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Supervised machine learning is the search for algorithms that reason from externally supplied instances 

to produce general hypotheses, which then make predictions about future instances. In other words, the 

goal of supervised learning is to build a concise model of the distribution of class labels in terms of 

predictor features. The resulting classifier is then used to assign class labels to the testing instances 

where the values of the predictor features are known, but the value of the class label is unknown. This 

paper describes various supervised machine learning classification techniques. Of course, a single 

article cannot be a complete review of all supervised machine learning classification algorithms (also 

known induction classification algorithms), yet we hope that the references cited will cover the major 

theoretical issues, guiding the researcher in interesting research directions and suggesting possible bias 

combinations that have yet to be explored. 

Povzetek: Podan je pregled metod strojnega učenja. 

1 Introduction 
There are several applications for Machine Learning 

(ML), the most significant of which is data mining. 

People are often prone to making mistakes during 

analyses or, possibly, when trying to establish 

relationships between multiple features. This makes it 

difficult for them to find solutions to certain problems. 

Machine learning can often be successfully applied to 

these problems, improving the efficiency of systems and 

the designs of machines. 

Every instance in any dataset used by machine learning 

algorithms is represented using the same set of features. 

The features may be continuous, categorical or binary. If 

instances are given with known labels (the corresponding 

correct outputs) then the learning is called supervised 

(see Table 1), in contrast to unsupervised learning, where 

instances are unlabeled. By applying these unsupervised 

(clustering) algorithms, researchers hope to discover 

unknown, but useful, classes of items (Jain et al., 1999). 

Another kind of machine learning is reinforcement 

learning (Barto & Sutton, 1997). The training 

information provided to the learning system by the 

environment (external trainer) is in the form of a scalar 

reinforcement signal that constitutes a measure of how 

well the system operates. The learner is not told which 

actions to take, but rather must discover which actions 

yield the best reward, by trying each action in turn. 

Numerous ML applications involve tasks that can be 

set up as supervised. In the present paper, we have 

concentrated on the techniques necessary to do this. In 

particular, this work is concerned with classification 

problems in which the output of instances admits only 

discrete, unordered values. 

 

 
Table 1. Instances with known labels (the corresponding 

correct outputs) 

 

We have limited our references to recent refereed 

journals, published books and conferences. In addition, 

we have added some references regarding the original 

work that started the particular line of research under 

discussion. A brief review of what ML includes can be 

found in (Dutton & Conroy, 1996). De Mantaras and 

Armengol (1998) also presented a historical survey of 

logic and instance based learning classifiers. The reader 

should be cautioned that a single article cannot be a 
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comprehensive review of all classification learning 

algorithms. Instead, our goal has been to provide a 

representative sample of existing lines of research in 

each learning technique. In each of our listed areas, there 

are many other papers that more comprehensively detail 

relevant work.  

Our next section covers wide-ranging issues of 

supervised machine learning such as data pre-processing 

and feature selection. Logical/Symbolic techniques are 

described in section 3, whereas perceptron-based 

techniques are analyzed in section 4. Statistical 

techniques for ML are covered in section 5. Section 6 

deals with instance based learners, while Section 7 deals 

with the newest supervised ML technique—Support 

Vector Machines (SVMs). In section 8, some general 

directions are given about classifier selection. Finally, the 

last section concludes this work. 

 

2 General issues of supervised 

learning algorithms 
Inductive machine learning is the process of learning 

a set of rules from instances (examples in a training set), 

or more generally speaking, creating a classifier that can 

be used to generalize from new instances. The process of 

applying supervised ML to a real-world problem is 

described in Figure 1. 

Problem

Data pre-processing

Definition of

training set

Algorithm

selection

Training

Evaluation

with test set

OK? Classifier
Yes

Identification

of required

data

Parameter tuning

No

 

Figure 1. The process of supervised ML 

 

The first step is collecting the dataset. If a requisite 

expert is available, then s/he could suggest which fields 

(attributes, features) are the most informative. If not, then 

the simplest method is that of “brute-force,” which 

means measuring everything available in the hope that 

the right (informative, relevant) features can be isolated. 

However, a dataset collected by the “brute-force” method 

is not directly suitable for induction. It contains in most 

cases noise and missing feature values, and therefore 

requires significant pre-processing (Zhang et al., 2002).  

The second step is the data preparation and data pre-

processiong. Depending on the circumstances, 

researchers have a number of methods to choose from to 

handle missing data (Batista & Monard, 2003). Hodge & 

Austin (2004) have recently introduced a survey of 

contemporary techniques for outlier (noise) detection. 

These researchers have identified the techniques’ 

advantages and disadvantages. Instance selection is not 

only used to handle noise but to cope with the 

infeasibility of learning from very large datasets. 

Instance selection in these datasets is an optimization 

problem that attempts to maintain the mining quality 

while minimizing the sample size (Liu and Motoda, 

2001). It reduces data and enables a data mining 

algorithm to function and work effectively with very 

large datasets. There is a variety of procedures for 

sampling instances from a large dataset (Reinartz, 2002).  

Feature subset selection is the process of identifying 

and removing as many irrelevant and redundant features 

as possible (Yu & Liu, 2004). This reduces the 

dimensionality of the data and enables data mining 

algorithms to operate faster and more effectively.  The 

fact that many features depend on one another often 

unduly influences the accuracy of supervised ML 

classification models. This problem can be addressed by 

constructing new features from the basic feature set 

(Markovitch & Rosenstein, 2002). This technique is 

called feature construction/transformation. These newly 

generated features may lead to the creation of more 

concise and accurate classifiers. In addition, the 

discovery of meaningful features contributes to better 

comprehensibility of the produced classifier, and a better 

understanding of the learned concept. 

2.1 Algorithm selection 

The choice of which specific learning algorithm we 

should use is a critical step. Once preliminary testing is 

judged to be satisfactory, the classifier (mapping from 

unlabeled instances to classes) is available for routine 

use. The classifier’s evaluation is most often based on 

prediction accuracy (the percentage of correct prediction 

divided by the total number of predictions). There are at 

least three techniques which are used to calculate a 

classifier’s accuracy. One technique is to split the 

training set by using two-thirds for training and the other 

third for estimating performance. In another technique, 

known as cross-validation, the training set is divided into 

mutually exclusive and equal-sized subsets and for each 

subset the classifier is trained on the union of all the 

other subsets. The average of the error rate of each subset 

is therefore an estimate of the error rate of the classifier. 

Leave-one-out validation is a special case of cross 

validation. All test subsets consist of a single instance. 

This type of validation is, of course, more expensive 

computationally, but useful when the most accurate 

estimate of a classifier’s error rate is required. 

If the error rate evaluation is unsatisfactory, we must 

return to a previous stage of the supervised ML process 

(as detailed in Figure 1). A variety of factors must be 

examined: perhaps relevant features for the problem are 
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not being used, a larger training set is needed, the 

dimensionality of the problem is too high, the selected 

algorithm is inappropriate or parameter tuning is needed. 

Another problem could be that the dataset is imbalanced 

(Japkowicz & Stephen, 2002). 

A common method for comparing supervised ML 

algorithms is to perform statistical comparisons of the 

accuracies of trained classifiers on specific datasets. If 

we have sufficient supply of data, we can sample a 

number of training sets of size N, run the two learning 

algorithms on each of them, and estimate the difference 

in accuracy for each pair of classifiers on a large test set. 

The average of these differences is an estimate of the 

expected difference in generalization error across all 

possible training sets of size N, and their variance is an 

estimate of the variance of the classifier in the total set. 

Our next step is to perform paired t-test to check the null 

hypothesis that the mean difference between the 

classifiers is zero. This test can produce two types of 

errors. Type I error is the probability that the test rejects 

the null hypothesis incorrectly (i.e. it finds a “significant” 

difference although there is none). Type II error is the 

probability that the null hypothesis is not rejected, when 

there actually is a difference. The test’s Type I error will 

be close to the chosen significance level. 

In practice, however, we often have only one dataset 

of size N and all estimates must be obtained from this 

sole dataset. Different training sets are obtained by sub-

sampling, and the instances not sampled for training are 

used for testing. Unfortunately this violates the 

independence assumption necessary for proper 

significance testing. The consequence of this is that Type 

I errors exceed the significance level. This is problematic 

because it is important for the researcher to be able to 

control Type I errors and know the probability of 

incorrectly rejecting the null hypothesis. Several heuristic 

versions of the t-test have been developed to alleviate 

this problem (Dietterich, 1998), (Nadeau and Bengio, 

2003). 

Ideally, we would like the test’s outcome to be 

independent of the particular partitioning resulting from 

the randomization process, because this would make it 

much easier to replicate experimental results published in 

the literature. However, in practice there is always 

certain sensitivity to the partitioning used. To measure 

replicability we need to repeat the same test several times 

on the same data with different random partitionings —

usually ten repetitions— and count how often the 

outcome is the same (Bouckaert, 2003). 

Supervised classification is one of the tasks most 

frequently carried out by so-called Intelligent Systems. 

Thus, a large number of techniques have been developed 

based on Artificial Intelligence (Logical/Symbolic 

techniques), Perceptron-based techniques and Statistics 

(Bayesian Networks, Instance-based techniques). In next 

sections, we will focus on the most important supervised 

machine learning techniques, starting with 

logical/symbolic algorithms. 

3 Logic based algorithms 
 

In this section we will concentrate on two groups of 

logical (symbolic) learning methods: decision trees and 

rule-based classifiers. 

3.1 Decision trees 

Murthy (1998) provided an overview of work in 

decision trees and a sample of their usefulness to 

newcomers as well as practitioners in the field of 

machine learning. Thus, in this work, apart from a brief 

description of decision trees, we will refer to some more 

recent works than those in Murthy’s article as well as 

few very important articles that were published earlier. 

Decision trees are trees that classify instances by sorting 

them based on feature values. Each node in a decision 

tree represents a feature in an instance to be classified, 

and each branch represents a value that the node can 

assume. Instances are classified starting at the root node 

and sorted based on their feature values. Figure 2 is an 

example of a decision tree for the training set of Table 2. 

 

at1

at2 No No

Yes at3 at4

No Yes No

a3

Yes

b3

a2 b2 c2

a4 b4

a1 b1 c1

 

Figure 2. A decision tree 

 

at1 at2 at3 at4 Class 

a1 a2 a3 a4 Yes 

a1 a2 a3 b4 Yes 

a1 b2 a3 a4 Yes 

a1 b2 b3 b4 No 

a1 c2 a3 a4 Yes 

a1 c2 a3 b4 No 

b1 b2 b3 b4 No 

c1 b2 b3 b4 No 

Table 2. Training Set 

 

Using the decision tree depicted in Figure 2 as an 

example, the instance 〈at1 = a1, at2 = b2, at3 = a3, at4 = 

b4〉 would sort to the nodes: at1, at2, and finally at3, 

which would classify the instance as being positive 
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(represented by the values “Yes”). The problem of 

constructing optimal binary decision trees is an NP-

complete problem and thus theoreticians have searched 

for efficient heuristics for constructing near-optimal 

decision trees. 

The feature that best divides the training data would 

be the root node of the tree. There are numerous methods 

for finding the feature that best divides the training data 

such as information gain (Hunt et al., 1966) and gini 

index (Breiman et al., 1984). While myopic measures 

estimate each attribute independently, ReliefF algorithm 

(Kononenko, 1994) estimates them in the context of 

other attributes. However, a majority of studies have 

concluded that there is no single best method (Murthy, 

1998). Comparison of individual methods may still be 

important when deciding which metric should be used in 

a particular dataset. The same procedure is then repeated 

on each partition of the divided data, creating sub-trees 

until the training data is divided into subsets of the same 

class.  

Figure 3 presents a general pseudo-code for building 

decision trees. 

 
Check for base cases 
 For each attribute a 

Find the feature that best 
divides the training data such 
as information gain from 
splitting on a 

Let a best be the attribute with the 
highest normalized information gain 

Create a decision node node that 
splits on a_best 

Recurse on the sub-lists obtained by 
splitting on a best and add those 
nodes as children of node 

Figure 3. Pseudo-code for building a decision tree  

A decision tree, or any learned hypothesis h, is said to 

overfit training data if another hypothesis h′ exists that 

has a larger error than h when tested on the training data, 

but a smaller error than h when tested on the entire 

dataset. There are two common approaches that decision 

tree induction algorithms can use to avoid overfitting 

training data: i) Stop the training algorithm before it 

reaches a point at which it perfectly fits the training data, 

ii) Prune the induced decision tree. If the two trees 

employ the same kind of tests and have the same 

prediction accuracy, the one with fewer leaves is usually 

preferred. Breslow & Aha (1997) survey methods of tree 

simplification to improve their comprehensibility.  

The most straightforward way of tackling overfitting 

is to pre-prune the decision tree by not allowing it to 

grow to its full size. Establishing a non-trivial 

termination criterion such as a threshold test for the 

feature quality metric can do that. Decision tree 

classifiers usually employ post-pruning techniques that 

evaluate the performance of decision trees, as they are 

pruned by using a validation set. Any node can be 

removed and assigned the most common class of the 

training instances that are sorted to it. A comparative 

study of well-known pruning methods is presented in 

(Elomaa, 1999). Elomaa (1999) concluded that there is 

no single best pruning method. More details, about not 

only postprocessing but also about preprocessing of 

decision tree algorithms can be fould in (Bruha, 2000). 

Even though the divide-and-conquer algorithm is 

quick, efficiency can become important in tasks with 

hundreds of thousands of instances. The most time-

consuming aspect is sorting the instances on a numeric 

feature to find the best threshold t. This can be expedited 

if possible thresholds for a numeric feature are 

determined just once, effectively converting the feature 

to discrete intervals, or if the threshold is determined 

from a subset of the instances. Elomaa & Rousu (1999) 

stated that the use of binary discretization with C4.5 

needs about the half training time of using C4.5 multi-

splitting. In addition, according to their experiments, 

multi-splitting of numerical features does not carry any 

advantage in prediction accuracy over binary splitting.  

Decision trees are usually univariate since they use 

splits based on a single feature at each internal node. 

Most decision tree algorithms cannot perform well with 

problems that require diagonal partitioning. The division 

of the instance space is orthogonal to the axis of one 

variable and parallel to all other axes. Therefore, the 

resulting regions after partitioning are all hyper-

rectangles. However, there are a few methods that 

construct multivariate trees. One example is Zheng’s 

(1998), who improved the classification accuracy of the 

decision trees by constructing new binary features with 

logical operators such as conjunction, negation, and 

disjunction. In addition, Zheng (2000) created at-least M-

of-N features. For a given instance, the value of an at-

least M-of-N representation is true if at least M of its 

conditions is true of the instance, otherwise it is false. 

Gama and Brazdil (1999) combined a decision tree with 

a linear discriminant for constructing multivariate 

decision trees. In this model, new features are computed 

as linear combinations of the previous ones. 

Decision trees can be significantly more complex 

representation for some concepts due to the replication 

problem. A solution is using an algorithm to implement 

complex features at nodes in order to avoid replication. 

Markovitch and Rosenstein (2002) presented the FICUS 

construction algorithm, which receives the standard input 

of supervised learning as well as a feature representation 

specification, and uses them to produce a set of generated 

features. While FICUS is similar in some aspects to other 

feature construction algorithms, its main strength is its 

generality and flexibility. FICUS was designed to 

perform feature generation given any feature 

representation specification complying with its general 

purpose grammar.   

The most well-know algorithm in the literature for 

building decision trees is the C4.5 (Quinlan, 1993). C4.5 

is an extension of Quinlan's earlier ID3 algorithm 

(Quinlan, 1979). One of the latest studies that compare 

decision trees and other learning algorithms has been 

done by (Tjen-Sien Lim et al. 2000). The study shows 

that C4.5 has a very good combination of error rate and 

speed. In 2001, Ruggieri presented an analytic evaluation 

of the runtime behavior of the C4.5 algorithm, which 

highlighted some efficiency improvements. Based on this 
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analytic evaluation, he implemented a more efficient 

version of the algorithm, called EC4.5. He argued that 

his implementation computed the same decision trees as 

C4.5 with a performance gain of up to five times. 

C4.5 assumes that the training data fits in memory, 

thus, Gehrke et al. (2000) proposed Rainforest, a 

framework for developing fast and scalable algorithms to 

construct decision trees that gracefully adapt to the 

amount of main memory available. It is clear that in most 

decision tree algorithms; a substantial effort is “wasted” 

in the building phase on growing portions of the tree that 

are subsequently pruned in the pruning phase. Rastogi & 

Shim (2000) proposed PUBLIC, an improved decision 

tree classifier that integrates the second “pruning” phase 

with the initial “building” phase. In PUBLIC, a node is 

not expanded during the building phase, if it is 

determined that the node will be pruned during the 

subsequent pruning phase.  

Olcay and Onur (2007) show how to parallelize C4.5 

algorithm in three ways: (i) feature based, (ii) node based 

(iii) data based manner. Baik and Bala (2004) presented 

preliminary work on an agent-based approach for the 

distributed learning of decision trees. 

To sum up, one of the most useful characteristics of 

decision trees is their comprehensibility. People can 

easily understand why a decision tree classifies an 

instance as belonging to a specific class. Since a decision 

tree constitutes a hierarchy of tests, an unknown feature 

value during classification is usually dealt with by 

passing the example down all branches of the node where 

the unknown feature value was detected, and each branch 

outputs a class distribution. The output is a combination 

of the different class distributions that sum to 1. The 

assumption made in the decision trees is that instances 

belonging to different classes have different values in at 

least one of their features. Decision trees tend to perform 

better when dealing with discrete/categorical features. 

3.2 Learning set of rules 

 

Decision trees can be translated into a set of rules by 

creating a separate rule for each path from the root to a 

leaf in the tree (Quinlan, 1993). However, rules can also 

be directly induced from training data using a variety of 

rule-based algorithms. Furnkranz (1999) provided an 

excellent overview of existing work in rule-based 

methods.  

Classification rules represent each class by 

disjunctive normal form (DNF). A k-DNF expression is 

of the form: (X1∧X2∧…∧Xn) ∨ (Xn+1∧Xn+2∧…X2n) ∨ …∨ 

(X(k-1)n+1∧X(k-1)n+2∧…∧Xkn), where k is the number of 

disjunctions, n is the number of conjunctions in each 

disjunction, and Xn is defined over the alphabet X1, X2,…, 

Xj ∪ ~X1, ~X2, …,~Xj. The goal is to construct the 

smallest rule-set that is consistent with the training data. 

A large number of learned rules is usually a sign that the 

learning algorithm is attempting to “remember” the 

training set, instead of discovering the assumptions that 

govern it. A separate-and-conquer algorithm (covering 

algorithms) search for a rule that explains a part of its 

training instances, separates these instances and 

recursively conquers the remaining instances by learning 

more rules, until no instances remain. In Figure 4, a 

general pseudo-code for rule learners is presented.  

The difference between heuristics for rule learning 

and heuristics for decision trees is that the latter evaluate 

the average quality of a number of disjointed sets (one 

for each value of the feature that is tested), while rule 

learners only evaluate the quality of the set of instances 

that is covered by the candidate rule. More advanced rule 

learners differ from this simple pseudo-code mostly by 

adding additional mechanisms to prevent over-fitting of 

the training data, for instance by stopping the 

specialization process with the use of a quality measure 

or by generalizing overly specialized rules in a separate 

pruning phase (Furnkranz, 1997). 

 
On presentation of training examples 

training examples: 
1. Initialise rule set to a default 

(usually empty, or a rule assigning all 
objects to the most common class). 

2. Initialise examples to either all 
available examples or all examples not 
correctly handled by rule set. 

3. Repeat  
(a) Find best, the best rule with 

respect to examples. 
(b) If such a rule can be found 

i. Add best to rule set. 
ii. Set examples to all 
examples    not handled 
correctly by rule set. 

until no rule best can be found 
(for instance, because no 
examples remain). 

Figure 4. Pseudocode for rule learners 

It is therefore important for a rule induction system 

to generate decision rules that have high predictability or 

reliability. These properties are commonly measured by a 

function called rule quality. A rule quality measure is 

needed in both the rule induction and classification 

processes such as J-measure (Smyth and Goodman, 

1990). In rule induction, a rule quality measure can be 

used as a criterion in the rule specification and/or 

generalization process. In classification, a rule quality 

value can be associated with each rule to resolve 

conflicts when multiple rules are satisfied by the example 

to be classified. An and Cercone (2000) surveyed a 

number of statistical and empirical rule quality measures. 

Furnkranz and Flach (2005) provided an analysis of the 

behavior of separate-and-conquer or covering rule 

learning algorithms by visualizing their evaluation 

metrics. When using unordered rule sets, conflicts can 

arise between the rules, i.e., two or more rules cover the 

same example but predict different classes. Lindgren 

(2004) has recently given a survey of methods used to 

solve this type of conflict. 

RIPPER is a well-known rule-based algorithm 

(Cohen, 1995). It forms rules through a process of 

repeated growing and pruning. During the growing phase 

the rules are made more restrictive in order to fit the 

training data as closely as possible. During the pruning 

phase, the rules are made less restrictive in order to avoid 
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overfitting, which can cause poor performance on unseen 

instances. RIPPER handles multiple classes by ordering 

them from least to most prevalent and then treating each 

in order as a distinct two-class problem. Other 

fundamental learning classifiers based on decision rules 

include the AQ family (Michalski and Chilausky, 1980) 

and CN2 (Clark and Niblett, 1989). Bonarini (2000) gave 

an overview of fuzzy rule-based classifiers. Fuzzy logic 

tries to improve classification and decision support 

systems by allowing the use of overlapping class 

definitions. 

Furnkranz (2001) investigated the use of round robin 

binarization (or pairwise classification) as a technique for 

handling multi-class problems with separate and conquer 

rule learning algorithms. The round robin binarization 

transforms a c-class problem into c(c-1)/2 two-class 

problems <i,j>, one for each set of classes {i,j}, i= 1 ... c-

1, j = i+1 ...c. The binary classifier for problem <i,j> is 

trained with examples of classes i and j, whereas 

examples of classes k ≠ i,j are ignored for this problem. 

A crucial point, of course, is determining how to decode 

the predictions of the pairwise classifiers for a final 

prediction. Furnkranz (2001) implemented a simple 

voting technique: when classifying a new example, each 

of the learned base classifiers determines to which of its 

two classes the example is more likely to belong to. The 

winner is assigned a point, and in the end, the algorithm 

predicts the class that has accumulated the most points. 

His experimental results show that, in comparison to 

conventional, ordered or unordered binarization, the 

round robin approach may yield significant gains in 

accuracy without risking a poor performance. 

There are numerous other rule-based learning 

algorithms. Furnkranz (1999) referred to most of them. 

The PART algorithm infers rules by repeatedly 

generating partial decision trees, thus combining the two 

major paradigms for rule generation − creating rules 

from decision trees and the separate-and-conquer rule-

learning technique. Once a partial tree has been build, a 

single rule is extracted from it and for this reason the 

PART algorithm avoids postprocessing (Frank and 

Witten, 1998). 

For the task of learning binary problems, rules are 

more comprehensible than decision trees because typical 

rule-based approaches learn a set of rules for only the 

positive class. On the other hand, if definitions for 

multiple classes are to be learned, the rule-based learner 

must be run separately for each class separately. For each 

individual class a separate rule set is obtained and these 

sets may be inconsistent (a particular instance might be 

assigned multiple classes) or incomplete (no class might 

be assigned to a particular instance). These problems can 

be solved with decision lists (the rules in a rule set are 

supposed to be ordered, a rule is only applicable when 

none of the preceding rules are applicable) but with the 

decision tree approach, they simply do not occur. 

Moreover, the divide and conquer approach (used by 

decision trees) is usually more efficient than the separate 

and conquer approach (used by rule-based algorithms). 

Separate-and-conquer algorithms look at one class at a 

time, and try to produce rules that uniquely identify the 

class. They do this independent of all the other classes in 

the training set. For this reason, for small datasets, it may 

be better to use a divide-and-conquer algorithm that 

considers the entire set at once. 

To sum up, the most useful characteristic of rule-

based classifiers is their comprehensibility. In addition, 

even though some rule-based classifiers can deal with 

numerical features, some experts propose these features 

should be discretized before induction, so as to reduce 

training time and increase classification accuracy (An 

and Cercone, 1999). Classification accuracy of rule 

learning algorithms can be improved by combining 

features (such as in decision trees) using the background 

knowledge of the user (Flach and Lavrac, 2000) or 

automatic feature construction algorithms (Markovitch 

and Rosenstein, 2002). 

4 Perceptron-based techniques 

Other well-known algorithms are based on the notion 

of perceptron (Rosenblatt, 1962). 

4.1 Single layered perceptrons 

A single layered perceptron can be briefly described 

as follows: 

If x1 through xn are input feature values and w1 

through wn are connection weights/prediction vector 

(typically real numbers in the interval [-1, 1]), then 

perceptron computes the sum of weighted inputs: 

i i

i

x w∑  and output goes through an adjustable threshold: 

if the sum is above threshold, output is 1; else it is 0. 

The most common way that the perceptron algorithm 

is used for learning from a batch of training instances is 

to run the algorithm repeatedly through the training set 

until it finds a prediction vector which is correct on all of 

the training set. This prediction rule is then used for 

predicting the labels on the test set. 

WINNOW (Littlestone & Warmuth, 1994) is based 

on the perceptron idea and updates its weights as follows. 

If prediction value y΄=0 and actual value y=1, then the 

weights are too low; so, for each feature such that xi=1, 

wi=wi·α, where α is a number greater than 1, called the 

promotion parameter. If prediction value y΄= 1 and 

actual value y=0, then the weights were too high; so, for 

each feature xi = 1, it decreases the corresponding weight 

by setting wi=wi·β, where 0<β<1, called the demotion 

parameter. Generally, WINNOW is an example of an 

exponential update algorithm. The weights of the 

relevant features grow exponentially but the weights of 

the irrelevant features shrink exponentially. For this 

reason, it was experimentally proved (Blum, 1997) that 

WINNOW can adapt rapidly to changes in the target 

function (concept drift). A target function (such as user 

preferences) is not static in time. In order to enable, for 

example, a decision tree algorithm to respond to changes, 

it is necessary to decide which old training instances 

could be deleted. A number of algorithms similar to 
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WINNOW have been developed, such as those by Auer 

& Warmuth (1998).  

Freund & Schapire (1999) created a newer 

algorithm, called voted-perceptron, which stores more 

information during training and then uses this elaborate 

information to generate better predictions about the test 

data. The information it maintains during training is the 

list of all prediction vectors that were generated after 

each and every mistake. For each such vector, it counts 

the number of iterations it “survives” until the next 

mistake is made; Freund & Schapire refer to this count as 

the “weight” of the prediction vector. To calculate a 

prediction the algorithm computes the binary prediction 

of each one of the prediction vectors and combines all 

these predictions by means of a weighted majority vote. 

The weights used are the survival times described above.  

To sum up, we have discussed perceptron-like linear 

algorithms with emphasis on their superior time 

complexity when dealing with irrelevant features. This 

can be a considerable advantage when there are many 

features, but only a few relevant ones. Generally, all 

perceptron-like linear algorithms are anytime online 

algorithms that can produce a useful answer regardless of 

how long they run (Kivinen, 2002). The longer they run, 

the better the result they produce. Finally, perceptron-like 

methods are binary, and therefore in the case of multi-

class problem one must reduce the problem to a set of 

multiple binary classification problems. 

4.2 Multilayered perceptrons  

Perceptrons can only classify linearly separable sets 

of instances. If a straight line or plane can be drawn to 

seperate the input instances into their correct categories, 

input instances are linearly separable and the perceptron 

will find the solution. If the instances are not linearly 

separable learning will never reach a point where all 

instances are classified properly. Multilayered 

Perceptrons (Artificial Neural Networks) have been 

created to try to solve this problem (Rumelhart et al., 

1986). Zhang (2000) provided an overview of existing 

work in Artificial Neural Networks (ANNs). Thus, in this 

study, apart from a brief description of the ANNs we will 

mainly refer to some more recent articles. A multi-layer 

neural network consists of large number of units 

(neurons) joined together in a pattern of connections 

(Figure 5). Units in a net are usually segregated into three 

classes: input units, which receive information to be 

processed; output units, where the results of the 

processing are found; and units in between known as 

hidden units. Feed-forward ANNs (Figure 5) allow 

signals to travel one way only, from input to output.  

Figure 5. Feed-forward ANN 

First, the network is trained on a set of paired data to 

determine input-output mapping. The weights of the 

connections between neurons are then fixed and the 

network is used to determine the classifications of a new 

set of data.   

During classification the signal at the input units 

propagates all the way through the net to determine the 

activation values at all the output units. Each input unit 

has an activation value that represents some feature 

external to the net. Then, every input unit sends its 

activation value to each of the hidden units to which it is 

connected. Each of these hidden units calculates its own 

activation value and this signal are then passed on to 

output units. The activation value for each receiving unit 

is calculated according to a simple activation function. 

The function sums together the contributions of all 

sending units, where the contribution of a unit is defined 

as the weight of the connection between the sending and 

receiving units multiplied by the sending unit's activation 

value. This sum is usually then further modified, for 

example, by adjusting the activation sum to a value 

between 0 and 1 and/or by setting the activation value to 

zero unless a threshold level for that sum is reached. 

Generally, properly determining the size of the 

hidden layer is a problem, because an underestimate of 

the number of neurons can lead to poor approximation 

and generalization capabilities, while excessive nodes 

can result in overfitting and eventually make the search 

for the global optimum more difficult. An excellent 

argument regarding this topic can be found in (Camargo 

& Yoneyama, 2001). Kon & Plaskota (2000) also studied 

the minimum amount of neurons and the number of 

instances necessary to program a given task into feed-

forward neural networks.  

ANN depends upon three fundamental aspects, input 

and activation functions of the unit, network architecture 

and the weight of each input connection. Given that the 

first two aspects are fixed, the behavior of the ANN is 

defined by the current values of the weights. The weights 

of the net to be trained are initially set to random values, 

and then instances of the training set are repeatedly 

exposed to the net. The values for the input of an 

instance are placed on the input units and the output of 

the net is compared with the desired output for this 

instance. Then, all the weights in the net are adjusted 

slightly in the direction that would bring the output 

values of the net closer to the values for the desired 

output. There are several algorithms with which a 

network can be trained (Neocleous & Schizas, 2002). 

However, the most well-known and widely used learning 

algorithm to estimate the values of the weights is the 

Back Propagation (BP) algorithm. Generally, BP 

algorithm includes the following six steps: 

1. Present a training sample to the neural network.  

2. Compare the network's output to the desired output 

from that sample. Calculate the error in each output 

neuron.  

3. For each neuron, calculate what the output should 

have been, and a scaling factor, how much lower or 

higher the output must be adjusted to match the 

desired output. This is the local error.  
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4. Adjust the weights of each neuron to lower the local 

error.  

5. Assign "blame" for the local error to neurons at the 

previous level, giving greater responsibility to 

neurons connected by stronger weights.  

6. Repeat the steps above on the neurons at the 

previous level, using each one's "blame" as its error. 

With more details, the general rule for updating 

weights is: ijji OW ηδ=∆  where: 

• η is a positive number (called learning rate), which 

determines the step size in the gradient descent 

search. A large value enables back propagation to 

move faster to the target weight configuration but it 

also increases the chance of its never reaching this 

target.  

• Oi is the output computed by neuron i  

• ))(1( jjjjj OTOO −−=δ  for the output neurons, 

where Tj the wanted output for the neuron j and 

• kj

k

kjjj WOO ∑−= δδ )1(  for the internal 

(hidden) neurons 

The back propagation algorithm will have to perform 

a number of weight modifications before it reaches a 

good weight configuration. For n training instances and 

W weights, each repetition/epoch in the learning process 

takes O(nW) time; but in the worst case, the number of 

epochs can be exponential to the number of inputs. For 

this reason, neural nets use a number of different 

stopping rules to control when training ends. The four 

most common stopping rules are: i) Stop after a specified 

number of epochs, ii) Stop when an error measure 

reaches a threshold, iii) Stop when the error measure has 

seen no improvement over a certain number of epochs, 

iv) Stop when the error measure on some of the data that 

has been sampled from the training data (hold-out set, 

validation set) is more than a certain amount than the 

error measure on the training set (overfitting). 

Feed-forward neural networks are usually trained by 

the original back propagation algorithm or by some 

variant. Their greatest problem is that they are too slow 

for most applications. One of the approaches to speed up 

the training rate is to estimate optimal initial weights 

(Yam & Chow, 2001). Another method for training 

multilayered feedforward ANNs is Weight-elimination 

algorithm that automatically derives the appropriate 

topology and therefore avoids also the problems with 

overfitting  (Weigend et al., 1991). Genetic algorithms 

have been used to train the weights of neural networks 

(Siddique and Tokhi, 2001) and to find the architecture 

of neural networks (Yen and Lu, 2000). There are also 

Bayesian methods in existence which attempt to train 

neural networks. Vivarelli & Williams (2001) compare 

two Bayesian methods for training neural networks. A 

number of other techniques have emerged recently which 

attempt to improve ANNs training algorithms by 

changing the architecture of the networks as training 

proceeds. These techniques include pruning useless 

nodes or weights (Castellano et al. 1997), and 

constructive algorithms, where extra nodes are added as 

required (Parekh et al. 2000).  

4.3 Radial Basis Function (RBF) networks 

ANN learning can be achieved, among others, 

through i) synaptic weight modification, ii) network 

structure modifications (creating or deleting neurons or 

synaptic connections), iii) use of suitable attractors or 

other suitable stable state points, iv) appropriate choice 

of activation functions. Since back-propagation training 

is a gradient descending process, it may get stuck in local 

minima in this weight-space. It is because of this 

possibility that neural network models are characterized 

by high variance and unsteadiness. 

Radial Basis Function (RBF) networks have been 

also widely applied in many science and engineering 

fields (Robert and Howlett, 2001). An RBF network is a 

three-layer feedback network, in which each hidden unit 

implements a radial activation function and each output 

unit implements a weighted sum of hidden units outputs. 

Its training procedure is usually divided into two stages. 

First, the centers and widths of the hidden layer are 

determined by clustering algorithms. Second, the weights 

connecting the hidden layer with the output layer are 

determined by Singular Value Decomposition (SVD) or 

Least Mean Squared (LMS) algorithms. The problem of 

selecting the appropriate number of basis functions 

remains a critical issue for RBF networks. The number of 

basis functions controls the complexity and the 

generalization ability of RBF networks. RBF networks 

with too few basis functions cannot fit the training data 

adequately due to limited flexibility. On the other hand, 

those with too many basis functions yield poor 

generalization abilities since they are too flexible and 

erroneously fit the noise in the training data.  

Even though multilayer neural networks and decision 

trees are two very different techniques for the purpose of 

classification, some researchers (Eklund & Hoang, 

2002), (Tjen-Sien Lim et al. 2000) have performed some 

empirical comparative studies. Some of the general 

conclusions drawn in that work are:  

i) neural networks are usually more able to easily 

provide incremental learning than decision trees 

(Saad, 1998), even though there are some 

algorithms for incremental learning of decision 

trees such as (Utgoff et al, 1997) and 

(McSherry, 1999). Incremental decision tree 

induction techniques result in frequent tree 

restructuring when the amount of training data 

is small, with the tree structure maturing as the 

data pool becomes larger.  

ii) training time for a neural network is usually 

much longer than training time for decision 

trees.  

iii) neural networks usually perform as well as 

decision trees, but seldom better. 

 

To sum up, ANNs have been applied to many real-

world problems but still, their most striking disadvantage 

is their lack of ability to reason about their output in a 
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way that can be effectively communicated. For this 

reason many researchers have tried to address the issue 

of improving the comprehensibility of neural networks, 

where the most attractive solution is to extract symbolic 

rules from trained neural networks. Setiono and Leow 

(2000) divided the activation values of relevant hidden 

units into two subintervals and then found the set of 

relevant connections of those relevant units to construct 

rules. More references can be found in (Zhou, 2004), an 

excellent survey. However, it is also worth mentioning 

that Roy (2000) identified the conflict between the idea 

of rule extraction and traditional connectionism. In detail, 

the idea of rule extraction from a neural network involves 

certain procedures, specifically the reading of parameters 

from a network, which is not allowed by the traditional 

connectionist framework that these neural networks are 

based on. 

5 Statistical learning algorithms 

Conversely to ANNs, statistical approaches are 

characterized by having an explicit underlying 

probability model, which provides a probability that an 

instance belongs in each class, rather than simply a 

classification. Linear discriminant analysis (LDA) and 

the related Fisher's linear discriminant are simple 

methods used in statistics and machine learning to find 

the linear combination of features which best separate 

two or more classes of object (Friedman, 1989). LDA 

works when the measurements made on each observation 

are continuous quantities. When dealing with categorical 

variables, the equivalent technique is Discriminant 

Correspondence Analysis (Mika et al., 1999).  

Maximum entropy is another general technique for 

estimating probability distributions from data. The over-

riding principle in maximum entropy is that when 

nothing is known, the distribution should be as uniform 

as possible, that is, have maximal entropy. Labeled 

training data is used to derive a set of constraints for the 

model that characterize the class-specific expectations for 

the distribution. Csiszar (1996) provides a good tutorial 

introduction to maximum entropy techniques. 

Bayesian networks are the most well known 

representative of statistical learning algorithms. A 

comprehensive book on Bayesian networks is Jensen’s 

(1996). Thus, in this study, apart from our brief 

description of Bayesian networks, we mainly refer to 

more recent works.  

5.1.1 Naive Bayes classifiers 

Naive Bayesian networks (NB) are very simple 

Bayesian networks which are composed of directed 

acyclic graphs with only one parent (representing the 

unobserved node) and several children (corresponding to 

observed nodes) with a strong assumption of 

independence among child nodes in the context of their 

parent (Good, 1950).Thus, the independence model 

(Naive Bayes) is based on estimating (Nilsson, 1965): 

R=
( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

|| |

| | |

r

r

P i P X iP i X P i P X i

P j X P j P X j P j P X j
= =

∏
∏

 

Comparing these two probabilities, the larger 

probability indicates that the class label value that is 

more likely to be the actual label (if R>1: predict i else 

predict j). Cestnik et al (1987) first used the Naive Bayes 

in ML community. Since the Bayes classification 

algorithm uses a product operation to compute the 

probabilities P(X, i), it is especially prone to being 

unduly impacted by probabilities of 0. This can be 

avoided by using Laplace estimator or m-esimate, by 

adding one to all numerators and adding the number of 

added ones to the denominator (Cestnik, 1990). 

The assumption of independence among child nodes 

is clearly almost always wrong and for this reason naive 

Bayes classifiers are usually less accurate that other more 

sophisticated learning algorithms (such ANNs). 

However, Domingos & Pazzani (1997) performed a 

large-scale comparison of the naive Bayes classifier with 

state-of-the-art algorithms for decision tree induction, 

instance-based learning, and rule induction on standard 

benchmark datasets, and found it to be sometimes 

superior to the other learning schemes, even on datasets 

with substantial feature dependencies.  

The basic independent Bayes model has been 

modified in various ways in attempts to improve its 

performance. Attempts to overcome the independence 

assumption are mainly based on adding extra edges to 

include some of the dependencies between the features, 

for example (Friedman et al. 1997). In this case, the 

network has the limitation that each feature can be 

related to only one other feature. Semi-naive Bayesian 

classifier is another important attempt to avoid the 

independence assumption. (Kononenko, 1991), in which 

attributes are partitioned into groups and it is assumed 

that xi is conditionally independent of xj if and only if 

they are in different groups. 

The major advantage of the naive Bayes classifier is 

its short computational time for training. In addition, 

since the model has the form of a product, it can be 

converted into a sum through the use of logarithms - with 

significant consequent computational advantages. If a 

feature is numerical, the usual procedure is to discretize 

it during data pre-processing (Yang & Webb, 2003), 

although a researcher can use the normal distribution to 

calculate probabilities (Bouckaert, 2004). 

5.2 Bayesian Networks 

A Bayesian Network (BN) is a graphical model for 

probability relationships among a set of variables 

(features) (see Figure 6). The Bayesian network structure 

S is a directed acyclic graph (DAG) and the nodes in S 

are in one-to-one correspondence with the features X. 

The arcs represent casual influences among the features 

while the lack of possible arcs in S encodes conditional 

independencies. Moreover, a feature (node) is 

conditionally independent from its non-descendants 

given its parents (X1 is conditionally independent from X2 
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given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of 

X1, X2, X3). 

 

Figure 6. The structure of a Bayes Network 

Typically, the task of learning a Bayesian network 

can be divided into two subtasks: initially, the learning of 

the DAG structure of the network, and then the 

determination of its parameters. Probabilistic parameters 

are encoded into a set of tables, one for each variable, in 

the form of local conditional distributions of a variable 

given its parents. Given the independences encoded into 

the network, the joint distribution can be reconstructed 

by simply multiplying these tables. Within the general 

framework of inducing Bayesian networks, there are two 

scenarios: known structure and unknown structure. 

In the first scenario, the structure of the network is 

given (e.g. by an expert) and assumed to be correct. Once 

the network structure is fixed, learning the parameters in 

the Conditional Probability Tables (CPT) is usually 

solved by estimating a locally exponential number of 

parameters from the data provided (Jensen, 1996). Each 

node in the network has an associated CPT that describes 

the conditional probability distribution of that node given 

the different values of its parents.  

In spite of the remarkable power of Bayesian 

Networks, they have an inherent limitation. This is the 

computational difficulty of exploring a previously 

unknown network. Given a problem described by n 

features, the number of possible structure hypotheses is 

more than exponential in n. If the structure is unknown, 

one approach is to introduce a scoring function (or a 

score) that evaluates the “fitness” of networks with 

respect to the training data, and then to search for the 

best network according to this score. Several researchers 

have shown experimentally that the selection of a single 

good hypothesis using greedy search often yields 

accurate predictions (Heckerman et al. 1999), 

(Chickering, 2002). In Figure 7 there is a pseudo-code 

for training BNs. 

Within the score & search paradigm, another 

approach uses local search methods in the space of 

directed acyclic graphs, where the usual choices for 

defining the elementary modifications (local changes) 

that can be applied are arc addition, arc deletion, and arc 

reversal. Acid and de Campos (2003) proposed a new 

local search method, restricted acyclic partially directed 

graphs, which uses a different search space and takes 

account of the concept of equivalence between network 

structures. In this way, the number of different 

configurations of the search space is reduced, thus 

improving efficiency. 

 

Initialize an empty Bayesian network 
G containing n nodes (i.e., a BN with n 
nodes but no edges) 
1. Evaluate the score of G: Score(G) 
2. G’ = G 
3. for i = 1 to n do 
4. for j = 1 to n do 
5. if i • j then 
6. if there is no edge between the

nodes i and j in G• then 
7. Modify G’ by adding an edge between 

the nodes i and j in G• such that i 
is a parent of j: (i • j) 

8. if the resulting G’ is a DAG then 
9. if (Score(G’) > Score(G)) then 
10. G = G’ 
11. end if 
12. end if 
13. end if 
14. end if 
15. G’ = G 
16. end for 
17. end for 

Figure 7. Pseudo-code for training BN  

 A BN structure can be also found by learning the 

conditional independence relationships among the 

features of a dataset. Using a few statistical tests (such as 

the Chi-squared and mutual information test), one can 

find the conditional independence relationships among 

the features and use these relationships as constraints to 

construct a BN. These algorithms are called CI-based 

algorithms or constraint-based algorithms. Cowell (2001) 

has shown that for any structure search procedure based 

on CI tests, an equivalent procedure based on 

maximizing a score can be specified. 

A comparison of scoring-based methods and CI-

based methods is presented in (Heckerman et al., 1999). 

Both of these approaches have their advantages and 

disadvantages. Generally speaking, the dependency 

analysis approach is more efficient than the search & 

scoring approach for sparse networks (networks that are 

not densely connected). It can also deduce the correct 

structure when the probability distribution of the data 

satisfies certain assumptions. However, many of these 

algorithms require an exponential number of CI tests and 

many high order CI tests (CI tests with large condition-

sets). Yet although the search & scoring approach may 

not find the best structure due to its heuristic nature, it 

works with a wider range of probabilistic models than the 

dependency analysis approach. Madden (2003) compared 

the performance of a number of Bayesian Network 

Classifiers. His experiments demonstrated that very 

similar classification performance can be achieved by 

classifiers constructed using the different approaches 

described above. 

The most generic learning scenario is when the 

structure of the network is unknown and there is missing 

data. Friedman & Koller (2003) proposed a new 

approach for this task and showed how to efficiently 

compute a sum over the exponential number of networks 

that are consistent with a fixed order over networks. 

Using a suitable version of any of the model types 

mentioned in this review, one can induce a Bayesian 

Network from a given training set. A classifier based on 

the network and on the given set of features X1,X2, ... Xn, 
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returns the label c, which maximizes the posterior 

probability p(c | X1, X2, ... Xn).  

Bayesian multi-nets allow different probabilistic 

dependencies for different values of the class node 

(Jordan, 1998). This suggests that simple BN classifiers 

should work better when there is a single underlying 

model of the dataset and multi-net classifier should work 

better when the underlying relationships among the 

features are very different for different classes (Cheng 

and Greiner, 2001).  

The most interesting feature of BNs, compared to 

decision trees or neural networks, is most certainly the 

possibility of taking into account prior information about 

a given problem, in terms of structural relationships 

among its features. This prior expertise, or domain 

knowledge, about the structure of a Bayesian network 

can take the following forms: 

1. Declaring that a node is a root node, i.e., it has no 

parents. 

2. Declaring that a node is a leaf node, i.e., it has no 

children. 

3. Declaring that a node is a direct cause or direct 

effect of another node. 

4. Declaring that a node is not directly connected to 

another node. 

5. Declaring that two nodes are independent, given a 

condition-set. 

6. Providing partial nodes ordering, that is, declare that 

a node appears earlier than another node in the 

ordering. 

7. Providing a complete node ordering. 

A problem of BN classifiers is that they are not 

suitable for datasets with many features (Cheng et al., 

2002). The reason for this is that trying to construct a 

very large network is simply not feasible in terms of time 

and space. A final problem is that before the induction, 

the numerical features need to be discretized in most 

cases. 

6 Instance-based learning 

Another category under the header of statistical 

methods is Instance-based learning. Instance-based 

learning algorithms are lazy-learning algorithms 

(Mitchell, 1997), as they delay the induction or 

generalization process until classification is performed. 

Lazy-learning algorithms require less computation time 

during the training phase than eager-learning algorithms 

(such as decision trees, neural and Bayes nets) but more 

computation time during the classification process. One 

of the most straightforward instance-based learning 

algorithms is the nearest neighbour algorithm. Aha 

(1997) and De Mantaras and Armengol (1998) presented 

a review of instance-based learning classifiers. Thus, in 

this study, apart from a brief description of the nearest 

neighbour algorithm, we will refer to some more recent 

works. 

k-Nearest Neighbour (kNN) is based on the principle 

that the instances within a dataset will generally exist in 

close proximity to other instances that have similar 

properties (Cover and Hart, 1967). If the instances are 

tagged with a classification label, then the value of the 

label of an unclassified instance can be determined by 

observing the class of its nearest neighbours. The kNN 

locates the k nearest instances to the query instance and 

determines its class by identifying the single most 

frequent class label. In Figure 8, a pseudo-code example 

for the instance base learning methods is illustrated. 

 
procedure InstanceBaseLearner(Testing 
Instances) 

for each testing instance  
{ 
find the k most nearest instances of 
the training set according to a 
distance metric 
Resulting Class= most frequent class 
label of the k nearest instances 
} 

Figure 8. Pseudo-code for instance-based learners 

In general, instances can be considered as points 

within an n-dimensional instance space where each of the 

n-dimensions corresponds to one of the n-features that 

are used to describe an instance. The absolute position of 

the instances within this space is not as significant as the 

relative distance between instances. This relative distance 

is determined by using a distance metric. Ideally, the 

distance metric must minimize the distance between two 

similarly classified instances, while maximizing the 

distance between instances of different classes. Many 

different metrics have been presented. The most 

significant ones are presented in Table 3. 
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Table 3. Approaches to define the distance between 

instances (x and y) 

For more accurate results, several algorithms use 

weighting schemes that alter the distance measurements 

and voting influence of each instance. A survey of 

weighting schemes is given by (Wettschereck et al., 

1997). 

The power of kNN has been demonstrated in a 

number of real domains, but there are some reservations 

about the usefulness of kNN, such as: i) they have large 
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storage requirements, ii) they are sensitive to the choice 

of the similarity function that is used to compare 

instances, iii) they lack a principled way to choose k, 

except through cross-validation or similar, 

computationally-expensive technique (Guo et al. 2003).  

The choice of k affects the performance of the kNN 

algorithm. Consider the following reasons why a k-

nearest neighbour classifier might incorrectly classify a 

query instance: 

• When noise is present in the locality of the query 

instance, the noisy instance(s) win the majority vote, 

resulting in the incorrect class being predicted. A 

larger k could solve this problem. 

• When the region defining the class, or fragment of 

the class, is so small that instances belonging to the 

class that surrounds the fragment win the majority 

vote. A smaller k could solve this problem. 

Wettschereck et al. (1997) investigated the behavior 

of the kNN in the presence of noisy instances. The 

experiments showed that the performance of kNN was 

not sensitive to the exact choice of k when k was large. 

They found that for small values of k, the kNN algorithm 

was more robust than the single nearest neighbour 

algorithm (1NN) for the majority of large datasets tested. 

However, the performance of the kNN was inferior to 

that achieved by the 1NN on small datasets (<100 

instances). 

Okamoto and Yugami (2003) represented the 

expected classification accuracy of k-NN as a function of 

domain characteristics including the number of training 

instances, the number of relevant and irrelevant 

attributes, the probability of each attribute, the noise rate 

for each type of noise, and k. They also explored the 

behavioral implications of the analyses by presenting the 

effects of domain characteristics on the expected 

accuracy of k-NN and on the optimal value of k for 

artificial domains. 

The time to classify the query instance is closely 

related to the number of stored instances and the number 

of features that are used to describe each instance. Thus, 

in order to reduce the number of stored instances, 

instance-filtering algorithms have been proposed (Kubat 

and Cooperson, 2001). Brighton & Mellish (2002) found 

that their ICF algorithm and RT3 algorithm (Wilson & 

Martinez, 2000) achieved the highest degree of instance 

set reduction as well as the retention of classification 

accuracy: they are close to achieving unintrusive storage 

reduction. The degree to which these algorithms perform 

is quite impressive: an average of 80% of cases are 

removed and classification accuracy does not drop 

significantly. One other choice in designing a training set 

reduction algorithm is to modify the instances using a 

new representation such as prototypes (Sanchez et al., 

2002).  

Breiman (1996) reported that the stability of nearest 

neighbor classifiers distinguishes them from decision 

trees and some kinds of neural networks. A learning 

method is termed "unstable" if small changes in the 

training-test set split can result in large changes in the 

resulting classifier.  

As we have already mentioned, the major 

disadvantage of instance-based classifiers is their large 

computational time for classification. A key issue in 

many applications is to determine which of the available 

input features should be used in modeling via feature 

selection (Yu & Liu, 2004), because it could improve the 

classification accuracy and scale down the required 

classification time. Furthermore, choosing a more 

suitable distance metric for the specific dataset can 

improve the accuracy of instance-based classifiers.  

7 Support Vector Machines  

Support Vector Machines (SVMs) are the newest 

supervised machine learning technique (Vapnik, 1995). 

An excellent survey of SVMs can be found in (Burges, 

1998), and a more recent book is by (Cristianini & 

Shawe-Taylor, 2000). Thus, in this study apart from a 

brief description of SVMs we will refer to some more 

recent works and the landmark that were published 

before these works. SVMs revolve around the notion of a 

“margin”—either side of a hyperplane that separates two 

data classes. Maximizing the margin and thereby creating 

the largest possible distance between the separating 

hyperplane and the instances on either side of it has been 

proven to reduce an upper bound on the expected 

generalisation error.  

If the training data is linearly separable, then a pair 

),( bw  exists such that 

Nb

Pb

ii

T

ii

T

∈−≤+
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xxw

xxw

 allfor  ,1

 allfor  ,1
 

with the decision rule given by 

)sgn()(, bf T

b += xwxw  where w is termed the 

weight vector and b  the bias (or b−  is termed the 

threshold).  

 It is easy to show that, when it is possible to linearly 

separate two classes, an optimum separating hyperplane 

can be found by minimizing the squared norm of the 

separating hyperplane. The minimization can be set up as 

a convex quadratic programming (QP) problem:  

.,,1,1)( subject to
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In the case of linearly separable data, once the 

optimum separating hyperplane is found, data points that 

lie on its margin are known as support vector points and 

the solution is represented as a linear combination of 

only these points (see Figure 9). Other data points are 

ignored. 
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Figure 9. Maximum Margin 

Therefore, the model complexity of an SVM is 

unaffected by the number of features encountered in the 

training data (the number of support vectors selected by 

the SVM learning algorithm is usually small). For this 

reason, SVMs are well suited to deal with learning tasks 

where the number of features is large with respect to the 

number of training instances. 

A general pseudo-code for SVMs is illustrated in 

Figure 10.  

 
1) Introduce positive Lagrange 
multipliers, one for each of the 
inequality constraints (1). This 
gives Lagrangian: 

( ) ∑∑
==

+−⋅−≡
N

i

i

N

i

iiiP bwxywL
11

2

2

1
αα  

2) Minimize PL  with respect to w, 

b. This is a convex quadratic 
programming problem. 

3) In the solution, those points 

for which 0>iα  are called “support 

vectors” 

Figure 10. Pseudo-code for SVMs 

Even though the maximum margin allows the SVM 

to select among multiple candidate hyperplanes, for 

many datasets, the SVM may not be able to find any 

separating hyperplane at all because the data contains 

misclassified instances. The problem can be addressed by 

using a soft margin that accepts some misclassifications 

of the training instances (Veropoulos et al. 1999). This 

can be done by introducing positive slack variables 

Nii ,...,1, =ξ  in the constraints, which then become: 
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Thus, for an error to occur the corresponding iξ  must 

exceed unity, so ∑i iξ  is an upper bound on the number 

of training errors. In this case the Lagrangian is: 
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where the iµ  are the Lagrange multipliers introduced to 

enforce positivity of the iξ .  

Nevertheless, most real-world problems involve non-

separable data for which no hyperplane exists that 

successfully separates the positive from negative 

instances in the training set. One solution to the 

inseparability problem is to map the data onto a higher-

dimensional space and define a separating hyperplane 

there. This higher-dimensional space is called the 

transformed feature space, as opposed to the input space 

occupied by the training instances. 

With an appropriately chosen transformed feature 

space of sufficient dimensionality, any consistent training 

set can be made separable. A linear separation in 

transformed feature space corresponds to a non-linear 

separation in the original input space. Mapping the data 

to some other (possibly infinite dimensional) Hilbert 

space H as .: HRd →Φ  Then the training algorithm 

would only depend on the data through dot products in 

H, i.e. on functions of the form )()( ji xx Φ⋅Φ . If there 

were a “kernel function” K such 

that )()(),( jiji xxxxK Φ⋅Φ= , we would only need 

to use K in the training algorithm, and would never need 

to explicitly determine Φ . Thus, kernels are a special 

class of function that allow inner products to be 

calculated directly in feature space, without performing 

the mapping described above (Scholkopf et al. 1999). 

Once a hyperplane has been created, the kernel function 

is used to map new points into the feature space for 

classification. 

The selection of an appropriate kernel function is 

important, since the kernel function defines the 

transformed feature space in which the training set 

instances will be classified. Genton (2001) described 

several classes of kernels, however, he did not address 

the question of which class is best suited to a given 

problem. It is common practice to estimate a range of 

potential settings and use cross-validation over the 

training set to find the best one. For this reason a 

limitation of SVMs is the low speed of the training. 

Selecting kernel settings can be regarded in a similar way 

to choosing the number of hidden nodes in a neural 

network. As long as the kernel function is legitimate, a 

SVM will operate correctly even if the designer does not 

know exactly what features of the training data are being 

used in the kernel-induced transformed feature space. 

Some popular kernels are the following: 

(1) ( )P
yxyxK 1),( +⋅= ,  

(2) 

22
2

),(
σyx

eyxK
−−

= ,  

(3) ( )P
yxyxK δκ −⋅= tanh),(   

Training the SVM is done by solving Nth 

dimensional QP problem, where N is the number of 

samples in the training dataset. Solving this problem in 
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standard QP methods involves large matrix operations, as 

well as time-consuming numerical computations, and is 

mostly very slow and impractical for large problems. 

Sequential Minimal Optimization (SMO) is a simple 

algorithm that can, relatively quickly, solve the SVM QP 

problem without any extra matrix storage and without 

using numerical QP optimization steps at all (Platt, 

1999). SMO decomposes the overall QP problem into QP 

sub-problems. Keerthi and Gilbert (2002) suggested two 

modified versions of SMO that are significantly faster 

than the original SMO in most situations.  

Finally, the training optimization problem of the 

SVM necessarily reaches a global minimum, and avoids 

ending in a local minimum, which may happen in other 

search algorithms such as neural networks. However, the 

SVM methods are binary, thus in the case of multi-class 

problem one must reduce the problem to a set of multiple 

binary classification problems. Discrete data presents 

another problem, although with suitable rescaling good 

results can be obtained. 

8 Discussion 

Supervised machine learning techniques are 

applicable in numerous domains. A number of ML 

application oriented papers can be found in (Saitta and 

Neri, 1998) and (Witten and Frank, 2005). Below, we 

present our conclusions about the use of each technique. 

Discussions of all the pros and cons of each individual 

algorithms and empirical comparisons of various bias 

options are beyond the scope of this paper; as the choice 

of algorithm always depends on the task at hand. 

However, we hope that the following remarks can help 

practitioners not to select a wholly inappropriate 

algorithm for their problem. 

Generally, SVMs and neural networks tend to 

perform much better when dealing with multi-

dimensions and continuous features. On the other hand, 

logic-based systems tend to perform better when dealing 

with discrete/categorical features. For neural network 

models and SVMs, a large sample size is required in 

order to achieve its maximum prediction accuracy 

whereas NB may need a relatively small dataset. 

SVMs are binary algorithm, thus we made use of 

error-correcting output coding (ECOC), or, in short, the 

output coding approach, to reduce a multi-class problem 

to a set of multiple binary classification problems 

(Crammer & Singer, 2002). Output coding for multi-

class problems is composed of two stages. In the training 

stage, we construct multiple independent binary 

classifiers, each of which is based on a different partition 

of the set of the labels into two disjointed sets. In the 

second stage, the classification part, the predictions of 

the binary classifiers are combined to extend a prediction 

on the original label of a test instance. 

There is general agreement that k-NN is very 

sensitive to irrelevant features: this characteristic can be 

explained by the way the algorithm works. Moreover, the 

presence of irrelevant features can make neural network 

training very inefficient, even impractical. 

Bias measures the contribution to error of the central 

tendency of the classifier when trained on different data 

(Bauer & Kohavi, 1999). Variance is a measure of the 

contribution to error of deviations from the central 

tendency. Learning algorithms with a high-bias profile 

usually generate simple, highly constrained models 

which are quite insensitive to data fluctuations, so that 

variance is low. Naive Bayes is considered to have high 

bias, because it assumes that the dataset under 

consideration can be summarized by a single probability 

distribution and that this model is sufficient to 

discriminate between classes. On the contrary, 

algorithms with a high-variance profile can generate 

arbitrarily complex models which fit data variations more 

readily. Examples of high-variance algorithms are 

decision trees, neural networks and SVMs. The obvious 

pitfall of high-variance model classes is overfitting. 

Most decision tree algorithms cannot perform well 

with problems that require diagonal partitioning. The 

division of the instance space is orthogonal to the axis of 

one variable and parallel to all other axes. Therefore, the 

resulting regions after partitioning are all 

hyperrectangles. The ANNs and the SVMs perform well 

when multicollinearity is present and a nonlinear 

relationship exists between the input and output features. 

Lazy learning methods require zero training time 

because the training instance is simply stored. Naive 

Bayes methods also train very quickly since they require 

only a single pass on the data either to count frequencies 

(for discrete variables) or to compute the normal 

probability density function (for continuous variables 

under normality assumptions). Univariate decision trees 

are also reputed to be quite fast—at any rate, several 

orders of magnitude faster than neural networks and 

SVMs. 

Naive Bayes requires little storage space during both 

the training and classification stages: the strict minimum 

is the memory needed to store the prior and conditional 

probabilities. The basic kNN algorithm uses a great deal 

of storage space for the training phase, and its execution 

space is at least as big as its training space. On the 

contrary, for all non-lazy learners, execution space is 

usually much smaller than training space, since the 

resulting classifier is usually a highly condensed 

summary of the data. Moreover, Naive Bayes and the 

kNN can be easily used as incremental learners whereas 

rule algorithms cannot. Naive Bayes is naturally robust to 

missing values since these are simply ignored in 

computing probabilities and hence have no impact on the 

final decision. On the contrary, kNN and neural networks 

require complete records to do their work. 

Moreover, kNN is generally considered intolerant of 

noise; its similarity measures can be easily distorted by 

errors in attribute values, thus leading it to misclassify a 

new instance on the basis of the wrong nearest neighbors. 

Contrary to kNN, rule learners and most decision trees 

are considered resistant to noise because their pruning 

strategies avoid overfitting the data in general and noisy 

data in particular. 

What is more, the number of model or runtime 

parameters to be tuned by the user is an indicator of an 
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algorithm’s ease of use. As expected, neural networks 

and SVMs have more parameters than the remaining 

techniques. The basic kNN has usually only a single 

parameter (k) which is relatively easy to tune. 

Logic-based algorithms are all considered very easy 

to interpret, whereas neural networks and SVMs have 

notoriously poor interpretability. k-NN is also considered 

to have very poor interpretability because an unstructured 

collection of training instances is far from readable, 

especially if there are many of them. While 

interpretability concerns the typical classifier generated 

by a learning algorithm, transparency refers to whether 

the principle of the method is easily understood. A 

particularly eloquent case is that of k-NN; while the 

resulting classifier is not quite interpretable, the method 

itself is quite transparent because it appeals to the 

intuition of human users, who spontaneously reason in a 

similar manner. Similarly, Naive Bayes' is very 

transparent, as it is easily grasped by users like 

physicians who find that probabilistic explanations 

replicate their way of diagnosing (Kononenko, 1993). 

Similarly, Naive Bayes' explanations in terms of the sum 

of information gains is very transparent, as it is easily 

grasped by users like physicians who find that 

explanations replicate their way of diagnosing 

(Kononenko, 1993). 

Finally, decision trees and NB generally have 

different operational profiles, when one is very accurate 

the other is not and vice versa. On the contrary, decision 

trees and rule classifiers have a similar operational 

profile. SVM and ANN have also a similar operational 

profile. No single learning algorithm can uniformly 

outperform other algorithms over all datasets. Features of 

learning techniques are compared in Table 4 (from 

evidence of existing empirical and theoretical studies). 

 

 Decision 

Trees 

Neural 

Networks 

Naïve 

Bayes 

kNN SVM Rule-

learners 

Accuracy in general ** *** * ** **** ** 

Speed of learning with 

respect to number of 

attributes and the number of 

instances 

*** * **** **** * ** 

Speed of classification **** **** **** * **** **** 

Tolerance to missing values *** * **** * ** ** 

Tolerance to irrelevant 

attributes 

*** * ** ** **** ** 

Tolerance to redundant 

attributes 

** ** * ** *** ** 

Tolerance to highly 

interdependent attributes (e.g. 

parity problems) 

** *** * * *** ** 

Dealing with 

discrete/binary/continuous 

attributes 

**** ***(not 

discrete) 

***(not 

continuous) 

***(not 

directly 

discrete) 

**(not 

discrete) 

***(not 

directly 

continuous) 

Tolerance to noise ** ** *** * ** * 

Dealing with danger of 

overfitting 

** * *** *** ** ** 

Attempts for incremental 

learning  

** *** **** **** ** * 

Explanation 

ability/transparency of 

knowledge/classifications 

**** * **** ** * **** 

Model parameter handling *** * **** *** * *** 

Table 4. Comparing learning algorithms (**** stars represent the best and * star the worst performance) 

 

When faced with the decision “Which algorithm will 

be most accurate on our classification problem?”, the 

simplest approach is to estimate the accuracy of the 

candidate algorithms on the problem and select the one 

that appears to be most accurate. The concept of 

combining classifiers is proposed as a new direction for 

the improvement of the performance of individual 

classifiers. The goal of classification result integration 

algorithms is to generate more certain, precise and 

accurate system results. Numerous methods have been 

suggested for the creation of ensemble of classifiers 

(Dietterich, 2000). Although or perhaps because many 

methods of ensemble creation have been proposed, there 

is as yet no clear picture of which method is best (Villada 

and Drissi, 2002). Thus, an active area of research in 

supervised learning is the study of methods for the 

construction of good ensembles of classifiers. 

Mechanisms that are used to build ensemble of classifiers 

include: i) using different subsets of training data with a 

single learning method, ii) using different training 

parameters with a single training method (e.g., using 
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different initial weights for each neural network in an 

ensemble) and iii) using different learning methods. 

9 Conclusions 

This paper describes the best-known supervised 

techniques in relative detail. We should remark that our 

list of references is not a comprehensive list of papers 

discussing supervised methods: our aim was to produce a 

critical review of the key ideas, rather than a simple list 

of all publications which had discussed or made use of 

those ideas. Despite this, we hope that the references 

cited cover the major theoretical issues, and provide 

access to the main branches of the literature dealing with 

such methods, guiding the researcher in interesting 

research directions. 

The key question when dealing with ML 

classification is not whether a learning algorithm is 

superior to others, but under which conditions a 

particular method can significantly outperform others on 

a given application problem. Meta-learning is moving in 

this direction, trying to find functions that map datasets 

to algorithm performance (Kalousis and Gama, 2004). To 

this end, meta-learning uses a set of attributes, called 

meta-attributes, to represent the characteristics of 

learning tasks, and searches for the correlations between 

these attributes and the performance of learning 

algorithms. Some characteristics of learning tasks are: 

the number of instances, the proportion of categorical 

attributes, the proportion of missing values, the entropy 

of classes, etc. Brazdil et al. (2003) provided an 

extensive list of information and statistical measures for 

a dataset.  

After a better understanding of the strengths and 

limitations of each method, the possibility of integrating 

two or more algorithms together to solve a problem 

should be investigated. The objective is to utilize the 

strengthes of one method to complement the weaknesses 

of another. If we are only interested in the best possible 

classification accuracy, it might be difficult or impossible 

to find a single classifier that performs as well as a good 

ensemble of classifiers. Despite the obvious advantages, 

ensemble methods have at least three weaknesses. The 

first weakness is increased storage as a direct 

consequence of the requirement that all component 

classifiers, instead of a single classifier, need to be stored 

after training. The total storage depends on the size of 

each component classifier itself and the size of the 

ensemble (number of classifiers in the ensemble). The 

second weakness is increased computation because in 

order to classify an input query, all component classifiers 

(instead of a single classifier) must be processed. The last 

weakness is decreased comprehensibility. With 

involvement of multiple classifiers in decision-making, it 

is more difficult for non-expert users to perceive the 

underlying reasoning process leading to a decision. A 

first attempt for extracting meaningful rules from 

ensembles was presented in (Wall et al, 2003). 

For all these reasons, the application of ensemble 

methods is suggested only if we are only interested in the 

best possible classification accuracy. Another time-

consuming attempt that tried to increase the classification 

accuracy without decreasing comprehensibility is the 

wrapper feature selection procedure (Guyon & Elissee, 

2003). Theoretically, having more features should result 

in more discriminating power. However, practical 

experience with machine learning algorithms has shown 

that this is not always the case. Wrapper methods wrap 

the feature selection around the induction algorithm to be 

used, using cross-validation to predict the benefits of 

adding or removing a feature from the feature subset 

used. 

Finally, many researchers in machine learning are 

accustomed to dealing with flat files and algorithms that 

run in minutes or seconds on a desktop platform. For 

these researchers, 100,000 instances with two dozen 

features is the beginning of the range of “very large” 

datasets. However, the database community deals with 

gigabyte databases. Of course, it is unlikely that all the 

data in a data warehouse would be mined simultaneously. 

Most of the current learning algorithms are 

computationally expensive and require all data to be 

resident in main memory, which is clearly untenable for 

many realistic problems and databases. An orthogonal 

approach is to partition the data, avoiding the need to run 

algorithms on very large datasets. Distributed machine 

learning involves breaking the dataset up into subsets, 

learning from these subsets concurrently and combining 

the results (Basak and Kothari, 2004). Distributed agent 

systems can be used for this parallel execution of 

machine learning processes (Klusch et al., 2003). Non-

parallel machine learning algorithms can still be applied 

on local data (relative to the agent) because information 

about other data sources is not necessary for local 

operations. It is the responsibility of agents to integrate 

the information from numerous local sources in 

collaboration with other agents.   
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