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H YPOTENSION has been demonstrated to be an 
independent risk factor for adverse perioperative 

outcomes.1–5 Despite careful administration of medications 
by anesthesiologists during induction of general anesthesia, 
hypotension is often an unintended consequence. �us, early 
recognition of intraoperative hypotension may lead to preven-
tive measures to improve anesthetic and surgical outcome.

�ere are currently few available methods used in clini-
cal practice for prediction of postinduction hypotension.6,7 
It is likely that a variety of factors are involved in the pre-
cipitation of postinduction hypotension, including patient 
comorbidities, home medications taken on the day of sur-
gery, and medications used for induction of anesthesia. Due 
to this complexity, simple modeling techniques may not be 
su�cient for risk prediction of postinduction hypotension.

Machine-learning methods provide an opportunity for 
large amounts of data to be incorporated into development 
of robust predictive analytics, often without many of the 
pitfalls and restrictions of standard modeling techniques.8,9 
�ese techniques are increasingly being used in various �elds 
of medicine, including in the diagnosis of primary hyper-
parathyroidism, prognosis in stage III colorectal cancer, 
discharge disposition following craniotomy, mortality pre-
diction after cardiac surgery, and identifying graft failure after 

liver transplantation.10–16 Modern electronic health records 
with integrated anesthesiology intraoperative records pro-
vide the opportunity for complex clinical decision support 
tools to aid clinicians in making decisions based on objective 
evidence and data, in addition to training and experience. 

Editor’s Perspective

What We Already Know about This Topic

• The ability to predict postinduction hypotension remains 
limited and challenging due to the multitude of data elements 
that may be considered

• Novel machine-learning algorithms may offer a systematic 
approach to predict postinduction hypotension, but are 
understudied

What This Article Tells Us That Is New

• Among 13,323 patients undergoing a variety of surgical 
procedures, 8.9% experienced a mean arterial pressure less 
than 55 mmHg within 10 min of induction start

• While some machine-learning algorithms perform worse than 
logistic regression, several techniques may be superior

• Gradient boosting machine, with tuning, demonstrates a receiver 
operating characteristic area under the curve of 0.76, a negative 
predictive value of 19%, and positive predictive value of 96%
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ABSTRACT

Background: Hypotension is a risk factor for adverse perioperative outcomes. Machine-learning methods allow large amounts 
of data for development of robust predictive analytics. �e authors hypothesized that machine-learning methods can provide 
prediction for the risk of postinduction hypotension.

Methods: Data was extracted from the electronic health record of a single quaternary care center from November 2015 to May 2016 
for patients over age 12 that underwent general anesthesia, without procedure exclusions. Multiple supervised machine- learning 
 classi�cation techniques were attempted, with postinduction hypotension (mean arterial pressure less than 55 mmHg within 10 min 
of induction by any measurement) as primary outcome, and preoperative medications, medical comorbidities, induction medica-
tions, and intraoperative vital signs as features. Discrimination was assessed using cross-validated area under the receiver operating 
characteristic curve. �e best performing model was tuned and �nal performance assessed using split-set validation.

Results: Out of 13,323 cases, 1,185 (8.9%) experienced postinduction hypotension. Area under the receiver operating characteristic 
curve using logistic regression was 0.71 (95% CI, 0.70 to 0.72), support vector machines was 0.63 (95% CI, 0.58 to 0.60), naive 
Bayes was 0.69 (95% CI, 0.67 to 0.69), k-nearest neighbor was 0.64 (95% CI, 0.63 to 0.65), linear discriminant analysis was 0.72 
(95% CI, 0.71 to 0.73), random forest was 0.74 (95% CI, 0.73 to 0.75), neural nets 0.71 (95% CI, 0.69 to 0.71), and gradient 
boosting machine 0.76 (95% CI, 0.75 to 0.77). Test set area for the gradient boosting machine was 0.74 (95% CI, 0.72 to 0.77).
Conclusions: �e success of this technique in predicting postinduction hypotension demonstrates feasibility of machine-
learning models for predictive analytics in the �eld of anesthesiology, with performance dependent on model selection and 
appropriate tuning. (ANESTHESIOLOGY 2018; 129:675-88)
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Machine Learning for Postinduction Hypotension

�ere is now access to large amounts of perioperative data 
via the electronic health record. Before implementation of 
these tools, however, there must be proof-of-concept explo-
rations followed by rigorous validation (“bench work”) to 
con�rm reliability in clinical practice (“bedside”).

In the current study, we hypothesized that we could 
develop a highly discriminative machine-learning model for 
prediction of postinduction hypotension using information 
readily available from the electronic health record to demon-
strate the viability of machine-learning methods for intraop-
erative predictive analytics.

Materials and Methods

�e data did not contain any direct patient identi�ers, and 
no direct interaction with human subjects was involved. Our 
Institutional Review Board (New York University Langone 
Health, New York, New York) does not directly review such 
analyses, and requires certi�cation that no direct patient 
identi�er is accessible via the data kept in record. �is study 
was considered exempt from review and written informed 
consent was consequently waived.

Patient Population

Patients who underwent any procedure requiring gen-
eral anesthesia from November 2015 to May 2016 were 
included. Only patients over the age of 12 were included. 
�ere were no procedure-based exclusions.

Primary Outcome

�e target output (or primary outcome) was postinduction 
hypotension, de�ned as any single mean arterial pressure 
(MAP) less than 55 mmHg on any noninvasive or continuous 
blood pressure measurement within 10 min of the recorded 
induction time of general anesthesia. Designation of hypo-
tension was limited only to the available recorded data. Any 
recorded blood pressure measurement was included, whether 
it was from an arterial line or from a non-invasive blood pres-
sure cu�. Any blood pressure taken by non-invasive blood 
pressure cu� was recorded, so the frequency would depend 
on the cycle time designated by the anesthesiologist. Con-
tinuous blood pressure measurement was recorded at a reso-
lution of 1 min. Multiple thresholds for the adverse potential 
for hypotension have also been explored, and relationships 
have been drawn between MAP less than 49 and postopera-
tive mortality. In addition, systolic blood pressure and relative 
blood pressure changes have also been explored in association 
with adverse postoperative outcome. �is particular thresh-
old was chosen based on the association of MAP less than 
55 mmHg with adverse perioperative outcomes.1,3,4,17 Spe-
ci�cally, MAP less than 55 mmHg has been associated with 
both acute kidney injury and myocardial infarction in multi-
ple previous explorations of large data sets in association with 
outcomes. Because this was a binary categorical designation 
(hypotension either occurred or it did not), only classi�cation 
methods of machine learning were considered.

Data Source

Data were aggregated from the electronic health record (Epic; 
Epic Systems, USA) from a single large academic institution, 
including a six-month range from November 2015 to May 
2016. �e data were made available by uni�ed reports ini-
tially created by the hospital information technology depart-
ment for reporting and research purposes. �ere were reports 
generated for: demographic data, intraoperative medications 
administered, intraoperative event times, preoperative medi-
cal comorbidities in the form of the problem list as of the 
time of the encounter, intraoperative vital signs and ventila-
tor data, and preoperative medications as of the time of the 
encounter. Each set of values was assessed individually for 
validity, including by visualization of summary data and case 
sampling, in which 100 cases were assessed manually.

Data Elements

From demographic data, the following were extracted: age, 
sex, body mass index, time of surgery, and American Society of 
Anesthesiologists (ASA) Physical Status score. From intraoper-
ative medications, by using the time of medication administra-
tion, only medications given between entry into the operating 
area and 10 min after induction start were included. Intraop-
erative vital signs were restricted to the same time period (from 
start of anesthesia to 10 min after induction start). At our insti-
tution, preoperative IV medications are not given before entry 
into the operating room. Induction start is a single manually 
entered event that indicates the beginning of administration 
of induction medication, and records that did not include an 
induction time were not included. We do not indicate induc-
tion end within the electronic health record at our institution. 
�e data frame was truncated to include only the relevant 
time period. From the preoperative medical comorbidities, 
the following were extracted by text search from the problem 
list, which is included in every patient electronic health record 
and can be populated as discrete �elds by any documenting 
provider: coronary artery disease, hypertension, congestive 
heart failure, atrial �brillation, chronic kidney disease, asthma, 
chronic obstructive pulmonary disease, gastroesophageal re�ux 
disease, obstructive sleep apnea, diabetes mellitus, and aortic 
stenosis. �ese exact terms were used for searching the problem 
list, as only these discrete terms can be entered to de�ne the 
given comorbidity within the problem list (i.e., coronary artery 
disease is listed as “coronary artery disease” or “coronary artery 
disease [CAD]” and not only “CAD”). �e entire list of pre-
operative medications, as separated into pharmacologic classes, 
was retained for more speci�c feature selection. Pharmacologic 
classes were determined by the underlying Epic categorization 
system, more speci�cally the Clarity (Epic Systems) designa-
tions intended for querying and reporting of medications. 
Clarity is the relational database that houses data from the Epic 
electronic health record. Clarity categorizes any given medica-
tion by therapeutic class, pharmacologic class, and pharmaco-
logic subclass. For the purposes of this study, we used the most 
speci�c category: the pharmacologic subclass. Only electronic 
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health record data were used, and no waveform data from the 
monitor were analyzed. Data was obtained exactly as it was 
recorded in the electronic health record.

Statistical Analysis

Data Cleaning and Feature Selection. Although machine 
learning is expected to help in unbiased feature selection, 
our initial feature selection for inclusion was decided based 
on clinical judgment of factors that are potential contribu-
tors to postinduction hypotension as a basis for data extrac-
tion, as well as what was available for extraction from the 
electronic health record. �e previously mentioned medical 
comorbidities, age, sex, body mass index, time of surgery, 
and ASA Physical Status score were included. Time of sur-
gery was represented by the hour during which the patient 
entered the procedure area, as a continuous variable (i.e., 
entering the room at 7:26 AM was encoded as 7; entering the 
room at 10:15 PM was encoded as 22). ASA Physical Status 
score was represented as a categorical variable. Age and body 
mass index were included as continuous variables, while the 
remaining were considered categorical. Medications used 
during induction of general anesthesia were investigated, 
and only the most common medications were included: 
midazolam, propofol, etomidate, fentanyl, rocuronium, and 
succinylcholine. All medications were included as continu-
ous variables indicating dose administered. In circumstances 
where there was no data for an intraoperative medication, 
such as no value for administration of propofol, that value 
was converted to zero. �e data were inspected and continu-
ous data did not indicate a need for normalization. Blood 
pressures that were obviously out of physiologic range were 
excluded (MAP less than 20 mmHg, MAP greater than 200 
mmHg, or pulse pressure less than 20 mmHg), but no other 
attempt was made at artifact detection. No other preprocess-
ing was performed. Consequently, all data were used with-
out modi�cation, and no additional measures were taken 
regarding potentially “missing” or misclassi�ed data. �is 
was done to preserve application of real-world data. Features 
were examined in relation to the primary outcome for data 
leakage or perfect separation potential. Data leakage refers to 
information within the training set that leads to excessively 
optimistic predictions. �is data may be information that is 
not available in the real world setting, or data that contains 
the information that is to be predicted. For example, in this 
setting, data leakage could have occurred if lowest MAP had  
been included as a feature, as this value is directly related to  
the binary de�nition of hypotension used in the models. 
Perfect separation refers to data that clearly forces the out-
comes of the algorithm into one classi�cation or another (i.e., 
if variable x = 1, then outcome y = 1 always). No features 
were considered to be a risk for data leakage or perfect separa-
tion. From intraoperative vital signs and ventilator data, the 
�rst MAP, maximum end tidal volatile anesthetic concentra-
tion, and mean peak inspiratory pressure were included, all 
of which were included as continuous variables. Recursive 

feature elimination was used as a wrapper method on top of 
random forest for feature selection, using the “rfe” function 
from the “caret” package, resulting in a subset of the available 
features for inclusion within the machine-learning models.
Model Selection. Because not all machine-learning methods 
have robust internal validation, data was randomly separated 
into 70/30 training and test sets for validation. Speci�cally, 
70% of the data was used for training the machine learned 
models, and 30% was held out for the test set (�g. 1). In 
no predetermined order, machine-learning algorithms were 
trained on the training set, using tenfold cross-validation 
repeated three times to minimize initial over�tting. Because 
of concerns of how various machine-learning models treat 
class imbalance, area under the receiver operating character-
istic curve was used as the primary performance metric due 
to its threshold-independence instead of a simple accuracy 
metric, which may not be re�ective of performance in the 
setting of class imbalance. In addition, the threshold-depen-
dent measures of sensitivity and speci�city at the “best” 
thresholds were computed for each model. “Best” threshold 
refers to the threshold at which sensitivity and speci�city 
are both maximized, not necessarily the optimal threshold 
for clinical integration. �e following machine-learning 
algorithms were trained: logistic regression, support vector 
machines, naive Bayes, k-nearest neighbor, linear discrimi-
nant analysis, random forest, neural nets, and stochastic 
gradient boosting machine. Although the goal was develop-
ing a predictive model, an additional aim was to explore 
how various machine-learning algorithms compare with 
respect to handling of pre- and intraoperative data.

All available features after recursive feature elimination were 
used for all training algorithms. Some machine-learning algo-
rithms perform built-in feature selection (i.e., random forest), 
and this behavior was not restricted. �e “caret” package in R 
was used for initial training and tenfold cross-validation, using 
receiver operating characteristic as the performance metric, and 
basic tuning on parameters speci�c to each method of machine 
learning (https://CRAN.R-project.org/package=caret, accessed 
May 4, 2018). Tuning was performed by a limited grid-search 
as dictated by the defaults in the package. Functions, packages, 
and tuning parameters used for each machine-learning method 
are shown in appendix 1.18–21 (https://CRAN.R-project.org/
package=gbm, accessed May 4, 2018). Receiver operating char-
acteristic curves were generated using the “pROC” package.22 
Bootstrap 95% CI were computed with 2,000 strati�ed boot-
strap replicates by the “ci” function in the “pROC” package.
Model Tuning and Testing. After model selection, 
which involved a course-level tuning of the models, 
the best performing algorithm as determined by high-
est area under the receiver operating characteristic curve 
was �ne-tuned further for parameters speci�c to the 
method. Tuning refers to optimization of the algorithm 
by modi�cation of parameters in order to achieve the 
best performance. Modi�able parameters are speci�c 
to each machine-learning algorithm (i.e., number of 
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trees for random forest, distance and kernel for k-near-
est neighbor, etc.). Tuning parameters were assessed  
by expanded manual grid search, in which large but real-
istic ranges of values are given for each tuning parameter, 
and performance of the resulting models is compared. 
Variable importance was determined for the �nal model 
if this is a possibility for the given machine-learning 
algorithm, as not all machine-learning algorithms are 
amenable to computing variable importance. Variable 
importance is computed based on how important any 
given feature is to aid in the classi�cation process when 
the classi�er is built, determined by its e�ect on the per-
formance measure. Generally, variable importance helps 
to assess the impact of any given variable on the perfor-
mance of the algorithm. If a variable with high importance 
is permuted or removed from the model, the performance 
decreases. �e greater the importance, the more essential 
the variable is to the performance of the model. None-
theless, assumptions about e�ect size cannot be drawn 
directly about the relationship of variable importance to 
the primary outcome.23 �e “varImp” function from the  
“caret” package was used for variable importance  (https://
CRAN.R-project.org/package=caret, accessed May 4, 
2018). �e �nal model was then simulated on the test 
set to determine generalizability of the algorithm, and 
assess whether the model was over�tted.24 �e process is 
depicted in �gure  1. All statistical operations were per-
formed using the R statistical software (R Foundation for 
Statistical Computing, version 3.3.2, Austria). A sample 
data set (Supplemental Digital Content 1, http://links.
lww.com/ALN/B773) and sample code of the primary 
analysis (Supplemental Digital Content 2, http://links.
lww.com/ALN/B774) are provided.

Sensitivity Analyses

Different Definition of Hypotension. We used MAP less than 
55 mmHg as the de�nition of hypotension due to its asso-
ciation with certain postoperative outcomes. Other stud-
ies suggest a more conservative de�nition of hypotension, 
namely MAP less than 65 mmHg, as being associated with 
harm, namely myocardial and kidney injury.17 Because of 
this, we undertook a sensitivity analysis in which MAP less 
than 65 mmHg was considered as the de�nition for hypo-
tension, and trained the best performing algorithm on this 
new de�nition to generate a new model.
Treated Hypotension. We initially only aimed to identify 
patients that experienced hypotension, as in those cases there 
was an implication that the hypotension was unanticipated. 
In cases of anticipated or suspected hypotension, the anes-
thesiologist is likely to have treated the hypotension. Some-
times the treatment is successful and other times not. �is 
creates a few potential outcomes: untreated hypotension, 
unsuccessful treatment of hypotension, and successful treat-
ment of hypotension. Our initial model would only capture 
the �rst two options. We undertook a sensitivity analysis in 
which the third outcome (successful treatment) is explored 
by including administration of phenylephrine or ephedrine 
as part of the target output de�nition in addition to MAP 
less than 55 mmHg, and trained the best performing algo-
rithm on this new de�nition to generate a new model.
Adjusting for Class Imbalance. Although threshold invari-
ant metrics such as area under the receiver operating char-
acteristic curve tend to be more resistant to class imbalance, 
there are additional methods to reduce the impact of class 
imbalance on measuring model performance. We undertook 
a sensitivity analysis in which a down-sampling of the major-
ity class was performed on the training set to reduce initial 

Fig. 1. Diagram of methods. The complete data set was split into training and test sets. The machine-learning methods were 

trained on the training set and the best performer selected for additional parameter tuning before being applied to the test set 

for validation.
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Table 1. Data Set Population Characteristics and Characteristics of Patients Who Experienced and Did Not Experience 
Postinduction Hypotension

 
All Cases  

(n = 13,323)
No Hypotension  

(n = 12,138)
Hypotension  
(n = 1,185) P Value

Age, yr, mean (SD) 50 (18) 49 (18) 55 (16) < 0.001

Sex (male) 5,882 (44) 5,469 (45) 424 (36) < 0.001

Body mass index, kg/m2, mean (SD) 28 (6.4) 28 (6.3) 27 (6.8) 0.006

ASA score    < 0.001

  Unknown 336 (2.5) 312 (2.6) 24 (2.0)  

  I 2,616 (20) 2,482 (20) 134 (11)  

  II 6,669 (50) 6,143 (51) 526 (44)  

  III 3,103 (23) 2,719 (22) 384 (32)  

  IV 590 (4.4) 481 (4.0) 109 (9.2)  

  V 9 (0.07) 1 (0.008) 8 (0.68)  

Surgical service    < 0.001

  Unknown 50 (0.38) 41 (0.34) 9 (0.76)  

  Cardiovascular 468 (3.5) 387 (3.2) 81 (6.8)  

  Gastroenterology 172 (1.3) 160 (1.3) 12 (1.0)  

  Bariatrics 625 (4.7) 558 (4.6) 67 (5.7)  

  General endocrine 221 (1.7) 201 (1.7) 20 (1.7)  

  Oral surgery 66 (0.50) 63 (0.52) 3 (0.25)  

  General pediatric 69 (0.52) 59 (0.49) 10 (0.84)  

  General robotic 79 (0.59) 76 (0.63) 3 (0.25)  

  General surgical oncology 486 (3.6) 445 (3.7) 41 (3.4)  

  Transplant 46 (0.35) 38 (0.31) 8 (0.68)  

  Wound care 71 (0.53) 59 (0.49) 12 (1.0)  

  General 1,305 (9.8) 1,216 (10) 89 (7.5)  

  Gynecology 1,550 (12) 1,463 (12) 87 (7.3)  

  Movement disorder 110 (0.83) 99 (0.82) 11 (0.93)  

  Neurosurgical craniotomy 338 (2.5) 311 (2.6) 27 (2.3)  

  Pediatric neurosurgery 93 (0.70) 80 (0.66) 13 (1.1)  

  Neurosurgical spine 342 (2.6) 282 (2.3) 60 (5.1)  

  Obstetrics 9 (0.07) 5 (0.04) 4 (0.34)  

  Ophthalmology 130 (0.98) 124 (1.0) 6 (0.51)  

  Orthopedic foot/hand 175 (1.3) 164 (0.84) 11 (0.08)  

  Pediatric orthopedic 61 (0.46) 55 (0.51) 6 (0.51)  

  Orthopedic shoulder/elbow 22 (0.17) 22 (0.18) 0 (0)  

  Orthopedic spine 898 (6.7) 785 (6.5) 113 (9.5)  

  Sports 1,839 (14) 1,753 (14) 86 (7.3)  

  Orthopedic tumor 51 (0.38) 48 (0.40) 3 (0.25)  

  Orthopedic total joint 787 (5.9) 723 (6.0) 64 (5.4)  

  Orthopedic trauma/fracture 178 (1.3) 150 (1.2) 28 (2.4)  

  Otolaryngology head and neck 97 (0.73) 87 (0.72) 10 (0.84)  

  Otolaryngology 853 (6.4) 781 (6.4) 72 (6.1)  

  Pediatric oncology 26 (0.20) 18 (0.15) 8 (0.68)  

  Plastic cosmetic 163 (1.2) 153 (1.3) 10 (0.84)  

  Plastic reconstructive 396 (3.0) 328 (3.0) 32 (2.8)  

  Pulmonary 170 (1.3) 155 (1.3) 15 (1.3)  

  Thoracic 338 (2.5) 290 (2.4) 48 (4.1)  

  Urology 923 (6.9) 832 (6.9) 91 (7.7)  

  Vascular 114 (0.86) 91 (0.75) 23 (1.9)  

(Continued)
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class imbalance. �e test set was not modi�ed at all. �e 
best performing algorithm was trained on the down-sampled 
training set to generate a new model.

Results

After exclusion of cases without an induction time and 
patients younger than age 12, there were 13,323 cases remain-
ing, 1,185 (8.9%) of which experienced postinduction 

hypotension. �ere were 412 cases (3.0%) with missing 

induction time. �ere were 2,051 (15%) cases that utilized 

continuous arterial blood pressure monitoring. Ultimately, 

the training set contained 9,326 cases and the test set con-

tained 3,997 cases. �ere were 816 (8.7%) cases of postin-

duction hypotension within the training set, and there were 

369 (9.2%) cases of postinduction hypotension within the 

test set. Data characteristics of the complete data set are 

Medical comorbidities     

  Coronary artery disease 439 (3.3) 373 (3.1) 66 (5.6) < 0.001

  Hypertension 2,065 (15) 1,794 (15) 271 (23) < 0.001

  Congestive heart failure 339 (2.5) 281 (2.3) 58 (4.9) < 0.001

  Atrial �brillation 424 (3.2) 365 (3.0) 59 (5.0) < 0.001

  Chronic kidney disease 101 (0.74) 89 (0.73) 12 (1.0) 0.37

  Asthma 440 (3.3) 397 (3.3) 43 (3.6) 0.57

  Chronic obstructive pulmonary Disease 220 (1.7) 187 (1.5) 33 (2.8) 0.002

  Gastroesophageal re�ux disease 638 (4.8) 563 (4.6) 75 (6.3) 0.01

  Obstructive sleep apnea 482 (3.6) 419 (3.5) 63 (5.3) 0.001

  Diabetes mellitus 1,102 (8.3) 962 (7.9) 140 (12) < 0.001

  Aortic stenosis 94 (0.69) 82 (0.68) 12 (1.0) 0.25

Preoperative medications     

  ACE inhibitors 1,313 (9.8) 1,159 (9.5) 154 (13) < 0.001

  Anxiolytics 2,156 (16) 1,928 (16) 228 (19) 0.003

  Anticonvulsants 1,509 (11) 1,340 (11) 169 (14) 0.001

  Antidepressants 1,989 (15) 1,796 (15) 193 (16) 0.18

  Antiplatelet 512 (3.8) 419 (3.5) 93 (7.8) < 0.001

  Angiotensin receptor blockers 1,505 (11) 1,276 (11) 229 (19) < 0.001

  Short acting inhaled beta agonists 1,132 (8.5) 1,024 (8.4) 108 (9.1) 0.46

  Inhaled glucocorticoids 790 (5.9) 713 (5.9) 77 (6.5) 0.42

  Beta blockers 2,337 (18) 2,011 (17) 326 (28) < 0.001

  Biguanides 1,057 (7.9) 926 (7.6) 131 (11) < 0.001

  Systemic glucocorticoids 1,144 (8.9) 1,013 (8.3) 131 (11) 0.002

  Leukotrienes 430 (3.2) 391 (3.2) 39 (3.3) 0.97

  Antiprostatic hypertrophy 872 (6.5) 773 (6.4) 99 (8.4) 0.01

  Thiazide diuretics 1,208 (9.1) 1,046 (0.40) 162 (0.42) < 0.001

  Levothyroxine 1,495 (11) 1,308 (11) 187 (16) < 0.001

  Loop diuretics 747 (5.6) 630 (5.2) 117 (9.9) < 0.001

  Proton pump inhibitors/H2 blockers 3,298 (25) 2,917 (24) 381 (32) < 0.001

  Statins 2,966 (22) 2,605 (21) 361 (30) < 0.001

  Aspirin 3,750 (28) 3,361 (28) 389 (33) < 0.001

  Calcium channel blockers 1,604 (12) 1,421 (12) 183 (15) < 0.001

Intraoperative medications     

  Midazolam (mg) 2 (0–2) 2 (0–2) 2 (0–2) 0.33

  Propofol (mg) 200 (150–200) 200 (150–200) 150 (100–200) < 0.001

  Etomidate (mg) 0 (0-0) 0 (0-0) 0 (0-0) 0.009

  Fentanyl (mcg) 100 (50–150) 100 (50–150) 100 (50–150) < 0.001

  Rocuronium (mg) 50 (35–50) 10 (0–50) 30 (0–50) < 0.001

  Succinylcholine (mg) 100 (100-100) 0 (0-0) 0 (0-0) 0.009

  Maximum sevo�urane concentration (%) 1.4 (1.0–1.9) 1.2 (0.5–1.7) 1.0 (0.2–1.6) < 0.001

  Maximum des�urane concentration (%) 0 (0-0) 0 (0-0) 0 (0-0) 0.22

Peak inspiratory pressure (mm Hg) 16 (13–19) 16 (13–19) 17 (14–20) < 0.001

First mean arterial pressure (mm Hg) 83 (74–93) 96 (87–105) 87 (75–97) < 0.001

Only 20 of the most frequent preoperative medications are presented. Complete data set characteristics of only modeled features are shown in appendix 2. 
“Intraoperative medications” refers to medications given between entry into the procedure area and 10 min from induction start. 

ACE inhibitors, angiotensin converting enzyme inhibitors; ASA score, American Society of Anesthesiologists Physical Status score;  H2 blockers, histamine 2 
receptor blockers. 

Table 1. (Continued)

 
All Cases  

(n = 13,323)
No Hypotension  

(n = 12,138)
Hypotension  
(n = 1,185) P Value
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detailed in table 1, while data characteristics of the data set 
only including those features for modeling are detailed in 
appendix 2. Final feature selection after recursive feature 
elimination is depicted in �gure 2.

After training, area under the receiver operating charac-
teristic curve using logistic regression was 0.71 (95% CI, 
0.70 to 0.72); support vector machines was 0.63 (95% CI, 
0.58 to 0.60); naive Bayes was 0.69 (95% CI, 0.67 to 0.69); 
k-nearest neighbor was 0.64 (95% CI, 0.63 to 0.65); lin-
ear discriminant analysis was 0.72 (95% CI, 0.71 to 0.73); 
random forest 0.74 (95% CI, 0.73 to 0.75); neural nets 
was 0.71 (95% CI, 0.69 to 0.71); and gradient boosting 
machines was 0.76 (95% CI, 0.75 to 0.77). Receiver operat-
ing characteristic curves, as well as sensitivity and speci�city 
at “best” thresholds for each machine-learning method, are 
depicted in �gure 3.

Based on the model selection process, it appeared that 
gradient boosting machine was the strongest initial per-
former to be a candidate for continuing tuning and fur-
ther testing. Other parameters that were tuned speci�c to 
the gradient boosting machine method were the number 
of trees (range 50 to 400), interaction depth (range 1 to 8), 
shrinkage (range 0.01 to 0.3), and the minimum number 
of variables at terminal node (range 5 to 30). Final tun-
ing resulted in a gradient boosting machine algorithm with 
200 trees, interaction depth of 6, shrinkage of 0.05, and 
30 minimum variables at terminal node. �e �nal model 

had an area under the receiver operating characteristic curve 

of 0.77 (95% CI, 0.75 to 0.78). Final variable importance 

can be seen in �gure 4. �e model run on the test set had 

an area under the receiver operating characteristic curve of 

0.74 (95% CI, 0.72 to 0.76), a negative predictive value of 

19% (95% CI, 16 to 21%) and a positive predictive value of 

96% (95% CI, 95 to 97%). Areas under the receiver operat-

ing characteristic curve for all machine-learning classi�ers 

run on the test set are presented in table 2 solely for com-

parison in this setting.

Sensitivity Analyses

�e model with a di�erent de�nition of hypotension than 

the primary analysis (MAP less than 65 mmHg) had an area 

under the receiver operating characteristic curve of 0.72 

(95% CI, 0.71 to 0.72), with speci�city of 65% and sensi-

tivity of 67% at the “best” threshold.

�e model that incorporated administration of phenyl-

ephrine or ephedrine within the hypotension outcome de�-

nition had an area under the receiver operating characteristic 

curve of 0.75 (95% CI, 0.74 to 0.75), with speci�city of 

63% and sensitivity of 73% at the best threshold.

�e model that utilized the down-sampled training set 

had an area under the receiver operating characteristic curve 

of 0.76 (95% CI, 0.75 to 0.77), with speci�city of 69% and 

sensitivity of 69% at the best threshold.

Fig. 2. Reduction of dimensionality by recursive feature elimination on the training data set. The number of features used for train-

ing was reduced from the list of features on the left to the list of features on the right. Italics indicate features that were eliminated. 

ACE inhibitors, angiotensin converting enzyme inhibitors; ASA score, American Society of Anesthesiologists Physical Status score.
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Discussion

In this study, we examined the use of machine-learning 
methods based on existing information in the electronic 
health record for intraoperative predictive analytics, spe-
ci�cally prediction of postinduction hypotension. �e �nal 
model used a gradient boosting machine that demonstrated 
strong discrimination in both the training (area under the 
receiver operating characteristic curve 0.76, 95% CI, 0.75 
to 0.77) and testing (area under the receiver operating 
characteristic curve 0.74, 95% CI, 0.72 to 0.77) sets. Gra-
dient boosting machines function as an ensemble method 
by sequentially adding weak classi�ers, in this case decision 
trees, to reach a �nal model based on improvement of each 
classi�er. �e results of this exploration are not surprising 
considering the nature of the data, namely that the machine-
learning methods that handle class imbalance better (gradi-
ent boosting machines, random forest, logistic regression) 
performed better than other methods. Boosting algorithms 
tend to su�er in cases of highly misclassi�ed data, so the 
strong performance of this algorithm o�ers some indication 
of the veracity of the modeled data. Most of the variables 
of high importance are also not unexpected as far as clini-
cally credibility; it is realistic to expect that features such as 
age, induction agents, volatile anesthetic concentration, and 

mean peak inspiratory pressure would be relevant for predic-
tion of postinduction hypotension. Some were surprising, 
however, such as the relatively high importance of levothy-
roxine and bisphosphonates.

Some machine-learning algorithms have been reported 
within the anesthesiology, perioperative care, and pain 
medicine �elds, such as for predicting mortality after car-
diac surgery,13 predicting postoperative sepsis and acute 
kidney injury,25 predicting postoperative pain or the need 
for pain consults,26,27 or predicting patient controlled 
analgesia consumption.28 �ese methods, however, do 
not extend into the intraoperative period. �ere are two 
major di�erences between our approach and that of other 
previous acute hypotension analysis approaches (as from 
the PhysioNet Challenge29). �e settings of these explo-
rations are primarily the intensive care unit, wherein data 
acquisition for processing occurs over a longer period of 
time and there is not necessarily a discrete inciting event 
related to hypotension. Additionally, this exploration used 
electronic health record data as opposed to waveform data. 
Waveform data is reliant on the quality of the waveform, 
as well as presence of invasive blood pressure monitoring, 
which is not available for all surgical cases.29,30 While there 
are some predictive tools for intraoperative hypotension, 
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Specificity Sensitivity AUC
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75% (67%-79%) 64% (60%-71%) 0.76 (0.75-0.77)

Fig. 3. Receiver operating characteristic curves of machine-learning methods for prediction of postinduction hypotension in the 

training data set. A greater area under the receiver operating characteristic curve (AUC) represents higher discriminative ability 

of the model. Area under the receiver operative characteristics curves, as well as speci�city and sensitivity of each machine-

learning model for prediction of postinduction hypotension at “best” threshold are presented with 95% CIs. “Best” threshold 

refers to the threshold at which speci�city and sensitivity are both maximized.
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none currently seem to utilize the electronic health record 
for clinical decision support integration, or utilize machine 
learning.31,32 �e bene�t of being able to predict postin-
duction hypotension may ultimately allow clinicians to 
tailor their induction agents by prepopulating a model 
and observing the risk of hypotension, or for triggering 
an intraoperative alert to notify the clinician of impend-
ing hypotension for treatment potential. Our machine- 
learning approach has a strong precedent in both medical 
and nonmedical �elds.

�ere are a number of bene�ts to using machine learning 
for problems such as this. �e most obvious of these is the 
ability to incorporate large amounts of disparate data into 
a uni�ed algorithm. Most machine-learning methods are 
highly scalable, and thus can handle a variety of problems 
with di�ering feature types. �e sensitivity analyses demon-
strate the �exibility of machine-learning approaches to varia-
tions in target de�nition. Machine learning is particularly 
useful when the limits of human understanding have been 
superseded. For example, despite a thorough understanding 

Fig. 4. Variable importance of features included in stochastic gradient boosting machine-learning algorithm for prediction of 

postinduction hypotension. Variable importance is computed based on how important any given feature is to aid in the clas-

si�cation process when the classi�er is built, determined by its effect on the performance measure. The greater the importance, 

the more essential the variable is to the performance of the model. Assumptions about effect size cannot be drawn directly 

about the relationship of variable importance to the primary outcome. ACE inhibitor, angiotensin converting enzyme inhibitor; 

ASA score, American Society of Anesthesiologists Physical Status score; DMARD, disease modifying antirheumatic drug; DPP4, 

dipeptidyl peptidase-4 inhibitor; max. sevo�urane conc., maximum sevo�urane concentration; max. des�urane conc., maximum 

des�urane concentration; PPI/H2 blocker, proton pump inhibitor/H2 blocker. 
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of pharmacology, normal physiology, pathophysiology, and 
surgical factors, postinduction hypotension still occurs at 
a surprisingly high rate, likely because the number of vari-
ables involved is so vast and complex. Because of this, such 
a problem is a prime target for machine learning. Although 
each individual machine-learning method may have its own 
restrictions, most are not bound by the restrictions of clas-
sical prediction methods, such as linearity assumptions and 
the importance of identifying interactions between terms. 
Circumstances in which regression methods are utilized for 
machine learning can be preprocessed and tuned using tech-
niques to minimize the impact of those assumptions, though 
not always entirely eliminated.

�ere are some disadvantages to machine-learning meth-
ods, however. Training times can vary widely depending on 
the methods and tuning parameters, number of complexity 
of features, computing power, and sheer volume of data. �is 
can make the iterative process required for tuning models 
relatively time consuming as compared to simple rule-based 
if–then approaches. As with any other predictive modeling 
technique, any given machine-learning technique may not 
be an ideal approach for all tasks. For example, there were 
a number of methods in this study that performed more 
poorly than logistic regression, which, although considered 
a machine-learning algorithm, is more accessible and famil-
iar to the medical community due to its roots in statisti-
cal learning. While some machine-learning methods o�er 
information as to the relevance of various features, such as 
the variable importance shown for the gradient boosting 
machine algorithm, machine-learning tools tend to be “black 
boxes,” e�ectively. While utility can be measured using per-
formance metrics, the lack of transparency in the algorithms 
may be inadequate to those who want to have a complete 
understanding of the clinical implications in order for more 
speci�c practice modi�cation to be a possibility. However, 
the unbiased nature of machine-learning algorithms may 
allow insight into previously unexplored or unexpected fac-
tors that may contribute to a given outcome. For example, 
exploring why time of day was a variable of high importance 
may lead to further insight into a potential for modi�ca-
tion. As with many other classi�ers, threshold-dependent 
measures such as sensitivity and speci�city may not be useful 

independent of choosing an appropriate threshold to bal-
ance desired sensitivity and speci�city, which should be done 
based on clinical guidance and weighing the implications 
of misclassi�cation as a result of over- or underdiagnosis. 
Finally, care must be taken when developing models to avoid 
over�tting, which can happen as a result of data leakage or 
perfect separation problems, among other causes.8

Limitations exist within this project. Although more than 
10,000 cases were incorporated into the machine learning, 
they were extracted only over a six-month period, and within 
a single institution. A larger data set over a longer time period 
may have resulted in slightly di�erent results, as practice may 
have changed over the course of the date range, and a greater 
amount of data may have led to utilization of more complex 
relationships among the data for algorithm training. Nonethe-
less, the expectation is that if incorporated into practice, algo-
rithms would be routinely updated based on the most recent 
data so as to re�ect current practice, as has been suggested in 
other studies of clinical data source relevance.33 While we used 
the area under the receiver operating characteristic curve as a 
performance metric, there are a number of other acceptable 
methods for comparison among machine-learning methods. 
�e performance metric or metrics should be determined 
based on the examination of the data and the desired outcome, 
and no single performance metric is likely to fully encompass 
the viability of a machine-learning application in a given set-
ting. �is was a single institution study, which, without exter-
nal validation with an external database, limits the use of this 
precise model in another setting. While an area under the 
receiver operating characteristic curve of 0.76 is demonstrative 
of reasonably strong discrimination, there still exists substan-
tial potential for improvement in performance before clinical 
use may be acceptable. �ere are a number of features that 
were not easily available as discrete values within the electronic 
health record for incorporation into the model. For example, 
numerical indices of heart function such as ventricular ejection 
fraction, details of airway management, or preoperative lab val-
ues may have improved the discrimination of the model. While 
this may seem to be a limitation, the methods demonstrated 
herein are re�ections of how actual practical model training 
would occur, with only those features readily available from 
most electronic health record. With additional availability of 
data features, the scalability of most machine-learning meth-
ods allows enhancement (and likely predictive power) of the 
existing model. As electronic health records evolve, there has 
also been a transition to including more discrete data �elds, 
which will aid in development of predictive analytics, as well 
as in other forms of data mining. For data that may not be 
easily transformed into discrete �elds, data aggregation may 
ultimately have to rely on natural language processing. Finally, 
our approach only �nely tuned one model. It is possible that if 
other algorithms were tuned, they may have performed equal 
to, or better than, the single model we tuned.

Current intraoperative clinical decision support in most 
electronic health records is primarily rule based, and has 

Table 2. Area under the Receiver Operating Characteristic 
Curves (AUROC) for Each Machine-learning Classi�er Run on 
the Test Data Set

 AUROC (95% CI)

Logistic regression 0.70 (0.67–0.73)

Support vector machines 0.64 (0.61–0.67)

Naïve Bayes 0.67 (0.65–0.70)

K-nearest neighbor 0.65 (0.62–0.68)

Linear discriminant analysis 0.71 (0.67–0.73)

Random forest 0.73 (0.70–0.76)

Neural nets 0.70 (0.67–0.73)

Stochastic gradient boosting 0.74 (0.71–0.76) D
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demonstrated success in improving adherence to practice 
guidelines in cases of blood pressure and glucose manage-
ment, and prophylaxis for postoperative nausea and vomiting 
and infection.34–39 Like rule-based clinical decision support 
systems derived from existing guidelines, machine-learning–
based systems will need to be grounded in validated method-
ologies before assimilation into an intraoperative work�ow. 
For this reason, clinical “bedside” application of these tools 
should be preceded by “bench” validation as described 
and demonstrated herein, followed by proof of clinical 
improvement.
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Appendix 1. Functions, Packages, and Tuning Parameters in the R Statistical Software Used for Each Machine-learning Algorithm 

Algorithm Function Package Tuning Parameters

Logistic regression glm base None

Support vector machines svmRadial kernlab18 Cost, sigma

Naïve Bayes nb klaR19 Distribution type (kernel), Laplace correction, bandwidth adjustment

K-nearest neighbor knn base k

Linear discriminant analysis lda MASS20 none

Random forest rf randomForest21 Number of randomly selected predictors

Neural nets nnet nnet20 Number of hidden units, weight decay

Gradient boosting machine gbm gbm* Number of boosting iterations, maximum tree depth, shrinkage,  
minimum terminal node size

Italics indicate tuning parameters that were held constant during initial training.

*https://CRAN.R-project.org/package=gbm, accessed May 4, 2018.

Appendix 2. Data Set Variable Characteristics for Features Included in Modeling, and Characteristics of Patients Who 
Experienced and Did Not Experience Postinduction Hypotension

 
All Cases  

(n = 13,323)
No Hypotension  

(n = 12,138)
Hypotension  
(n = 1,185) P Value

Age, yr, mean (SD) 50 (18) 49 (18) 55 (16) < 0.001

Sex (male) 5,882 (44) 5,469 (45) 424 (36) < 0.001

Body mass index, kg/m2, mean (SD) 28 (6.4) 28 (6.3) 27 (6.8) 0.006

ASA score    < 0.001

  Unknown 336 (2.5) 312 (2.6) 24 (2.0)  

  I 2,616 (20) 2,482 (20) 134 (11)  

  II 6,669 (50) 6,143 (51) 526 (44)  

  III 3,103 (23) 2,719 (22) 384 (32)  

  IV 590 (4.4) 481 (4.0) 109 (9.2)  

  V 9 (0.07) 1 (0.008) 8 (0.68)  

Medical comorbidities     

  Coronary artery disease 439 (3.3) 373 (3.1) 66 (5.6) < 0.001

  Hypertension 2,065 (15) 1,794 (15) 271 (23) < 0.001

  Congestive heart failure 339 (2.5) 281 (2.3) 58 (4.9) < 0.001

  Atrial �brillation 424 (3.2) 365 (3.0) 59 (5.0) < 0.001

  Chronic kidney disease 101 (0.74) 89 (0.73) 12 (1.0) 0.37

(Continued)
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  Asthma 440 (3.3) 397 (3.3) 43 (3.6) 0.57

  Chronic obstructive pulmonary disease 220 (1.7) 187 (1.5) 33 (2.8) 0.002

  Gastroesophageal re�ux disease 638 (4.8) 563 (4.6) 75 (6.3) 0.01

  Obstructive sleep apnea 482 (3.6) 419 (3.5) 63 (5.3) 0.001

  Diabetes mellitus 1,102 (8.3) 962 (7.9) 140 (12) < 0.001

  Aortic stenosis 94 (0.69) 82 (0.68) 12 (1.0) 0.25

Preoperative medications     

  ACE inhibitors 1,313 (9.8) 1,159 (9.5) 154 (13) < 0.001

  Alpha blockers 73 (0.55) 69 (0.57) 4 (0.34) 0.41

  Antianginal 166 (1.2) 144 (1.2) 22 (1.9) 0.07

  Anxiolytics 2,156 (16) 1,928 (16) 228 (19) 0.003

  Antiarrythmics 228 (1.7) 188 (1.5) 40 (3.4) < 0.001

  Anticonvulsants 1,509 (11) 1,340 (11) 169 (14) 0.001

  Antidepressants 1,989 (15) 1,796 (15) 193 (16) 0.18

  Antineoplastics 386 (2.9) 336 (2.8) 50 (4.2) 0.006

  Antiparkinsons 171 (1.3) 153 (1.3) 18 (1.5) 0.54

  Antiplatelet 512 (3.8) 419 (3.5) 93 (7.8) < 0.001

  Antiretrovirals 132 (1.0) 116 (1.0) 16 (1.4) 0.25

  Angiotensin receptor blockers 1,505 (11) 1,276 (11) 229 (19) < 0.001

  Inhaled anticholinergics 326 (2.4) 279 (2.3) 47 (4.0) 0.001

  Long acting inhaled beta agonists 14 (0.11) 9 (0.07) 5 (0.42) 0.002

  Short acting inhaled beta agonists 1,132 (8.5) 1,024 (8.4) 108 (9.1) 0.46

  Inhaled glucocorticoids 790 (5.9) 713 (5.9) 77 (6.5) 0.42

  Beta blockers 2,337 (18) 2,011 (17) 326 (28) < 0.001

  Biguanides 1,057 (7.9) 926 (7.6) 131 (11) < 0.001

  Bisphosphonates 156 (1.2) 121 (1.0) 35 (3.0) < 0.001

  Calcimimetics 29 (0.22) 26 (0.21) 3 (0.25) 1.000

  Digoxin 88 (0.66) 74 (0.61) 14 (1.2) 0.03

  Disease modifying antirheumatic drugs 96 (0.72) 77 (0.63) 19 (1.6) < 0.001

  Dipeptidyl peptidase-4 inhibitors 334 (2.5) 294 (2.4) 40 (3.4) 0.06

  Erythropoetin 55 (0.41) 47 (0.39) 8 (0.68) 0.22

  Systemic glucocorticoids 1,144 (8.9) 1,013 (8.3) 131 (11) 0.002

  Glucosidases 9 (0.07) 6 (0.05) 3 (0.25) 0.05

  Hydralazine 61 (0.46) 56 (0.46) 5 (0.42) 1.000

  Immunosuppressants 129 (1.0) 117 (0.96) 12 (1.0) 0.99

  Incretins 91 (0.68) 83 (0.68) 8 (0.68) 1.000

  Long acting insulin 346 (2.6) 304 (2.5) 42 (3.5) 0.04

  Short acting insulin 264 (2.0) 236 (1.9) 28 (2.4) 0.38

  Potassium sparing diuretics 255 (1.9) 221 (1.8) 34 (2.9) 0.02

  Leukotrienes 430 (3.2) 391 (3.2) 39 (3.3) 0.97

  Lithium 32 (0.24) 28 (0.23) 4 (0.34) 0.68

  Meglitinides 44 (0.33) 38 (0.31) 6 (0.51) 0.40

  Phosphate binders 91 (0.68) 77 (0.63) 14 (1.2) 0.05

  Antiprostatic hypertrophy 872 (6.5) 773 (6.4) 99 (8.4) 0.01

  Rifamycin 32 (0.24) 27 (0.22) 5 (0.42) 0.30

  Sulfonylureas 378 (2.8) 323 (2.7) 55 (4.6) < 0.001

  Thiazide diuretics 1,208 (9.1) 1,046 (0.40) 162 (0.42) < 0.001

  Thrombin inhibitors 40 (0.30) 35 (0.29) 5 (0.42) 0.60

  Levothyroxine 1,495 (11) 1,308 (11) 187 (16) < 0.001

  Thiazolidinediones 54 (0.41) 49 (0.40) 5 (0.42) 1.000

  Warfarin 323 (2.4) 280 (2.3) 43 (3.6) 0.006

  Loop diuretics 747 (5.6) 630 (5.2) 117 (9.9) < 0.001

  Proton pump inhibitors/H2 blockers 3,298 (25) 2,917 (24) 381 (32) < 0.001

  Statins 2,966 (22) 2,605 (21) 361 (30) < 0.001

  Aspirin 3,750 (28) 3,361 (28) 389 (33) < 0.001

Appendix 2. (Continued)
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