
 Informatica 31 (2007) 249-268 249

Supervised Machine Learning: A Review of Classification

Techniques

S. B. Kotsiantis

Department of Computer Science and Technology

University of Peloponnese, Greece

End of Karaiskaki, 22100 , Tripolis GR.

Tel: +30 2710 372164

Fax: +30 2710 372160

E-mail: sotos@math.upatras.gr

Overview paper

Keywords: classifiers, data mining techniques, intelligent data analysis, learning algorithms

Received: July 16, 2007

Supervised machine learning is the search for algorithms that reason from externally supplied instances

to produce general hypotheses, which then make predictions about future instances. In other words, the

goal of supervised learning is to build a concise model of the distribution of class labels in terms of

predictor features. The resulting classifier is then used to assign class labels to the testing instances

where the values of the predictor features are known, but the value of the class label is unknown. This

paper describes various supervised machine learning classification techniques. Of course, a single

article cannot be a complete review of all supervised machine learning classification algorithms (also

known induction classification algorithms), yet we hope that the references cited will cover the major

theoretical issues, guiding the researcher in interesting research directions and suggesting possible bias

combinations that have yet to be explored.

Povzetek: Podan je pregled metod strojnega učenja.

1 Introduction
There are several applications for Machine Learning

(ML), the most significant of which is data mining.

People are often prone to making mistakes during

analyses or, possibly, when trying to establish

relationships between multiple features. This makes it

difficult for them to find solutions to certain problems.

Machine learning can often be successfully applied to

these problems, improving the efficiency of systems and

the designs of machines.

Every instance in any dataset used by machine learning

algorithms is represented using the same set of features.

The features may be continuous, categorical or binary. If

instances are given with known labels (the corresponding

correct outputs) then the learning is called supervised

(see Table 1), in contrast to unsupervised learning, where

instances are unlabeled. By applying these unsupervised

(clustering) algorithms, researchers hope to discover

unknown, but useful, classes of items (Jain et al., 1999).

Another kind of machine learning is reinforcement

learning (Barto & Sutton, 1997). The training

information provided to the learning system by the

environment (external trainer) is in the form of a scalar

reinforcement signal that constitutes a measure of how

well the system operates. The learner is not told which

actions to take, but rather must discover which actions

yield the best reward, by trying each action in turn.

Numerous ML applications involve tasks that can be

set up as supervised. In the present paper, we have

concentrated on the techniques necessary to do this. In

particular, this work is concerned with classification

problems in which the output of instances admits only

discrete, unordered values.

Table 1. Instances with known labels (the corresponding

correct outputs)

We have limited our references to recent refereed

journals, published books and conferences. In addition,

we have added some references regarding the original

work that started the particular line of research under

discussion. A brief review of what ML includes can be

found in (Dutton & Conroy, 1996). De Mantaras and

Armengol (1998) also presented a historical survey of

logic and instance based learning classifiers. The reader

should be cautioned that a single article cannot be a

250 Informatica 31 (2007) 249–268 S.B. Kotsiantis

comprehensive review of all classification learning

algorithms. Instead, our goal has been to provide a

representative sample of existing lines of research in

each learning technique. In each of our listed areas, there

are many other papers that more comprehensively detail

relevant work.

Our next section covers wide-ranging issues of

supervised machine learning such as data pre-processing

and feature selection. Logical/Symbolic techniques are

described in section 3, whereas perceptron-based

techniques are analyzed in section 4. Statistical

techniques for ML are covered in section 5. Section 6

deals with instance based learners, while Section 7 deals

with the newest supervised ML technique—Support

Vector Machines (SVMs). In section 8, some general

directions are given about classifier selection. Finally, the

last section concludes this work.

2 General issues of supervised

learning algorithms
Inductive machine learning is the process of learning

a set of rules from instances (examples in a training set),

or more generally speaking, creating a classifier that can

be used to generalize from new instances. The process of

applying supervised ML to a real-world problem is

described in Figure 1.

Problem

Data pre-processing

Definition of

training set

Algorithm

selection

Training

Evaluation

with test set

OK? Classifier
Yes

Identification

of required

data

Parameter tuning

No

Figure 1. The process of supervised ML

The first step is collecting the dataset. If a requisite

expert is available, then s/he could suggest which fields

(attributes, features) are the most informative. If not, then

the simplest method is that of “brute-force,” which

means measuring everything available in the hope that

the right (informative, relevant) features can be isolated.

However, a dataset collected by the “brute-force” method

is not directly suitable for induction. It contains in most

cases noise and missing feature values, and therefore

requires significant pre-processing (Zhang et al., 2002).

The second step is the data preparation and data pre-

processiong. Depending on the circumstances,

researchers have a number of methods to choose from to

handle missing data (Batista & Monard, 2003). Hodge &

Austin (2004) have recently introduced a survey of

contemporary techniques for outlier (noise) detection.

These researchers have identified the techniques’

advantages and disadvantages. Instance selection is not

only used to handle noise but to cope with the

infeasibility of learning from very large datasets.

Instance selection in these datasets is an optimization

problem that attempts to maintain the mining quality

while minimizing the sample size (Liu and Motoda,

2001). It reduces data and enables a data mining

algorithm to function and work effectively with very

large datasets. There is a variety of procedures for

sampling instances from a large dataset (Reinartz, 2002).

Feature subset selection is the process of identifying

and removing as many irrelevant and redundant features

as possible (Yu & Liu, 2004). This reduces the

dimensionality of the data and enables data mining

algorithms to operate faster and more effectively. The

fact that many features depend on one another often

unduly influences the accuracy of supervised ML

classification models. This problem can be addressed by

constructing new features from the basic feature set

(Markovitch & Rosenstein, 2002). This technique is

called feature construction/transformation. These newly

generated features may lead to the creation of more

concise and accurate classifiers. In addition, the

discovery of meaningful features contributes to better

comprehensibility of the produced classifier, and a better

understanding of the learned concept.

2.1 Algorithm selection

The choice of which specific learning algorithm we

should use is a critical step. Once preliminary testing is

judged to be satisfactory, the classifier (mapping from

unlabeled instances to classes) is available for routine

use. The classifier’s evaluation is most often based on

prediction accuracy (the percentage of correct prediction

divided by the total number of predictions). There are at

least three techniques which are used to calculate a

classifier’s accuracy. One technique is to split the

training set by using two-thirds for training and the other

third for estimating performance. In another technique,

known as cross-validation, the training set is divided into

mutually exclusive and equal-sized subsets and for each

subset the classifier is trained on the union of all the

other subsets. The average of the error rate of each subset

is therefore an estimate of the error rate of the classifier.

Leave-one-out validation is a special case of cross

validation. All test subsets consist of a single instance.

This type of validation is, of course, more expensive

computationally, but useful when the most accurate

estimate of a classifier’s error rate is required.

If the error rate evaluation is unsatisfactory, we must

return to a previous stage of the supervised ML process

(as detailed in Figure 1). A variety of factors must be

examined: perhaps relevant features for the problem are

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 251

not being used, a larger training set is needed, the

dimensionality of the problem is too high, the selected

algorithm is inappropriate or parameter tuning is needed.

Another problem could be that the dataset is imbalanced

(Japkowicz & Stephen, 2002).

A common method for comparing supervised ML

algorithms is to perform statistical comparisons of the

accuracies of trained classifiers on specific datasets. If

we have sufficient supply of data, we can sample a

number of training sets of size N, run the two learning

algorithms on each of them, and estimate the difference

in accuracy for each pair of classifiers on a large test set.

The average of these differences is an estimate of the

expected difference in generalization error across all

possible training sets of size N, and their variance is an

estimate of the variance of the classifier in the total set.

Our next step is to perform paired t-test to check the null

hypothesis that the mean difference between the

classifiers is zero. This test can produce two types of

errors. Type I error is the probability that the test rejects

the null hypothesis incorrectly (i.e. it finds a “significant”

difference although there is none). Type II error is the

probability that the null hypothesis is not rejected, when

there actually is a difference. The test’s Type I error will

be close to the chosen significance level.

In practice, however, we often have only one dataset

of size N and all estimates must be obtained from this

sole dataset. Different training sets are obtained by sub-

sampling, and the instances not sampled for training are

used for testing. Unfortunately this violates the

independence assumption necessary for proper

significance testing. The consequence of this is that Type

I errors exceed the significance level. This is problematic

because it is important for the researcher to be able to

control Type I errors and know the probability of

incorrectly rejecting the null hypothesis. Several heuristic

versions of the t-test have been developed to alleviate

this problem (Dietterich, 1998), (Nadeau and Bengio,

2003).

Ideally, we would like the test’s outcome to be

independent of the particular partitioning resulting from

the randomization process, because this would make it

much easier to replicate experimental results published in

the literature. However, in practice there is always

certain sensitivity to the partitioning used. To measure

replicability we need to repeat the same test several times

on the same data with different random partitionings —

usually ten repetitions— and count how often the

outcome is the same (Bouckaert, 2003).

Supervised classification is one of the tasks most

frequently carried out by so-called Intelligent Systems.

Thus, a large number of techniques have been developed

based on Artificial Intelligence (Logical/Symbolic

techniques), Perceptron-based techniques and Statistics

(Bayesian Networks, Instance-based techniques). In next

sections, we will focus on the most important supervised

machine learning techniques, starting with

logical/symbolic algorithms.

3 Logic based algorithms

In this section we will concentrate on two groups of

logical (symbolic) learning methods: decision trees and

rule-based classifiers.

3.1 Decision trees

Murthy (1998) provided an overview of work in

decision trees and a sample of their usefulness to

newcomers as well as practitioners in the field of

machine learning. Thus, in this work, apart from a brief

description of decision trees, we will refer to some more

recent works than those in Murthy’s article as well as

few very important articles that were published earlier.

Decision trees are trees that classify instances by sorting

them based on feature values. Each node in a decision

tree represents a feature in an instance to be classified,

and each branch represents a value that the node can

assume. Instances are classified starting at the root node

and sorted based on their feature values. Figure 2 is an

example of a decision tree for the training set of Table 2.

at1

at2 No No

Yes at3 at4

No Yes No

a3

Yes

b3

a2 b2 c2

a4 b4

a1 b1 c1

Figure 2. A decision tree

at1 at2 at3 at4 Class

a1 a2 a3 a4 Yes

a1 a2 a3 b4 Yes

a1 b2 a3 a4 Yes

a1 b2 b3 b4 No

a1 c2 a3 a4 Yes

a1 c2 a3 b4 No

b1 b2 b3 b4 No

c1 b2 b3 b4 No

Table 2. Training Set

Using the decision tree depicted in Figure 2 as an

example, the instance 〈at1 = a1, at2 = b2, at3 = a3, at4 =

b4〉 would sort to the nodes: at1, at2, and finally at3,

which would classify the instance as being positive

252 Informatica 31 (2007) 249–268 S.B. Kotsiantis

(represented by the values “Yes”). The problem of

constructing optimal binary decision trees is an NP-

complete problem and thus theoreticians have searched

for efficient heuristics for constructing near-optimal

decision trees.

The feature that best divides the training data would

be the root node of the tree. There are numerous methods

for finding the feature that best divides the training data

such as information gain (Hunt et al., 1966) and gini

index (Breiman et al., 1984). While myopic measures

estimate each attribute independently, ReliefF algorithm

(Kononenko, 1994) estimates them in the context of

other attributes. However, a majority of studies have

concluded that there is no single best method (Murthy,

1998). Comparison of individual methods may still be

important when deciding which metric should be used in

a particular dataset. The same procedure is then repeated

on each partition of the divided data, creating sub-trees

until the training data is divided into subsets of the same

class.

Figure 3 presents a general pseudo-code for building

decision trees.

Check for base cases
 For each attribute a

Find the feature that best
divides the training data such
as information gain from
splitting on a

Let a best be the attribute with the
highest normalized information gain

Create a decision node node that
splits on a_best

Recurse on the sub-lists obtained by
splitting on a best and add those
nodes as children of node

Figure 3. Pseudo-code for building a decision tree

A decision tree, or any learned hypothesis h, is said to

overfit training data if another hypothesis h′ exists that

has a larger error than h when tested on the training data,

but a smaller error than h when tested on the entire

dataset. There are two common approaches that decision

tree induction algorithms can use to avoid overfitting

training data: i) Stop the training algorithm before it

reaches a point at which it perfectly fits the training data,

ii) Prune the induced decision tree. If the two trees

employ the same kind of tests and have the same

prediction accuracy, the one with fewer leaves is usually

preferred. Breslow & Aha (1997) survey methods of tree

simplification to improve their comprehensibility.

The most straightforward way of tackling overfitting

is to pre-prune the decision tree by not allowing it to

grow to its full size. Establishing a non-trivial

termination criterion such as a threshold test for the

feature quality metric can do that. Decision tree

classifiers usually employ post-pruning techniques that

evaluate the performance of decision trees, as they are

pruned by using a validation set. Any node can be

removed and assigned the most common class of the

training instances that are sorted to it. A comparative

study of well-known pruning methods is presented in

(Elomaa, 1999). Elomaa (1999) concluded that there is

no single best pruning method. More details, about not

only postprocessing but also about preprocessing of

decision tree algorithms can be fould in (Bruha, 2000).

Even though the divide-and-conquer algorithm is

quick, efficiency can become important in tasks with

hundreds of thousands of instances. The most time-

consuming aspect is sorting the instances on a numeric

feature to find the best threshold t. This can be expedited

if possible thresholds for a numeric feature are

determined just once, effectively converting the feature

to discrete intervals, or if the threshold is determined

from a subset of the instances. Elomaa & Rousu (1999)

stated that the use of binary discretization with C4.5

needs about the half training time of using C4.5 multi-

splitting. In addition, according to their experiments,

multi-splitting of numerical features does not carry any

advantage in prediction accuracy over binary splitting.

Decision trees are usually univariate since they use

splits based on a single feature at each internal node.

Most decision tree algorithms cannot perform well with

problems that require diagonal partitioning. The division

of the instance space is orthogonal to the axis of one

variable and parallel to all other axes. Therefore, the

resulting regions after partitioning are all hyper-

rectangles. However, there are a few methods that

construct multivariate trees. One example is Zheng’s

(1998), who improved the classification accuracy of the

decision trees by constructing new binary features with

logical operators such as conjunction, negation, and

disjunction. In addition, Zheng (2000) created at-least M-

of-N features. For a given instance, the value of an at-

least M-of-N representation is true if at least M of its

conditions is true of the instance, otherwise it is false.

Gama and Brazdil (1999) combined a decision tree with

a linear discriminant for constructing multivariate

decision trees. In this model, new features are computed

as linear combinations of the previous ones.

Decision trees can be significantly more complex

representation for some concepts due to the replication

problem. A solution is using an algorithm to implement

complex features at nodes in order to avoid replication.

Markovitch and Rosenstein (2002) presented the FICUS

construction algorithm, which receives the standard input

of supervised learning as well as a feature representation

specification, and uses them to produce a set of generated

features. While FICUS is similar in some aspects to other

feature construction algorithms, its main strength is its

generality and flexibility. FICUS was designed to

perform feature generation given any feature

representation specification complying with its general

purpose grammar.

The most well-know algorithm in the literature for

building decision trees is the C4.5 (Quinlan, 1993). C4.5

is an extension of Quinlan's earlier ID3 algorithm

(Quinlan, 1979). One of the latest studies that compare

decision trees and other learning algorithms has been

done by (Tjen-Sien Lim et al. 2000). The study shows

that C4.5 has a very good combination of error rate and

speed. In 2001, Ruggieri presented an analytic evaluation

of the runtime behavior of the C4.5 algorithm, which

highlighted some efficiency improvements. Based on this

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 253

analytic evaluation, he implemented a more efficient

version of the algorithm, called EC4.5. He argued that

his implementation computed the same decision trees as

C4.5 with a performance gain of up to five times.

C4.5 assumes that the training data fits in memory,

thus, Gehrke et al. (2000) proposed Rainforest, a

framework for developing fast and scalable algorithms to

construct decision trees that gracefully adapt to the

amount of main memory available. It is clear that in most

decision tree algorithms; a substantial effort is “wasted”

in the building phase on growing portions of the tree that

are subsequently pruned in the pruning phase. Rastogi &

Shim (2000) proposed PUBLIC, an improved decision

tree classifier that integrates the second “pruning” phase

with the initial “building” phase. In PUBLIC, a node is

not expanded during the building phase, if it is

determined that the node will be pruned during the

subsequent pruning phase.

Olcay and Onur (2007) show how to parallelize C4.5

algorithm in three ways: (i) feature based, (ii) node based

(iii) data based manner. Baik and Bala (2004) presented

preliminary work on an agent-based approach for the

distributed learning of decision trees.

To sum up, one of the most useful characteristics of

decision trees is their comprehensibility. People can

easily understand why a decision tree classifies an

instance as belonging to a specific class. Since a decision

tree constitutes a hierarchy of tests, an unknown feature

value during classification is usually dealt with by

passing the example down all branches of the node where

the unknown feature value was detected, and each branch

outputs a class distribution. The output is a combination

of the different class distributions that sum to 1. The

assumption made in the decision trees is that instances

belonging to different classes have different values in at

least one of their features. Decision trees tend to perform

better when dealing with discrete/categorical features.

3.2 Learning set of rules

Decision trees can be translated into a set of rules by

creating a separate rule for each path from the root to a

leaf in the tree (Quinlan, 1993). However, rules can also

be directly induced from training data using a variety of

rule-based algorithms. Furnkranz (1999) provided an

excellent overview of existing work in rule-based

methods.

Classification rules represent each class by

disjunctive normal form (DNF). A k-DNF expression is

of the form: (X1∧X2∧…∧Xn) ∨ (Xn+1∧Xn+2∧…X2n) ∨ …∨

(X(k-1)n+1∧X(k-1)n+2∧…∧Xkn), where k is the number of

disjunctions, n is the number of conjunctions in each

disjunction, and Xn is defined over the alphabet X1, X2,…,

Xj ∪ ~X1, ~X2, …,~Xj. The goal is to construct the

smallest rule-set that is consistent with the training data.

A large number of learned rules is usually a sign that the

learning algorithm is attempting to “remember” the

training set, instead of discovering the assumptions that

govern it. A separate-and-conquer algorithm (covering

algorithms) search for a rule that explains a part of its

training instances, separates these instances and

recursively conquers the remaining instances by learning

more rules, until no instances remain. In Figure 4, a

general pseudo-code for rule learners is presented.

The difference between heuristics for rule learning

and heuristics for decision trees is that the latter evaluate

the average quality of a number of disjointed sets (one

for each value of the feature that is tested), while rule

learners only evaluate the quality of the set of instances

that is covered by the candidate rule. More advanced rule

learners differ from this simple pseudo-code mostly by

adding additional mechanisms to prevent over-fitting of

the training data, for instance by stopping the

specialization process with the use of a quality measure

or by generalizing overly specialized rules in a separate

pruning phase (Furnkranz, 1997).

On presentation of training examples

training examples:
1. Initialise rule set to a default

(usually empty, or a rule assigning all
objects to the most common class).

2. Initialise examples to either all
available examples or all examples not
correctly handled by rule set.

3. Repeat
(a) Find best, the best rule with

respect to examples.
(b) If such a rule can be found

i. Add best to rule set.
ii. Set examples to all
examples not handled
correctly by rule set.

until no rule best can be found
(for instance, because no
examples remain).

Figure 4. Pseudocode for rule learners

It is therefore important for a rule induction system

to generate decision rules that have high predictability or

reliability. These properties are commonly measured by a

function called rule quality. A rule quality measure is

needed in both the rule induction and classification

processes such as J-measure (Smyth and Goodman,

1990). In rule induction, a rule quality measure can be

used as a criterion in the rule specification and/or

generalization process. In classification, a rule quality

value can be associated with each rule to resolve

conflicts when multiple rules are satisfied by the example

to be classified. An and Cercone (2000) surveyed a

number of statistical and empirical rule quality measures.

Furnkranz and Flach (2005) provided an analysis of the

behavior of separate-and-conquer or covering rule

learning algorithms by visualizing their evaluation

metrics. When using unordered rule sets, conflicts can

arise between the rules, i.e., two or more rules cover the

same example but predict different classes. Lindgren

(2004) has recently given a survey of methods used to

solve this type of conflict.

RIPPER is a well-known rule-based algorithm

(Cohen, 1995). It forms rules through a process of

repeated growing and pruning. During the growing phase

the rules are made more restrictive in order to fit the

training data as closely as possible. During the pruning

phase, the rules are made less restrictive in order to avoid

254 Informatica 31 (2007) 249–268 S.B. Kotsiantis

overfitting, which can cause poor performance on unseen

instances. RIPPER handles multiple classes by ordering

them from least to most prevalent and then treating each

in order as a distinct two-class problem. Other

fundamental learning classifiers based on decision rules

include the AQ family (Michalski and Chilausky, 1980)

and CN2 (Clark and Niblett, 1989). Bonarini (2000) gave

an overview of fuzzy rule-based classifiers. Fuzzy logic

tries to improve classification and decision support

systems by allowing the use of overlapping class

definitions.

Furnkranz (2001) investigated the use of round robin

binarization (or pairwise classification) as a technique for

handling multi-class problems with separate and conquer

rule learning algorithms. The round robin binarization

transforms a c-class problem into c(c-1)/2 two-class

problems <i,j>, one for each set of classes {i,j}, i= 1 ... c-

1, j = i+1 ...c. The binary classifier for problem <i,j> is

trained with examples of classes i and j, whereas

examples of classes k ≠ i,j are ignored for this problem.

A crucial point, of course, is determining how to decode

the predictions of the pairwise classifiers for a final

prediction. Furnkranz (2001) implemented a simple

voting technique: when classifying a new example, each

of the learned base classifiers determines to which of its

two classes the example is more likely to belong to. The

winner is assigned a point, and in the end, the algorithm

predicts the class that has accumulated the most points.

His experimental results show that, in comparison to

conventional, ordered or unordered binarization, the

round robin approach may yield significant gains in

accuracy without risking a poor performance.

There are numerous other rule-based learning

algorithms. Furnkranz (1999) referred to most of them.

The PART algorithm infers rules by repeatedly

generating partial decision trees, thus combining the two

major paradigms for rule generation − creating rules

from decision trees and the separate-and-conquer rule-

learning technique. Once a partial tree has been build, a

single rule is extracted from it and for this reason the

PART algorithm avoids postprocessing (Frank and

Witten, 1998).

For the task of learning binary problems, rules are

more comprehensible than decision trees because typical

rule-based approaches learn a set of rules for only the

positive class. On the other hand, if definitions for

multiple classes are to be learned, the rule-based learner

must be run separately for each class separately. For each

individual class a separate rule set is obtained and these

sets may be inconsistent (a particular instance might be

assigned multiple classes) or incomplete (no class might

be assigned to a particular instance). These problems can

be solved with decision lists (the rules in a rule set are

supposed to be ordered, a rule is only applicable when

none of the preceding rules are applicable) but with the

decision tree approach, they simply do not occur.

Moreover, the divide and conquer approach (used by

decision trees) is usually more efficient than the separate

and conquer approach (used by rule-based algorithms).

Separate-and-conquer algorithms look at one class at a

time, and try to produce rules that uniquely identify the

class. They do this independent of all the other classes in

the training set. For this reason, for small datasets, it may

be better to use a divide-and-conquer algorithm that

considers the entire set at once.

To sum up, the most useful characteristic of rule-

based classifiers is their comprehensibility. In addition,

even though some rule-based classifiers can deal with

numerical features, some experts propose these features

should be discretized before induction, so as to reduce

training time and increase classification accuracy (An

and Cercone, 1999). Classification accuracy of rule

learning algorithms can be improved by combining

features (such as in decision trees) using the background

knowledge of the user (Flach and Lavrac, 2000) or

automatic feature construction algorithms (Markovitch

and Rosenstein, 2002).

4 Perceptron-based techniques

Other well-known algorithms are based on the notion

of perceptron (Rosenblatt, 1962).

4.1 Single layered perceptrons

A single layered perceptron can be briefly described

as follows:

If x1 through xn are input feature values and w1

through wn are connection weights/prediction vector

(typically real numbers in the interval [-1, 1]), then

perceptron computes the sum of weighted inputs:

i i

i

x w∑ and output goes through an adjustable threshold:

if the sum is above threshold, output is 1; else it is 0.

The most common way that the perceptron algorithm

is used for learning from a batch of training instances is

to run the algorithm repeatedly through the training set

until it finds a prediction vector which is correct on all of

the training set. This prediction rule is then used for

predicting the labels on the test set.

WINNOW (Littlestone & Warmuth, 1994) is based

on the perceptron idea and updates its weights as follows.

If prediction value y΄=0 and actual value y=1, then the

weights are too low; so, for each feature such that xi=1,

wi=wi·α, where α is a number greater than 1, called the

promotion parameter. If prediction value y΄= 1 and

actual value y=0, then the weights were too high; so, for

each feature xi = 1, it decreases the corresponding weight

by setting wi=wi·β, where 0<β<1, called the demotion

parameter. Generally, WINNOW is an example of an

exponential update algorithm. The weights of the

relevant features grow exponentially but the weights of

the irrelevant features shrink exponentially. For this

reason, it was experimentally proved (Blum, 1997) that

WINNOW can adapt rapidly to changes in the target

function (concept drift). A target function (such as user

preferences) is not static in time. In order to enable, for

example, a decision tree algorithm to respond to changes,

it is necessary to decide which old training instances

could be deleted. A number of algorithms similar to

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 255

WINNOW have been developed, such as those by Auer

& Warmuth (1998).

Freund & Schapire (1999) created a newer

algorithm, called voted-perceptron, which stores more

information during training and then uses this elaborate

information to generate better predictions about the test

data. The information it maintains during training is the

list of all prediction vectors that were generated after

each and every mistake. For each such vector, it counts

the number of iterations it “survives” until the next

mistake is made; Freund & Schapire refer to this count as

the “weight” of the prediction vector. To calculate a

prediction the algorithm computes the binary prediction

of each one of the prediction vectors and combines all

these predictions by means of a weighted majority vote.

The weights used are the survival times described above.

To sum up, we have discussed perceptron-like linear

algorithms with emphasis on their superior time

complexity when dealing with irrelevant features. This

can be a considerable advantage when there are many

features, but only a few relevant ones. Generally, all

perceptron-like linear algorithms are anytime online

algorithms that can produce a useful answer regardless of

how long they run (Kivinen, 2002). The longer they run,

the better the result they produce. Finally, perceptron-like

methods are binary, and therefore in the case of multi-

class problem one must reduce the problem to a set of

multiple binary classification problems.

4.2 Multilayered perceptrons

Perceptrons can only classify linearly separable sets

of instances. If a straight line or plane can be drawn to

seperate the input instances into their correct categories,

input instances are linearly separable and the perceptron

will find the solution. If the instances are not linearly

separable learning will never reach a point where all

instances are classified properly. Multilayered

Perceptrons (Artificial Neural Networks) have been

created to try to solve this problem (Rumelhart et al.,

1986). Zhang (2000) provided an overview of existing

work in Artificial Neural Networks (ANNs). Thus, in this

study, apart from a brief description of the ANNs we will

mainly refer to some more recent articles. A multi-layer

neural network consists of large number of units

(neurons) joined together in a pattern of connections

(Figure 5). Units in a net are usually segregated into three

classes: input units, which receive information to be

processed; output units, where the results of the

processing are found; and units in between known as

hidden units. Feed-forward ANNs (Figure 5) allow

signals to travel one way only, from input to output.

Figure 5. Feed-forward ANN

First, the network is trained on a set of paired data to

determine input-output mapping. The weights of the

connections between neurons are then fixed and the

network is used to determine the classifications of a new

set of data.

During classification the signal at the input units

propagates all the way through the net to determine the

activation values at all the output units. Each input unit

has an activation value that represents some feature

external to the net. Then, every input unit sends its

activation value to each of the hidden units to which it is

connected. Each of these hidden units calculates its own

activation value and this signal are then passed on to

output units. The activation value for each receiving unit

is calculated according to a simple activation function.

The function sums together the contributions of all

sending units, where the contribution of a unit is defined

as the weight of the connection between the sending and

receiving units multiplied by the sending unit's activation

value. This sum is usually then further modified, for

example, by adjusting the activation sum to a value

between 0 and 1 and/or by setting the activation value to

zero unless a threshold level for that sum is reached.

Generally, properly determining the size of the

hidden layer is a problem, because an underestimate of

the number of neurons can lead to poor approximation

and generalization capabilities, while excessive nodes

can result in overfitting and eventually make the search

for the global optimum more difficult. An excellent

argument regarding this topic can be found in (Camargo

& Yoneyama, 2001). Kon & Plaskota (2000) also studied

the minimum amount of neurons and the number of

instances necessary to program a given task into feed-

forward neural networks.

ANN depends upon three fundamental aspects, input

and activation functions of the unit, network architecture

and the weight of each input connection. Given that the

first two aspects are fixed, the behavior of the ANN is

defined by the current values of the weights. The weights

of the net to be trained are initially set to random values,

and then instances of the training set are repeatedly

exposed to the net. The values for the input of an

instance are placed on the input units and the output of

the net is compared with the desired output for this

instance. Then, all the weights in the net are adjusted

slightly in the direction that would bring the output

values of the net closer to the values for the desired

output. There are several algorithms with which a

network can be trained (Neocleous & Schizas, 2002).

However, the most well-known and widely used learning

algorithm to estimate the values of the weights is the

Back Propagation (BP) algorithm. Generally, BP

algorithm includes the following six steps:

1. Present a training sample to the neural network.

2. Compare the network's output to the desired output

from that sample. Calculate the error in each output

neuron.

3. For each neuron, calculate what the output should

have been, and a scaling factor, how much lower or

higher the output must be adjusted to match the

desired output. This is the local error.

256 Informatica 31 (2007) 249–268 S.B. Kotsiantis

4. Adjust the weights of each neuron to lower the local

error.

5. Assign "blame" for the local error to neurons at the

previous level, giving greater responsibility to

neurons connected by stronger weights.

6. Repeat the steps above on the neurons at the

previous level, using each one's "blame" as its error.

With more details, the general rule for updating

weights is: ijji OW ηδ=∆ where:

• η is a positive number (called learning rate), which

determines the step size in the gradient descent

search. A large value enables back propagation to

move faster to the target weight configuration but it

also increases the chance of its never reaching this

target.

• Oi is the output computed by neuron i

•))(1(jjjjj OTOO −−=δ for the output neurons,

where Tj the wanted output for the neuron j and

• kj

k

kjjj WOO ∑−= δδ)1(for the internal

(hidden) neurons

The back propagation algorithm will have to perform

a number of weight modifications before it reaches a

good weight configuration. For n training instances and

W weights, each repetition/epoch in the learning process

takes O(nW) time; but in the worst case, the number of

epochs can be exponential to the number of inputs. For

this reason, neural nets use a number of different

stopping rules to control when training ends. The four

most common stopping rules are: i) Stop after a specified

number of epochs, ii) Stop when an error measure

reaches a threshold, iii) Stop when the error measure has

seen no improvement over a certain number of epochs,

iv) Stop when the error measure on some of the data that

has been sampled from the training data (hold-out set,

validation set) is more than a certain amount than the

error measure on the training set (overfitting).

Feed-forward neural networks are usually trained by

the original back propagation algorithm or by some

variant. Their greatest problem is that they are too slow

for most applications. One of the approaches to speed up

the training rate is to estimate optimal initial weights

(Yam & Chow, 2001). Another method for training

multilayered feedforward ANNs is Weight-elimination

algorithm that automatically derives the appropriate

topology and therefore avoids also the problems with

overfitting (Weigend et al., 1991). Genetic algorithms

have been used to train the weights of neural networks

(Siddique and Tokhi, 2001) and to find the architecture

of neural networks (Yen and Lu, 2000). There are also

Bayesian methods in existence which attempt to train

neural networks. Vivarelli & Williams (2001) compare

two Bayesian methods for training neural networks. A

number of other techniques have emerged recently which

attempt to improve ANNs training algorithms by

changing the architecture of the networks as training

proceeds. These techniques include pruning useless

nodes or weights (Castellano et al. 1997), and

constructive algorithms, where extra nodes are added as

required (Parekh et al. 2000).

4.3 Radial Basis Function (RBF) networks

ANN learning can be achieved, among others,

through i) synaptic weight modification, ii) network

structure modifications (creating or deleting neurons or

synaptic connections), iii) use of suitable attractors or

other suitable stable state points, iv) appropriate choice

of activation functions. Since back-propagation training

is a gradient descending process, it may get stuck in local

minima in this weight-space. It is because of this

possibility that neural network models are characterized

by high variance and unsteadiness.

Radial Basis Function (RBF) networks have been

also widely applied in many science and engineering

fields (Robert and Howlett, 2001). An RBF network is a

three-layer feedback network, in which each hidden unit

implements a radial activation function and each output

unit implements a weighted sum of hidden units outputs.

Its training procedure is usually divided into two stages.

First, the centers and widths of the hidden layer are

determined by clustering algorithms. Second, the weights

connecting the hidden layer with the output layer are

determined by Singular Value Decomposition (SVD) or

Least Mean Squared (LMS) algorithms. The problem of

selecting the appropriate number of basis functions

remains a critical issue for RBF networks. The number of

basis functions controls the complexity and the

generalization ability of RBF networks. RBF networks

with too few basis functions cannot fit the training data

adequately due to limited flexibility. On the other hand,

those with too many basis functions yield poor

generalization abilities since they are too flexible and

erroneously fit the noise in the training data.

Even though multilayer neural networks and decision

trees are two very different techniques for the purpose of

classification, some researchers (Eklund & Hoang,

2002), (Tjen-Sien Lim et al. 2000) have performed some

empirical comparative studies. Some of the general

conclusions drawn in that work are:

i) neural networks are usually more able to easily

provide incremental learning than decision trees

(Saad, 1998), even though there are some

algorithms for incremental learning of decision

trees such as (Utgoff et al, 1997) and

(McSherry, 1999). Incremental decision tree

induction techniques result in frequent tree

restructuring when the amount of training data

is small, with the tree structure maturing as the

data pool becomes larger.

ii) training time for a neural network is usually

much longer than training time for decision

trees.

iii) neural networks usually perform as well as

decision trees, but seldom better.

To sum up, ANNs have been applied to many real-

world problems but still, their most striking disadvantage

is their lack of ability to reason about their output in a

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 257

way that can be effectively communicated. For this

reason many researchers have tried to address the issue

of improving the comprehensibility of neural networks,

where the most attractive solution is to extract symbolic

rules from trained neural networks. Setiono and Leow

(2000) divided the activation values of relevant hidden

units into two subintervals and then found the set of

relevant connections of those relevant units to construct

rules. More references can be found in (Zhou, 2004), an

excellent survey. However, it is also worth mentioning

that Roy (2000) identified the conflict between the idea

of rule extraction and traditional connectionism. In detail,

the idea of rule extraction from a neural network involves

certain procedures, specifically the reading of parameters

from a network, which is not allowed by the traditional

connectionist framework that these neural networks are

based on.

5 Statistical learning algorithms

Conversely to ANNs, statistical approaches are

characterized by having an explicit underlying

probability model, which provides a probability that an

instance belongs in each class, rather than simply a

classification. Linear discriminant analysis (LDA) and

the related Fisher's linear discriminant are simple

methods used in statistics and machine learning to find

the linear combination of features which best separate

two or more classes of object (Friedman, 1989). LDA

works when the measurements made on each observation

are continuous quantities. When dealing with categorical

variables, the equivalent technique is Discriminant

Correspondence Analysis (Mika et al., 1999).

Maximum entropy is another general technique for

estimating probability distributions from data. The over-

riding principle in maximum entropy is that when

nothing is known, the distribution should be as uniform

as possible, that is, have maximal entropy. Labeled

training data is used to derive a set of constraints for the

model that characterize the class-specific expectations for

the distribution. Csiszar (1996) provides a good tutorial

introduction to maximum entropy techniques.

Bayesian networks are the most well known

representative of statistical learning algorithms. A

comprehensive book on Bayesian networks is Jensen’s

(1996). Thus, in this study, apart from our brief

description of Bayesian networks, we mainly refer to

more recent works.

5.1.1 Naive Bayes classifiers

Naive Bayesian networks (NB) are very simple

Bayesian networks which are composed of directed

acyclic graphs with only one parent (representing the

unobserved node) and several children (corresponding to

observed nodes) with a strong assumption of

independence among child nodes in the context of their

parent (Good, 1950).Thus, the independence model

(Naive Bayes) is based on estimating (Nilsson, 1965):

R=
()

()

() ()

() ()

() ()

() ()

|| |

| | |

r

r

P i P X iP i X P i P X i

P j X P j P X j P j P X j
= =

∏
∏

Comparing these two probabilities, the larger

probability indicates that the class label value that is

more likely to be the actual label (if R>1: predict i else

predict j). Cestnik et al (1987) first used the Naive Bayes

in ML community. Since the Bayes classification

algorithm uses a product operation to compute the

probabilities P(X, i), it is especially prone to being

unduly impacted by probabilities of 0. This can be

avoided by using Laplace estimator or m-esimate, by

adding one to all numerators and adding the number of

added ones to the denominator (Cestnik, 1990).

The assumption of independence among child nodes

is clearly almost always wrong and for this reason naive

Bayes classifiers are usually less accurate that other more

sophisticated learning algorithms (such ANNs).

However, Domingos & Pazzani (1997) performed a

large-scale comparison of the naive Bayes classifier with

state-of-the-art algorithms for decision tree induction,

instance-based learning, and rule induction on standard

benchmark datasets, and found it to be sometimes

superior to the other learning schemes, even on datasets

with substantial feature dependencies.

The basic independent Bayes model has been

modified in various ways in attempts to improve its

performance. Attempts to overcome the independence

assumption are mainly based on adding extra edges to

include some of the dependencies between the features,

for example (Friedman et al. 1997). In this case, the

network has the limitation that each feature can be

related to only one other feature. Semi-naive Bayesian

classifier is another important attempt to avoid the

independence assumption. (Kononenko, 1991), in which

attributes are partitioned into groups and it is assumed

that xi is conditionally independent of xj if and only if

they are in different groups.

The major advantage of the naive Bayes classifier is

its short computational time for training. In addition,

since the model has the form of a product, it can be

converted into a sum through the use of logarithms - with

significant consequent computational advantages. If a

feature is numerical, the usual procedure is to discretize

it during data pre-processing (Yang & Webb, 2003),

although a researcher can use the normal distribution to

calculate probabilities (Bouckaert, 2004).

5.2 Bayesian Networks

A Bayesian Network (BN) is a graphical model for

probability relationships among a set of variables

(features) (see Figure 6). The Bayesian network structure

S is a directed acyclic graph (DAG) and the nodes in S

are in one-to-one correspondence with the features X.

The arcs represent casual influences among the features

while the lack of possible arcs in S encodes conditional

independencies. Moreover, a feature (node) is

conditionally independent from its non-descendants

given its parents (X1 is conditionally independent from X2

258 Informatica 31 (2007) 249–268 S.B. Kotsiantis

given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of

X1, X2, X3).

Figure 6. The structure of a Bayes Network

Typically, the task of learning a Bayesian network

can be divided into two subtasks: initially, the learning of

the DAG structure of the network, and then the

determination of its parameters. Probabilistic parameters

are encoded into a set of tables, one for each variable, in

the form of local conditional distributions of a variable

given its parents. Given the independences encoded into

the network, the joint distribution can be reconstructed

by simply multiplying these tables. Within the general

framework of inducing Bayesian networks, there are two

scenarios: known structure and unknown structure.

In the first scenario, the structure of the network is

given (e.g. by an expert) and assumed to be correct. Once

the network structure is fixed, learning the parameters in

the Conditional Probability Tables (CPT) is usually

solved by estimating a locally exponential number of

parameters from the data provided (Jensen, 1996). Each

node in the network has an associated CPT that describes

the conditional probability distribution of that node given

the different values of its parents.

In spite of the remarkable power of Bayesian

Networks, they have an inherent limitation. This is the

computational difficulty of exploring a previously

unknown network. Given a problem described by n

features, the number of possible structure hypotheses is

more than exponential in n. If the structure is unknown,

one approach is to introduce a scoring function (or a

score) that evaluates the “fitness” of networks with

respect to the training data, and then to search for the

best network according to this score. Several researchers

have shown experimentally that the selection of a single

good hypothesis using greedy search often yields

accurate predictions (Heckerman et al. 1999),

(Chickering, 2002). In Figure 7 there is a pseudo-code

for training BNs.

Within the score & search paradigm, another

approach uses local search methods in the space of

directed acyclic graphs, where the usual choices for

defining the elementary modifications (local changes)

that can be applied are arc addition, arc deletion, and arc

reversal. Acid and de Campos (2003) proposed a new

local search method, restricted acyclic partially directed

graphs, which uses a different search space and takes

account of the concept of equivalence between network

structures. In this way, the number of different

configurations of the search space is reduced, thus

improving efficiency.

Initialize an empty Bayesian network
G containing n nodes (i.e., a BN with n
nodes but no edges)
1. Evaluate the score of G: Score(G)
2. G’ = G
3. for i = 1 to n do
4. for j = 1 to n do
5. if i • j then
6. if there is no edge between the

nodes i and j in G• then
7. Modify G’ by adding an edge between

the nodes i and j in G• such that i
is a parent of j: (i • j)

8. if the resulting G’ is a DAG then
9. if (Score(G’) > Score(G)) then
10. G = G’
11. end if
12. end if
13. end if
14. end if
15. G’ = G
16. end for
17. end for

Figure 7. Pseudo-code for training BN

 A BN structure can be also found by learning the

conditional independence relationships among the

features of a dataset. Using a few statistical tests (such as

the Chi-squared and mutual information test), one can

find the conditional independence relationships among

the features and use these relationships as constraints to

construct a BN. These algorithms are called CI-based

algorithms or constraint-based algorithms. Cowell (2001)

has shown that for any structure search procedure based

on CI tests, an equivalent procedure based on

maximizing a score can be specified.

A comparison of scoring-based methods and CI-

based methods is presented in (Heckerman et al., 1999).

Both of these approaches have their advantages and

disadvantages. Generally speaking, the dependency

analysis approach is more efficient than the search &

scoring approach for sparse networks (networks that are

not densely connected). It can also deduce the correct

structure when the probability distribution of the data

satisfies certain assumptions. However, many of these

algorithms require an exponential number of CI tests and

many high order CI tests (CI tests with large condition-

sets). Yet although the search & scoring approach may

not find the best structure due to its heuristic nature, it

works with a wider range of probabilistic models than the

dependency analysis approach. Madden (2003) compared

the performance of a number of Bayesian Network

Classifiers. His experiments demonstrated that very

similar classification performance can be achieved by

classifiers constructed using the different approaches

described above.

The most generic learning scenario is when the

structure of the network is unknown and there is missing

data. Friedman & Koller (2003) proposed a new

approach for this task and showed how to efficiently

compute a sum over the exponential number of networks

that are consistent with a fixed order over networks.

Using a suitable version of any of the model types

mentioned in this review, one can induce a Bayesian

Network from a given training set. A classifier based on

the network and on the given set of features X1,X2, ... Xn,

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 259

returns the label c, which maximizes the posterior

probability p(c | X1, X2, ... Xn).

Bayesian multi-nets allow different probabilistic

dependencies for different values of the class node

(Jordan, 1998). This suggests that simple BN classifiers

should work better when there is a single underlying

model of the dataset and multi-net classifier should work

better when the underlying relationships among the

features are very different for different classes (Cheng

and Greiner, 2001).

The most interesting feature of BNs, compared to

decision trees or neural networks, is most certainly the

possibility of taking into account prior information about

a given problem, in terms of structural relationships

among its features. This prior expertise, or domain

knowledge, about the structure of a Bayesian network

can take the following forms:

1. Declaring that a node is a root node, i.e., it has no

parents.

2. Declaring that a node is a leaf node, i.e., it has no

children.

3. Declaring that a node is a direct cause or direct

effect of another node.

4. Declaring that a node is not directly connected to

another node.

5. Declaring that two nodes are independent, given a

condition-set.

6. Providing partial nodes ordering, that is, declare that

a node appears earlier than another node in the

ordering.

7. Providing a complete node ordering.

A problem of BN classifiers is that they are not

suitable for datasets with many features (Cheng et al.,

2002). The reason for this is that trying to construct a

very large network is simply not feasible in terms of time

and space. A final problem is that before the induction,

the numerical features need to be discretized in most

cases.

6 Instance-based learning

Another category under the header of statistical

methods is Instance-based learning. Instance-based

learning algorithms are lazy-learning algorithms

(Mitchell, 1997), as they delay the induction or

generalization process until classification is performed.

Lazy-learning algorithms require less computation time

during the training phase than eager-learning algorithms

(such as decision trees, neural and Bayes nets) but more

computation time during the classification process. One

of the most straightforward instance-based learning

algorithms is the nearest neighbour algorithm. Aha

(1997) and De Mantaras and Armengol (1998) presented

a review of instance-based learning classifiers. Thus, in

this study, apart from a brief description of the nearest

neighbour algorithm, we will refer to some more recent

works.

k-Nearest Neighbour (kNN) is based on the principle

that the instances within a dataset will generally exist in

close proximity to other instances that have similar

properties (Cover and Hart, 1967). If the instances are

tagged with a classification label, then the value of the

label of an unclassified instance can be determined by

observing the class of its nearest neighbours. The kNN

locates the k nearest instances to the query instance and

determines its class by identifying the single most

frequent class label. In Figure 8, a pseudo-code example

for the instance base learning methods is illustrated.

procedure InstanceBaseLearner(Testing
Instances)

for each testing instance
{
find the k most nearest instances of
the training set according to a
distance metric
Resulting Class= most frequent class
label of the k nearest instances
}

Figure 8. Pseudo-code for instance-based learners

In general, instances can be considered as points

within an n-dimensional instance space where each of the

n-dimensions corresponds to one of the n-features that

are used to describe an instance. The absolute position of

the instances within this space is not as significant as the

relative distance between instances. This relative distance

is determined by using a distance metric. Ideally, the

distance metric must minimize the distance between two

similarly classified instances, while maximizing the

distance between instances of different classes. Many

different metrics have been presented. The most

significant ones are presented in Table 3.

Minkowsky: D(x,y)=

1/

1

r
m

r

i i

i

x y
=

−
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Manhattan: D(x,y)=
1

m

i i

i

x y
=

−∑

Chebychev: D(x,y)=
1

max
m

i i
i

x y
=

−

Euclidean: D(x,y)=

1/ 2

2

1

m

i i

i

x y
=

−
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Camberra: D(x,y)=
1

m
i i

i i i

x y

x y=

−

+
∑

Kendall’s Rank Correlation:

D(x,y)=
1

1

2
1 () ()

(1)

m i

i j i j

i j j

sign x x sign y y
m m

−

= =

− − −
−
∑∑

Table 3. Approaches to define the distance between

instances (x and y)

For more accurate results, several algorithms use

weighting schemes that alter the distance measurements

and voting influence of each instance. A survey of

weighting schemes is given by (Wettschereck et al.,

1997).

The power of kNN has been demonstrated in a

number of real domains, but there are some reservations

about the usefulness of kNN, such as: i) they have large

260 Informatica 31 (2007) 249–268 S.B. Kotsiantis

storage requirements, ii) they are sensitive to the choice

of the similarity function that is used to compare

instances, iii) they lack a principled way to choose k,

except through cross-validation or similar,

computationally-expensive technique (Guo et al. 2003).

The choice of k affects the performance of the kNN

algorithm. Consider the following reasons why a k-

nearest neighbour classifier might incorrectly classify a

query instance:

• When noise is present in the locality of the query

instance, the noisy instance(s) win the majority vote,

resulting in the incorrect class being predicted. A

larger k could solve this problem.

• When the region defining the class, or fragment of

the class, is so small that instances belonging to the

class that surrounds the fragment win the majority

vote. A smaller k could solve this problem.

Wettschereck et al. (1997) investigated the behavior

of the kNN in the presence of noisy instances. The

experiments showed that the performance of kNN was

not sensitive to the exact choice of k when k was large.

They found that for small values of k, the kNN algorithm

was more robust than the single nearest neighbour

algorithm (1NN) for the majority of large datasets tested.

However, the performance of the kNN was inferior to

that achieved by the 1NN on small datasets (<100

instances).

Okamoto and Yugami (2003) represented the

expected classification accuracy of k-NN as a function of

domain characteristics including the number of training

instances, the number of relevant and irrelevant

attributes, the probability of each attribute, the noise rate

for each type of noise, and k. They also explored the

behavioral implications of the analyses by presenting the

effects of domain characteristics on the expected

accuracy of k-NN and on the optimal value of k for

artificial domains.

The time to classify the query instance is closely

related to the number of stored instances and the number

of features that are used to describe each instance. Thus,

in order to reduce the number of stored instances,

instance-filtering algorithms have been proposed (Kubat

and Cooperson, 2001). Brighton & Mellish (2002) found

that their ICF algorithm and RT3 algorithm (Wilson &

Martinez, 2000) achieved the highest degree of instance

set reduction as well as the retention of classification

accuracy: they are close to achieving unintrusive storage

reduction. The degree to which these algorithms perform

is quite impressive: an average of 80% of cases are

removed and classification accuracy does not drop

significantly. One other choice in designing a training set

reduction algorithm is to modify the instances using a

new representation such as prototypes (Sanchez et al.,

2002).

Breiman (1996) reported that the stability of nearest

neighbor classifiers distinguishes them from decision

trees and some kinds of neural networks. A learning

method is termed "unstable" if small changes in the

training-test set split can result in large changes in the

resulting classifier.

As we have already mentioned, the major

disadvantage of instance-based classifiers is their large

computational time for classification. A key issue in

many applications is to determine which of the available

input features should be used in modeling via feature

selection (Yu & Liu, 2004), because it could improve the

classification accuracy and scale down the required

classification time. Furthermore, choosing a more

suitable distance metric for the specific dataset can

improve the accuracy of instance-based classifiers.

7 Support Vector Machines

Support Vector Machines (SVMs) are the newest

supervised machine learning technique (Vapnik, 1995).

An excellent survey of SVMs can be found in (Burges,

1998), and a more recent book is by (Cristianini &

Shawe-Taylor, 2000). Thus, in this study apart from a

brief description of SVMs we will refer to some more

recent works and the landmark that were published

before these works. SVMs revolve around the notion of a

“margin”—either side of a hyperplane that separates two

data classes. Maximizing the margin and thereby creating

the largest possible distance between the separating

hyperplane and the instances on either side of it has been

proven to reduce an upper bound on the expected

generalisation error.

If the training data is linearly separable, then a pair

),(bw exists such that

Nb

Pb

ii

T

ii

T

∈−≤+

∈≥+

xxw

xxw

 allfor ,1

 allfor ,1

with the decision rule given by

)sgn()(, bf T

b += xwxw where w is termed the

weight vector and b the bias (or b− is termed the

threshold).

 It is easy to show that, when it is possible to linearly

separate two classes, an optimum separating hyperplane

can be found by minimizing the squared norm of the

separating hyperplane. The minimization can be set up as

a convex quadratic programming (QP) problem:

.,,1,1)(subject to

2

1
)(Minimize

2

,

liby i

T

i

b

K=≥+

=Φ

xw

ww
w (1)

In the case of linearly separable data, once the

optimum separating hyperplane is found, data points that

lie on its margin are known as support vector points and

the solution is represented as a linear combination of

only these points (see Figure 9). Other data points are

ignored.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 261

hyperplane

optimal

Maximum

margin

optimal

Maximum

margin

optimal

Maximum

margin

hyperplane

hyperplane

Figure 9. Maximum Margin

Therefore, the model complexity of an SVM is

unaffected by the number of features encountered in the

training data (the number of support vectors selected by

the SVM learning algorithm is usually small). For this

reason, SVMs are well suited to deal with learning tasks

where the number of features is large with respect to the

number of training instances.

A general pseudo-code for SVMs is illustrated in

Figure 10.

1) Introduce positive Lagrange
multipliers, one for each of the
inequality constraints (1). This
gives Lagrangian:

() ∑∑
==

+−⋅−≡
N

i

i

N

i

iiiP bwxywL
11

2

2

1
αα

2) Minimize PL with respect to w,

b. This is a convex quadratic
programming problem.

3) In the solution, those points

for which 0>iα are called “support

vectors”

Figure 10. Pseudo-code for SVMs

Even though the maximum margin allows the SVM

to select among multiple candidate hyperplanes, for

many datasets, the SVM may not be able to find any

separating hyperplane at all because the data contains

misclassified instances. The problem can be addressed by

using a soft margin that accepts some misclassifications

of the training instances (Veropoulos et al. 1999). This

can be done by introducing positive slack variables

Nii ,...,1, =ξ in the constraints, which then become:

,0

11

11

≥

−=+−≤−⋅

+=−+≥−⋅

ξ

ξ

ξ

ii

ii

yforbxw

yforbxw

Thus, for an error to occur the corresponding iξ must

exceed unity, so ∑i iξ is an upper bound on the number

of training errors. In this case the Lagrangian is:

(){ } ∑∑∑ −+−−⋅−+≡
i

ii

i

iiii

i

iP bwxyCwL ξµξαξ 1
2

1 2

where the iµ are the Lagrange multipliers introduced to

enforce positivity of the iξ .

Nevertheless, most real-world problems involve non-

separable data for which no hyperplane exists that

successfully separates the positive from negative

instances in the training set. One solution to the

inseparability problem is to map the data onto a higher-

dimensional space and define a separating hyperplane

there. This higher-dimensional space is called the

transformed feature space, as opposed to the input space

occupied by the training instances.

With an appropriately chosen transformed feature

space of sufficient dimensionality, any consistent training

set can be made separable. A linear separation in

transformed feature space corresponds to a non-linear

separation in the original input space. Mapping the data

to some other (possibly infinite dimensional) Hilbert

space H as .: HRd →Φ Then the training algorithm

would only depend on the data through dot products in

H, i.e. on functions of the form)()(ji xx Φ⋅Φ . If there

were a “kernel function” K such

that)()(),(jiji xxxxK Φ⋅Φ= , we would only need

to use K in the training algorithm, and would never need

to explicitly determine Φ . Thus, kernels are a special

class of function that allow inner products to be

calculated directly in feature space, without performing

the mapping described above (Scholkopf et al. 1999).

Once a hyperplane has been created, the kernel function

is used to map new points into the feature space for

classification.

The selection of an appropriate kernel function is

important, since the kernel function defines the

transformed feature space in which the training set

instances will be classified. Genton (2001) described

several classes of kernels, however, he did not address

the question of which class is best suited to a given

problem. It is common practice to estimate a range of

potential settings and use cross-validation over the

training set to find the best one. For this reason a

limitation of SVMs is the low speed of the training.

Selecting kernel settings can be regarded in a similar way

to choosing the number of hidden nodes in a neural

network. As long as the kernel function is legitimate, a

SVM will operate correctly even if the designer does not

know exactly what features of the training data are being

used in the kernel-induced transformed feature space.

Some popular kernels are the following:

(1) ()P
yxyxK 1),(+⋅= ,

(2)

22
2

),(
σyx

eyxK
−−

= ,

(3) ()P
yxyxK δκ −⋅= tanh),(

Training the SVM is done by solving Nth

dimensional QP problem, where N is the number of

samples in the training dataset. Solving this problem in

262 Informatica 31 (2007) 249–268 S.B. Kotsiantis

standard QP methods involves large matrix operations, as

well as time-consuming numerical computations, and is

mostly very slow and impractical for large problems.

Sequential Minimal Optimization (SMO) is a simple

algorithm that can, relatively quickly, solve the SVM QP

problem without any extra matrix storage and without

using numerical QP optimization steps at all (Platt,

1999). SMO decomposes the overall QP problem into QP

sub-problems. Keerthi and Gilbert (2002) suggested two

modified versions of SMO that are significantly faster

than the original SMO in most situations.

Finally, the training optimization problem of the

SVM necessarily reaches a global minimum, and avoids

ending in a local minimum, which may happen in other

search algorithms such as neural networks. However, the

SVM methods are binary, thus in the case of multi-class

problem one must reduce the problem to a set of multiple

binary classification problems. Discrete data presents

another problem, although with suitable rescaling good

results can be obtained.

8 Discussion

Supervised machine learning techniques are

applicable in numerous domains. A number of ML

application oriented papers can be found in (Saitta and

Neri, 1998) and (Witten and Frank, 2005). Below, we

present our conclusions about the use of each technique.

Discussions of all the pros and cons of each individual

algorithms and empirical comparisons of various bias

options are beyond the scope of this paper; as the choice

of algorithm always depends on the task at hand.

However, we hope that the following remarks can help

practitioners not to select a wholly inappropriate

algorithm for their problem.

Generally, SVMs and neural networks tend to

perform much better when dealing with multi-

dimensions and continuous features. On the other hand,

logic-based systems tend to perform better when dealing

with discrete/categorical features. For neural network

models and SVMs, a large sample size is required in

order to achieve its maximum prediction accuracy

whereas NB may need a relatively small dataset.

SVMs are binary algorithm, thus we made use of

error-correcting output coding (ECOC), or, in short, the

output coding approach, to reduce a multi-class problem

to a set of multiple binary classification problems

(Crammer & Singer, 2002). Output coding for multi-

class problems is composed of two stages. In the training

stage, we construct multiple independent binary

classifiers, each of which is based on a different partition

of the set of the labels into two disjointed sets. In the

second stage, the classification part, the predictions of

the binary classifiers are combined to extend a prediction

on the original label of a test instance.

There is general agreement that k-NN is very

sensitive to irrelevant features: this characteristic can be

explained by the way the algorithm works. Moreover, the

presence of irrelevant features can make neural network

training very inefficient, even impractical.

Bias measures the contribution to error of the central

tendency of the classifier when trained on different data

(Bauer & Kohavi, 1999). Variance is a measure of the

contribution to error of deviations from the central

tendency. Learning algorithms with a high-bias profile

usually generate simple, highly constrained models

which are quite insensitive to data fluctuations, so that

variance is low. Naive Bayes is considered to have high

bias, because it assumes that the dataset under

consideration can be summarized by a single probability

distribution and that this model is sufficient to

discriminate between classes. On the contrary,

algorithms with a high-variance profile can generate

arbitrarily complex models which fit data variations more

readily. Examples of high-variance algorithms are

decision trees, neural networks and SVMs. The obvious

pitfall of high-variance model classes is overfitting.

Most decision tree algorithms cannot perform well

with problems that require diagonal partitioning. The

division of the instance space is orthogonal to the axis of

one variable and parallel to all other axes. Therefore, the

resulting regions after partitioning are all

hyperrectangles. The ANNs and the SVMs perform well

when multicollinearity is present and a nonlinear

relationship exists between the input and output features.

Lazy learning methods require zero training time

because the training instance is simply stored. Naive

Bayes methods also train very quickly since they require

only a single pass on the data either to count frequencies

(for discrete variables) or to compute the normal

probability density function (for continuous variables

under normality assumptions). Univariate decision trees

are also reputed to be quite fast—at any rate, several

orders of magnitude faster than neural networks and

SVMs.

Naive Bayes requires little storage space during both

the training and classification stages: the strict minimum

is the memory needed to store the prior and conditional

probabilities. The basic kNN algorithm uses a great deal

of storage space for the training phase, and its execution

space is at least as big as its training space. On the

contrary, for all non-lazy learners, execution space is

usually much smaller than training space, since the

resulting classifier is usually a highly condensed

summary of the data. Moreover, Naive Bayes and the

kNN can be easily used as incremental learners whereas

rule algorithms cannot. Naive Bayes is naturally robust to

missing values since these are simply ignored in

computing probabilities and hence have no impact on the

final decision. On the contrary, kNN and neural networks

require complete records to do their work.

Moreover, kNN is generally considered intolerant of

noise; its similarity measures can be easily distorted by

errors in attribute values, thus leading it to misclassify a

new instance on the basis of the wrong nearest neighbors.

Contrary to kNN, rule learners and most decision trees

are considered resistant to noise because their pruning

strategies avoid overfitting the data in general and noisy

data in particular.

What is more, the number of model or runtime

parameters to be tuned by the user is an indicator of an

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 263

algorithm’s ease of use. As expected, neural networks

and SVMs have more parameters than the remaining

techniques. The basic kNN has usually only a single

parameter (k) which is relatively easy to tune.

Logic-based algorithms are all considered very easy

to interpret, whereas neural networks and SVMs have

notoriously poor interpretability. k-NN is also considered

to have very poor interpretability because an unstructured

collection of training instances is far from readable,

especially if there are many of them. While

interpretability concerns the typical classifier generated

by a learning algorithm, transparency refers to whether

the principle of the method is easily understood. A

particularly eloquent case is that of k-NN; while the

resulting classifier is not quite interpretable, the method

itself is quite transparent because it appeals to the

intuition of human users, who spontaneously reason in a

similar manner. Similarly, Naive Bayes' is very

transparent, as it is easily grasped by users like

physicians who find that probabilistic explanations

replicate their way of diagnosing (Kononenko, 1993).

Similarly, Naive Bayes' explanations in terms of the sum

of information gains is very transparent, as it is easily

grasped by users like physicians who find that

explanations replicate their way of diagnosing

(Kononenko, 1993).

Finally, decision trees and NB generally have

different operational profiles, when one is very accurate

the other is not and vice versa. On the contrary, decision

trees and rule classifiers have a similar operational

profile. SVM and ANN have also a similar operational

profile. No single learning algorithm can uniformly

outperform other algorithms over all datasets. Features of

learning techniques are compared in Table 4 (from

evidence of existing empirical and theoretical studies).

 Decision

Trees

Neural

Networks

Naïve

Bayes

kNN SVM Rule-

learners

Accuracy in general ** *** * ** **** **

Speed of learning with

respect to number of

attributes and the number of

instances

*** * **** **** * **

Speed of classification **** **** **** * **** ****

Tolerance to missing values *** * **** * ** **

Tolerance to irrelevant

attributes

*** * ** ** **** **

Tolerance to redundant

attributes

** ** * ** *** **

Tolerance to highly

interdependent attributes (e.g.

parity problems)

** *** * * *** **

Dealing with

discrete/binary/continuous

attributes

**** ***(not

discrete)

***(not

continuous)

***(not

directly

discrete)

**(not

discrete)

***(not

directly

continuous)

Tolerance to noise ** ** *** * ** *

Dealing with danger of

overfitting

** * *** *** ** **

Attempts for incremental

learning

** *** **** **** ** *

Explanation

ability/transparency of

knowledge/classifications

**** * **** ** * ****

Model parameter handling *** * **** *** * ***

Table 4. Comparing learning algorithms (**** stars represent the best and * star the worst performance)

When faced with the decision “Which algorithm will

be most accurate on our classification problem?”, the

simplest approach is to estimate the accuracy of the

candidate algorithms on the problem and select the one

that appears to be most accurate. The concept of

combining classifiers is proposed as a new direction for

the improvement of the performance of individual

classifiers. The goal of classification result integration

algorithms is to generate more certain, precise and

accurate system results. Numerous methods have been

suggested for the creation of ensemble of classifiers

(Dietterich, 2000). Although or perhaps because many

methods of ensemble creation have been proposed, there

is as yet no clear picture of which method is best (Villada

and Drissi, 2002). Thus, an active area of research in

supervised learning is the study of methods for the

construction of good ensembles of classifiers.

Mechanisms that are used to build ensemble of classifiers

include: i) using different subsets of training data with a

single learning method, ii) using different training

parameters with a single training method (e.g., using

264 Informatica 31 (2007) 249–268 S.B. Kotsiantis

different initial weights for each neural network in an

ensemble) and iii) using different learning methods.

9 Conclusions

This paper describes the best-known supervised

techniques in relative detail. We should remark that our

list of references is not a comprehensive list of papers

discussing supervised methods: our aim was to produce a

critical review of the key ideas, rather than a simple list

of all publications which had discussed or made use of

those ideas. Despite this, we hope that the references

cited cover the major theoretical issues, and provide

access to the main branches of the literature dealing with

such methods, guiding the researcher in interesting

research directions.

The key question when dealing with ML

classification is not whether a learning algorithm is

superior to others, but under which conditions a

particular method can significantly outperform others on

a given application problem. Meta-learning is moving in

this direction, trying to find functions that map datasets

to algorithm performance (Kalousis and Gama, 2004). To

this end, meta-learning uses a set of attributes, called

meta-attributes, to represent the characteristics of

learning tasks, and searches for the correlations between

these attributes and the performance of learning

algorithms. Some characteristics of learning tasks are:

the number of instances, the proportion of categorical

attributes, the proportion of missing values, the entropy

of classes, etc. Brazdil et al. (2003) provided an

extensive list of information and statistical measures for

a dataset.

After a better understanding of the strengths and

limitations of each method, the possibility of integrating

two or more algorithms together to solve a problem

should be investigated. The objective is to utilize the

strengthes of one method to complement the weaknesses

of another. If we are only interested in the best possible

classification accuracy, it might be difficult or impossible

to find a single classifier that performs as well as a good

ensemble of classifiers. Despite the obvious advantages,

ensemble methods have at least three weaknesses. The

first weakness is increased storage as a direct

consequence of the requirement that all component

classifiers, instead of a single classifier, need to be stored

after training. The total storage depends on the size of

each component classifier itself and the size of the

ensemble (number of classifiers in the ensemble). The

second weakness is increased computation because in

order to classify an input query, all component classifiers

(instead of a single classifier) must be processed. The last

weakness is decreased comprehensibility. With

involvement of multiple classifiers in decision-making, it

is more difficult for non-expert users to perceive the

underlying reasoning process leading to a decision. A

first attempt for extracting meaningful rules from

ensembles was presented in (Wall et al, 2003).

For all these reasons, the application of ensemble

methods is suggested only if we are only interested in the

best possible classification accuracy. Another time-

consuming attempt that tried to increase the classification

accuracy without decreasing comprehensibility is the

wrapper feature selection procedure (Guyon & Elissee,

2003). Theoretically, having more features should result

in more discriminating power. However, practical

experience with machine learning algorithms has shown

that this is not always the case. Wrapper methods wrap

the feature selection around the induction algorithm to be

used, using cross-validation to predict the benefits of

adding or removing a feature from the feature subset

used.

Finally, many researchers in machine learning are

accustomed to dealing with flat files and algorithms that

run in minutes or seconds on a desktop platform. For

these researchers, 100,000 instances with two dozen

features is the beginning of the range of “very large”

datasets. However, the database community deals with

gigabyte databases. Of course, it is unlikely that all the

data in a data warehouse would be mined simultaneously.

Most of the current learning algorithms are

computationally expensive and require all data to be

resident in main memory, which is clearly untenable for

many realistic problems and databases. An orthogonal

approach is to partition the data, avoiding the need to run

algorithms on very large datasets. Distributed machine

learning involves breaking the dataset up into subsets,

learning from these subsets concurrently and combining

the results (Basak and Kothari, 2004). Distributed agent

systems can be used for this parallel execution of

machine learning processes (Klusch et al., 2003). Non-

parallel machine learning algorithms can still be applied

on local data (relative to the agent) because information

about other data sources is not necessary for local

operations. It is the responsibility of agents to integrate

the information from numerous local sources in

collaboration with other agents.

References
[1] Acid, S. and de Campos. L.M. (2003). Searching

for Bayesian Network Structures in the Space of

Restricted Acyclic Partially Directed Graphs.

Journal of Artificial Intelligence Research 18: 445-

490.

[2] Aha, D. (1997). Lazy Learning. Dordrecht: Kluwer

Academic Publishers.

[3] An, A., Cercone, N. (1999), Discretization of

continuous attributes for learning classification

rules. Third Pacific-Asia Conference on

Methodologies for Knowledge Discovery & Data

Mining, 509-514.

[4] An, A., Cercone, N. (2000), Rule Quality Measures

Improve the Accuracy of Rule Induction: An

Experimental Approach, Lecture Notes in

Computer Science, Volume 1932, Pages 119-129.

[5] Auer P. & Warmuth M. (1998). Tracking the Best

Disjunction. Machine Learning 32: 127–150.

[6] Baik, S. Bala, J. (2004), A Decision Tree Algorithm

for Distributed Data Mining: Towards Network

Intrusion Detection, Lecture Notes in Computer

Science, Volume 3046, Pages 206 – 212.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 265

[7] Barto, A. G. & Sutton, R. (1997). Introduction to

Reinforcement Learning. MIT Press.

[8] Batista, G., & Monard, M.C., (2003), An Analysis

of Four Missing Data Treatment Methods for

Supervised Learning, Applied Artificial

Intelligence, vol. 17, pp.519-533.

[9] Basak., J., Kothari, R. (2004), A Classification

Paradigm for Distributed Vertically Partitioned

Data. Neural Computation, 16(7):1525-1544.

[10] Blum, A. (1997), Empirical Support for Winnow

and Weighted-Majority Algorithms: Results on a

Calendar Scheduling Domain, Machine Learning,

Volume 26, Issue 1, Pages 5-23.

[11] Bonarini, A. (2000), An Introduction to Learning

Fuzzy Classifier Systems, Lecture Notes in

Computer Science, Volume 1813, Pages 83-92.

[12] Bouckaert, R. (2003). Choosing between two

learning algorithms based on calibrated tests. Proc

20th Int Conf on Machine Learning, pp. 51-58.

Morgan Kaufmann.

[13] Bouckaert, R. (2004), Naive Bayes Classifiers That

Perform Well with Continuous Variables, Lecture

Notes in Computer Science, Volume 3339, Pages

1089 – 1094.

[14] Brazdil P., Soares C. and Da Costa J. (2003),

Ranking Learning Algorithms: Using IBL and

Meta-Learning on Accuracy and Time Results,

Machine Learning, 50: 251-277.

[15] Breiman L., Friedman J.H., Olshen R.A., Stone C.J.

(1984) Classification and Regression Trees,

Wadsforth International Group.

[16] Breiman, L., Bagging Predictors. Machine

Learning, 24 (1996) 123-140.

[17] Breslow, L. A. & Aha, D. W. (1997). Simplifying

decision trees: A survey. Knowledge Engineering

Review 12: 1–40.

[18] Brighton, H. & Mellish, C. (2002), Advances in

Instance Selection for Instance-Based Learning

Algorithms. Data Mining and Knowledge

Discovery 6: 153–172.

[19] Bruha. I. (2000), From machine learning to

knowledge discovery: Survey of preprocessing and

postprocessing. , Intelligent Data Analysis, Vol. 4,

pp. 363-374.

[20] Burges, C. (1998). A tutorial on support vector

machines for pattern recognition. Data Mining and

Knowledge Discovery. 2(2):1-47.

[21] Camargo, L. S. & Yoneyama, T. (2001).

Specification of Training Sets and the Number of

Hidden Neurons for Multilayer Perceptrons. Neural

Computation 13: 2673–2680.

[22] Castellano, G., Fanelli, A., & Pelillo, M. (1997). An

iterative pruning algorithm for feedforward neural

networks. IEEE Transactions on Neural Networks

8: 519–531.

[23] Cestnik, B., Kononenko, I., Bratko, I., (1987).

Assistant 86: A knowledge elicitation tool for

sophisticated users. In: Proceedings of the Second

European Working Session on Learning. pp. 31-45.

[24] Cestnik, B. (1990), Estimating probabilities: A

crucial task in machine learning. In Proceedings of

the European Conference on Artificial Intelligence,

pages 147-149.

[25] Cheng, J. & Greiner, R. (2001). Learning Bayesian

Belief Network Classifiers: Algorithms and System,

In Stroulia, E. & Matwin, S. (ed.), AI 2001, 141-

151, LNAI 2056,

[26] Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W.

(2002). Learning Bayesian networks from data: An

information-theory based approach. Artificial

Intelligence 137: 43–90.

[27] Chickering, D.M. (2002). Optimal Structure

Identification with Greedy Search. Journal of

Machine Learning Research, Vol. 3, pp 507-554.

[28] Clark, P., Niblett, T. (1989), The CN2 Induction

Algorithm. Machine Learning, 3(4):261-283.

[29] Cohen, W. (1995), Fast Effective Rule Induction. In

Proceedings of ICML-95, 115-123.

[30] Cover, T., Hart, P. (1967), Nearest neighbor pattern

classification. IEEE Transactions on Information

Theory, 13(1): 21–7.

[31] Cowell, R.G. (2001). Conditions Under Which

Conditional Independence and Scoring Methods

Lead to Identical Selection of Bayesian Network

Models. Proc. 17th International Conference on

Uncertainty in Artificial Intelligence.

[32] Crammer, K. & Singer, Y. (2002). On the

Learnability and Design of Output Codes for

Multiclass Problems. Machine Learning 47: 201–

233.

[33] Cristianini, N. & Shawe-Taylor, J. (2000). An

Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge

University Press, Cambridge.

[34] Csiszar, I. (1996), Maxent, mathematics, and

information theory. In K. Hanson and R. Silver,

editors, Maximum Entropy and Bayesian Methods.

Kluwer Academic Publishers.

[35] De Mantaras & Armengol E. (1998). Machine

learning from examples: Inductive and Lazy

methods. Data & Knowledge Engineering 25: 99-

123.

[36] Dietterich, T. G. (1998), Approximate Statistical

Tests for Comparing Supervised Classification

Learning Algorithms. Neural Computation, 10(7)

1895–1924.

[37] Dietterich, T. G. (2000). An Experimental

Comparison of Three Methods for Constructing

Ensembles of Decision Trees: Bagging, Boosting,

and Randomization, Machine Learning 40: 139–

157.

[38] Domingos, P. & Pazzani, M. (1997). On the

optimality of the simple Bayesian classifier under

zero-one loss. Machine Learning 29: 103-130.

[39] Dutton, D. & Conroy, G. (1996), A review of

machine learning, Knowledge Engineering Review

12: 341-367.

[40] Eklund, P., Hoang, A. (2002), A Performance

Survey of Public Domain Machine Learning

Algorithms Technical Report, School of

Information Technology, Griffith University.

266 Informatica 31 (2007) 249–268 S.B. Kotsiantis

[41] Elomaa, T. & Rousu, J. (1999). General and

Efficient Multisplitting of Numerical Attributes.

Machine Learning 36, 201–244.

[42] Elomaa T. (1999). The biases of decision tree

pruning strategies. Lecture Notes in Computer

Science 1642. Springer, pp. 63-74.

[43] Flach, P.A. & Lavrac, N. (2000). The role of feature

construction in inductive rule learning. De Raedt, L.

& Kramer, S., (ed.), In Proceedings of the

ICML2000 workshop on Attribute-Value Learning

and Relational Learning: Bridging the Gap,

Stanford University.

[44] Frank, E. & Witten, I. (1998). Generating Accurate

Rule Sets Without Global Optimization. In Shavlik,

J., (eds), Machine Learning: Proceedings of the

Fifteenth International Conference, Morgan

Kaufmann Publishers, San Francisco, CA.

[45] Freund, Y. & Schapire, R. (1999), Large Margin

Classification Using the Perceptron Algorithm,

Machine Learning 37: 277–296.

[46] Friedman, J.H. (1989), Regularized Discriminant

Analysis. Journal of the American Statistical

Association.

[47] Friedman, N., Geiger, D. & Goldszmidt M. (1997).

Bayesian network classifiers. Machine Learning 29:

131-163.

[48] Friedman, N. & Koller, D. (2003). Being Bayesian

About Network Structure: A Bayesian Approach to

Structure Discovery in Bayesian Networks.

Machine Learning 50(1): 95-125.

[49] Furnkranz, J. (1997). Pruning algorithms for rule

learning. Machine Learning 27: 139-171.

[50] Furnkranz, J. (1999). Separate-and-Conquer Rule

Learning. Artificial Intelligence Review 13: 3-54.

[51] Furnkranz, J. (2001). Round Robin Rule Learning.

In Proceedings of the 18th International

Conference on Machine Learning (ICML-01), 146-

153.

[52] Furnkranz, J., Flach, P. (2005), ROC ‘n’ Rule

Learning—Towards a Better Understanding of

Covering Algorithms, Machine Learning, Volume

58 (1), pp. 39 – 77.

[53] Gama, J. & Brazdil, P. (1999). Linear Tree.

Intelligent Data Analysis 3: 1-22

[54] Gehrke, J., Ramakrishnan, R. & Ganti, V. (2000),

RainForest—A Framework for Fast Decision Tree

Construction of Large Datasets, Data Mining and

Knowledge Discovery, Volume 4, Issue 2 - 3, Jul

2000, Pages 127 - 162

[55] Genton, M. (2001). Classes of Kernels for Machine

Learning: A Statistics Perspective. Journal of

Machine Learning Research 2: 299-312.

[56] Good I.J. (1950), Probability and the Weighing of

Evidence, London, Charles Grin.

[57] Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.

(2003), KNN Model-Based Approach in

Classification, Lecture Notes in Computer Science,

Volume 2888, Pages 986 – 996.

[58] Guyon, I, Elissee, A. (2003), An introduction to

variable and feature selection. Journal of Machine

Learning Research, 3:1157 1182.

[59] Hunt E., Martin J & Stone P. (1966), Experiments

in Induction, New York, Academic Press.

[60] Heckerman, D., Meek, C. & Cooper, G. (1999). A

Bayesian Approach to Causal Discovery. In

Glymour, C. and G. Cooper, (ed.), Computation,

Causation, and Discovery, 141-165. MIT Press.

[61] Hodge, V., Austin, J. (2004), A Survey of Outlier

Detection Methodologies, Artificial Intelligence

Review, Volume 22, Issue 2, pp. 85-126.

[62] Japkowicz N. and Stephen, S. (2002), The Class

Imbalance Problem: A Systematic Study Intelligent

Data Analysis, Volume 6, Number 5.

[63] Jain, A.K., Murty, M. N., and Flynn, P. (1999),

Data clustering: A review, ACM Computing

Surveys, 31(3): 264–323.

[64] Jensen, F. (1996). An Introduction to Bayesian

Networks. Springer.

[65] Jordan, M.I. (1998), Learning in Graphical Models.

MIT Press, Cambridge, MA.

[66] Kalousis A., Gama, G. (2004), On Data and

Algorithms: Understanding Inductive Performance,

Machine Learning 54: 275–312.

[67] Keerthi, S. & Gilbert, E. (2002). Convergence of a

Generalized SMO Algorithm for SVM Classifier

Design. Machine Learning 46: 351–360.

[68] Kivinen, J. (2002), Online Learning of Linear

Classifiers, Advanced Lectures on Machine

Learning: Machine Learning Summer School 2002,

Australia, February 11-22, ISSN: 0302-9743, pp.

235 – 257.

[69] Klusch, M., Lodi, S., Moro, G. (2003), Agent-

Based Distributed Data Mining: The KDEC

Scheme. In Intelligent Information Agents: The

AgentLink Perspective, LNAI 2586, pages 104-

122. Springer.

[70] Kon, M. & Plaskota, L. (2000), Information

complexity of neural networks, Neural Networks

13: 365–375.

[71] Kononenko, I. (1991), "Semi-Naive Bayesian

Classifier", In Proceedings of the sixth European

Working Session on Learning, 206-219.

[72] Kononenko, I. (1993), Inductive and Bayesian

learning in medical diagnosis. Applied Artificial

Intelligence 7(4): 317-337.

[73] Kononenko, I. (1994), ‘Estimating attributes:

analysis and extensions of Relief’. In: L. De Raedt

and F. Bergadano (eds.): Machine Learning:

ECML-94. pp. 171–182, Springer Verlag.

[74] Kubat, Miroslav Cooperson Martin (2001), A

reduction technique for nearest-neighbor

classification: Small groups of examples. Intell.

Data Anal. 5(6): 463-476.

[75] Lindgren, T. (2004), Methods for Rule Conflict

Resolution, Lecture Notes in Computer Science,

Volume 3201, Pages 262 – 273.

[76] Littlestone, N. & Warmuth, M. (1994). The

weighted majority algorithm. Information and

Computation 108(2): 212–261.

[77] Liu, H. and H. Motoda (2001), Instance Selection

and Constructive Data Mining, Kluwer, Boston.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 267

[78] Madden, M. (2003), The Performance of Bayesian

Network Classifiers Constructed using Different

Techniques, Proceedings of European Conference

on Machine Learning, Workshop on Probabilistic

Graphical Models for Classification, pp. 59-70.

[79] Markovitch S. & Rosenstein D. (2002), Feature

Generation Using General Construction Functions,

Machine Learning 49: 59-98.

[80] McSherry, D. (1999). Strategic induction of

decision trees. Knowledge-Based Systems, 12(5-

6):269-275.

[81] Michalski, R. S., Chilausky, R. L. (1980), Learning

by being told and learning from examples: an

experimental comparison of the two methods of

knowledge acquisition in the context of developing

and expert system for soybean disease diagnosis.

Policy Analysis and Information Systems, 4(2)..

[82] Mika, S., Rätsch, G., Weston, J., Schölkopf, B. and

Müller, K.-R. (1999), Fisher discriminant analysis

with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and

S. Douglas, editors, Neural Networks for Signal

Processing IX, pages 41-48. IEEE.

[83] Mitchell, T. (1997). Machine Learning. McGraw

Hill.

[84] Murthy, (1998), Automatic Construction of

Decision Trees from Data: A Multi-Disciplinary

Survey, Data Mining and Knowledge Discovery 2:

345–389.

[85] Nadeau, C. and Bengio, Y. (2003), Inference for the

generalization error. In Machine Learning 52:239–

281.

[86] Neocleous, C. & Schizas, C., (2002), Artificial

Neural Network Learning: A Comparative Review,

LNAI 2308, pp. 300–313, Springer-Verlag Berlin

Heidelberg.

[87] Nilsson, N.J. (1965). Learning machines. New

York: McGraw-Hill.

[88] Olcay Taner Yıldız, Onur Dikmen (2007), Parallel

univariate decision trees, Pattern Recognition

Letters, Volume 28 , Issue 7 (May 2007), Pages:

825-832.

[89] Okamoto, S., Yugami, N. (2003), Effects of domain

characteristics on instance-based learning

algorithms. Theoretical Computer Science 298,

207-233.

[90] Parekh, R., and Yang, J., and Honavar, V. (2000),

Constructive Neural Network Learning Algorithms

for Pattern Classification. IEEE Transactions on

Neural Networks. 11(2), pp. 436-451.

[91] Platt, J. (1999). Using sparseness and analytic QP to

speed training of support vector machines. In

Kearns, M., Solla, S. & Cohn, D. (ed.), Advances in

neural information processing systems. MIT Press.

[92] Quinlan, J.R. (1979), "Discovering rules by

induction from large collections of examples", D.

Michie ed., Expert Systems in the Microelectronic

age, pp. 168-201.

[93] Quinlan, J.R. (1993). C4.5: Programs for machine

learning. Morgan Kaufmann, San Francisco

[94] Rastogi, R. & Shim, K. (2000). PUBLIC: A

Decision Tree Classifier that Integrates Building

and Pruning. Data Mining and Knowledge

Discovery 4: 315–344.

[95] Reinartz T. (2002), A Unifying View on Instance

Selection, Data Mining and Knowledge Discovery,

6, 191–210, Kluwer Academic Publishers.

[96] Robert, J., Howlett L.C.J. (2001), Radial Basis

Function Networks 2: New Advances in Design.

[97] Rosenblatt, F., (1962), Principles of

Neurodynamics. Spartan, New York

[98] Roy, A. (2000), On connectionism, rule extraction,

and brain-like learning. IEEE Transactions on

Fuzzy Systems, 8(2): 222-227.

[99] Ruggieri, S. (2001). Efficient C4.5. IEEE

Transactions on Knowledge and Data Engineering

14 (2): 438-444.

[100] Rumelhart, D. E., Hinton, G. E., Williams, R. J.

(1986), Learning internal representations by error

propagation. In: Rumelhart D E, McClelland J L et

al. (eds.) Parallel Distributed Processing:

Explorations in the Microstructure of Cognition.

MIT Press, Cambridge, MA, Vol. 1, pp. 318-362.

[101] Saad, D. (1998). Online learning in neural

networks. London: Cambridge University Press.

[102] Sanchez, J., Barandela, R., Ferri, F. (2002), On

Filtering the Training Prototypes in Nearest

Neighbour Classification, Lecture Notes in

Computer Science, Volume 2504, Pages 239 - 248

[103] Scholkopf, C., Burges, J. C. & Smola, A. J.

(1999). Advances in Kernel Methods. MIT Press.

[104] Setiono R. and Loew, W. K. (2000), FERNN:

An algorithm for fast extraction of rules from

neural networks, Applied Intelligence 12, 15-25.

[105] Siddique, M. N. H. and Tokhi, M. O. (2001),

Training Neural Networks: Backpropagation vs.

Genetic Algorithms, IEEE International Joint

Conference on Neural Networks, Vol. 4, pp. 2673–

2678.

[106] Smyth, P, Goodman, R., M. (1990), Rule

induction using information theory, In G. Piatetsky

Shapiro and W. Frawley (eds), Knowledge

Discovery in Databases, MIT Press.

[107] Tjen-Sien, L., Wei-Yin, L., Yu-Shan, S. (2000).

A Comparison of Prediction Accuracy, Complexity,

and Training Time of Thirty-Three Old and New

Classification Algorithms. Machine Learning 40:

203–228.

[108] Utgoff, P., Berkman, N., Clouse, J. (1997),

Decision Tree Induction Based on Efficient Tree

Restructuring, Machine Learning, Volume 29, Issue

1, Pages: 5 – 44.

[109] Vapnik, V. (1995), The Nature of Statistical

Learning Theory}. Springer Verlag.

[110] Veropoulos, K., Campbell, C. & Cristianini, N.

(1999). Controlling the Sensitivity of Support

Vector Machines. In Proceedings of the

International Joint Conference on Artificial

Intelligence (IJCAI99).

[111] Villada, R. & Drissi, Y. (2002). A Perspective

View and Survey of Meta-Learning. Artificial

Intelligence Review 18: 77–95.

268 Informatica 31 (2007) 249–268 S.B. Kotsiantis

[112] Vivarelli, F. & Williams, C. (2001). Comparing

Bayesian neural network algorithms for classifying

segmented outdoor images. Neural Networks 14:

427-437.

[113] Wall, R., Cunningham, P., Walsh, P., Byrne, S.

(2003), Explaining the output of ensembles in

medical decision support on a case by case basis,

Artificial Intelligence in Medicine, Vol. 28(2) 191-

206.

[114] Weigend, A. S., Rumelhart, D. E., & Huberman,

B. A. (1991). Generalization by weight-elimination

with application to forecasting. In: R. P. Lippmann,

J. Moody, & D. S. Touretzky (eds.), Advances in

Neural Information Processing Systems 3, San

Mateo, CA: Morgan Kaufmann.

[115] Wettschereck, D., Aha, D. W. & Mohri, T.

(1997). A Review and Empirical Evaluation of

Feature Weighting Methods for a Class of Lazy

Learning Algorithms. Artificial Intelligence Review

10:1–37.

[116] Wilson, D. R. & Martinez, T. (2000). Reduction

Techniques for Instance-Based Learning

Algorithms. Machine Learning 38: 257–286.

[117] Witten, I. & Frank, E. (2005), "Data Mining:

Practical machine learning tools and techniques",

2nd Edition, Morgan Kaufmann, San Francisco,

2005.

[118] Yam, J. & Chow, W. (2001). Feedforward

Networks Training Speed Enhancement by Optimal

Initialization of the Synaptic Coefficients. IEEE

Transactions on Neural Networks 12: 430-434.

[119] Yang, Y., Webb, G. (2003), On Why

Discretization Works for Naive-Bayes Classifiers,

Lecture Notes in Computer Science, Volume 2903,

Pages 440 – 452.

[120] Yen, G. G. and Lu, H. (2000), Hierarchical

genetic algorithm based neural network design, In:

IEEE Symposium on Combinations of Evolutionary

Computation and Neural Networks, pp. 168–175.

[121] Yu, L., Liu, H. (2004), Efficient Feature

Selection via Analysis of Relevance and

Redundancy, JMLR, 5(Oct):1205-1224.

[122] Zhang, G. (2000), Neural networks for

classification: a survey. IEEE Transactions on

Systems, Man, and Cybernetics, Part C 30(4): 451-

462.

[123] Zhang, S., Zhang, C., Yang, Q. (2002). Data

Preparation for Data Mining. Applied Artificial

Intelligence, Volume 17, pp. 375 - 381.

[124] Zheng, Z. (1998). Constructing conjunctions

using systematic search on decision trees.

Knowledge Based Systems Journal 10: 421–430.

[125] Zheng, Z. (2000). Constructing X-of-N

Attributes for Decision Tree Learning. Machine

Learning 40: 35–75.

[126] Zhou, Z. (2004), Rule Extraction: Using Neural

Networks or For Neural Networks?, Journal of

Computer Science and Technology, Volume 19,

Issue 2, Pages: 249 – 253.

