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ABSTRACT 

The Internet of Things (IoT) technology has revolutionized 
every aspect of everyday life by making everything smarter. 
IoT became more popular in recent years due to its vast 
applications in many fields such as smart cities, agriculture, 
healthcare, ambient assisted living, animal tracking, etc. 
Localization of a sensor node refers to knowing a sensor 
node's geographical location in the IoT network. In this 
research, we propose a device free indoor localization 

mechanism based on the Received Signal Strength Indicator 
(RSSI), a measure of the receiving signal from the sensor 
nodes, and supervised Machine Learning (ML) algorithms. 
An experimental test-bed was implanted in a controlled 
environment to collect RSSI values from the sensor nodes. 
The RSSI levels were collected by using multiple and 
published to a remote MQTT server over the Internet. In this 
research, RSSI values were used to train supervised ML 

algorithms, Linear Regression (LR), Polynomial Regression 
(PR), Decision Tree Regression (DTR), Support Vector 
Regression (SVR), and Random Forest Regressor (RFR) to 
estimate the accurate positioning of IoT related localization 
applications. The error between the actual measured values of 
the position and the estimated values are compared to validate 
the system model presented. 
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1. INTRODUCTION 
It is essential to apply localization technique to know the 

geographical location of a sensor node in many indoor IoT 
applications. For examples knowing a location of a moving 
animal, vehicle or a human using wireless sensor data. In 
these localization techniques, its not necessary to use 
additional hardware to detect the location, using the 
broadcasting signals form the sensor node itself can estimate 
its location.  Moreover, it is significant as a sensor node's 
position affects the performance and accuracy of the 

information. On the other hand, the localization method could 
help estimate a sensor node's accurate position based on other 
neighbouring nodes' values. The IoT systems use many 
wireless technologies to communicate within the sensor nodes 
in their networks, such as Bluetooth, infrared, LoRaWAN, 
Zigbee, Wi-Fi, GPRS, and 3G. With these technologies, it can 
get the geographical location information of a node in 
different ways. Location-based services are the primary 

service of the IoT. Therefore, localization accuracy is an 
important issue. Many localization algorithms were developed 
for Wireless Sensor Networks (WSNs) applications and IoT. 
Most of the algorithms proposed in the literature for indoor 
localization are statistical-based algorithms [1-4]. Different 
hardware devices are utilized by most of the existing 

statistical localization solutions, which increase the cost and 
significantly limit the location-based applications. 

Moreover, algorithms were developed for sensor node 
localization may inefficient and having difficulties deploying 

them on real IoT devices. Though significant related work 
exists on ML-based indoor localization for IoT systems, often 
proposed methods are evaluated using only a single ML 
algorithm, or no experimental test-bed implemented and 
evaluated. In this study it has designed and deploy an IoT 
testbed in the indoor environment and collect RSSI data. In 
the second phase, data were pre-processed and supervised ML 
algorithms investigated on estimating the accurate location of 

a sensor node and finally evaluate the performances of each 
proposed algorithm. 

2. RELATED WORKS 
The position estimation is a compulsory component of many 

IoT applications [5], especially in the tracking and monitoring 
applications such as [6-8]: animal behaviours monitoring, air 
quality monitoring, and smart cities. Besides, the location 
information enables various emerging applications such as 
inventory management, intrusion detection, road traffic 
tracking, health monitoring, etc. [9], [10]. Methods for 
determining position are usually based on geometric 

calculations such as trilateration (by measuring the angle to a 
fixed point or node with a known position) or trilateration (by 
measuring the distance between nodes) [11]. To determine the 
distance between two nodes in an IoT network, several 
techniques can be employed. For example, synchronization, 
RSSI, and the physical characteristics of the carrying wave 
[12]. The localization techniques in the IoT systems can be 
free of a previous position determination in the network, 

relying on a few specific sensors' position information and 
their inter-measurements in the network such as time 
difference of arrival, distance, angle of arrival, and 
connectivity [13]. For wireless-based indoor localization 
systems, the relationship between RSSI and distance is 
essential. The most common method is the location of fixed 
nodes based on triangulation [15]. According to [16], [17], 
[18],  and [19], RSSI-based indoor positioning uses a variety 

of algorithms to identify mobile users in an indoor 
environment. These positioning algorithms are primarily 
trilateral measurements, arrival angle (AOA), arrival time 
(TOA), and arrival time difference (TDOA) [ 20] is based. 
Due to its simplicity and wide range of applications, the above 
algorithms' most popular is the trilateration algorithm. 

 

Significant research works carried out on investigating ML for 
indoor localization problem in WSN and IoT [21], [22], [23], 
[24], [25]. Though significant related work exists on 
localization for WSN, most of the related work on Machine 

Learning-based indoor localization is for WSNs, not for IoT 
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systems. Existing works on ML-based localization for IoT are 
limited to only one type of specific ML algorithm. Moreover, 
a lack of performance evaluation on different algorithms has 
been conducted. The majority of studies on deterministic 
localization algorithms factor in noise and various conditions; 

by using an ML-based approach, these factors and noise can 
be considered a part of the general environment in which the 
localization must be carried out. 

3. EXPERIMENTAL TESTBED DESIGN 
We designed the test-bed using two nodes named reference 
node and mobile node using an ESP-8266 chip. Figure 1 
shows the test-bed arrangement, where 34 known location is 
marked with their x and y coordinates. ESP-8266 incorporates 

the IEEE 802.11 standard used in all indoor environments. 
Get compatible with Internet Protocol Version 4 (IPv4), 
Transmission Control Protocol (TCP), User Datagram 
Protocol (UDP), and Hypertext Transfer Protocol (HTTP) at 
low cost by using microchips. Beacon nodes connect to 
mobile nodes via Wi-Fi, the IEEE 802.11 standard in the 2.4 
GHz frequency band, and the +20 dBm transmit power. 
Mobile node RSSI measurements for the reference node are 

sent to the remote server over Wi-Fi. The hardware design 
investigated includes mobile nodes, reference nodes, and IoT 
cloud architectures for sending RSSI data to remote servers, 
as shown in figure 2. The remote server uses supervised 
learning models to process RSSI data for indoor positioning. 
And figure 3 shows the methodology of the experiment. 

The mobile node is implemented by an ESP-12E chip that 
records RSSI data via Wi-Fi via a reference node. The ESP-01 

is used as a reference node with an independent 3.3V DC 
power supply via an ADP7158 linear regulator, as shown in 
figure 4 a and b. ESP-12E uses a lithium polymer secondary 
battery for storage. Experimental tests were conducted in an 
8.02 square meter area that spans an open area surrounded by 
walls. The reference nodes were permanently placed at three 
corners of the above test area, and the mobile nodes can be 
moved to any known location. RSSI data is collected from 34 

known sample locations by keeping the mobile node at a 
known location for about 60 seconds. Initially, data RSSI 
values received from the mobile node were collected using 
three reference nodes and in the initial step and number of 
reference nodes increased up to 4 and 5 by adding additional 
reference nodes in to the test bed.  

 

 
Figure. 1 Sensor node arrangement in the test-bed 

 

Figure. 2 System overviews of the test-bed 

 

    
(a)                                   (b) 
Figure. 4 (a) reference sensor node and (b) 3.3V DC 
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Figure. 3 Process of location estimating 

4. DATA COLLECTION AND PRE-

PROCESSING 
In this design, CloudMQTT will be used as an IoT cloud 
platform, a managed Mosquitto server in the cloud. The 
MQTT broker provides a lightweight way to execute 
messages. This device is a low-power Wi-Fi module and 
remote computer. The mobile node publishes three RSSI data 
for the three beacon nodes to the MQTT broker over the 
Internet, subscribes to the RSSI data to a remote storage 

server, and further processes it with indoor localization. 

5.  PREDICTION MODELS 

DEVELOPMENT 
The relationship between RSSI value and the distance can be 

expressed as The RSSI measure the received power level of 

an access point on a mobile client device. The RSSI units are 

in dB (decibel) or the similar 'dBm' (dB per milliwatt). The 

relationship between RSSI vs distance can be computed as 

follows; 

RSSI     10n𝑙𝑜𝑔10𝑑  𝐴                                            

where; 

d - distance from the blind node to the reference node 

n - Signal propagation constant 

A - Received Signal strength at 1m distance 
 
Supervised ML algorithms were investigated to estimate the 
accurate location of the sensor node. These algorithms are 

typically implemented in two phases. In the first phase, called 

the training phase, data is gathered and provided to the 
algorithm to learn patterns and create a model to classify data 
or predict data properties. In the second phase, called the 
testing phase, new data is tested against the model built during 
the training phase, and the effectiveness of the model is 

revealed. Such two-phase learning algorithms are called 
supervised learning algorithms. In this work, we investigate 
Linear Regression (LR), Polynomial Regression (PR), 
Support Vector Machine(SVM), Decision Tree 
Regression(DTR), and Random Forest Regression(RFR).All 
the algorithms were coded using Python 3 on  Jupiter 

Notebook. 

6. RESULT ANALYSIS  
It has collected 4520 RSSI values from 32 known locations  in 
the test-bed in one test. Then, the data set was trained using 
supervised ML algorithms Linear Regression (LR), 

Polynomial Regression (PR), Support Vector Machine 
(SVM), Decision Tree Regression (DTR), and Random Forest 
Regression (RFR). The Root Mean Squared Error (RMSE) 
and coefficient of determination, R2 were calculated can be 
compared. Further error histograms of each algorithm were 
plotted. Initially, the experiment started with three references 
nodes and step by step, the number of references nodes 
increased up to five. For each step, Root Mean Squared Error 

(RMSE) and Coefficient of Determination(R2) values were 
calculated to compare the performances. Table 1 shows the 
results when the number of reference nodes is equal to 3. The 
RMSE value is decreasing in DTR as number of trees 
increases and R2 is increasing. Also, error is decreasing in 
RFT as number of forest increases. Table 2 and 3 shows the 
RMSE value and the R2 values when number of reference 
nodes increases up to 4 and 5 respectively.  The RMSE and R2 

is improving as number of references nodes increases in the 
experimental test-bed. Figures 5(a) to 5(j) shows the error 
distribution of x coordinate and y coordinates for each 
algorithm. It’s interesting to see that error distribution is 
optimal at DTR supervised ML algorithm.  

Table 1. Statistical comparison of each algorithm (Number 

of reference nodes=3) 

ML Algorithm  Root Mean 

Squared 

Error 

(RMSE) 

R2 

x y x y 

Linear Regression  77.7

3 

71.8

4 

0.2664 0.4183 

Polynomial Regression  69.1

6 

57.5

4 

0.4192 0.6268 

Support Vector 

Regression 

73.3

7 

66.8

4 

0.3464

2 

0.4963

4 

Decision 

Tree 

Regressio

n   

 

No. of 

Trees=15 

29.3

3 

28.5

2 

0.8955 0.9083 

No. of 

Trees=25 

28.1

2 

27.8

4 

0.9040 0.9126 

No. of 28.1 27.8 0.9037 0.9124 
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Trees=35 6 7 

Random 

Forest 

Regressio

n  

No. of 

Forests=40 

31.1

4 

29.0

9 

0.8822 0.9046 

No. of 

Forests=70 

30.8

4 

28.8

0 

0.8844 0.9064 

No. of 

Forests=10

0 

30.9

0 

28.7

0 

0.8840 0.9071

4 

Table 2. Statistical comparison of each algorithm (Number 

of reference nodes=4) 

 
ML Algorithm  Root Mean 

Squared Error 

(RMSE) 

R
2
 

x y x y 

Linear Regression  77.98 71.22 0.2773 0.4222 

Polynomial Regression  67.33 54.33 0.4293 0.6322 

Support Vector Regression 73.11 65.39 0.3692 0.4828 

Decision 

Tree 

Regression   

 

No. of 

Trees=15 

28.33 28.22 0.8935 0.9183 

No. of 

Trees=25 

27.13 26.99 0.9110 0.9189 

No. of 

Trees=35 

25.12 24.17 0.9231 0.9321 

Random 

Forest 

Regression  

No. of 

Forests=40 

29.10 29.11 0.8303 0.9189 

No. of 

Forests=70 

28.20 28.80 0.8910 0.9292 

No. of 

Forests=100 

28.92 28.21 0.8940 0.9174 

 

Table 3. Statistical comparison of each algorithm (Number 

of reference nodes=5) 

ML Algorithm  Root Mean 

Squared Error 

(RMSE) 

R2 

x y x y 

Linear Regression  77.55 71.10 0.2910 0.4292 

Polynomial Regression  65.93 52.14 0.4393 0.6502 

Support Vector Regression 71.11 65.22 0.3600 0.4802 

Decision No. of 27.31 27.10 0.8959 0.9191 

Tree 

Regression   

 

Trees=15 

No. of 

Trees=25 

27.03 25.93 0.9139 0.9123 

No. of 

Trees=35 

24.12 23.17 0.9598 0.9478 

Random 

Forest 

Regression  

No. of 

Forests=40 

28.92 29.11 0.8403 0.9191 

No. of 

Forests=70 

28.01 28.31 0.8923 0.9298 

No. of 

Forests=100 

28.11 28.02 0.8945 0.9187 

 

 

Figure 5(a): Error distribution of x coordinate in LR 

 

Figure 5(b): Error distribution of y coordinate in LR 

Figure 5(c): Error distribution of x coordinate in PR 
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Figure 5(d): Error distribution of y coordinate in PR 

 

Figure 5(e): Error distribution of x coordinate in DTR 

 

Figure 5(f): Error distribution of y coordinate in DTR 

 

Figure 5(g): Error distribution of x coordinate in SVR 

 

Figure 5(h): Error distribution of y coordinate in SVR 

 

Figure 5(i): Error distribution of x coordinate in RFR 

 

Figure 5(j): Error distribution of y coordinate in RFR 

7. CONCLUSIONS  
An experimental test-bed was designed to collect RSSI data, 
which emits by a mobile sensor node, and multiple fixed 
sensor nodes receive those RSSI values in the test-bed. The 
mobile node kept at 32 different known geographical location, 
and RSSI data were collected through an MQTT server. 
Collected data were filtered and pre-processed in order to 
train supervised ML algorithms. After the experiment with 

different supervised algorithms under different conditions, it 
becomes clear that Decision Tree Regressor (DTR) was the 
best-outperformed algorithm compare to the rest of the 
algorithms tested. The number of forests in DTR is matter to 
improve the location estimation accuracy and its significance 
in reducing the error.  It observed that once increase the 
number of reference nodes in the test-bed, the accuracy and 
the error was significantly improved. Based on our 

experiments, we foresee using supervised ML algorithms to 
give improved results rather than deterministic localization. 
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