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Abstract: Electroencephalography (EEG) is a complicated, non-stationary signal that requires ex-
tensive preprocessing and feature extraction approaches to be accurately analyzed. In recent times,
Deep learning (DL) has shown great promise in exploiting the characteristics of EEG signals as
it can learn relevant features from raw data autonomously. Although studies involving DL have
become more common in the last two years, the topic of whether DL truly delivers advantages over
conventional Machine learning (ML) methodologies remains unsettled. This study aims to present
a detailed overview of the main challenges in the field of seizure detection, prediction, and classifi-
cation utilizing EEG data, and the approaches taken to solve them using ML and DL methods. A
systematic review was conducted surveying peer-reviewed publications published between 2017 and
16 July 2022 using two scientific databases (Web of Science and Scopus) totaling 6822 references after
discarding duplicate publications. Whereas 2262 articles were screened based on the title, abstract,
and keywords, only 214 were eligible for full-text assessment. A total of 91 papers have been included
in this survey after meeting the eligible inclusion and exclusion criteria. The most significant findings
from the review are summarized, and several important concepts involving ML and DL for seizure
detection, prediction, and classification are discussed in further depth. This review aims to learn
more about the different approaches for identifying different types and stages of epileptic seizures,
which may then be employed to enhance the lives of epileptic patients in the future, as well as aid
experts in the field.

Keywords: EEG; machine learning; deep learning; epilepsy; seizure detection; systematic review

1. Introduction

Epilepsy is a brain disease defined primarily by frequent and unpredictable disrup-
tions in normal brain activity, causing what is known as epileptic seizures. An epileptic
seizure is a brief period of abnormally elevated or concurrent neuronal activity in the brain.
Some epileptic seizures may involve unprovoked jerking of the body or loss of awareness,
both of which can result in a brief loss of control that can lead to serious injury or even
death while performing dangerous activities. According to the World Health Organization
(WHO), epilepsy affects over 50 million individuals worldwide, who are of varying ages
and ethnic backgrounds [1]. For around 70% of this population, anti-epilepsy medications
can keep their conditions under control [2]. On the other hand, around 30% are poorly
responsive to such treatments, requiring surgical intervention [3]. As reported, there is
a significant shortage of neurologists and the neurological services needed by these per-
sonnel, which can greatly affect the timely delivery of treatment to patients [4]. Therefore,
automatic recognition of seizures is vital in order to aid neurologists and allied healthcare
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providers expedite the process of patient diagnosis, and prescribe the required treatments,
if applicable.

Electroencephalography (EEG) was first introduced by Hans Berger to measure the
electrical activity of different regions in the human brain, which can be particularly useful
in the diagnosis of different types of brain disorders. Such a tool helps neurologists
study the fluctuations in the brain that occur during epileptic seizures. The analysis of
these fluctuations can aid in accurately distinguishing between healthy and unhealthy
functionalities of the brain. To properly analyze epileptic seizures, long-term EEG data
spanning days, weeks, and occasionally months is required, which demands a significant
amount of human time and effort. In the literature, different epileptic seizure recognition
tasks, using machine learning (ML) and deep learning (DL) approaches, are categorized
as follows:

• Seizure detection is where a model identifies the presence or lack of seizures or
abnormal activities after analyzing EEG signals.

• Seizure prediction refers to the ability of a model to predict the likelihood of the
occurrences of imminent epileptic seizures early on, by identifying the patient’s preic-
tal state.

• Seizure/Phase classification is where a model is able to categorize different types of
seizures or seizure phases. In other scenarios, the classification term is used for classify-
ing different seizure phases, known in the literature as EEG/phase classification.

Figure 1 depicts an abstract overview of detection, prediction, and classification tasks
of epileptic seizure recognition tasks. Seizure detection can be performed when it is required
to review EEG recordings and evaluate seizure occurrences. The presence of a seizure is
detected in Figure 1a. Seizure prediction is often required to alert health care professionals
or patients of upcoming seizures, so safety precautions can be taken before the seizure’s
commencement. As shown in Figure 1b, an alarm is raised before seizure onset. Seizure
classification can assist neurologists determine the type of the seizure, which can be crucial
for taking the appropriate medical decision [2]. As shown in Figure 1c, the seizure is
identified and its type classified.
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Figure 1. Different recognition tasks for diagnosis of epilepsy: (a) seizure detection; (b) seizure
prediction; (c) seizure type classification.
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In order to comprehend the relationship between these tasks and epileptic seizure
analysis, it is necessary to recognize the various phases of an epileptic seizure using EEG as
shown in Figure 2. The interictal phase describes the baseline state of the brain between
two consecutive seizures, when no seizure activity is present [5]. The preictal phase is
theoretically the period before the brain enters into a seizure; however, it is not considered
a part of a seizure. According to Frank et al. [6], the preictal phase is usually accompanied
by an inexplicable sensation that can last several hours or even days before the seizure.
Around 20% of the patients experience this phase symptomatically, which may help them
take precautions prior to seizure onset. The following phase is the ictal phase that most
epileptic patients encounter. This phase is characterized by intense electrical activity in the
brain and is usually symptomatic. Most of the ictal phases last between 30 s and 2 min. The
postictal phase is considered the recovery period after a seizure ceases before returning to
the baseline.
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Considering the significance of recognizing epileptic seizures and their various phases,
the notion of automating the procedure began to develop. The first paper using a computer
algorithm to detect seizures was published in 1991 [7], while the first paper employing
artificial neural networks was in 1996 [8]. ML has made substantial progress in tackling
research problems during the 1990s, coinciding with the rise of computers. Artificial neural
networks algorithm (ANN) is a DL approach, a subfield of ML, consisting of a sequence of
algorithms that replicate the way the human brain works.

Due to increased computer processing power and storage, ML and DL algorithms can
process large amounts of data, enabling the discovery and extraction of usable knowledge.
Figure 3 demonstrates the rise in the use of EEG recordings in the study of epileptic seizures.
Therefore, this paper aims to present a systematic literature review (SLR) covering the
challenges, solutions, and employed methods for epileptic seizure detection, prediction,
and classification using EEG signals.
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The rest of the paper is structured as follows: Section 2 presents a background on the
main steps for both machine learning and deep learning architectures. Section 3 describes
the research methodology adopted for planning and executing this SLR. Section 4 presents
the results acquired from the survey and highlights the journals where most of the articles
are published. Section 5 discusses the challenges, solutions, and employed methods. In
Section 6, public datasets that can be used for epileptic seizure research are described
in detail. Finally, Section 7 concludes this review by highlighting the contributions and
summarizing the concluding remarks.

2. Background on Machine Learning (ML) and Deep Learning (DL)

ML is the process of training a computer to use its previous exposure to data to
solve problems that are presented to it. Because of the current availability of lower-cost
processing power and memory, the concept of applying ML in several domains to solve
problems faster than humans has attracted many researchers. Due to the availability of
such resources, it is now possible to process and analyze extremely vast amounts of data
to reveal insights from and correlations between the data that are difficult to see with the
naked eye. ML cognitive behavior is built on algorithms that allow the machine to form
abstractions based on prior knowledge. For ML to work effectively, it relies on manually
created, handcrafted, features to be extracted from the data, which necessitates experts in
the domain of the problem. DL has a more advanced approach that allows automatic data
extraction relying on multi-layer structures. Generally, the performance of ML or DL is
measured through a classification algorithm. Even though ML has a variety of classification
techniques, and the results are relatively good, DL is taking over.

In the field of epileptic seizure applications, building a model involves multiple steps,
which are EEG data acquisition, data preprocessing, development of a machine learning
or deep learning model, and a final performance evaluation step. During the EEG data
acquisition step, electrodes are placed on the human head to capture EEG signals through
special equipment. This data is composed of different readings for each electrode, usually
called a recording channel, and is stored for relevant use. The data preprocessing step
involves data cleaning such as removing artifacts, removing noise from the signal, omitting
missing records, and data normalization.

The feature engineering step in the ML approach is divided into two stages: feature
extraction and feature selection. During the feature extraction step, handcrafted features
are created from the raw data. These features shall be meaningful for the ML model; thus, it
is important that they are discriminative and non-redundant so the data can be thoroughly
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exploited. In the feature selection step, all these features are combined, and the best features
are selected while also reducing the number of features (dimensionality reduction). The
final step is the classification step, where a classifier is used to categorize the data.

In contrast to ML’s approach, DL uses a deep neural network to perform the entire
process. It makes use of several nonlinear activation units distributed across multiple
layers. When the processing of a unit is finished, its output is fed into the next one. Moving
through the hierarchical data structure, each level processes its data into a more abstract
form that may be fed to the next level, which performs the automatic feature extraction and
feature selection steps. The final layer is typically used as a classifier, with the activated
unit representing the decision to be made. Figure 4 presents the classical model of the
automated epileptic seizure recognition framework for both ML and DL.
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A related topic to ML and DL is transfer learning (TL), which aims to transfer the
knowledge obtained from learning one problem to another problem that is different but
still related, thus avoiding the learning process all over again. This is done by re-using
already pre-trained models for the new task, which greatly speeds up the training process.
TL is split into 3 categories, which are inductive TL, transductive TL, and unsupervised TL.
Selecting one of these categories solely depends on whether the data labels are available
or not for both the source and target domain. The reader can refer to [9] for more details
about transfer learning techniques.

3. Research Methodology

A comprehensive and systematic literature review approach has been frequently
employed to find, assess, and interpret significant research on certain subjects, research
scopes, or phenomena. Reviewing studies with the same scope, this strategy seeks to
assess the challenges addressed and solutions implemented. This review was conducted
systematically while conforming to preferred reporting items for systematic reviews and
meta-analysis (PRISMA) guidelines [10]. PRISMA is an evidence-based minimum set of
items for reporting in systematic reviews and meta-analyses. A planning protocol has
been formed and consists of 4 stages: (1) research questions, (2) execution procedure,
(3) screening for eligible studies, and (4) data extraction process.
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3.1. Research Questions

It is necessary to understand the research questions and their significance before
carrying out the execution procedure. The following are the research questions regarding
the employment of ML and DL techniques in the field of epileptic seizures using EEG:

• RQ1: Is the recognition task involved in detection, prediction, or classification of
epileptic seizures?

• RQ2: What are the ML/DL techniques applied to achieve any of these tasks?
• RQ3: What is the data used to achieve any of these tasks?
• RQ4: What are the challenges present during the application of ML and DL techniques

to achieve these tasks?
• RQ5: How is ML/DL going to impact the clinical practice of epileptic seizure analysis?

3.2. Execution Procedure

The execution procedure was carried out on 16 July 2022. It was performed using a
string of terms that are commonly used in the literature related to the required tasks in
the field (e.g., detection, prediction, classification, EEG, epileptic, seizure). For this SLR,
a specific combination of keywords is used to formulate the key term-based search for
the survey using Web of Science and Scopus databases, which is “EEG” AND “Epileptic”
AND “Seizure” AND (“Detection” OR “Classification” OR “Prediction”). Review articles,
books, editorials, and conference papers were excluded, in addition to any articles written
in any other language than English. Figure 5 shows the number of publications included
for full-text assessment (dark bar), and the remaining eligible publications to be reviewed
(light bar) for both the Web of Sciences and Scopus databases.
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3.3. Eligible Studies

In order to gather relevant data for this systematic literature review, all relevant papers
that addressed the research questions were examined. The number of eligible papers for
the study is extracted according to the following criteria:
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• Inclusion criteria

I1: Published in an indexed journal.
I2: Published between 2017 and the date of the execution procedure.
I3: Focuses on epileptic seizures through the application of EEG signals.
I4: The work is conducted using EEG on human brain signals.
I5: The type of EEG signal acquisition is either intracranial (iEEG) or scalp (sEEG).
I6: The full text of the paper is accessible.
I7: The work is empirical (not a survey or a review).

• Exclusion criteria

E1: Implemented techniques other than ML/DL.
E2: Used non-public datasets.
E3: Employed a non-supervised ML/DL learning technique.
E4: Involves analysis of other signal recording types besides EEG (MEG, MRI, etc.).
E5: Implementation offers no new state-of-art performance, no new methodology, or

just an application of ML/DL over EEG data.

• Data extraction fields

In order to synthesize and draw conclusions from the studies evaluated for eligibility,
relevant data shall be extracted and analyzed. The following data fields are extracted
during the process:

D1: The challenge that the paper aims to solve.
D2: Employed ML or DL technique, either classical or a combination of techniques.
D3: The feature engineering technique(s) used for signal processing.
D4: The epileptic seizure recognition task: whether detection, prediction, or classification.
D5: The dataset utilized for the performed task.

4. Results

In this section, the findings of the systematic literature review are presented. A total
of 8165 articles were collected according to the execution procedure. After removing
1343 duplicate articles, a total of 4560 articles remained to be initially screened. However,
since this SLR solely focused on the preceding 5 years, starting from year 2017 till the date
when the survey was conducted on 16 July 2022, the articles left for the first screening
stage were 2262. The first screening stage was performed by screening the titles, abstracts,
and keywords of the articles using Endnote software. During the screening process, if the
article matched any of the inclusion criteria (I1 to I7), it was included for full-text retrieval.
2043 articles did not meet all the inclusion criteria; thus, they were excluded.

In the second screening stage, 219 articles remained for assessment; however, 5 articles
could not be retrieved and were thus omitted, leaving 214 articles eligible for full-text as-
sessment. The remaining 214 articles were thoroughly inspected to ensure their compliance
with the eligibility criteria before deciding whether to include them for review or not. A
total of 123 publications were excluded since they met one or more of the exclusion criteria
(E1 to E5).

At the end of this stage, 91 articles were eligible for review, and the required data
according to the Data Extraction criteria (D1 to D5) was extracted from the full-text for
analysis. Figure 6 overviews the whole process of article searching and selection according
to the PRISMA protocol.
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4.1. Article Distribution among Journals and Publishers

The eligible articles chosen for the study are based on both supervised ML and
DL techniques applied to recognize epileptic seizures using EEG data published across
46 different journals, including engineering and bioinformatics specializations. Among
these journals, Biomedical Signal Processing is the top journal with 12 out of 91 publications,
followed by 5 publications for each of IEEE Access, Biocybernetics and Biomedical Engineering,
Computers in Biology and Medicine, Journal of Biomedical and Health Informatics, and Transactions
on Neural Systems and Rehabilitation Engineering. The published articles belong to a broad
range of journals including biomedical engineering, bioinformatics, neurosciences, signal
processing, and computer sciences, which focus on artificial intelligence applications.
In addition to IEEE Access, which is a multidisciplinary journal, some journals focus
on different engineering aspects such as Chaos, Solitons and Fractals, Sensors, and IEEE
Sensors. Publishers-wise, Elsevier has the greatest number of articles, with 36 publications
across 13 distinct journals, totaling 40% of the articles included in this review. IEEE
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follows with 26 publications across 11 different journals, and Springer comes next with
10 publications across 7 different journals. Figure 7 depicts all the included journals and
their corresponding publishers.
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4.2. Articles Distribution among Epileptic Seizure Recognition Tasks

After the analysis of all the eligible papers using the previous screening criteria in
Section 3.3, the number of articles for each of the detection, prediction, and classification
tasks is previewed in Figure 8. A summary of the recent work includes the number
of papers performing these tasks between 2017 and 16 July 2022. The analysis reveals
that the most recent work focuses on the seizure detection task, with a total number
of 38 publications. The seizure prediction task received attention as well, particularly
in 2021 with 10 publications, while both seizure detection and classification tasks are
gaining traction in 2022. The classification task statistics involve both seizure and seizure
phase classifications. Based on the executed survey, Table 1 lists the top 10 cited articles
performing the detection task on epileptic seizure data.
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Table 1. Overview of the top 10 cited papers for epileptic seizure recognition tasks.

Reference Title Publication Year Citations

[11] A Multivariate Approach for Patient-Specific EEG Seizure
Detection Using Empirical Wavelet Transform 2017 222

[12] Epileptic seizure detection based on EEG signals and CNN 2018 167

[13] Neonatal Seizure Detection Using Deep Convolutional Neural
Networks 2019 100

[14] Automated seizure detection using limited-channel EEG and
non-linear dimension reduction 2017 77

[15] Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern
and Convolutional Neural Network 2020 68

[16] Fuzzy distribution entropy and its application in automated seizure
detection technique 2018 64

[17] Epileptic Seizure Detection in EEG Signals Using a Unified
Temporal-Spectral Squeeze-and-Excitation Network 2020 45

[18] Generalized Stockwell transform and SVD-based epileptic seizure
detection in EEG using random forest 2018 40

[19] Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure
Detection 2019 36

[20] Adaptive Multi-Parent Crossover GA for Feature Optimization in
Epileptic Seizure Identification 2019 17

4.3. Article Distribution among Employed Machine Learning and Deep Learning Techniques

Figure 9 shows the number of eligible articles that employed either ML or DL tech-
niques for epileptic seizure detection, prediction, and classification tasks. This survey
shows that ML techniques were employed in many more publications than DL techniques
before 2021. One possible explanation for this is that ML algorithms are easier to build
and require less powerful hardware than DL techniques. Despite this, DL techniques are
gaining prevalence due to their high performance. Table 2 presents the top 5 cited articles
for both ML and DL techniques.
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Table 2. Overview of the top 10 cited articles employing ML and DL for recognition of different
epileptic seizures.

Group Title Task Classifier Year Citations

M
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ne

Le
ar

ni
ng

A Multivariate Approach for Patient-Specific
EEG Seizure Detection Using Empirical Wavelet

Transform [11]
Detection

RF, C4.5, FT,
BayesNet NB,

KNN
2017 222

Classification of epilepsy EEG signals using
DWT-based envelope analysis and neural

network ensemble [21]
Classification BPNN Ensemble 2017 123

Automated seizure detection using
limited-channel EEG and non-linear dimension

reduction [14]
Detection KNN 2017 77

Fuzzy distribution entropy and its application in
automated seizure detection technique [16] Detection KNN 2018 65

Generalized Stockwell transform and SVD-based
epileptic seizure detection in EEG using random

forest [18]
Detection RF 2018 40

D
ee

p
Le

ar
ni

ng

Epileptic seizure detection based on EEG signals
and CNN [12] Detection CNN 2018 167

Efficient Epileptic Seizure Prediction Based on
Deep Learning [22] Prediction Deep

CNN + BiLSTM 2019 130

Neonatal Seizure Detection Using Deep
Convolutional Neural Networks [13] Detection DCNN 2019 100

Epilepsy Seizure Prediction on EEG Using
Common Spatial Pattern and Convolutional

Neural Network [15]
Prediction CNN 2020 68

Epileptic Seizure Detection in EEG Signals Using
a Unified Temporal-Spectral

Squeeze-and-Excitation Network [17]
Detection CNN + MLP 2020 45

5. Discussion

Several studies have utilized EEG data either for the detection, prediction, or classifi-
cation of epileptic seizures. Many researchers have tried to interpret EEG recordings for
clinical and scientific purposes, with varying degrees of success. Throughout this section, a
summary of the challenges, solutions, and methods employed will be discussed.
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5.1. Discussion of the Challenges
5.1.1. EEG Signal Complexity and Data Transformation

EEG signals exhibit chaotic and non-linear dynamics, where subtle variations in
the signal cannot be detected through human-eye inspection. Additionally, scalp EEG
recordings (sEEG) are notorious for noises and artifacts due to slight motor movements
such as eye blinks, cardiac signals, and muscle movements [23]. To deal with these noises
and artifacts, preprocessing techniques are usually required to clean the signal.

Because of the way machine learning approaches function, providing EEG signals
directly impacts the ability to properly abstract meaningful descriptions from the sig-
nal; consequently, reliable handcrafted features must be extracted from the signal. These
features should be well correlated with different seizure phases to achieve optimal perfor-
mance. Current feature extraction methods involve transforming the signal into different
domains using different methods. These methods range from simple statistical analysis
to complex non-linear methods [24]. On the other hand, approaches that depend on deep
learning techniques do not require manually created features.

5.1.2. High Number of EEG Channels and Channel Optimization

EEG signals are multidimensional time-series data with various numbers of EEG
channels. Channels refer to the electrodes located on the scalp of the head or inside the
skull. Despite 64 channels being common in research, the number of EEG channels can vary
from as few as 2 channels up to 256 channels. The process of setting up many electrodes is
a tremendous and time-consuming task. Additionally, as the number of channels increases,
the computing power needed to store and process the data also increases, since more data
samples are collected over time.

Overfitting is another issue that may develop as a result of the use of excessive
redundant channels. A study has shown that a maximum number of 35 channels can be
enough for a full EEG montage [25], while other publications found that the number of
channels can even go down to 3 channels for epileptic seizure recognition while mitigating
such a phenomenon [26].

Moreover, due to physiological variances among subjects, there is considerable inter-
subject variability [27,28], rendering the reduced selected channels sub-optimal for most
individuals. Such an issue may hinder the performance of seizure recognition when tested
among various subjects. Therefore, selecting the appropriate channels that extrapolate
across the majority of the subjects is a challenging task.

5.1.3. Generalization Ability

Variability in signal patterns, physiological differences, and the scarcity of seizure
events in EEG data pose a difficulty for automated epileptic seizure models to operate
efficiently across different patients. Developing a patient-specific model requires prior
patient knowledge which can considerably improve overall seizure diagnosis performance,
especially if medical treatment is needed. Nevertheless, the performance of patient-specific
models when new unseen patient data is introduced is adversely impacted. This perfor-
mance loss is mainly due to the overfitting of the patient-specific model to the seen patient
data, leading to weak decision boundaries [29,30]. Such an approach obliges clinicians to
record new EEG data specific to new patients.

While generalization across different patients is favored, the tradeoff between accuracy
and generalization has always been an issue [31,32]. Additionally, the process of developing
a model for each patient is not scalable as the number of patients grows. Although model
generalization across large patient cohorts is a complex task, clinicians consider it more
practical, despite a marginal performance hit [32].

5.1.4. Data Imbalances

During an EEG recording session, seizure samples are significantly infrequent com-
pared to non-seizure ones. Since seizure samples represent the minority class, highly
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imbalanced data poses a challenge because most ML or DL models will demonstrate a bias
towards the majority class, and in severe circumstances may entirely overlook the minority
class. Several methods to mitigate the adverse effects of data imbalances will be discussed.

5.2. Discussion of the Solutions

This section aims to present the solutions offered by eligible articles in this survey to
provide insights into the methods and approaches used to resolve the previously mentioned
challenges. It is vital to note that several methods may be frequently utilized while yielding
different results. These results depend on the authors’ techniques and parameters, which
are not always reported, affecting the reproducibility of the results. Table 3 summarizes the
proposed solutions to the reviewed challenges in this survey.

Table 3. Overview of the proposed solutions to the reviewed challenges.

Challenge Solution

EEG Signal Complexity and Data
Transformation Signal engineering

High Number of EEG Channels/Channel
Optimization EEG channel reduction and attention

Generalization Ability
Adjustable training approaches, data

augmentation, and various learning and
training techniques

Data Imbalances Data resampling and class balancing

5.2.1. Signal Engineering

The transformation of the EEG signal is imperative to provide the necessary knowledge
and to improve the analysis feasibility for ML and DL models. By extracting various
features, the analysis of EEG signals can be performed using data from different signal
domains, such as time domain, frequency domain, and time-frequency domain features.
These features can also be categorized as linear and non-linear features [33]. Entropy is
another type of feature that can be extracted from various signal domains to measure the
irregularity and unpredictability of signal fluctuations. Additionally, complex techniques
such as wavelet analysis are often used to analyze EEG signals [34].

Time Domain Features

Statistical properties, such as mean, median, variance, standard deviation, skewness,
kurtosis, peak amplitude, minimum amplitude, peak to peak, and similar, are the simplest
features that may be derived from an EEG signal in the time domain [22,35–43]. Hjorth
parameters are based on the variance of the subsequent derivatives of the EEG signal.
The most used parameters are the first three derivatives of the signal, which are activity,
complexity, and mobility, measuring the variance, the changes in the frequency, and the
mean frequency, respectively [35,41,44–46]. Such statistical properties enable the epileptic
seizure recognition model to characterize the signal.

Other time domain features are energy, coefficient of variation, and peak-to-peak
amplitude. Energy represents the sum of square magnitudes of the amplitude of the signal;
coefficient of variation represents the ratio of dispersion; and peak amplitude measures
the deviation between the maximum and minimum peaks of a signal [35]. These features
may be used as an indicator for the variation in the activity of the EEG signals. Some
of these statistical features can also be extracted from MinMax histograms of the EEG
signal through quantifying spikes and sharp fluctuations to identify seizure events from
histogram bins [44]. In [15], common spatial pattern (CSP) paired with convolutional neural
networks (CNN) were proposed to predict seizures by distinguishing preictal from interictal
segments. CSP was used to extract features from several frequency sub-bands, which were
decomposed using wavelet packet decomposition. The purpose of CSP is to maximize the
variance of one class while minimizing the other’s, thus increasing the borderline between
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these classes. Afterward, the output is projected to form a covariance matrix. In [47],
an algorithm based on filter bank CSP was proposed to extract discriminative patterns
from raw signals. It was combined with 2D-CNN and layer-wise relevance propagation
(LRP) to extract features from the frequency sub-bands, and enable the interpretation of the
predictions through relevance scores, respectively.

Frequency Domain Features

Fast Fourier transform (FFT) is an efficient variant of discrete Fourier transform (DFT),
which is used to transform a raw EEG signal from the time domain to the frequency
domain. In [48], FFT was used to convert raw EEG signals to generate a matrix consisting
of the absolute values of frequency amplitudes. In [49], the raw multivariate signals were
transformed into spectrograms, where FFT is considered an essential computation part to
generate spectrograms. In [12,40], FFT was applied on windowed time segments from each
EEG channel to extract frequency information. In [20], FFT was used to handle narrow
band signals due to its speed and reliability. In [50], two architectural styles were used. The
first employs a variant of FFT named short-time Fourier transform (STFT) to convert the
raw signal into the time-frequency domain, while the second architecture utilizes both FFT
and principal component analysis (PCA) to convert the raw signal into separated time and
frequency domains. In [51], FFT was computed over the five main frequency ranges of the
EEG signal, ranging from delta to gamma bands. The aim of the study was to compare the
robustness of frequency domain features against time-frequency domain features.

Power spectral density (PSD) is a measure of the distribution of power of the dis-
crete frequencies that compose the signal retrieved by applying Welch’s FFT method.
In [13,14,20,35,52], PSD was used to analyze the frequency power in various brain states,
which have discriminative ability between seizures and non-seizures. In [53], PSD and
additional statistical features were applied after the signal was transformed into a time-
frequency image (TFI). Non-seizure activities had low PSD with a non-stationary pattern,
but seizure activities had high PSD values at certain frequencies with spike-wave patterns,
demonstrating the potential of PSD in detecting seizures. Other power spectral measures
include absolute and relative spectral powers, which were used to investigate the phase
shifts between interictal and preictal states of the brain [52,54].

Time-Frequency Domain Features

Time-frequency features include a variety of techniques for capturing various aspects
of EEG signal correlations. While some are theoretically linked, others are fundamentally
different yet equivalent in terms of the information they convey regarding brain activity.
Although time-frequency domain features provide more information compared to the
separated time and frequency features, the resolution of the information presented may be
compromised [55].

STFT overcomes some of the limitations of FFT as it calculates the frequency com-
ponents over uniform short window intervals (widowing), preserving the time domain
information for each window. In [56], STFT was used to transform the raw EEG signals into
the time-frequency domain, and then a 2D TFI was constructed to describe the EEG signal.
Local binary pattern (LBP) was applied over the images, revealing exceptional properties.
Multiple domain features were retrieved from the raw signal, STFT, FFT, and discrete
wavelet transformation (DWT) domains to provide multi-domain input data to produce a
fuller representation [57]. In [58,59], deep neural networks consisting of a CNN and a long
short-term memory recurrent neural network (LSTM-RNN) were employed to extract deep
features and classify different types of seizures with remarkable F1-scores. In [60], spectro-
grams were fed to a gated three-tower transformer network (GTN), where the analysis is
done time-wise, frequency-wise, and channel-wise. In [61], different pairs of window sizes
and overlap percentages were tested to find the optimal setting for maximizing information
with minimal redundancy.
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Spectrograms are created from STFT transformations, constructing TFIs that visualize
the frequency spectrums of a signal. This method can be beneficial when CNNs are
used as feature extractors, so 2D TFIs are fed to the network instead of 1D time-series
data [49]. A synchroextracting transform, an algorithm based on the Chirplet transform
(CT) that uses STFT [62], was introduced to extract both instantaneous amplitude and
frequency information. It was argued that the signal characterization in the frequency
domain becomes fuzzy due to the uniform interval of the time window required. The
proposed method claims to address STFT’s shortcomings in that area by improving the
performance of epileptic seizure classification.

Since Fourier transforms lack the ability to capture localized frequency variations, the
capacity to discern transient features over short periods is limited. Wavelet transforms
(WT) solve this problem by simultaneously analyzing the signal’s time and frequency
domains, allowing the extraction of local and transient components without compromising
resolution [57]. DWT is one of the most widely applied wavelet transforms in the field of
EEG signal analysis. In [20,35,63], DWT was used to obtain most of the brain’s rhythmic
frequencies. Wavelet coefficients, named detail and approximation coefficients were ex-
tracted to capture the low and high frequencies in the wavelet with a varying number of
filter banks.

Fine-tuning of DWT has also been performed by means of a weighted sliding window
method based on the rate of energy measured. In [37], this method has been applied to the
EEG signal while computing DWT to enhance the signal and suppress noisy components,
thus improving the accuracy of the trained model. In [64], soft thresholds were computed
based on each wavelet’s components, enhancing seizure zone localization. Redundancy
removed dual-tree DWT (RR-DTDWT) [65] was proposed to overcome the information
redundancy and the drawbacks of DWT. Dual-tree DWT (DTDWT) mitigates shift sensi-
tivity, poor directionality, and the loss of phase information that DWT lacks, minimizing
information loss. However, these benefits come at the expense of increasing information
redundancy, which may degrade the performance of the epileptic seizure model. Hence,
RR-DTDWT was developed to remove globally redundant information.

Wavelet packet decomposition (WPD) or wavelet packet transform (WPT) is a DWT
extension that can provide more detailed frequency resolution by creating wavelets with
full detail and approximation coefficients at each level. Conversely, DWT provides the same
number of detail coefficients at each level in addition to one approximate coefficient. This
difference enables detailed analysis of smaller frequencies. Additionally, it is not computa-
tionally expensive compared to continuous wavelet transform or Stockwell transform [16].
In [66], WPD was utilized to decompose the signal and reduce spatial redundancy and
losses, followed by an epilepsy locality preserving projection algorithm (E-LPP) to reduce
the dimensions of the extracted features. In [19], WPD was used to extract time-frequency
features as a part of the multi-view system. Throughout, frequency and time-frequency
features were combined into one framework to improve the generalizability of the seizure
detection model across different patients. In [67], WPT was applied to fractionally Fourier
transformed signals (FrFT), which expands the conventional Fourier transform with a
rotation angle that describes a blend of both the time and frequency domains of the signal.
Since FrFT and WPT were coupled, discriminative coefficients were obtained, resulting
in better performance results for recognizing epileptic seizures. In [68], WPD is used to
form vectors that are computed from each sub-band energy value across each channel.
The purpose of this approach is to build an information reconstruction space to capture
the subtle changes that occur during the preictal state, aiming to investigate the impact of
various features on the encoding of the graph network.

Frequency-slice wavelet transform (FSWT) was utilized to decompose the signal into
multiple sub-bands without requiring the design of any kind of bandpass filter banks,
which facilitates the extraction of arbitrary frequency information [69]. Since FSWT has
more adaptable time-frequency aggregation, the time-consuming procedure of creating
custom filter banks can be avoided. Tunable Q-factor wavelet transform (TQWT) is an
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upgraded variant of DWT that allows customizable filter sizes, enabling transformations
to be tuned based on the signal oscillatory characteristics. TQWT was used to decompose
the raw signal into several sub-bands, followed by extracting several fuzzy entropy fea-
tures [70] and Hjorth parameters [45]. This combination has enhanced the performance
of seizure classification. Unlike DWT variants, continuous wavelet transform (CWT) is
radically different as it deconstructs the signal across the entire time axis. Scalograms are
absolute values of CWT which are sensitive to noise and fluctuations in the EEG signal.
TFIs can be constructed from CWT coefficients, similar to STFT, providing a method which
leverages more seizure-related characteristics, thus improving seizure prediction accu-
racy [71–73]. While CWT provides higher spectral resolution than DWT variants, it is more
computationally expensive and produces redundant coefficients that increase the number
of features. Additionally, CWT tackles the STFT’s fixed window size that hinders its ability
to track signal dynamics. In [53], the decomposed coefficients were constructed in terms of
mean-standard deviation wavelet coefficients (MS-WTC) to reduce the dimension of the
generated features.

Another type of wavelet transforms, namely empirical wavelet transform (EWT), has
been employed. The main difference between EWT and DWT is that EWT decomposes
the signal using adaptive frequency boundaries for each wavelet based on the information
content, in contrast to DWT which uses fixed frequency bands [74]. In [75,76], experiments
involving DWT and EWT have shown that the adaptivity of EWT slightly improves seizure
detection since the DWT’s fixed filter band efficiency is limited. Although EWT showed
a significant improvement, its performance was still restrained by noisy and highly non-
stationary signals [77]. Hence, a Fourier-Bessel series expansion EWT (FBSE-EWT) was
proposed to overcome the drawback of standalone EWT. FBSE avoids the effect of widowing
for frequency representations, which reduces distortions of the analyzed signal in the
time domain. FBSE frequency representations require a coefficient number equal to the
length of the analyzed signal, whereas FFT requires only half of the signal length, which
results in greater frequency resolution, allowing minor fluctuations to be detected. In [11],
EWT was extended to multivariate signals, called 2D-EWT, which utilizes cross-channel
interdependence to recognize EEG seizures. The 2D-EWT decomposes signals into adaptive
frequency sub-bands and utilizes the Hilbert transform (HT) to extract instantaneous
features such as amplitudes, frequencies, and phases from each channel.

Stockwell transform (ST), commonly known as S-Transform, intertwines the capabili-
ties of both CWT and STFT. CWT is not scale-invariant, so phase information is distorted,
resulting in only locally referenced information [78]. ST excels at retaining the original
signal’s phase information in the spectral domain, allowing complex signals to be properly
characterized [79]. Furthermore, ST is less computationally expensive than CWT and
provides significantly higher decomposition resolution than both STFT and DWT. Despite
the advantages of ST, it afflicts the analysis when consecutive frequency components are
overlapping, and chirp-like signals occur during seizures [80]. Generalized Stockwell
transform (GST), accompanied by singular value decomposition (SVD), was presented to
effectively overcome the limitations of ST in distinguishing ictal periods [18]. SVD was
utilized as it is robust to noise, allowing useful information to be retrieved without using
any noise removal techniques.

Non-Linear Features

The dynamics of the brain are both nonlinear and complex. Nonlinear components
that cannot be broken down without affecting dynamics are considered complex. One of the
most widely used non-linear features for analyzing EEG signals is fractal systems. Fractal
systems consist of self-similar structures exhibiting behaviors from nature. Since the brain
is a conceptually fractal entity, fractal dimension (FD) analysis is useful in analyzing the
complexity of brain signals. Previous studies show that the self-similarity of brain waves
varies depending on the brain state. During ictal events, signals are more self-similar and
the degree of the fractal dimension differs across normal and epileptic patients depending
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on the signal duration [81–83]. Different fractal dimension algorithms that are commonly
employed are Higuchi fractal dimension (HFD), Petrosian fractal dimension (PFD), and
detrended fluctuation analysis (DFA). PFD is used to quantify the signal’s fluctuation and
self-similarity while also displaying superior temporal resolution over FFT [44]. HFD is a
particularly effective method for computing fractal dimensions since it is computationally
fast while providing low calculation errors [84]. In [44,51], DFA was utilized as it can
statistically quantify the self-affinity of non-stationary time-series signals through the
values of the Hurst exponent. The Hurst exponent, also called the self-similarity exponent,
reveals information about the signal fluctuation trend [85]. Line length (LL) is considered a
simpler variant of FD [86], which has shown promising results in identifying burst changes
in the signal that are commonly associated with seizures [35,76].

Empirical mode decomposition (EMD) decomposes non-stationary signals into a sum
of component functions called the intrinsic mode function (IMF), which extracts oscillatory
features that focus on subtle changes that occur in the signal [87]. In [88], both EMD
and DWT were employed to extract features from their decompositions. Instantaneous
energy, Teager energy, HFD, and PFD were extracted from each decomposed IMF and
wavelet. Alternatively, in [89], several statistical features were extracted. Combining
both EMD and DWT features yielded more information about the signal, resulting in
better seizure classification. In [90], EMD was utilized as it had been claimed to perform
better at denoising EEG signals. Several statistical features were extracted after rejecting
decomposed IMFs that were below a certain signal-to-noise ratio (SNR) threshold. Spectral
analysis showed that noisy high-frequency components of the signal had been removed
while still retaining important seizure information. Other features like ellipse area of
second-order difference plot (SODP) and fluctuation index were extracted from the signal
IMFs [91]. It was observed that ellipse areas related to ictal IMFs are more prominent
than the seizure-free IMFs due to the higher variation and fluctuation in the ictal IMFs.
This feature has demonstrated the capability to distinguish between ictal and interictal
events in phase space [92]. In [21], a wavelet-based envelope analysis (EA) method was
proposed. This method employs DWT instead of EMD for signal decomposition, followed
by applying envelope analysis using HT to the decomposed wavelets. Statistical features
were computed over both the raw signal and the envelopes. It was claimed that the
classification accuracy of the DWT-based EA method achieved slightly higher performance
than EMD-HT.

Non-linear mode decomposition (NMD) is more robust to noise than EMD as it
decomposes the signal adaptively by combining several time-frequency techniques. NMD
yields only the meaningful physical oscillations of the signal without information loss
in the form of non-linear mode (NM) sets. In [93], fractional central momentum (FCM),
paired with NMD, was utilized to extract features from the NMD domain. In addition to
its simplicity and fast computation speed, FCM demonstrated its capability to broaden the
classification-related information between ictal and non-ictal events. Wavelet scattering
transform (WST) algorithm is conceptually similar to CNN, but with fixed filter coefficients.
WST layers wavelet transform, nonlinear modulus, and averaging operators to process
the signal while providing translation-invariant time and frequency resolutions. In [94],
the authors exploited the similar-to-CNN functionality of WST to decompose the signal
into multiple sub-bands, from which several entropy features were extracted. The key
advantage of WST is that clinicians can interpret the extracted features.

Recurrence plots (RP) are a graphical approach that visualizes the non-linear nature of
a time-series signal through phase space. RP exploits the states of a dynamic system by
constructing a two-dimensional binary matrix that corresponds to multiple points in the
phase space trajectory that are roughly in the same region [95], thereby discovering hidden
recurring patterns in the provided signal. In [96], the EEG signal was transformed to RP
before being fed to an ensemble architecture of CNNs paired with a voting classifier. It was
claimed that the use of RP displayed high-performance results in exploiting the interclass
variability. The brain-rhythmic recurrence map (BRRM) [97] and unthresholded RP with
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fractal weighted LBP (URP-FWLBP) methods [98] were presented as improved versions
to offset the loss of dynamical information due to the binarization process of RP. In [97],
EEG signals are decomposed into three sub-bands and then transformed into images. The
images are fed to a CNN-based architecture for classification. In [98], FD and LBP are
combined to construct the images, followed by histogram analysis to extract feature values
resembling the signals. Linear discernment analysis (LDA) was used for dimensionality
reduction, and SVM was used for classification. The proposed method showed superior
performance in seven evaluation metrics.

Spatial covariance matrix is a similar technique that employs matrices that are symmet-
ric and positive definite (SPD), hence it belongs to the non-Euclidian Riemannian manifold.
These matrices are transferred to the Euclidean domain as vectors using Riemannian ge-
ometry. In [99], SPD was utilized and shown to be less prone to noise and outliers while
being able to identify seizures with high accuracy. In [100], the authors combined the
capabilities of Riemannian geometry and fractals using the Riemann–Liouville fractional
derivative (RLFD) operator to exploit the EEG signal in the continuous-time domain, re-
sulting in special models for healthy and epileptic patients. Ictal events were characterized
by histograms with heavy-tailed distributions.

The Mel-frequency cepstral coefficients (MFCC) technique is intensively used in speech
recognition and seismological applications, where cepstral coefficients are generated in the
log-spectrum domain. In [101], it was demonstrated that MFCC can be a valuable biomarker
for identifying preictal events at an early stage due to the high variation that occurs in the
feature maps. This representation is particularly important for seizure prediction tasks.
In [102], MFCCs were extracted and fed as features to a Generalized Regression Neural
Network (GRNN) with very excellent seizure classification performance.

Entropy Features

Entropy, which originated from information theory, is widely used to quantify the
amount of disorder and chaos in a system using distribution probabilities, and hence, it
can be used to measure the randomness of patterns in EEG signals. Some entropy features
can be directly calculated in the time domain, whereas others require the signal to be
transformed to the frequency domain or the wavelet domain.

Shannon’s entropy (ShEn) measures the uncertainty and randomness of time-series
data in correspondence to the logarithm of the number of possibilities. In [29], ShEn was
used to compute the uncertainty of data samples from an annotated pooling dataset. If
the entropy value is above a certain threshold, samples are not confidently identified by
the current iteration of the proposed algorithm, and further training is required. It has
also been applied to signal histogram data calculated via PSD to quantify the complexity
of the signal [13] and was used as one of the features in [52]. Spectral entropy (SEN),
commonly called power spectrum entropy, is calculated on the normalized PSD values
using classical Shannon’s entropy to quantify the spectral complexity of the signal in the
frequency domain [13,35,39,52]. In [48], it was observed that healthy patients had lower
median spectral entropy than epileptic patients.

Wavelet entropy (WE) is slightly similar to SEN; however, the wavelet decomposition
coefficients are used instead to compute the relative energies across EEG signal frequency
bands. WE evaluates stimuli responses in different frequency bands, with wider bands
resulting in high entropy values [103]. In [20,44,52], WE was used to quantify the behavior
of the EEG signals. Log Energy entropy (LogEn) is similar to Wavelet entropy, except that
it only employs the sum of logarithmic probabilities. In [52], LogEn was applied on raw
signals, while in [76] and [94], it was applied on the sub-bands of the DWT coefficients and
the sub-bands generated from the scattering wavelet transform, respectively. In both the
latter articles, LogEn contributed significantly to seizure detection.

Renyi’s entropy (REN) is a generalization of Shannon’s entropy. Mathematically, SEN
is considered a special case of Renyi’s entropy, where it differs from SEN in the lower
frequency bands while remaining similar in the higher frequency bands. In [62], REN
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was employed to calculate the energy concentration in the proposed methods, where a
lower REN value indicates a higher presence of energy concentration. In [39], along with
other time-frequency features, REN was used to differentiate between seizure and non-
seizure events. However, not much information was conveyed when REN was used in
standalone. In [56], a KECA, a variant of KPCA [46,104], was introduced, in which the
principal components are chosen based on their contribution degree to REN entropy.

Approximate entropy (ApEn) computes the irregularities in a signal without requiring
prior knowledge about the source of the data, making its applications nearly unlimited.
Sample entropy (SampEn) is considered an improvement over approximate entropy [105].
Furthermore, lower SampEn values imply that the signal is self-similar, whereas larger
values indicate higher complexity. It is claimed that signal complexity declines during
seizure activity, which means the measure of sample entropy can be a potential for seizure
detection [106]. In [39], ApEn was used to calculate the randomness of the signal, and it was
found that healthy patients had the highest median value and epileptic patients with ictal
activity had the lowest. In [35], ApEn was calculated for samples with less than a certain
threshold, while SampEn was calculated for other subsequent samples higher than that
threshold. Both ApEn and SampEn are capable of contributing effectively to the detection
of seizure activities [44,51,52,64–66]. Multiscale entropy (MSE) is an extension of sample
entropy and is used to compute signal complexity when multiple time-series scales are
involved, particularly when the signal time-series relevance is unknown. Before the entropy
computation, a coarse-graining process is performed, which allows multiple temporal scales
to be investigated. Modified multiscale entropy (MMSE) is similar to MSE; however, the
coarse-graining process is calculated using the moving-average procedure, providing better
complexity analysis. In [65], MMSE was utilized as an indicator for seizures.

Distribution entropy (DistEn) was proposed to mitigate the shortcomings and parame-
ter dependency in both ApEn and SampEn when applied to small datasets. It measures
the time-series complexity by applying an empirical probability density function (ePDF) of
inter-vector distances in the data state space. In [107], DistEn showed a potential capacity to
distinguish between ictal and interictal events. Fuzzy entropy (FuzzyEn) is comparable to
ShEn and SampEn, although FuzzyEn measures irregular signal uncertainties while ShEn
measures probabilistic uncertainties [108]. In [107], FuzzyEn performed well with varying
EEG data segment lengths in discriminating between healthy and epileptic individuals,
but not ictal and interictal events. In [70], 15 fuzzy entropy-based features were extracted
to construct a feature set, and the seizures were classified using an adaptive neuro-fuzzy
inference system (ANFIS). Combining fuzzy features with ANFIS resulted in better clas-
sification performance than using non-fuzzy features. In [70], FuzzyEn, combined with
LogEn, was applied to the sub-bands generated by the WST domain. Due to the exponential
function continuity, FuzzyEn was able to effectively reflect the intrinsic patterns included
within the ictal EEG signals. In [16], a combination of FuzzyEn and DistEn called Fuzzy
Distribution entropy (fDistEn) was developed. The hybrid entropy technique integrates the
ePDF and fuzzy membership similarity degree to eliminate the strict boundaries caused
by the ePDF. fDistEn was able to exploit the complexity of EEG signals and produced
statistically significant results when compared to standalone DistEn and FuzzyEn.

Singular value decomposition entropy (SVDEn) decomposes a signal into a sum of
independent components, which enables locating regularities in temporal and spatial
domains. Unlike spectral entropy, the processing is done on the singular spectrum, which
is robust to noisy signals [18], in addition to having the ability to locate the patterns of ictal
signals [35,51]. Permutation entropy (PE) is a measure of the non-stationarity of a signal
based on calculating the repetition of occurrences of neighboring values. The computation
of PE is fast and simple; thus, it requires less data preprocessing, and it can be directly
applied to large datasets. Furthermore, it is robust to noises and was therefore employed as
one of the features that contributed to seizure detection [44,51,52].
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Cross-Correlation Features

Because EEG signals are typically acquired from different parts of the brain where
channels are placed, investigating the multivariate dynamics across brain regions can be ex-
tremely valuable. Investigating cross-correlation features utilizing the interaction between
multi-channels can assist in understanding the underlying brain dynamics compared to
univariate analysis of individual channels.

Phase-locking value (PLV) is a metric used to measure the synchronicity between two
time-series, quantifying their phase interactions. The value of PLV approaches zero in the
case where the two signals are independent of each other and have a uniform distribution.
Contrarily, if the phase of the two signals is strongly coupled, the value of PLV approaches
one [109]. PLV was used to derive the strength of the spatial correlations between EEG
channels and to construct the graph edges for the proposed Graph Neural Network (GNN)
method [110]. In [29], GATENet, a sparse self-gating mechanism, was utilized to capture
abnormal activities in epileptic patients. When both randomized and PLV methods were
used to generate graph edge features, PLV performed better than randomly constructed
graph edges; nonetheless, GATENet performed better than both.

Phase-lag index (PLI) was proposed to mitigate the shortcoming of PLV regarding its
sensitivity when a common source is shared between channels. This is done by eliminating
the phase differences that are centered around zero. Weighted phase-lag index (wPLI)
is an extension of PLI and considers the magnitude of the lag in calculating the phase
difference. Such merit helps in decreasing the possibility of false positives in the case of
existing noise near zero-phase locking, as well as in increasing the detection rate of phase
synchronization. In [111], PLI and wPLI were utilized to predict impending seizures. The
trend of both metrics significantly rose during the beginning of the preictal phase, with
wPLI reaching its peak during seizure onset. It should be noted that PLV, PLI, and wPLI are
often calculated using the EEG signal time-derivatives rather than raw signals to facilitate
the discrimination between the interictal and preictal phases [112].

The Pearson correlation coefficient (PCC) measures the linear similarity between two
random variables, quantifying the magnitude of the correlation between −1 and 1. If
the values assigned are close to the boundaries, it means a strong positive or negative
correlation exists, while a value of zero means no correlation. Likewise, mutual information
(MI) quantifies the uncertainty of mutual interdependency between two random variables
and is calculated using relative Shannon entropy or the Kullback–Leibler (KL) divergence.
Both methods are widely used in the literature during the feature selection stage to select
highly correlated features to enhance the performance of detecting seizures. In [41,90], PCC
was used as a feature selector to minimize the size of the feature set, since a high number
of features may severely impact the model’s learning performance. Alternatively, PCC
has also been used to compute the correlation between different EEG channels, creating
a matrix to assemble a brain network graph. Similarly, MI was used to select the best
feature set before the classification process [91]. In [11,62,113], MI was used to compute
the similarity between all EEG channels in order to find the optimal seizure detection
channels. In [73,101,114], KL was used to measure the divergence between the distribution
of features extracted from both interictal and preictal samples to identify where the phase
shift had occurred.

Coherence measures the synchronization of the spectral components’ activity between
observed channels. In [115], coherence was applied to the eigenvalues distribution matrix
for each time window, followed by calculating the spectral-based covariance matrix. Low
values imply good channel coherence, whereas high values suggest random states.

5.2.2. EEG Channel Reduction and Attention

Generally, multiple channels are usually required to investigate the whole dynamics
of the brain in multiple regions. However, the analysis of data from all channels is usually
not required. Depending on the research application, signal processing techniques may be
required to extract meaningful features from these channels, resulting in high computa-
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tional load and data explosion due to high EEG temporal resolution. The main purpose
of reducing the number of channels is to reduce the computational complexity of the per-
formed task, so less data is consumed. Furthermore, by reducing the number of channels,
relevant channels with the most significant features are selected, omitting redundant data
thus mitigating overfitting issues. Additionally, the procedure may be required in some
applications such as wearable devices where using a large number of channels is imprac-
tical [26]. Channel selection can be performed using different approaches, whether they
are statistical approaches [11,22,36,62,75,76,113], data-driven approaches [14,88,116–118],
wrapper approaches [119], or from prior knowledge based on previous studies [120,121].

Statistical approaches: Several articles [11,62,76,113] followed the same principle to
select the five best channels for optimal seizure detection. Since seizure events appear
for a very short duration in long recordings, seizure events may be recognized by their
spike patterns. Although artifacts can resemble the same spike pattern, they usually persist
for longer durations. As a result, if the rate and amplitude of these spikes are repeatedly
protracted, they can be analytically distinguished from seizure events by computing the
standard deviation (SD) of the signal. Because a high SD may indicate that the spikes are
artifacts, the channel with the lowest standard deviation is chosen as the seed channel.
Following that, MI between the seed channel and the remaining channels is evaluated,
and the channels with the highest similarity to the seed channel are selected. According
to [75], calculating the kurtosis of all the channels and selecting the highest values is a better
alternative since the former method implies that the channel with the lowest SD has the
highest SNR. Nevertheless, this can also indicate that this channel contains very few seizure
events. Additionally, channels selected in correspondence to the MI of the seed channel
may contain redundant data. Although employing kurtosis resulted in higher performance
than using SD and MI, the difference is statistically insignificant. In [22], an iterative process
is run across the entire dataset, computing the product of the variance and entropy for all
channels. The detection model is trained and tested on an initial set of channels sorted in
descending order based on the variance–entropy product. For some patients, channels with
the same or better accuracy are chosen, bringing the average number of channels down to
10. Similarly, in [36], the variance was calculated for all the channels, and the three channels
with the highest variance were selected.

Data-Driven approaches: Random Forest (RF) algorithm was utilized to identify the most
informative channels [14], by integrating all the extracted features from all the channels
into random RF-generated trees. Because significant features are expected to emerge more
often than redundant ones, the channels corresponding to those frequent features were
selected. It was demonstrated that employing this technique obtained a marginal separation
between seizure and non-seizure data after the t-SNE algorithm was applied, achieving a
close F-measure score using the entire set of channels against only three channels. Another
method based on optimization techniques such as genetic algorithms (GA) was utilized to
reduce the number of channels to a single channel while minimally affecting the detection
performance [88]. The process involves extracting the features from each channel for all the
patients, followed by the non-dominated sorting genetic algorithm (NSGA), which creates
the populations of chromosomes for every channel. The ones and zeroes in the chromosome
signify which channels along with their corresponding features will be evaluated. The
highest accuracy reported across four different classifiers is chosen. The method is iterated
until the termination requirements are met. The study evaluated two GA variants, NSGA-II
and NSGA-III, with the latter outperforming the former.

Other data-driven approaches involve using attention mechanisms that can automati-
cally attend to informative channels by assigning attention scores to these channels during
the model’s training process. In [117], maximum and average pooling operators are applied
to the input feature matrix, followed by a convolution layer. The outputs are vertically
concatenated, and a non-linear sigmoid activation function is then applied to form the
channel attention score. This procedure results in weighted feature maps corresponding
to different channels, where features with high weights are considered more important to
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the seizure prediction task. A similar concept was introduced in [63,116], but a non-linear
softmax activation function was used instead of a sigmoid one. Likewise, in [118,122],
the mechanism attends to different channels by learning the attention weights through
incorporating multiple layers of convolution layers followed by fully connected layers.

Wrapper approaches: In [119], the method of backward elimination was utilized. The
method involves computing the accuracy of the model while leaving out a single channel
at a time, ruling out channels that have no detrimental impact on prediction performance.
The procedure is repeated until removing any more channels impacts the prediction accu-
racy negatively.

5.2.3. Adjustable Training Approaches, Data Augmentation, and Various Learning and
Training Techniques

Throughout the survey, various strategies were implemented to improve the ability
of models to generalize across data. This includes, but is not limited to, different regular-
ization techniques [117], early stopping [58,123], data augmentation [50], ensemble learn-
ing [90], transfer learning [22], multi-view learning [19,57,124] and subject-independent
approaches [44,101,125,126]. Since discussing the approaches to regularization is a broad
topic, it is considered beyond the scope of this review. However, the reader may refer
to [127,128] for more information.

In [117], the batch normalized LSTM (BN-LSTM) technique was used. The difference
between LSTM and BN-LSTM is that the latter handles covariance shifts that happen
between the hidden-to-hidden layers, boosting the model’s generalization and conver-
gence [129]. In [58,123], the training process was stopped if no apparent improvement was
observed after a pre-determined number of epochs. The early stopping method is typically
effective in preventing the trained model from over-fitting to the training data. It should
be noted that determining the criteria for early stopping is not an easy task, because it is
rather trivial to stop the training process earlier than required.

Adversarial training, a domain adaptation technique based on adversaries, aims to
inject adversarial samples into the training data so the model begins to learn from these sam-
ples. In [49], transferable features (adversaries) were created by a classifier–discriminator in
a two-player min–max game. The discriminator must distinguish between training and test
data samples while the classifier (generator) is trained to extract new transferable features
and manipulate the discriminator. This process regularizes the model to resist overfitting
and increases its generalization ability across unseen data. Similar concepts were adopted
using squeeze-and-excitation networks (SENet) [31] to extract spatiotemporal features
from two different datasets with different domain distributions. The model was able to
generalize well in cases when the training data was sufficient. However, the performance
drastically dropped in the case of domain variation and insufficient training data. In [118],
both the seizure and patient data are separately decomposed and reconstructed forming
two modules that compute a reconstruction loss value. The training process measures the
loss in the signal reconstruction of both modules, aiming to enhance the generalization
across different patients.

Data Augmentation is another approach that artificially augments the input samples
by injecting distortions and random noises during model training. This approach has
two advantages: (i) it can be used to efficiently increase the number of samples during
the training phase; and (ii) it forces the model to learn the semantics of the data, instead
of just memorizing patterns. Therefore, data augmentation can be utilized to improve
generalization capabilities. Generative adversarial networks (GAN) are a machine learning
technique that comprises two neural networks, named the generator and the discriminator.
Both networks compete in an adversarial game, where one network (the discriminator)
aims to distinguish real data from generated ones, while the other network (the generator)
keeps generating new enhanced data. GAN is a prominent technique capable of generating
new synthetic data through learning the real data’s statistical characteristics, and it has
gained notoriety with time-series data. Due to the lack of data to efficiently train DL
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models, GAN was employed to generate new samples for preictal EEG signals [130].
The approach consists of the generator creating new samples while the discriminator
continuously inspects whether the newly created samples are real or fake. The accuracy
performance was significantly improved by including the synthetically generated signals
in the dataset. A different approach is to induce perturbations that cause minor changes to
the EEG signal without affecting its semantics. In [50], the spectrograms were subjected to
random masking and Gaussian augmentation. A subset of the spectrogram content in each
sample was randomly chosen and discarded, and then Gaussian noise was generated and
placed in the discarded position.

Ensemble learning combines the predictions of different models to form the final
prediction output. Ensemble learning boosts the overall performance since different models
are unlikely to make the same errors when trained on the same dataset. Furthermore,
ensemble learning can be boosted via bagging techniques. This method introduces different
subsets of the training dataset to the different models in the ensemble, thereby reducing the
high variance and improving the stability of the training process. In [90], SVM, CNN, and
LSTM were used as ensemble classifiers incorporated with a model-agnostic meta-learning
(MAML) technique. MAML is a supervised technique for few-shot learning approaches
that can learn new tasks from small amounts of training data with a minimal number
of gradient updates. Ensemble classifiers, along with MAML, were combined to predict
epileptic seizures with great generalization ability and a low false positive rate.

Multi-view learning (MVL) is a paradigm that seeks to learn common modalities and
patterns by combining several features from distinct domains to obtain discriminative
representations of the data. In [17], a group convolution SE block (gcSE) was proposed
to combine the multi-domain features extracted from different sub-bands to extract het-
erogeneous features. The framework combining gcSE and SENet enhanced the detection
performance. In [19], multi-view features are extracted from raw signals and signals that
are transformed by FFT and WPD. Afterward, the deep multi-view features are generated
using CNN before being fed to a multi-view Takagi, Sugeno, and Kang fuzzy system
(MV-TSK-FS) classifier. It is claimed that feeding the classifier with data from different
feature spaces increases the model’s generalizability. In [57], a multi-view paradigm with
few-shot learning is adopted. CNN was used to extract deep features from raw signals and
signals transformed by DFT, STFT, and DWT. This module is followed by a feature-fusion
mechanism to concatenate all the features forming a new feature representation. It was
evident that leveraging the multi-domain features resulted in better detection performance.

Transfer learning allows using the knowledge of previously trained models, which can
vastly boost the generalization ability when new models are fine-tuned. In [22], using a pre-
trained deep convolutional auto-encoder (DCAE) provided a significant reduction in the
number of trainable parameters, reducing the training time while improving generalization.
Similarly, InceptionV3, a CNN architecture that is widely used in image recognition and
object detection, was used as a transfer learning model for classifying different seizure
types after transforming EEG signals to spectrograms, with relatively good results [131].

Moreover, structural modifications have been introduced to CNN to allow the archi-
tecture to become more robust. In [38], variable tuning blocks were integrated between
adjacent convolutional layers instead of depending on static weights, on the basis that
static weights limit the learning scope of the network, thus limiting its ability to general-
ize. To address this issue, two different designs with dynamic weighing mechanisms and
special weight-tuning blocks were introduced. The proposed designs aimed to change
the variable weights depending on the nature of the input data. Both models significantly
improved the classification performance; nevertheless, it was explicitly stated that the
dynamic weighing mechanism caused a massive overload due to the increased number of
trainable parameters, affecting the training speed. In [71], semi-dilated convolutions were
introduced to leverage the rectangular-shaped geometry of EEG scalograms, where the
larger dimension is exploited rather than both dimensions. The proposed architecture has
been shown to improve the generalization and robustness of seizure prediction. In [97], the
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basic CNN cell has been modified to include point-wise and depth-wise convolutions with
a residual connection to reduce required parameters. The proposed modification improved
the generalization ability compared to the basic CNN cell.

In contrast to subject-specific approaches, subject-independent approaches involve
designing and training the models to capture the seizure patterns irrespective of the
data distribution. In [44], different feature selection algorithms were combined to select
the most contributory features from all the patients for seizure detection. The subset of
features was optimized, and redundant features were omitted. In [101], two multi-task
architectures, CNN and a Siamese network, were proposed. Both networks involve learning
the seizures and patient-related information. The Siamese network was able to separate
patients well, discerning their differences when being trained as a preictal phase classifier,
which improved seizure prediction. In [125], a graph synthesizing network in combination
with GNN and LSTM was used to generate brain graphs and learn feature embeddings for
seizure prediction. The generated graphs improved the system’s ability to learn seizure
patterns irrespective of the patient. In [126], the model is trained using a combination of
multi-scale convolution and a spatial-temporal feature extraction module. The model was
able to generalize as it learned features from different convolutional scales. The leave-one-
out cross-validation (LOOCV) strategy has been adopted to boost the generalizability of
the model on unseen patient data [115,126].

5.2.4. Data Resampling and Class Balancing

During EEG recording sessions, seizures and seizure-free episodes will usually be
the minority and majority of events, respectively. Therefore, balancing the dataset among
different classes is essential to mitigate the bias towards the majority class during the
training process of ML or DL models. Strategies including resampling (data-level) balance
the number of samples for the minority class, while others such as ensemble/weight-tuning
(algorithm-level) assign weights to the minority class samples to reduce the bias.

Oversampling is a concept that aims to generate new samples derived from the same
distribution as the minority class until the dataset is balanced. Oversampling can be as
simple as randomly replicating samples from the minority class [115] or as complex as
synthetically generating new samples derived from the same data distribution. Undersam-
pling is a strategy to randomly reduce the number of majority class samples until both class
samples quantitatively match [73].

Splitting signals into segments is quite a common practice in preparing EEG data.
The segmentation process can be done with or without overlapping partitions of each
subsequent segment in order to create more segments. The process is repeated until the
desired number of segments is obtained (oversampling). A t-seconds window is defined to
determine the overlapping duration of each segment. This approach has been employed
in [37,41,60,62,117,121,132] to balance the desired class samples. Depending on the length
of the segments, the number of created samples via overlapping may be insufficient
to balance out the dataset, hence under-sampling can be used as an additional step to
balance the class samples [117]. Conversely, in [116], manual class distribution was done
since the dataset contained eight different classes; thus, it was necessary to maintain an
adequate class distribution across different cross-validation folds. In [13,17,38,44,53,91,119],
the quantity of seizure and non-seizure samples were equalized for the model’s training
phase (undersampling).

Another approach to creating new data samples is synthetic resampling. Synthetic
resampling is used to generate new synthetic samples that comply with the distribution
of the resampled class. Synthetic minority oversampling technique (SMOTE) [133] is a
technique that generates new samples by determining the k-nearest neighbors of every
minority class sample, then randomly creating new linearly correlated samples between
the designated sample and its neighbors. In [11,75,76], SMOTE was used to generate new
samples and balance the dataset. An adaptive synthetic algorithm (ADASYN) [128] is
similar to SMOTE, with a primary difference being that it takes into account the local
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distribution of the class to be oversampled and scatters the new samples by adding some
variation to them. ADASYN was employed in [48,93] to augment the number of minority
class samples.

Since GAN can generate new synthetic data from the original dataset, it can also
be employed to balance the number of samples among different classes. Conditional
GAN (CGAN) is a type of GAN that leverages the available labels in the dataset to create
new similar structures to the provided sample. In [90,134], GAN was employed to create
synthetic seizure samples to balance the training dataset. Similarly, creating new adversarial
features solved the data imbalance problem in the training dataset [49].

Some other approaches do not depend on oversampling or undersampling. These
approaches give more weight to the minority class in order to reduce the bias toward the
majority class [52,115,126]. Similarly, focal loss is an objective (loss) function that allows
the training model to alleviate the impact of data imbalance by focusing on the minority
class while reducing the weight of the majority class. Using focal loss has resulted in higher
seizure detection [135] and prediction [61] performance. Another approach has included
signal segmentation and recombination in different domains [15,136].

Several variants of boosting algorithms have been purposefully developed to deal
with the imbalanced data issue [137]. AdaBoost focuses on dealing with the misclassified
instances rather than the imbalance of the data itself. In [138], Adaboost was combined
with least-square SVM to address the issue of unbalanced data by boosting the weights
of misclassified samples while decreasing the weights of correctly classified ones. Conse-
quently, the overall classifier was boosted through multiple weak classifiers. In [121], the
cascaded architecture utilizing Adaboost with different classifiers was able to deal with the
class imbalance and improved the performance of seizure detection.

Finally, several performance evaluation metrics such as F-measure, ROC curve, Matthew’s
correlation coefficient (MCC), G-mean, and Cohen’s kappa are preferred for evaluating
the performance of models on imbalanced data, since both precision and recall metrics are
taken into consideration [58,123].

5.3. Performance Comparison

In this sub-section, the results of 10 recent articles, published in 2022, using ML and
DL techniques are presented. Table 4 provides a summary of the selected articles and their
best achieved performance results across different datasets.

Table 4. Comparison of 10 recent articles and their best performance results.

Reference Signal
Engineering

Channel
Selection/
Attention

Generalization
Techniques

Data
Balancing Classifier Dataset

Best
Performance (%)

(acc, sen, spe,
pre, auc, f1) 1

[37] DWT,
Statistical 8 8 8 SVM Bonn 2 97.78, 96.73,

96.79, na, na, na

[41] Statistical 8 8 3

DT, SVM,
ANN, RF,

KNN

CHB-MIT 98, 84, na, na, na,
90

Siena-EEG 96, 84, na, na, na,
86

[45]
TQWT,
Hjorth

parameters
8 8 8 SVM Bonn 3 100, 100, 100, na,

na, na

[60] STFT 8 8 3 GTN CHB-MIT na, 96.01, 96.23,
95.86, na, na
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Table 4. Cont.

Reference Signal
Engineering

Channel
Selection/
Attention

Generalization
Techniques

Data
Balancing Classifier Dataset

Best
Performance (%)

(acc, sen, spe,
pre, auc, f1) 1

[63] DWT 3 8 8 CNN
Bonn 3 100, 100, 100, na,

na, na

Bern 99.7, 99.65, 99.79,
na, na, na

[70]
TQWT, Fuzzy

Entropy 8 8 8 ANFIS

Bonn 3
99.83, 99.67,

99.85, 99.85, na,
99.82

Freiburg
99.28, 99.54,

99.56, 99.29, na,
99.49

[115] Covariance,
Coherence 8 3 3 SVM CHB-MIT 99.05, 93.56,

99.09, na, 99, na

[125] MFCC 8 8 3 GNN
CHB-MIT 95.38, 94.47,

94.16, na, 98.8, na

Siena-EEG 96.05, 96.05,
96.61, na, 99.1, na

[126] Deep
features 8 3 3 CNN

CHB-MIT
96.17, 56.83,
96.97, na, na,

96.94

TUSZ 67.68, 59.21, 75.3,
na, na, 69.07

Bonn 3 99.89, 99.8, 99.97,
na, na, na

[132] Deep
features 8 8 8

GAT +
BiLSTM

CHB-MIT
98.52, 97.75,

94.34, na, 96.81,
95.9

TUSZ 98.02, 97.7, 99.06,
na, 97.8, 97.86

1 Keywords: (acc) accuracy; (sen) sensitivity; (spe) specificity; (pre) precision; (auc) area under curve; (f1) F1-score;
(na) not available. 2 The results are based on Healthy vs. Interictal vs. Ictal classes. 3 The results are based on
Healthy vs. Ictal classes.

6. Public Datasets for Epileptic Seizure Tasks

To evaluate any of the seizure epileptic detection, classification, or prediction mod-
els, it is essential to have an EEG dataset containing diverse seizure recording sessions.
Table 5 provides a detailed list of frequently used public EEG datasets used in seizure
recognition tasks.

Table 5. Public epileptic seizures dataset.

CHB-MIT TUSZ Bonn Bern-Barcelona NSC-ND SWEC-ETHZ

Total number of seizure classes 1 8 1 1 1 1
Number of patients 23 675 23 5 10 18

Number of available channels 23–26 24–36 1 1 1 24–128
EEG type sEEG sEEG sEEG/iEEG iEEG sEEG iEEG

Sampling frequency 256 Hz 250 Hz 173.61 Hz 512 Hz 200 Hz 512 Hz
Total recording time 977 h 1476 h 3.2 h 41.6 h 0.2 h 2656 h

Total number of seizures 198 4029 100 3750 50 116
Detailed metadata No Yes No No No No
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6.1. CHB-MIT

CHB-MIT is an sEEG multichannel dataset obtained from Children’s Hospital Boston
Massachusetts Institute of Technology (CHB-MIT), and publicly accessible through Phys-
ioNet [139]. The dataset comprises 977 h of scalp EEG (sEEG) recordings utilizing 23 bipolar
channels (some recordings are 24 and 26) placed according to the International 10–20 elec-
trode positioning system with a sampling frequency of 256 Hz. The recordings were
collected from 23 pediatric patients: 5 males whose ages are between 3 and 22 years, and
17 females whose ages are between 1.5 and 19 years, in addition to one anonymous patient.
Each patient has between 9 and 42 EEG recordings stored in EDF file format, where each
recording lasts for a duration of 1 h. However, some recordings are up to 4 h long.

6.2. TUSZ

The TUH EEG Seizure dataset (TUSZ) is considered the largest open-source dataset
so far that focuses on epileptic patients and is a subset of the Temple Hospital University
(TUH) EEG dataset [140]. The dataset features high-quality annotations for eight different
epileptic seizure types, along with the patient’s detailed metadata describing the patient’s
medications and clinical history. The dataset includes 1400+ h of EEG recordings using 24 to
36 channels (19 channels are common) stored in EDF file format. For the EEG recording
sessions, a bipolar temporal central parasagittal (TCP) montage with two common reference
points, average reference (AR) and linked ear (LE), is used. The dataset is occasionally
updated with new data (the most recent version is v1.5.4) and is freely available upon
acquiring login credentials from the corpora owners.

6.3. Bonn

The Bonn dataset is collected under the supervision of the University of Bonn [141]
and consists of five sets of EEG recordings, where the first two sets (A and B) are captured
from healthy subjects, and the other three sets (C, D, and E) are captured from five brain
surgery candidates. Sets A and B vary in the state of the healthy subjects during the
recording session with their eyes open (set A) and closed (set B). Sets C and D are EEG
recordings in the interictal state from two different brain regions: the hippocampal (set C)
and an epileptogenic zone (set D), whereas set E contains only ictal state recordings. Each
set consists of 100 single-channel EEG recordings with a duration of 23.6 s each, stored
in textual file format. All the segments are preprocessed using a band-pass filter with a
0.53 Hz to 40 Hz cut-off frequency. The initial recording configuration, as per [141], used
128 channels; nevertheless, relevant data about the patients and channels was not included.

6.4. Bern–Barcelona

This dataset was obtained from Pompeu Fabra University, Barcelona [142], and it
consists of pairs of EEG signals that were captured from five patients who had undergone
surgical resection. The dataset contains 3750 pairs comprising 7500 segments at a sampling
rate of 512 HZ with a 20 s segment each, stored in textual file format. Each pair is composed
of focal and non-focal segments that form two time-series signals captured from two
adjacent intracranial channels from epileptogenic and non-epileptogenic zones, respectively.
A fourth-order Butterworth band-pass filter between 0.5 Hz and 150 Hz has been applied
to all the EEG recordings to reduce phase distortions.

6.5. NSC-ND

This dataset is a subset extracted from a private dataset that belongs to the Neurology
and Sleep Centre (NSC), Hauz Khas, New Delhi [143]. The EEG recordings have been
recorded from 10 epileptic patients using gold-plated scalp electrodes positioned according
to the international 10–20 placement system. The recordings are sampled at 200 Hz and
preprocessed using a band-pass filter with cut-off frequencies between 0.5 Hz and 70 Hz.
The dataset consists of three sets of 50 single-channel EEG recordings, 5.12 s each, stored in
MATLAB file format. The sets are categorized into preictal, interictal, and ictal stages.
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6.6. SWEC-ETHZ

SWEC-ETH dataset was recorded during a pre-surgical analysis of epileptic patients at
the Sleep-Wake Epilepsy Center (SWEC) of the Department of Neurology at the University
of Bern and the Integrated Systems Laboratory of the ETH Zurich [144]. The intracranial
scheme was set up using strip, grid, and depth electrodes. All the iEEG signals are pre-
processed using a fourth-order Butterworth band-pass filter between 0.5 Hz and 150 Hz
cut-off frequencies, sampled at 512 Hz, and stored in MATLAB file format. The dataset
comprises 2656 h of recordings for 18 patients using 24 to 118 recording channels. Each EEG
recording is divided into three sections that have been carefully analyzed by professionals.
The recordings consist of 3 min of preictal activity, followed by an ictal activity that ranges
between 10 and 1002 s. The ictal activity is followed by another 3 min of postictal activity.

7. Conclusions

In this systematic literature review, different articles have been explored, covering
different approaches for automatic EEG seizure detection, classification, and prediction
using ML and DL techniques following the PRSIMA protocol. Four challenges have been
assembled, each of which presents the main issues encountered during seizure analysis
tasks. Several works addressing these challenges and introducing the approaches to solving
them have been thoroughly discussed. It should be noted that signal transformation
is a challenging process because it is heavily dependent on the nature of the data and
the artifacts contained in the signals. Since no method works for all types of EEG data,
combining different approaches, as reviewed, can greatly aid in mitigating the shortcomings
of some methods, resulting in higher recognition performance. Additionally, channel
selection is becoming a crucial task to decrease the computational burden as well as to
create wearable seizure detection applications. However, this significantly affects the
process of seizure localization since the physical electrodes corresponding to these channels
are no longer existent.

Deep Learning began to emerge as an indispensable tool in the field of neurology
and EEG seizure analysis due to its ability to exploit EEG data more thoroughly and
extract features without preprocessing while achieving high recognition performance.
However, DL models are well-known for their black-box nature, which conceals their
inner workings. As a result, neurologists and clinicians are becoming more skeptical
about the interpretability of these models, which has an adverse effect on their use in
clinical settings [145,146]. As a result, research including approaches to interpreting the
predictions of DL algorithms, such as explainable artificial intelligence (XAI), is required
to boost confidence in their use. Furthermore, despite the promising results of both ML
and DL techniques, generalization among unseen patients from different datasets is still
problematic due to the data domain difference. This problem leads to a high variation in
seizure recognition performance, which contributes to experts’ skepticism regarding the
performance of these techniques in real-world scenarios [145,146].

Finally, several employed epileptic seizure datasets are reviewed. TUSZ is the only
dataset, so far, that includes a wide range of seizures and extended recording hours, al-
lowing ML and DL techniques to be adequately trained. Conversely, most studies use
small datasets that may not be large enough to accurately reflect the performance of their
proposed work in real-world scenarios. Moreover, despite the TUSZ dataset comprising
several types of epileptic seizures, some seizure terms do not conform to the most recent
nomenclature as determined by the International League Against Epilepsy (ILAE). Simple
partial and complex partial seizures are examples of these seizures, which are currently des-
ignated as focal aware and focal impaired awareness seizures, respectively [147]. Moreover,
these types of seizures require further clinical evaluation as they cannot be solely identified
through EEG analysis. These limitations emphasize the importance of increased collabora-
tion between bioengineers and neurologists, as well as discovering new approaches, using
ML and DL, that incorporate the use of clinical reports along with EEG analysis to gain
deeper knowledge about similar types of seizures.
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ADASYN adaptive synthetic
ANN artificial neural network
BPNN back propagation neural network
BRRM brain-rhythmic recurrence map
CNN convolutional neural network
CSP common spatial pattern
CWT continuous wavelet transform
DFA detrended fluctuation analysis
DFT discrete Fourier transform
DL deep learning
DTDWT dual-tree discrete wavelet transform
DWT discrete wavelet transform
EEG electroencephalography
EMD empirical mode decomposition
EWT empirical wavelet transform
FBSE Fourier Bessel series expansion
FD fractal dimension
FFT fast Fourier transform
FrFT fractionally Fourier transformed
FSWT frequency slice wavelet transform
GA genetic algorithms
GAN generative adversarial network
GAT graph attention networks
GTN gated transformer network
gcSE group convolution squeeze-and-excitation
GNN graph neural network
GST generalized Stockwell transform
HFD Higuchi fractal dimension
HT Hilbert transform
iEEG intracranial EEG
IMF intrinsic mode function
KL Kullback–Leibler
KNN k-nearest neighbor
LBP local binary pattern
LDA linear discernment analysis
LSTM long short-term memory
MAML model-agnostic meta-learning
MEG Magnetoencephalogram
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MFCC Mel-frequency cepstral coefficients
MI mutual information
ML machine learning
MLP multi-layer perceptron
MRI magnetic resonance imaging
MV-TSK-FS multi-view Takagi, Sugeno, and Kang fuzzy system
NMD non-linear mode decomposition
NSGA non-dominated sorting genetic algorithm
PCA principle component analysis
PCC Pearson correlation coefficient
PFD Petrosian fractal dimension
PLI phase lag index
PLV phase-locked value
PSD power spectrum density
RF random forest
RLFD Riemann–Liouville fractional derivative
RNN recurrent neural network
SD standard deviation
sEEG scalp EEG
SENet squeeze-and-excitation networks
SLR systematic literature review
SMOTE synthetic minority over-sampling technique
ST Stockwell transform
STFT short-time Fourier transform
SVD singular value decomposition
SVM support vector machine
TL transfer learning
WPD wavelet packet decomposition
WPT wavelet packet transform
WST wavelet scattering transform
WT wavelet transform

References
1. Epilepsy. Available online: https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed on 25 March 2021).
2. Common Epilepsy Seizure Medications: Types, Uses, Effects, and More. Available online: https://www.webmd.com/epilepsy/

medications-treat-seizures (accessed on 12 September 2022).
3. Munakomi, S.; Das, J.M. Epilepsy Surgery. StatPearls Publishing. 2022. Available online: http://www.ncbi.nlm.nih.gov/

pubmed/32965822 (accessed on 12 September 2022).
4. Majersik, J.J.; Ahmed, A.; Chen, I.-H.A.; Shill, H.; Hanes, G.P.; Pelak, V.S.; Hopp, J.L.; Omuro, A.; Kluger, B.; Leslie-Mazwi, T. A

Shortage of Neurologists We Must Act Now: A Report From the AAN 2019 Transforming Leaders Program. Neurology 2021, 96,
1122–1134. [CrossRef] [PubMed]

5. Knowledge, C. Encyclopedia of Clinical Neuropsychology; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef]
6. Besag, F.M.C.; Vasey, M.J. Prodrome in epilepsy. Epilepsy Behav. 2018, 83, 219–233. [CrossRef] [PubMed]
7. Ives, J.R.; Mainwaring, N.R.; Gruber, L.J.; Cosgrove, G.R.; Blume, H.W.; Schomer, D.L. 128-Channel cable-telemetry EEG recording

system for long-term invasive monitoring. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 69–72. [CrossRef] [PubMed]
8. Petrosian, A.A.; Homan, R.; Prokhorov, D.; Wunsch II, D.C. Classification of epileptic EEG using neural network and wavelet

transform. In Proceedings of the Wavelet Applications in Signal and Image Processing IV, Denver, CO, USA, 4–9 August 1996;
Volume 2825, pp. 834–843. [CrossRef]

9. Wan, Z.; Yang, R.; Huang, M.; Zeng, N.; Liu, X. A review on transfer learning in EEG signal analysis. Neurocomputing 2021, 421,
1–14. [CrossRef]

10. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al.
Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097.
[CrossRef]

11. Bhattacharyya, A.; Pachori, R.B. A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet
Transform. IEEE Trans. Biomed. Eng. 2017, 64, 2003–2015. [CrossRef]

12. Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic seizure detection based on EEG signals and
CNN. Front. Neuroinform. 2018, 12, 95. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/epilepsy
https://www.webmd.com/epilepsy/medications-treat-seizures
https://www.webmd.com/epilepsy/medications-treat-seizures
http://www.ncbi.nlm.nih.gov/pubmed/32965822
http://www.ncbi.nlm.nih.gov/pubmed/32965822
http://doi.org/10.1212/WNL.0000000000012111
http://www.ncbi.nlm.nih.gov/pubmed/33931527
http://doi.org/10.1007/978-0-387-79948-3
http://doi.org/10.1016/j.yebeh.2018.03.019
http://www.ncbi.nlm.nih.gov/pubmed/29650466
http://doi.org/10.1016/0013-4694(91)90158-Z
http://www.ncbi.nlm.nih.gov/pubmed/1713554
http://doi.org/10.1117/12.255307
http://doi.org/10.1016/j.neucom.2020.09.017
http://doi.org/10.1371/journal.pmed.1000097
http://doi.org/10.1109/TBME.2017.2650259
http://doi.org/10.3389/fninf.2018.00095


Bioengineering 2022, 9, 781 31 of 35

13. Ansari, A.H.; Cherian, P.J.; Caicedo, A.; Naulaers, G.; De Vos, M.; Van Huffel, S. Neonatal Seizure Detection Using Deep
Convolutional Neural Networks. Int. J. Neural Syst. 2019, 29, 1850011. [CrossRef]

14. Birjandtalab, J.; Baran Pouyan, M.; Cogan, D.; Nourani, M.; Harvey, J. Automated seizure detection using limited-channel EEG
and non-linear dimension reduction. Comput. Biol. Med. 2017, 82, 49–58. [CrossRef]

15. Zhang, Y.; Guo, Y.; Yang, P.; Chen, W.; Lo, B. Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional
Neural Network. IEEE J. Biomed. Health Inform. 2020, 24, 465–474. [CrossRef]

16. Zhang, T.; Chen, W.; Li, M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed.
Signal Process. Control 2018, 39, 360–377. [CrossRef]

17. Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-
Spectral Squeeze-and-Excitation Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 782–794. [CrossRef]

18. Zhang, T.; Chen, W.; Li, M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random
forest. Biocybern. Biomed. Eng. 2018, 38, 519–534. [CrossRef]

19. Tian, X.; Deng, Z.; Ying, W.; Choi, K.S.; Wu, D.; Qin, B.; Wang, J.; Shen, H.; Wang, S. Deep Multi-View Feature Learning for
EEG-Based Epileptic Seizure Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1962–1972. [CrossRef] [PubMed]

20. Al-Sharhan, S.; Bimba, A. Adaptive multi-parent crossover GA for feature optimization in epileptic seizure identification. Appl.
Soft Comput. J. 2019, 75, 575–587. [CrossRef]

21. Li, M.; Chen, W.; Zhang, T. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network
ensemble. Biomed. Signal Process. Control 2017, 31, 357–365. [CrossRef]

22. Daoud, H.; Bayoumi, M.A. Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2019,
13, 804–813. [CrossRef]

23. Sazgar, M.; Young, M.G. EEG Artifacts. In Absolute Epilepsy and EEG Rotation Review; Springer International Publishing:
Berlin/Heidelberg, Germany, 2019; pp. 149–162. [CrossRef]

24. Stancin, I.; Cifrek, M.; Jovic, A. A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems.
Sensors 2021, 21, 3786. [CrossRef]

25. Kimura, K.; Aoki, J.; Sakamoto, Y.; Kobayashi, K.; Sakai, K.; Inoue, T.; Iguchi, Y.; Shibazaki, K. Administration of edaravone, a free
radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients—A preliminary study. J. Neurol.
Sci. 2012, 313, 132–136. [CrossRef]

26. Alotaiby, T.; El-Samie, F.E.A.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing.
EURASIP J. Adv. Signal Process. 2015, 2015, 66. [CrossRef]

27. Basile, L.F.H.; Anghinah, R.; Ribeiro, P.; Ramos, R.T.; Piedade, R.; Ballester, G.; Brunetti, E.P. Interindividual variability in EEG
correlates of attention and limits of functional mapping. Int. J. Psychophysiol. 2007, 65, 238–251. [CrossRef] [PubMed]

28. Gayraud, N.T.H.; Rakotomamonjy, A.; Clerc, M.; Gayraud, N.T.H.; Rakotomamonjy, A.; Clerc, M.; Transport, O. Optimal Transport
Applied to Transfer Learning For P300 Detection. In Proceedings of the 7th Graz Brain-Computer Interface Conference, Graz,
Austria, 18–22 September 2017.

29. Li, Y.; Liu, Y.; Guo, Y.Z.; Liao, X.F.; Hu, B.; Yu, T. Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With
Semisupervised Active Learning for Patient-Specific Seizure Prediction. IEEE Trans. Cybern. 2021, 1–16. [CrossRef] [PubMed]

30. Khatami, A.; Nazari, A.; Khosravi, A.; Lim, C.P.; Nahavandi, S. A weight perturbation-based regularisation technique for
convolutional neural networks and the application in medical imaging. Expert Syst. Appl. 2020, 149, 113196. [CrossRef]

31. Cao, X.; Yao, B.; Chen, B.; Sun, W.; Tan, G. Automatic Seizure Classification Based on Domain-Invariant Deep Representation of
EEG. Front. Neurosci. 2021, 15, 1–8. [CrossRef]

32. Quon, R.J.; Meisenhelter, S.; Camp, E.J.; Testorf, M.E.; Song, Y.; Song, Q.; Culler, G.W.; Moein, P.; Jobst, B.C. AiED: Artificial
intelligence for the detection of intracranial interictal epileptiform discharges. Clin. Neurophysiol. 2022, 133, 1–8. [CrossRef]

33. Mormann, F.; Kreuz, T.; Rieke, C.; Andrzejak, R.G.; Kraskov, A.; David, P.; Elger, C.E.; Lehnertz, K. On the predictability of
epileptic seizures. Clin. Neurophysiol. 2005, 116, 569–587. [CrossRef]

34. Mohammady, N.B.E.-S. Wavelets for EEG Analysis; IntechOpen: Rijeka, Croatia, 2020; p. 5. [CrossRef]
35. Ma, D.; Zheng, J.; Peng, L. Performance evaluation of epileptic seizure prediction using time, frequency, and time–frequency

domain measures. Processes 2021, 9, 682. [CrossRef]
36. Ein Shoka, A.A.; Alkinani, M.H.; El-Sherbeny, A.S.; El-Sayed, A.; Dessouky, M.M. Automated seizure diagnosis system based on

feature extraction and channel selection using EEG signals. Brain Inform. 2021, 8, 1. [CrossRef]
37. Jing, J.; Pang, X.; Pan, Z.; Fan, F.; Meng, Z. Classification and identification of epileptic EEG signals based on signal enhancement.

Biomed. Signal Process. Control 2022, 71, 1746–8094. [CrossRef]
38. Jia, G.; Lam, H.K.; Althoefer, K. Variable weight algorithm for convolutional neural networks and its applications to classification

of seizure phases and types. Pattern Recognit. 2022, 121, 108226. [CrossRef]
39. Zhao, X.; Zhang, R.; Mei, Z.; Chen, C.; Chen, W. Identification of epileptic seizures by characterizing instantaneous energy

behavior of EEG. IEEE Access 2019, 7, 70059–70076. [CrossRef]
40. Emara, H.M.; Elwekeil, M.; Taha, T.E.; El-Fishawy, A.S.; El-Rabaie, E.S.M.; El-Shafai, W.; El Banby, G.M.; Alotaiby, T.; Alshebeili,

S.A.; Abd El-Samie, F.E. Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction; Springer: Berlin/Heidelberg,
Germany, 2022; Volume 9. [CrossRef]

http://doi.org/10.1142/S0129065718500119
http://doi.org/10.1016/j.compbiomed.2017.01.011
http://doi.org/10.1109/JBHI.2019.2933046
http://doi.org/10.1016/j.bspc.2017.08.013
http://doi.org/10.1109/TNSRE.2020.2973434
http://doi.org/10.1016/j.bbe.2018.03.007
http://doi.org/10.1109/TNSRE.2019.2940485
http://www.ncbi.nlm.nih.gov/pubmed/31514144
http://doi.org/10.1016/j.asoc.2018.11.012
http://doi.org/10.1016/j.bspc.2016.09.008
http://doi.org/10.1109/TBCAS.2019.2929053
http://doi.org/10.1007/978-3-030-03511-2_8
http://doi.org/10.3390/s21113786
http://doi.org/10.1016/j.jns.2011.09.006
http://doi.org/10.1186/s13634-015-0251-9
http://doi.org/10.1016/j.ijpsycho.2007.05.001
http://www.ncbi.nlm.nih.gov/pubmed/17570549
http://doi.org/10.1109/TCYB.2021.3071860
http://www.ncbi.nlm.nih.gov/pubmed/34033567
http://doi.org/10.1016/j.eswa.2020.113196
http://doi.org/10.3389/fnins.2021.760987
http://doi.org/10.1016/j.clinph.2021.09.018
http://doi.org/10.1016/j.clinph.2004.08.025
http://doi.org/10.5772/intechopen.94398
http://doi.org/10.3390/pr9040682
http://doi.org/10.1186/s40708-021-00123-7
http://doi.org/10.1016/j.bspc.2021.103248
http://doi.org/10.1016/j.patcog.2021.108226
http://doi.org/10.1109/ACCESS.2019.2919158
http://doi.org/10.1007/s40745-020-00308-7


Bioengineering 2022, 9, 781 32 of 35

41. Sánchez-Hernández, S.E.; Salido-Ruiz, R.A.; Torres-Ramos, S.; Román-Godínez, I. Evaluation of Feature Selection Methods for
Classification of Epileptic Seizure EEG Signals. Sensors 2022, 22, 3066. [CrossRef] [PubMed]

42. Li, M.; Chen, W.; Zhang, T. A novel seizure diagnostic model based on kernel density estimation and least squares support vector
machine. Biomed. Signal Process. Control 2018, 41, 233–241. [CrossRef]

43. Zhang, S.; Liu, G.; Xiao, R.; Cui, W.; Cai, J.; Hu, X.; Sun, Y.; Qiu, J.; Qi, Y. A combination of statistical parameters for epileptic
seizure detection and classification using VMD and NLTWSVM. Biocybern. Biomed. Eng. 2022, 42, 258–272. [CrossRef]

44. Yang, S.; Li, B.; Zhang, Y.; Duan, M.; Liu, S.; Zhang, Y.; Feng, X.; Tan, R.; Huang, L.; Zhou, F. Selection of features for patient-
independent detection of seizure events using scalp EEG signals. Comput. Biol. Med. 2020, 119, 103671. [CrossRef]

45. Kaushik, G.; Gaur, P.; Sharma, R.R.; Pachori, R.B. EEG signal based seizure detection focused on Hjorth parameters from tunable-Q
wavelet sub-bands. Biomed. Signal Process. Control 2022, 76, 103645. [CrossRef]

46. Behnam, M.; Pourghassem, H. Spectral Correlation Power-based Seizure Detection using Statistical Multi-Level Dimensionality
Reduction and PSO-PNN Optimization Algorithm. IETE J. Res. 2017, 63, 736–753. [CrossRef]

47. Jemal, I.; Mezghani, N.; Abou-Abbas, L.; Mitiche, A. An Interpretable Deep Learning Classifier for Epileptic Seizure Prediction
Using EEG Data. IEEE Access 2022, 10, 60141–60150. [CrossRef]

48. Li, M.; Chen, W. FFT-based deep feature learning method for EEG classification. Biomed. Signal Process. Control 2021, 66, 102492.
[CrossRef]

49. Nasiri, S.; Clifford, G.D. Generalizable seizure detection model using generating transferable adversarial features. IEEE Signal
Process. Lett. 2021, 28, 568–572. [CrossRef]

50. Liang, D.; Liu, A.; Li, C.; Liu, J.; Chen, X. A novel consistency-based training strategy for seizure prediction. J. Neurosci. Methods
2022, 372, 109557. [CrossRef]

51. Zhang, Y.; Yang, S.; Liu, Y.; Zhang, Y.; Han, B.; Zhou, F. Integration of 24 feature types to accurately detect and predict seizures
using scalp EEG signals. Sensors 2018, 18, 1372. [CrossRef]

52. Abou-Abbas, L.; Jemal, I.; Henni, K.; Ouakrim, Y.; Mitiche, A.; Mezghani, N. EEG Oscillatory Power and Complexity for Epileptic
Seizure Detection. Appl. Sci. 2022, 12, 4181. [CrossRef]

53. Yan, X.; Yang, D.; Lin, Z.; Vucetic, B. Significant Low-dimensional Spectral-temporal Features for Seizure Detection. IEEE Trans.
Neural Syst. Rehabil. Eng. 2022, 30, 668–677. [CrossRef] [PubMed]

54. Sharma, A.; Rai, J.K.; Tewari, R.P. Epileptic seizure anticipation and localisation of epileptogenic region using EEG signals. J. Med.
Eng. Technol. 2018, 42, 203–216. [CrossRef] [PubMed]

55. Emara, H.M.; Elwekeil, M.; Taha, T.E.; El-Fishawy, A.S.; El-Rabaie, E.S.M.; Alotaiby, T.; Alshebeili, S.A.; Abd El-Samie, F.E. Hilbert
Transform and Statistical Analysis for Channel Selection and Epileptic Seizure Prediction. Wirel. Pers. Commun. 2021, 116,
3371–3395. [CrossRef]

56. Li, M.; Sun, X.; Chen, W.; Jiang, Y.; Zhang, T. Classification epileptic seizures in EEG using time-frequency image and block
texture features. IEEE Access 2020, 8, 9770–9781. [CrossRef]

57. Pan, Y.; Zhou, X.; Dong, F.; Wu, J.; Xu, Y.; Zheng, S. Epileptic Seizure Detection with Hybrid Time-Frequency EEG Input: A Deep
Learning Approach. Comput. Math. Methods Med. 2022, 2022, 8724536. [CrossRef]

58. Liu, T.; Truong, N.D.; Member, S.; Nikpour, A. Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models. IEEE
J. Biomed. Health Inform. 2020, 24, 2844–2851. [CrossRef]

59. Chakrabarti, S.; Swetapadma, A.; Pattnaik, P.K. A channel independent generalized seizure detection method for pediatric
epileptic seizures. Comput. Methods Programs Biomed. 2021, 209, 106335. [CrossRef]

60. Yan, J.; Li, J.; Xu, H.; Yu, Y.; Xu, T. Seizure Prediction Based on Transformer Using Scalp Electroencephalogram. Appl. Sci. 2022,
12, 4158. [CrossRef]

61. Jiang, Y.; Lu, Y.; Yang, L. An epileptic seizure prediction model based on a time-wise attention simulation module and a pretrained
ResNet. Methods 2022, 202, 117–126. [CrossRef]

62. Jiang, Y.; Chen, W.; Li, M.; Zhang, T.; You, Y. Synchroextracting chirplet transform-based epileptic seizures detection using EEG.
Biomed. Signal Process. Control 2021, 68, 102699. [CrossRef]

63. Xin, Q.; Hu, S.; Liu, S.; Zhao, L.; Zhang, Y.D. An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG
Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 957–966. [CrossRef] [PubMed]

64. Yedurkar, D.P.; Metkar, S.P.; Stephan, T. Multiresolution directed transfer function approach for segment-wise seizure classification
of epileptic EEG signal. Cogn. Neurodyn. 2022. [CrossRef]

65. Jiang, X.; Xu, K.; Zhang, R.; Ren, H.; Chen, W. A redundancy removed, dual-tree, discretewavelet transform to construct compact
representations for automated seizure detection. Appl. Sci. 2019, 9, 5215. [CrossRef]

66. Liu, Y.; Jiang, B.; Feng, J.; Hu, J.; Zhang, H. Classification of EEG Signals for Epileptic Seizures Using Feature Dimension Reduction
Algorithm based on LPP. Multimed. Tools Appl. 2021, 80, 30261–30282. [CrossRef]

67. Li, M.; Chen, W.; Zhang, T. FuzzyEn-based features in FrFT-WPT domain for epileptic seizure detection. Neural Comput. Appl.
2019, 31, 9335–9348. [CrossRef]

68. Chen, X.; Zheng, Y.; Dong, C.; Song, S. Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional
Network. Front. Neuroinform. 2021, 15, 605729. [CrossRef]

69. Zhang, T.; Han, Z.; Chen, X.; Chen, W. Subbands and cumulative sum of subbands based nonlinear features enhance the
performance of epileptic seizure detection. Biomed. Signal Process. Control 2021, 69, 102827. [CrossRef]

http://doi.org/10.3390/s22083066
http://www.ncbi.nlm.nih.gov/pubmed/35459052
http://doi.org/10.1016/j.bspc.2017.12.005
http://doi.org/10.1016/j.bbe.2022.02.004
http://doi.org/10.1016/j.compbiomed.2020.103671
http://doi.org/10.1016/j.bspc.2022.103645
http://doi.org/10.1080/03772063.2017.1308845
http://doi.org/10.1109/ACCESS.2022.3176367
http://doi.org/10.1016/j.bspc.2021.102492
http://doi.org/10.1109/LSP.2021.3060967
http://doi.org/10.1016/j.jneumeth.2022.109557
http://doi.org/10.3390/s18051372
http://doi.org/10.3390/app12094181
http://doi.org/10.1109/TNSRE.2022.3156931
http://www.ncbi.nlm.nih.gov/pubmed/35245199
http://doi.org/10.1080/03091902.2018.1464074
http://www.ncbi.nlm.nih.gov/pubmed/29798696
http://doi.org/10.1007/s11277-020-07857-3
http://doi.org/10.1109/ACCESS.2019.2960848
http://doi.org/10.1155/2022/8724536
http://doi.org/10.1109/JBHI.2020.2984128
http://doi.org/10.1016/j.cmpb.2021.106335
http://doi.org/10.3390/app12094158
http://doi.org/10.1016/j.ymeth.2021.07.006
http://doi.org/10.1016/j.bspc.2021.102699
http://doi.org/10.1109/TNSRE.2022.3166181
http://www.ncbi.nlm.nih.gov/pubmed/35404819
http://doi.org/10.1007/s11571-021-09773-z
http://doi.org/10.3390/app9235215
http://doi.org/10.1007/s11042-020-09135-7
http://doi.org/10.1007/s00521-018-3621-z
http://doi.org/10.3389/fninf.2021.605729
http://doi.org/10.1016/j.bspc.2021.102827


Bioengineering 2022, 9, 781 33 of 35

70. Shoeibi, A.; Ghassemi, N.; Khodatars, M.; Moridian, P.; Alizadehsani, R.; Zare, A.; Khosravi, A.; Subasi, A.; Rajendra Acharya, U.;
Gorriz, J.M. Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies. Biomed.
Signal Process. Control 2022, 73, 103417. [CrossRef]

71. Hussein, R.; Lee, S.; Ward, R.; McKeown, M.J. Semi-dilated convolutional neural networks for epileptic seizure prediction. Neural
Netw. 2021, 139, 212–222. [CrossRef] [PubMed]

72. Narin, A. Detection of Focal and Non-focal Epileptic Seizure Using Continuous Wavelet Transform-Based Scalogram Images and
Pre-trained Deep Neural Networks. Irbm 2020, 43, 22–31. [CrossRef]

73. Khan, H.; Marcuse, L.; Fields, M.; Swann, K.; Yener, B. Focal onset seizure prediction using convolutional networks. IEEE Trans.
Biomed. Eng. 2018, 65, 2109–2118. [CrossRef] [PubMed]

74. Bajaj, V.; Sinha, G.R. Analysis of Medical Modalities for Improved Diagnosis in Modern Healthcare; CRC Press: Boca Raton, FL,
USA, 2021.

75. Zeng, J.; Tan, X.; Zhan, C.A. Automatic detection of epileptic seizure events using the time-frequency features and machine
learning. Biomed. Signal Process. Control 2021, 69, 102916. [CrossRef]

76. Anuragi, A.; Sisodia, D.S.; Pachori, R.B. Automated FBSE-EWT based learning framework for detection of epileptic seizures
using time-segmented EEG signals. Comput. Biol. Med. 2021, 136, 104708. [CrossRef]

77. Hu, Y.; Li, F.; Li, H.; Liu, C. An enhanced empirical wavelet transform for noisy and non-stationary signal processing. Digit.
Signal Process. A Rev. J. 2017, 60, 220–229. [CrossRef]

78. Srivastava, H.M.; Shah, F.A.; Tantary, A.Y. A family of convolution-based generalized Stockwell transforms. J. Pseudo-Differ. Oper.
Appl. 2020, 11, 1505–1536. [CrossRef]

79. Stockwell, R.G. A basis for efficient representation of the S-transform. Digit. Signal Process. A Rev. J. 2007, 17, 371–393. [CrossRef]
80. Stockwell, R.G. Localization of the complex spectrum: The s transform. IEEE Trans. Signal Process. 1996, 44, 993. [CrossRef]
81. Janjarasjitt, S. Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data.

J. Zhejiang Univ. Sci. C 2014, 15, 1147–1153. [CrossRef]
82. Silalahi, D.K.; Rizal, A.; Rahmawati, D.; Sri Aprillia, B. Epileptic seizure detection using multidistance signal level difference

fractal dimension and support vector machine. J. Theor. Appl. Inf. Technol. 2021, 99, 909–920.
83. Lahmiri, S. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients. Phys. A Stat. Mech.

Its Appl. 2018, 490, 378–385. [CrossRef]
84. Ghosh, D.; Samanta, S.; Chakraborty, S. Multifractals and Chronic Diseases of the Central Nervous System; Springer: Berlin/Heidelberg,

Germany, 2019. [CrossRef]
85. Roca, J.L.; Rodríguez-Bermúdez, G.; Fernández-Martínez, M. Fractal-based techniques for physiological time series: An updated

approach. Open Phys. 2018, 16, 741–750. [CrossRef]
86. Koolen, N.; Jansen, K.; Vervisch, J.; Matic, V.; De Vos, M.; Naulaers, G.; Van Huffel, S. Line length as a robust method to

detect high-activity events: Automated burst detection in premature EEG recordings. Clin. Neurophysiol. 2014, 125, 1985–1994.
[CrossRef]

87. Battista, B.M.; Knapp, C.; McGee, T.; Goebel, V. Application of the empirical mode decomposition and Hilbert-Huang transform
to seismic reflection data. Geophysics 2007, 72, H29. [CrossRef]

88. Moctezuma, L.A.; Molinas, M. EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective
Optimization. Front. Neurosci. 2020, 14, 593. [CrossRef]

89. Jana, G.C.; Agrawal, A.; Pattnaik, P.K.; Sain, M. DWT-EMD Feature Level Fusion Based Approach over Multi and Single Channel
EEG Signals for Seizure Detection. Diagnostics 2022, 12, 324. [CrossRef]

90. Muhammad Usman, S.; Khalid, S.; Bashir, S.; Usman, S.M.; Khalid, S.; Bashir, S.; Muhammad Usman, S.; Khalid, S.; Bashir, S. A
deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol. Med. 2021, 136, 104710. [CrossRef]

91. Hassan, K.M.; Islam, M.R.; Nguyen, T.T.; Molla, M.K.I. Epileptic seizure detection in EEG using mutual information-based best
individual feature selection. Expert Syst. Appl. 2022, 193, 116414. [CrossRef]

92. Darjani, N.; Omranpour, H. Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic
optimization method. Knowl.-Based Syst. 2020, 205, 106276. [CrossRef]

93. Li, M.; Sun, X.; Chen, W. Patient-specific seizure detection method using nonlinear mode decomposition for long-term EEG
signals. Med. Biol. Eng. Comput. 2020, 58, 3075–3088. [CrossRef]

94. Jiang, Y.; Chen, W.; You, Y. Scattering transform-based features for the automatic seizure detection. Biocybern. Biomed. Eng. 2020,
40, 77–89. [CrossRef]

95. Yang, C.; Luan, G.; Liu, Z.; Wang, Q. Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG
recordings. Phys. A Stat. Mech. Its Appl. 2019, 523, 507–515. [CrossRef]

96. Ravi, S.; Shreenidhi, S.; Shahina, A.; Ilakiyaselvan, N.; Khan, A.N. Epileptic seizure detection using convolutional neural networks
and recurrence plots of EEG signals. Multimed. Tools Appl. 2022, 81, 6585–6598. [CrossRef]

97. Song, Z.; Deng, B.; Wang, J.; Yi, G.; Yue, W. Epileptic Seizure Detection Using Brain-Rhythmic Recurrence Biomarkers and
ONASNet-Based Transfer Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 979–989. [CrossRef]

98. Khosla, A.; Khandnor, P.; Chand, T. EEG-based automatic multi-class classification of epileptic seizure types using recurrence
plots. Expert Syst. 2022, 39, e12923. [CrossRef]

http://doi.org/10.1016/j.bspc.2021.103417
http://doi.org/10.1016/j.neunet.2021.03.008
http://www.ncbi.nlm.nih.gov/pubmed/33780727
http://doi.org/10.1016/j.irbm.2020.11.002
http://doi.org/10.1109/TBME.2017.2785401
http://www.ncbi.nlm.nih.gov/pubmed/29989952
http://doi.org/10.1016/j.bspc.2021.102916
http://doi.org/10.1016/j.compbiomed.2021.104708
http://doi.org/10.1016/j.dsp.2016.09.012
http://doi.org/10.1007/s11868-020-00363-x
http://doi.org/10.1016/j.dsp.2006.04.006
http://doi.org/10.1109/78.492555
http://doi.org/10.1631/jzus.C1400126
http://doi.org/10.1016/j.physa.2017.08.084
http://doi.org/10.1007/978-981-13-3552-5
http://doi.org/10.1515/phys-2018-0093
http://doi.org/10.1016/j.clinph.2014.02.015
http://doi.org/10.1190/1.2437700
http://doi.org/10.3389/fnins.2020.00593
http://doi.org/10.3390/diagnostics12020324
http://doi.org/10.1016/j.compbiomed.2021.104710
http://doi.org/10.1016/j.eswa.2021.116414
http://doi.org/10.1016/j.knosys.2020.106276
http://doi.org/10.1007/s11517-020-02279-6
http://doi.org/10.1016/j.bbe.2019.11.002
http://doi.org/10.1016/j.physa.2019.02.017
http://doi.org/10.1007/s11042-021-11608-2
http://doi.org/10.1109/TNSRE.2022.3165060
http://doi.org/10.1111/exsy.12923


Bioengineering 2022, 9, 781 34 of 35

99. Shariat, A.; Zarei, A.; Karvigh, S.A.; Asl, B.M. Automatic detection of epileptic seizures using Riemannian geometry from scalp
EEG recordings. Med. Biol. Eng. Comput. 2021, 59, 1431–1445. [CrossRef] [PubMed]

100. Tajmirriahi, M.; Amini, Z. Modeling of seizure and seizure-free EEG signals based on stochastic differential equations. Chaos
Solitons Fractals 2021, 150, 111104. [CrossRef]

101. Dissanayake, T.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Deep Learning for Patient-Independent Epileptic Seizure
Prediction Using Scalp EEG Signals. IEEE Sens. J. 2021, 21, 9377–9388. [CrossRef]
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