx‖∞ = max
i

‖Mi,·‖2.

We define also the usual spectral norm, given by the largest singular value of

M : ‖M‖2 := sup‖x‖2=1 ‖Mx‖2 = σmax(M).

We show that in the asymptotic regime n, p → ∞, the edge-out procedure

can recover the true core set S for a suitable choice of the tuning parameter θ

when the following conditions hold:
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4.1 Recovery of the core set using the edge-out procedure

Assumption 4.1. Let λmin(ΣSS) be the smallest eigenvalue of ΣSS. For a fixed

constant Cmin > 0, we have λmin(ΣSS) ≥ Cmin.

Assumption 4.2. Define D := diag(1/‖Γs+1‖2, . . . , 1/‖Γp‖2). For a fixed con-

stant δ ∈ (0, 1], we have ‖ΓTDΓ‖∞,2 ≤ 1− δ.

Assumption 4.3. (Number of hub nodes). The size s of the core set satisfies

the constraint s ≪ min(
√
n, n/ log p).

Assumption 4.4. (Hub strength). The minimum hub strength Γmin = mini ‖Γi,.‖2

satisfies Γmin ≫ max(‖ΓT ‖∞, 1)‖Σ−1
SS‖∞max(1,

√

p/n,
√
p log p/n).

Under these assumptions, we can ensure perfect recovery of the core set S

by the edge-out method:

Theorem 4.5. Let B̂ := B̂eo be the edge-out estimate in (2.7) applied with γ = 0,

and denote Ŝ = {i : ‖B̂i,.‖2 > 0}. Suppose Assumptions 4.1, 4.2, 4.3, and 4.4

hold. Defining θn = θ
√
p− 1/n, if the tuning parameter θ is chosen so that

Γmin

max(‖ΓT ‖∞, 1)‖Σ−1
SS‖∞

≫ θn ≫ max

(

1,

√

p

n
,

√
p log p

n

)

, (4.10)

then P [Ŝ = S] → 1.

Assumption 4.1 ensures that the hub features are not too correlated. As-

sumptions 4.3 and 4.4 restrict the maximal size of the core set and minimal

“strength” of the hub features, as measured by the minimum ℓ2 row norm of Γ.
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4.1 Recovery of the core set using the edge-out procedure

Let us remark that our normalization implies an additional implicit constraint

on s, namely p ≥
∑

j∈SC Var(Xj) =
∑

j∈SC ΓT
j ΣSSΓj + σ2

j ≥ ‖Γ‖2FCmin ≥

sCminΓ
2
min, so by Assumption 4.4

s ≪ min(n, p, n2/ log p)

max(‖ΓT ‖∞, 1)2‖Σ−1
SS‖2∞

.

In the worst case, we have the upper bounds ‖Σ−1
SS‖∞ ≤ √

s‖Σ−1
SS‖2 ≤ √

s/Cmin

and ‖ΓT ‖∞ ≤ √
s‖ΓT ‖∞,2 ≤

√

s/Cmin, where the latter bound follows from our

normalization condition

‖ΓT ‖2∞,2Cmin ≤ max
j∈SC

ΓT
j ΣSSΓj ≤ Var(Xj) ≤ 1. (4.11)

Assuming log p ≪ √
n, recovery can occur in this worst case when s ≪ min(n1/3, p1/3).

In the best case where an “irrepresentable condition” ‖ΓT ‖∞ ≤ 1 holds (see be-

low) and ΣSS = Id, then we have max(‖ΓT ‖∞, 1)‖Σ−1
SS‖∞ = 1, and recovery can

occur for s ≪ min(
√
n, p).

Assumption 4.2 is analogous to but much weaker than the “irrepresentable

condition” of Zhao and Yu (2006) (see also Wainwright (2009)) that is required

for perfect support recovery by the standard lasso procedure. In our random

design setting, the irrepresentable condition corresponds to

‖ΓT ‖∞ ≤ 1− δ (4.12)

for some δ ∈ (0, 1]. When (4.12) holds, Assumption 4.2 is implied by ‖ΓTDΓ‖∞,2 ≤

‖ΓT ‖∞‖DΓ‖∞,2 = ‖ΓT ‖∞. The following example illustrates that Assumption
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4.2 Recovery of the core set using adaptive lasso

4.2 is weaker than (4.12):

Example 4.6. Suppose the entries of Γ are i.i.d. and equal to (1 − 2δ)/
√
s or

−(1−2δ)/
√
s each with probability 1/2. Then ‖ΓTDΓ‖∞,2 ≤ ‖ΓT ‖∞,2‖D‖2‖Γ‖2 =

√

s/(p− s)‖Γ‖2. If p → ∞ with s ≪ p, the maximal singular value of Γ satisfies,

for any fixed ε > 0 with probability approaching 1, ‖Γ‖2 ≤ (1+ε)
√
p ·(1−2δ)/

√
s.

(See e.g. Theorem 5.39 of Vershynin (2012).) Hence for large p, Γ satisfies As-

sumption 4.2 with high probability. However, ‖ΓT ‖∞ = (1− 2δ)
√
s ≫ 1.

This example shows that Assumption 4.2 can hold even in the worst-case

setting where ‖ΓT ‖∞ ≍ √
s, as long as the non-hub features are not influenced

by the hub features “in the same way”.

4.2. Recovery of the core set using adaptive lasso

We now consider the linear model (2.5) where ǫ = (ǫ1, . . . , ǫp) is independent

of X with ǫi
iid∼ N(0, σ2). We study recovery of S by the adaptive lasso step of the

hubNet procedure in two cases: (a) the edge-out estimate yields exact recovery

of S , and (b) it yields a superset of S.

Let w1, . . . , wp ∈ (0,∞] be any feature weights derived from X. (Setting

wi = ∞ corresponds to ‖(B̂eo)i,.‖2 = 0, i.e. a hard constraint that requires

βi = 0.) Define

ρ := wmax(S)/wmin(S
C), wmin(S

c) := min
i∈Sc

wi, wmax(S) := max
i∈S

wi,

with the convention ∞/∞ = ∞. We consider the following conditions as n, p →
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4.2 Recovery of the core set using adaptive lasso

∞:

Assumption 4.7. There exists η ∈ (0, 1] such that with probability approaching

1,

ρ

√

s

Cmin

(

1 +

√

12 log p

n

)

≤ 1− η.

Assumption 4.8. The minimum predictor strength βmin = mini∈S |β∗
i | satisfies

βmin ≫ σ

√

s log p

n

(

1 +
log p

n

)

.

Then, under our model (2.5) and (2.6), the following result holds for the

adaptive lasso:

Theorem 4.9. Let n, p → ∞ such that s ≪ n and Assumption 4.1 holds. Fur-

thermore, let w1, . . . , wp ∈ (0,∞] be weights (depending on X) such that As-

sumption 4.7 holds. Denote by β̂0, β̂ the estimator minimizing the adaptive lasso

objective (1.4), and let Ŝ = {i : β̂i 6= 0}.

(a) Denoting λn = λ/n, if the tuning parameter λ of the adaptive lasso is chosen

such that

λn ≫ 1

wmin(SC)
σ

√

log p

n

(

1 +
log p

n

)

with probability approaching 1, then P [Ŝ ⊆ S] → 1.

(b) If, in addition, Assumption 4.8 holds and λn ≪ βmin/(wmax(S)
√
s) with

probability approaching 1, then P (Ŝ = S) → 1.
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4.2 Recovery of the core set using adaptive lasso

This result holds for any procedure that selects w1, . . . , wp using X. Assump-

tion 4.8 is comparable to the beta-min condition in Theorem 3 of Wainwright

(2009) for the standard lasso procedure, if
√
s is replaced by ‖Σ−1/2

SS ‖2∞. In

the context of hubNet, Assumption 4.7 should be interpreted as a weakening of

the conditions required for selection consistency of S by the edge-out procedure

alone: If the edge-out procedure successfully recovers S, then wmin(S
c) = ∞ and

wmax(S) < ∞, so Assumption 4.7 holds. More generally, Assumption 4.7 holds

when there is a separation in size between the rows of B̂eo belonging to S and to

SC , even if the rows belonging to SC are not identically 0.

Proofs for Theorems 4.5 and 4.9 are given in the supplementary material.

The proof of Theorem 4.9 is a simple application of the Sign Recovery Lemma in

Zhou et al. (2009) for the adaptive lasso procedure. A more refined statement of

Theorem 4.9 in terms of the quantities ‖ΓT ‖∞ and ‖Σ−1
SS‖∞, similar to that of

Theorem 4.5, is possible, although we have stated the above version for simplicity

and interpretability.
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5. Further topics

5.1. Adaptive, non-linear models

We can extend our basic model (2.6) to allow the dependence of Y on the

core set of predictors to be of a more general form:

Y = f(XS) + ǫ (5.13)

Xj = XSΓj + ǫj , j /∈ S (5.14)

Here f(·) is a general, non-linear function. For this model, we can estimate hub

weights sj as before and then apply a more flexible prediction procedure such as

random forests or gradient boosting using the sj as feature weights. With random

forests, the candidate predictors for splitting are chosen at random. Hence it is

natural to implement feature weighting by using the weights to determine the

probabilities in this sampling. For example, the ranger package in R provides

this option.

We tried this idea in the example of Figure 2, with additional interactions

.5x1x2 and −2x2x3 added to the mean of Y , so that there were interactions for

the random forest to find. We used sampling probabilities proportional to s2j . In

Figure 6 we show the ratio of the mean squared error of the hubNet/RF over

that for the vanilla random forest, as the error standard deviation σ is varied.

We see that the hub weights can decrease the mean squared error by as much as

15%.
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5.2 Random forests: a drug discovery application
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Figure 6: MSE ratio of the hub-weighted random forest to the standard random

forest, for varying error standard deviation

5.2. Random forests: a drug discovery application

We consider classification data collected by the NCI, described in Feng et al.

(2003) and analyzed further in Chipman et al. (2010). It consists of p = 266

molecular characteristics of n = 29, 374 compounds, of which 542 were classified

as active (Y = 1). These predictors represent topological aspects of molecular

structure. We randomly created training and test sets of equal size, and for

computational reasons we downsampled the class 0 cases to a set of size 2000 out

of the 14,687 class 0s in the training set. We applied both random forests and

hubNet/RF, using the ranger package in R. The results in Figure 7 show that

the hubNet weighting can reduce the number of features by a factor of about 10

(down to 28) with barely any loss in accuracy, and these 28 features would not

be detectable from standard RF importance scores (right panel).
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6. Discussion

We have proposed a new procedure, hubNet, that is applicable to many

supervised learning problems. The procedure estimates “hub weights” from the

matrix of predictor values and then uses these weights in a supervised learning

method such as the lasso or random forest.
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Figure 7: Results for drug discovery dataset. Left panel show out-of-bag error

and test error for vanilla random forest (horizontal lines), and the same for

hubNet/RF as a function of the number of features having non-zero hub weights

(by varying θ in the edge-out model). We see that the error increases very little,

even as the number of number of features is reduced to about one-tenth (28) of

the total number. These 28 features are indicated by the green lines in the right

panel, superimposed on the RF impurity importance scores for all features.

HubNet provides a way of utilizing structural information in the predictors,

and it can yield more accurate prediction and support recovery in certain situ-
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REFERENCES

ations known to be hard if we neglect such knowledge. Since the estimation of

weights is done in an unsupervised manner, both standard cross-validation and

recently developed post-selection inference tools can be applied in the weighted

fitting step. We observe in practice that this new procedure can sometimes yield

lower prediction error than the unweighted approach, or give similar prediction

error using fewer features. Moreover, the estimation of the hub structure can

also be useful for interpretation.

Further work is needed in making the edge-out algorithm for hub estimation

more efficient, so that it can be applied to very large datasets. An R language

for hubNet will soon be available on the public CRAN repository.

Supplementary Material. This material contains: (i) the optimization algo-

rithm for the edge-out model; (ii) proofs for Theorems 4.5 and 4.9; (iii) simula-

tion comparisons between hubNet and other methods; (iv) comparisons between

the edge-out model and hglasso.
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