

Edinburgh Research Explorer

Supervised Multi-scale Locality Sensitive Hashing

Citation for published version:
Weng, L, Jhuo, I-H, Shi, M, Sun, M, Cheng, W-H & Amsaleg, L 2015, Supervised Multi-scale Locality
Sensitive Hashing. in ICMR '15 Proceedings of the 5th ACM on International Conference on Multimedia
Retrieval. ACM, New York, NY, USA, pp. 259-266. https://doi.org/10.1145/2671188.2749291

Digital Object Identifier (DOI):
10.1145/2671188.2749291

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ICMR '15 Proceedings of the 5th ACM on International Conference on Multimedia Retrieval

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1145/2671188.2749291
https://doi.org/10.1145/2671188.2749291
https://www.research.ed.ac.uk/en/publications/55356d9e-3ff6-46ab-8c80-61a8d25a5fb7

Supervised Multi-scale Locality Sensitive Hashing

Li Weng
∗

LinkMedia group
Inria Rennes - Bretagne

Atlantique
35042 Rennes, France

I-Hong Jhuo
†

Institute of Information
Science

Academia Sinica
11529 Taipei, Taiwan

Miaojing Shi
Key Laboratory of Machine

Perception
Peking University

100871 Beijing, China

Meng Sun
‡

IIP Lab, PLA University of
Science and Technology
210007 Nanjing, China

Wen-Huang Cheng
MCLab, CITI

Academia Sinica
11529 Taipei, Taiwan

Laurent Amsaleg
IRISA Lab

CNRS Rennes
35042 Rennes, France

ABSTRACT
LSH is a popular framework to generate compact represen-
tations of multimedia data, which can be used for content
based search. However, the performance of LSH is limited by
its unsupervised nature and the underlying feature scale. In
this work, we propose to improve LSH by incorporating two
elements – supervised hash bit selection and multi-scale fea-
ture representation. First, a feature vector is represented by
multiple scales. At each scale, the feature vector is divided
into segments. The size of a segment is decreased gradually
to make the representation correspond to a coarse-to-fine
view of the feature. Then each segment is hashed to gen-
erate more bits than the target hash length. Finally the
best ones are selected from the hash bit pool according to
the notion of bit reliability, which is estimated by bit-level
hypothesis testing.

Extensive experiments have been performed to validate
the proposal in two applications: near-duplicate image de-
tection and approximate feature distance estimation. We
first demonstrate that the feature scale can influence perfor-
mance, which is often a neglected factor. Then we show that
the proposed supervision method is effective. In particular,
the performance increases with the size of the hash bit pool.
Finally, the two elements are put together. The integrated
scheme exhibits further improved performance.

∗L. Weng was supported by the French project Secular under
grant ANR-12-CORD-0014.
†I-H. Jhuo is a co-first author. He and W.-H. Cheng were
supported by the Ministry of Science and Technology of Tai-
wan under grant MOST-103-2911-I-001-531.
‡M. Sun was supported by the National Natural Science
Foundation of China under grant 61402519 and the Nat-
ural Science Foundation of Jiangsu Province under grant
BK20140071.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICMR’15, June 23– 26, 2015, Shanghai, China.
Copyright c© 2015 ACM 978-1-4503-3274-3/15/06 ...$15.00.
http://dx.doi.org/10.1145/2671188.2749291.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.4.7 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—feature representation

General Terms
Algorithms, Design

Keywords
perceptual image hash, locality sensitive hashing, robust
representation, multiple scale, supervised feature selection

1. INTRODUCTION
Hash algorithms for multimedia data have recently re-

ceived much attention, because the compactness of hash val-
ues is the key for indexing and search in large-scale database
systems. A hash value is typically a short binary string,
whose length varies from tens to thousands of bits. It is a
compact digest of the input data to a hash algorithm. In or-
der to support content-based similarity search, multimedia
hash algorithms emerged in recent years. They are typically
designed to be robust, i.e., the hash value is independent of
the binary representation of a multimedia object. On the
other hand, they are also discriminative, i.e., different con-
tent should have different hash values.

In general, hashing techniques for multimedia data can di-
vide into two categories – perceptual hashing and semantic
hashing. They cover three applications – content classifica-
tion, content identification, and content authentication. Ex-
isting algorithms generally differ in two aspects: 1) whether
particular features are required; 2) whether training is re-
quired. Perceptual hashing [9] mainly deals with the lat-
ter two applications. Corresponding algorithms are typi-
cally feature-dependent, and do not require training. Se-
mantic hashing [15], on the other hand, mainly addresses
content classification. Corresponding algorithms are typi-
cally feature-independent and require training.

In this work, we focus on a class of feature-independent
hash algorithms, called locality-sensitive hashing (LSH) [1].
LSH is a generic framework originally used for approximate
nearest neighbor (ANN) search. An LSH scheme is a dis-
tribution on a family F of hash functions operating on a

259

collection of objects, such that for two objects x, y,

Prh∈F [h(x) = h(y)] = sim(x, y), (1)

where sim(x, y) ∈ [0, 1] is some similarity function defined
on the collection of objects, and Pr means probability. A
popular implementation of LSH is based on scalar quantiza-
tion [17]:

hr,b(v) =

⌊
r · v + b

w

⌋
, (2)

where �·� is the floor operation, v is a feature vector, r is a
random Gaussian vector, w is a quantization step, and b is a
random variable uniformly distributed between 0 and w. In
this work, our implementation of LSH is based on Charikar’s
work [3]:

hr(v) =

{
1 if v · r ≥ 0

0 if v · r < 0
(3)

This implementation actually measures the angular similar-
ity between two feature vectors:

Pr[hr(u) = hr(v)] = 1− θ(u, v)

π
, (4)

where θ(u, v) = cos−1 u·v
||u||·||v|| is the angle between u and

v. This representation is the foundation of random pro-
jection based hash algorithms. In order to approximately
quantize a feature vector, hyperplanes are randomly gener-
ated. The encoding depends on the relationship between
the hyperplanes and the feature vector. The essential differ-
ence between LSH and later approaches lies in the way that
hyperplanes are generated. Instead of using random hyper-
planes, supervised algorithms try to search for hyperplanes
that are more suitable for the problem at hand.

1.1 Contribution
In this paper, we propose an extension of LSH, which we

call Supervised Multi-scale LSH (SMLSH). Two approaches
are explored – supervised hash bit selection and multi-scale
feature representation. Specifically, a feature vector is first
represented by multiple scales; then each scale is hashed to
generate more bits than the target hash length; finally, the
best hash bits are selected from the candidate bit pool. This
extension can effectively improve the performance of LSH in
various applications with the following desirable properties:

• Compatibility to existing LSH schemes;

• Asymptotically guaranteed effectiveness;

• Scalability to large hash lengths.

The main advantage of the proposal is its versatility and
thus the potential to be applied to other feature-independent
hash algorithms. As an extension framework, we do not sig-
nificantly modify an existing LSH scheme, so that conven-
tional systems can be easily upgraded.

The scalability in hash lengths is very important for large-
scale systems. According to the birthday paradox [18], one
may find a pair of multimedia objects with the same n-bit
hash value (a collision) among 2n/2 pairs. In practice, the
collision rate can be higher for multimedia hashing due to
the robustness requirement. Short hash lengths such as 32,
64 are more likely to cause false positives. In order to man-
age millions or billions of multimedia objects, a sufficient

hash length is critical in a system design. A large hash
length is also desirable for ANN applications where the con-
ventional recall@R setting is used.

Existing supervised hash algorithms typically use various
optimization techniques to compute hash bits. Due to the
curse of dimensionality, this approach is intrinsically diffi-
cult when the hash length exceeds a certain level. SMLSH
takes a different approach. It inherits the virtues of both su-
pervised and randomized algorithms. As a randomized algo-
rithm, SMLSH can easily extend to arbitrary hash lengths.
As a weakly supervised approach, SMLSH does not greedily
search for the best hyperplanes in order to be efficient and
avoid over-fitting. Consequently, it improves performance
with affordable complexity.

Multi-scale feature representation, to the best of our knowl-
edge, is an unexplored approach in multimedia hashing. Ex-
isting algorithms typically assume a certain feature scale,
which potentially limits performance. SMLSH unlocks this
limit by considering multiple scales simultaneously.

1.2 Related work
Perceptual hashing started from the late 90’s. Typical

work includes Schneider and Chang’s framework [16] and
Fridrich’s algorithm [5]. The latter is essentially a block-
based LSH variant. Afterwards various algorithms based on
different features are proposed, such as RASH [11] based on
the Radon transform, Philips’ audio hashing algorithm [7]
based on the Mel-frequency cepstrum, the robust and se-
cure hash based on the Fourier-Mellin transform [20]. Other
features include higher-order statistics [25, 27], shapes [26],
DFT phases [28], DCT or DWT signs [23, 24, 22], etc.

Feature-independent hashing or semantic hashing started
from LSH. Typical work includes Charikar’s LSH [3] for co-
sine similarity and Datar et al.’s LSH [4] for Lp distance.
Later, various approaches are proposed to adapt the algo-
rithm to the data and accommodate more semantics and
modalities. For example, unsupervised training is used in
spectral hashing [21], which is based on spectral clustering.
The kernel trick is used in the Kernelized LSH [10]. Re-
cently, supervised training is more widely used to overcome
the semantic gap, such as [15, 6, 12].

2. SUPERVISED MULTI-SCALE LSH
Our goal is to improve LSH. Without loss of generality,

the problem is defined as follows:

• Given an LSH algorithm with n-bit output, build a
new algorithm with the same output length but im-
proved performance.

In order to be versatile, we do not modify the internal re-
alization of LSH. Since LSH can support arbitrary hash
lengths, our solution to the above problem is the following:

• Given an LSH algorithm, generate no-bit output (no ≥
n), form a hash value with improved performance by
selecting n bits out of no bits.

The question is then how to select the bits. The key idea of
SMLSH is that the choice of projections and features should
both adapt to the problem. Thus SMLSH consists of two
parts: multi-scale feature representation and hypothesis-
testing-driven bit selection. A schematic diagram is shown
in Fig. 1. The basic work-flow is the following:

260

d/4
dimensions

d/2 dimensions

d dimensions

LSH

Multi-scale representation

Feature
vector of d
dimensions

Hash
bit

pool

…… (x scales)

Supervised
bit

selection

n-bit
output

1st scale

2nd scale

3rd scale

Input

Output x·n’ bits

Figure 1: Schematic diagram of SMLSH.

1. The input feature vector is represented by x scales;

2. At each scale, the feature vector is fed into an LSH
algorithm to obtain n′ (n′ ≥ n) bits;

3. The best n bits are selected from all scales among the
no = x · n′ candidates.

In the following, the hash bit selection strategy and the
multi-scale feature representation are described in detail.

2.1 Hash bit selection
Intuitively, we need to select the “best” n bits from the

no-bit output. We realize it according to the criterion of
bit reliability, a metric to measure the quality of each bit.
It can be obtained through a training procedure. Once the
bit reliability information is obtained, bit selection is just a
sorting procedure:

1. Estimate the reliability of all no bits;

2. Sort the reliability of all no bits;

3. Output the most reliable n bits.

The above description gives an overview of the proposed
scheme. Next, we define the bit reliability.

We consider an n-bit hash value as n binary classifiers,
each represented by a single bit. The bit reliability can
be evaluated by hypothesis testing. Denote the difference
between two hash values at position i as di ∈ {0, 1} (i =
0, · · · , n− 1). A decision is made from two hypotheses:

• H0 – the images correspond to irrelevant content;

• H1 – the images correspond to relevant content.

If di = 0, we choose H1; otherwise we choose H0.
The reliability of a hash bit can be characterized by the

false positive rate pfp and the false negative rate pfn:

• pfp = Probability {di = 0|H0} ;

• pfn = Probability {di = 1|H1} .

Overall, we define the bit reliability as

rb = Cfp · pfp + Cfn · pfn , (5)

where Cfp and Cfn are weight factors representing the cost
for different mistakes. A smaller rb corresponds to better
reliability. This formulation is not biased by class skewness.
It has some similarity to the objective function in LDA-
Hash [19]. In the rest of the paper, we assume the weights
are equal to 1/2.

If we obtain some ground truth labels for training, the bit
reliability can be estimated. Thus we can improve an exist-
ing LSH scheme without modifying its internal realization.

2.2 Multi-scale feature representation
In practice, given a d-dimensional feature vector, an {l, k}

LSH scheme generates l sub-hash values, each with k bits.
The two parameters l and k are important - the former typ-
ically corresponds to the number of hash tables; the latter
is the size of a sub-hash value. The overall hash value con-
sists of l × k bits. An interesting property of LSH is that it
supports arbitrary hash lengths by varying l and k.

An often neglected factor in feature-independent hash al-
gorithms is the scale of the feature vector. In order to hash
(project) a feature vector, there are at least two ways: we
could either compute l × k bits from the whole feature vec-
tor, or divide it into l parts and compute k hash bits from
each part. Which approach is better?

This is similar to the question – whether we should use
global or local features? In general, global features have
good robustness but relatively weak discrimination, and lo-
cal features show the opposite. For a certain problem, one
cannot decide in advance which scale is the best. Therefore,
we propose to test features of different scales and select the
suitable ones.

Assume we consider x scales (Fig. 1). For each scale index
si = s0 + i (i = 0, 1, · · · , x− 1), we evenly divide the feature
vector into l = 2si parts and compute ko (ko ≥ k) hash bits
from each part, so that n′ = l · ko. The parameter s0 (set to
0 by default) decides the starting scale. The parameter x is
determined in such a way that the minimum feature length
d/2s0+x−1 is not too small. There are certainly other ways
to construct feature vectors of different scales. We adopt our
approach mainly because of the implementation simplicity.

3. PERFORMANCE AND COMPLEXITY
When the Hamming distance is used for hash comparison,

two hash values are judged as relevant if their distance d
is less than t. The performance of a hash algorithm can
be characterized by the true positive rate Ptp and the false
positive rate Pfp:

• Ptp = Probability {d < t|H1} ;

• Pfp = Probability {d < t|H0} .

Assuming the n bits are independent and have average per-
formance {ptp, pfp}, the performance of the overall scheme
can be formulated as:

Ptp = f(ptp) (6)

Pfp = f(pfp), (7)

where ptp = 1− pfn and

f(p) =
n∑

k=n−t

(
n

k

)
· pk · (1− p)n−k. (8)

The above equation was used in Condorcet’s jury theorem
to show that a decision is more likely to be correct with
more juries. In our proposal, the bit selection procedure
essentially increases ptp and decreases pfp by replacing the
original n bits with better candidates, i.e., we improve the
quality of juries. Given a pool of no hyperplanes, the prob-
ability that our scheme fails is equal to the probability that

261

the original n bits are the best among the no choices, which
is 1/

(
no
n

)
. This probability can be made arbitrarily small

by increasing no. In practice, this property asymptotically
guarantees that our scheme is always effective. For example,(
256
128

)
is larger than 1015.

Assuming each coefficient of a hyperplane is represented
by b bit precision, for a feature vector segment of length d/l,

there are totally 2d/l·b hyperplanes. That implies searching
for a hyperplane in a high-dimensional space is computa-
tionally difficult. The training cost of greedy algorithms
becomes prohibitively high for large hash lengths.

The computational cost of SMLSH consists of training
cost and running cost. The training cost can be manually
controlled. When there are N samples (e.g. images) avail-
able, there are maximum

(
N
2

)
hash comparisons. We can

have enough ground truths even when the training set is
small. For example,

(
1000
2

)
is approximately half a million.

The running cost depends on the implementation. In the
worst case, when all the candidate hyperplanes are generated
online by a pseudo-random number generator and are all
used for projection (despite that not all results are used),
the cost is about x · k0

k
times the cost of the original LSH. In

practice, the computation can be reduced by pre-computing
the selected hyperplanes offline.

4. EXPERIMENT
Since LSH is a general technique in content based search,

we evaluate SMLSH in two different applications:

• Case 1: Near duplicate image detection;

• Case 2: Approximate feature distance estimation.

The former is related to content and copyright management;
the latter is related to nearest neighbor search. The first ap-
plication is a typical example with semantic gaps, i.e., rele-
vant items do not necessarily result in small distances. The
second application is an example of more ideal situations.

In the first application, SMLSH is used for identifying
near-duplicate images. A near-duplicate is defined as a quasi-
copy of an original multimedia object, typically resulted
by incidental noise. We use 100 images to generate the
training set and another 100 images to generate the test-
ing set. They are randomly selected from the validation set
of ILSVRC’2012.1 Each set consists of 10, 600 images, in-
cluding the 100 original ones and 10, 500 near-duplicates.
The near-duplicates are created by applying a series of dis-
tortion to each of the 100 images. The list of distortion (15
categories, 7 levels each) is shown in Table 1. The relation-
ship between the original images and their near-duplicates
are used as the ground truth. GIST [14] feature vectors are
extracted from all these images.

In the second application, SMLSH is used for estimating
the similarity between SIFT vectors [13]. A dataset of ten
thousand SIFT vectors is used [8].2 Half of it is used for
training and the other half is used for testing. The ground
truth is set as follows: two SIFT vectors are determined as
relevant if their cosine similarity is larger than 0.8.

Both datasets have been transformed by PCA in order
to remove the correlation between feature dimensions. In
particular, the GIST feature vectors are reduced to 256 di-
mensions. The SIFT vectors still keep 128 dimensions.

1http://www.image-net.org/challenges/LSVRC/2012/
2http://corpus-texmex.irisa.fr

Table 1: Distortions for near-duplicate generation.
Distortion name Parameter range, step
1. Rotation Angle: 1◦ − 7◦, 1◦
2. Central cropping Percentage: 1%− 7%, 1%
3. Row removal Percentage: 1%− 7%, 1%
4. Asymmetric cropping Percentage: 1%− 7%, 1%
5. Circular shifting Percentage: 1%− 7%, 1%
6. Down-scaling Ratio: 0.7− 0.1, 0.1
7. Shearing Percentage: 1%− 7%, 1%
8. JPEG compression Quality factor: 70− 10, 10
9. Median filter Window size: 7− 19, 2
10. Gaussian filter Window size: 7− 19, 2
11. Sharpening Strength: 0.7− 0.1, 0.11

12. Gaussian noise PSNR: 45− 15 dB, 5 dB
13. Salt & pepper Noise density: 0.01− 0.07, 0.012

14. Gamma correction Gamma: 0.5− 1.7, 0.2
15. Block tampering Block number: 1− 7, 13

1 Parameters for the MATLAB function fspe-
cial(’unsharp’).

2 Parameters for the MATLAB function imnoise().
3 The size of a block is 1/64 of an image.

Table 2: Notations of SMLSH.
Notation Definition
n Hash length (bits)
x Number of scales
si Scale index (i = 0, · · ·x− 1)
k Initial sub-hash size (for s0)
l Initial number of feature segments (for s0)

4.1 Baselines and experiment setting
We mainly use the basic LSH algorithm defined in (3)

as the baseline. Specifically, the first scale is used without
supervision (l = 1, ko = k). Another algorithm for per-
formance comparison is the recently proposed qoLSH [2] in
symmetric mode. It is only used in Fig. 3b and Fig. 5c for
Case 2 to generate 256-bit hash values, because it requires
the hash length to be larger than the number of feature di-
mensions while we have only tested hash lengths of 64, 128,
and 256 so far. The experiments investigate the relationship
between the performance and typically the following factors:

• The hash size (64, 128, 256);

• The size of the bit selection pool (200%, 400%);

• The number of available feature scales (1–3);

Hypothesis testing is used for evaluating SMLSH in both sce-
narios. The receiver operating characteristic (ROC) curves
are used for representing the performance. The two cases
take

(
10600

2

)
= 56, 174, 700 and

(
5000
2

)
= 12, 497, 500 pair-

wise comparisons respectively. We do not use a retrieval
setting because we focus on the hash performance only.

In the following, we first evaluate the effects of single scales
and supervision separately, then put them together. The
notations used in this work are summarized in Table 2.

4.2 Effect of single feature scales
Recall that different feature scales may have different im-

pacts on the performance. We consider the parameter set-
tings listed in Table 3. For the same hash length n, different
{k, l} combinations are considered. In general, longer fea-
ture vectors are likely to enable more combinations.

The ROC curves are shown in Fig. 2 for the two scenarios.
Results indicate that the feature scale indeed matters. In
Case 1, when the false positive rate is small, the scale can
make a big difference. In Case 2, the scale effect is not as

262

Table 3: Parameters for different feature scales.
n 64 128 256
k 64 32 128 64 32 256 128 64 32
l 1 2 1 2 4 1 2 4 8
x 1

Table 4: Parameters for different hash pool sizes.
n 64 128 256
k 64 128 256 128 256 512 256 512 1024
l 1

obvious as in Case 1 – the performance is not very different
for the same hash length, but still there is always a small
difference. In Case 1, the scale effect becomes more obvious
with larger hash sizes, where a smaller scale is possible. On
the other hand, a fine scale is not always better than a coarse
scale. For example, the performance of the first two scales
is not significantly different. That implies the scale effect
is more important for larger hash sizes and thus for high
dimensional feature vectors.

4.3 Effect of supervised bit selection
Next, we consider the effect of supervised bit selection.

For the same hash length, different hash bit pool sizes are
used. Only the first scale is used. The parameters are listed
in Table 4.

The ROC curves are shown in Fig. 3 for the two scenarios.
The results confirm that our proposed supervision approach
is effective. The performance gain is significant for both
cases, and increases with the hash bit pool size. This is
consistent with intuition, because a larger bit pool is likely
to provide better hyperplanes. For example, with proper
supervision, 128 bits can even outperform 256 bits. In ad-
dition, Fig. 3b shows that qoLSH outperforms LSH at 256
bits, but supervised LSH performs even better.

4.4 Put things together
Previously, we have observed that the performance in-

creases with the size of the hash bit pool. In this section,
we put together our two leverages, i.e., supervision based on
multiple scales. The main parameters are listed in Table 5.

Figure 4 demonstrates the selection of 256 bits from four
scales according to the bit reliability. The figure shows that
each scale contributes a significant amount of bits. The ROC
curves are shown in Fig. 5 for the two scenarios. The results
show that supervision based on multiple scales can achieve
even better performance. For example, “64/256,3” outper-
forms“64/256,1”. In general, the performance increases with
the number of scales, especially when there are more than
two scales. It is clear for Case 2 (Fig. 5c-d), while Case 1 is
worth more analysis. In Fig. 5a-b, when the number of scales
increases from one to two, the ROC curves typically inter-
sect at a certain middle point: on the left the performance is
decreased and on the right the performance is increased. In
other words, the true positive rate rises for high false pos-
itive rates and drops for low false positive rates. We call
this phenomenon the “s-shape effect”. Since the x-axis is in
log-scale, although it is not very obvious in the figures, the
overall performance is still increased. For the same scale
number, the intersection point moves towards the right side
(higher true positive rate) as we increase the hash length.
When the scale number is further increased, the performance
on the left region rises again and the intersection disappears.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate (log scale)

tr
ue

 p
os

iti
ve

 r
at

e

effect of different feature scales

64 bit: 1x64
64 bit: 2x32
128 bit: 1x128
128 bit: 2x64
128 bit: 4x32
256 bit: 1x256
256 bit: 2x128
256 bit: 4x64
256 bit: 8x32

(a) Case 1, GIST

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

effect of different feature scales

64 bit: 1x64
64 bit: 2x32
128 bit: 1x128
128 bit: 2x64
128 bit: 4x32
256 bit: 1x256
256 bit: 2x128
256 bit: 4x64
256 bit: 8x32

(b) Case 2, SIFT

Figure 2: The effect of different scales. “n bit: l ×
k”: feature vector divided into l parts, k bits each.
Different scales influence the performance.

Note that there are also some intersections at the left ends
of the curves, but we are not really interested in that re-
gion due to lack of sufficient statistics. Additionally, Fig. 4c
confirms again that SMLSH outperforms qoLSH at 256 bits.

Figure 6 shows how the performance evolves with different
configurations for 64 bits. It is interesting that for the same
hash length the performance could vary so much. Therefore
the effectiveness of SMLSH is verified.

5. DISCUSSION
Compared with other multimedia hash algorithms, the

advantage of our proposal is that it improves performance
through supervision, yet it is still a randomized algorithm.
The complexity of the algorithm increases linearly with the
hash length, which is a desirable property for large-scale
multimedia data applications. The proposed concept of su-
pervision based on multiple scales is not limited to LSH. In
fact it applies to any hash algorithm that is able to gener-
ate sufficiently many bits, i.e., hyperplanes. In particular,

263

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate (log scale)

tr
ue

 p
os

iti
ve

 r
at

e

effect of supervision

64/64
64/128
64/256
128/128
128/256
128/512
256/256
256/512
256/1024

(a) Case 1, GIST

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

effect of supervision

64/64
64/128
64/256
128/128
128/256
128/512
256/256
256/512
256/1024
qoLSH, 256

(b) Case 2, SIFT

Figure 3: The effect of supervision. “n/no”: n bits se-
lected from no bits. The performance increases with
the hash bit pool size no. qoLSH 256 outperforms
LSH 256 in (b).

SMLSH is not explicitly limited by feature dimensions, un-
like e.g. qoLSH which is only effective when the hash length
is larger than the number of feature dimensions.

An interesting question is what is the best number of
scales for a particular application. Our experiment results
show that generally it is better to have more than two scales.
On the other hand, the number of scales cannot increase ar-
bitrarily, because after a certain scale the feature is no longer
meaningful and become unstable. In our near-duplicate de-
tection example, we have observed the s-shape effect. This
is essentially due to the semantic gap. Note that increasing
the hash length on the same scale cannot avoid this effect,
but increasing the number of scales can. From this point
of view, SMLSH provides more flexible trade-offs between
robustness and discrimination.

Analogous to approaches in chemistry and physics, the
proposed method actually introduces a way to observe fea-
tures in a microscopic way. We no longer look at features
as a whole, no matter global or local. Instead we turn fea-
tures into bits: those from large scales are like molecules,

Table 5: Parameters for multi-scale supervision.
n 64 128 256
k 128,256 256,512 512,1024
l 1
x 1 2 3 1 2 3 1 2 3

0 500 1000 1500 2000 2500 3000 3500 4000
0.44

0.45

0.46

0.47

0.48

0.49

0.5

index

bi
t r

el
ia

bi
lit

y

bit selection according to reliability

bit (1st scale)
bit (2nd scale)
bit (3rd scale)
bit (4th scale)
selected bit (6.25%)

Figure 4: Bit selection from four scales. A small
value means better reliability. Each scale con-
tributes significantly.

and those from small scales are like atoms; each of them
carry different information, and can be utilized separately.

Our method of constructing a multi-scale representation
is quite simple. There are certainly other ways. For exam-
ple, if some prior information about the feature is available,
such as inherent structures, we may derive a better multi-
scale representation. In our experiment, the GIST and SIFT
features are relatively short compared with current high di-
mensional descriptors. With thousands of or even more fea-
ture dimensions, we conjecture that the scale effect can make
significant influence on the performance.

6. CONCLUSION
In this work, we improve the classic LSH framework by

incorporating two novel elements: supervised hash bit selec-
tion and multi-scale feature representation. The basic idea is
to generate more bits than the target hash length, and select
the best ones out of the hash bit pool. Each bit is consid-
ered as a weak binary classifier. The notion of bit reliability
is used for estimating the quality of each bit, which is de-
fined as a weighted average of the false positive rate and the
false negative rate in a hypothesis test during the training
stage. In addition, a feature vector is represented by multi-
ple scales. At each scale, the feature vector is divided into
segments, and each segment is independently hashed. The
size of the segment is decreased gradually so that the hash
bit pool corresponds to a coarse-to-fine view of the feature.

Extensive experiments have been performed based on hy-
pothesis testing. Two applications are simulated: near-
duplicate image detection and approximate feature distance
estimation. We first demonstrate that the choice of feature
scale indeed can make a difference in performance, which
is an often neglected factor in content-based applications
utilizing various sorts of features. Then we show that the
proposed supervision method is effective. In particular, the

264

performance increases with the size of the hash bit pool.
This is an intuitive result because our supervision approach
is asymptotically guaranteed to be effective. Finally, the
two elements are combined to obtain better performance.
In addition, initial results imply that SMLSH outperforms
the recently proposed qoLSH in a symmetric setting.

7. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. In
Proc. of 47th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 459–468, 2006.

[2] R. Balu, T. Furon, and H. Jégou. Beyond “project and
sign” for cosine estimation with binary codes. In Proc. of
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 6884–6888, May 2014.

[3] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proc. of 34th ACM Symposium on
Theory of Computing (STOC), pages 380–388, 2002.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proc. of 20th Symposium on
Computational Geometry (SCG), pages 253–262, 2004.

[5] J. Fridrich. Robust bit extraction from images. In Proc. of
IEEE International Conference on Multimedia Computing
and Systems, volume 2, pages 536–540, 1999.

[6] Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In Proc. of
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 817–824, June 2011.

[7] J. Haitsma and T. Kalker. A highly robust audio
fingerprinting system. In Proc. of 3rd International
Conference on Music Information Retrieval, pages
107–115, October 2002.

[8] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(1):117–128, 2011.

[9] F. Khelifi and J. Jiang. Perceptual image hashing based on
virtual watermark detection. IEEE Transactions on Image
Processing, 19(4):981–994, April 2010.

[10] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(6):1092–1104, June 2012.

[11] F. Lefèbvre, B. Macq, and J.-D. Legat. RASH: RAdon Soft
Hash algorithm. In Proc. of 11th European Signal
Processing Conference, volume 1, pages 299–302, Toulouse,
France, Sep. 2002.

[12] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2074–2081, 2012.

[13] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, Nov. 2004.

[14] A. Oliva and A. Torralba. Modeling the shape of the scene:
A holistic representation of the spatial envelope.
International Journal of Computer Vision, 42(3):145–175,
May 2001.

[15] R. Salakhutdinov and G. E. Hinton. Learning a nonlinear
embedding by preserving class neighbourhood structure. In
Proc. of International Conference on Artificial Intelligence
and Statistics, volume 11, pages 412–419, 2007.

[16] M. Schneider and S.-F. Chang. A robust content based
digital signature for image authentication. In Proc. of
International Conference on Image Processing (ICIP),
volume 3, pages 227–230, 1996.

[17] M. Slaney and M. Casey. Locality-sensitive hashing for
finding nearest neighbors [lecture notes]. Signal Processing
Magazine, IEEE, 25(2):128–131, 2008.

[18] W. Stallings. Cryptography and Network Security. Prentice
Hall, 4th edition, 2005.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate (log scale)

tr
ue

 p
os

iti
ve

 r
at

e

effect of multi−scale supervision (64 bit)

1x64
2x32
64/128,1
64/256,1
64/128,2
64/256,2
64/256,3
64/512,3

(a) Case 1, GIST

0 0.02 0.04 0.06 0.08 0.1 0.12

0.86

0.88

0.9

0.92

0.94

0.96

false positive rate (linear scale)

tr
ue

 p
os

iti
ve

 r
at

e

effect of multi−scale supervision (64 bit)

1x64
2x32
64/128,1
64/256,1
64/128,2
64/256,2
64/256,3
64/512,3

(b) Case 1, GIST, close-up

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

effect of multi−scale supervision (64 bit)

1x64
2x32
64/128,1
64/256,1
64/128,2
64/256,2
64/256,3
64/512,3

(c) Case 2, SIFT

Figure 6: Different ways to generate the same
hash length (64 bits) lead to different performance.
“n/n′, x”: n bits selected from n′ · x bits in x scales.

265

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate (log scale)

tr
ue

 p
os

iti
ve

 r
at

e
effect of multi−scale supervision

64/128,1
64/128,2
64/128,3
128/256,1
128/256,2
128/256,3
256/512,1
256/512,2
256/512,3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

effect of multi−scale supervision

64/128,1
64/128,2
64/128,3
128/256,1
128/256,2
128/256,3
256/512,1
256/512,2
256/512,3
qoLSH, 256

(a) Case 1, GIST, 200% hash bit pool size (c) Case 2, SIFT, 200% hash bit pool size

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate (log scale)

tr
ue

 p
os

iti
ve

 r
at

e

effect of multi−scale supervision

64/256,1
64/256,2
64/256,3
128/512,1
128/512,2
128/512,3
256/1024,1
256/1024,2
256/1024,3
256/1024,4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

effect of multi−scale supervision

64/256,1
64/256,2
64/256,3
128/512,1
128/512,2
128/512,3
256/1024,1
256/1024,2
256/1024,3
256/1024,4

(b) Case 1, GIST, 400% hash bit pool size (d) Case 2, SIFT, 400% hash bit pool size

Figure 5: The effect of multi-scale supervision. “n/n′, x”: n bits selected from n′ · x bits in x scales. The
combined scheme can further improve the performance. SMLSH 256/512,1 outperforms qoLSH 256 in (c).

[19] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua.
LDAHash: Improved matching with smaller descriptors.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(1):66–78, 2012.

[20] A. Swaminathan, Y. Mao, and M. Wu. Robust and secure
image hashing. IEEE Transactions on Information
Forensics and Security, 1(2):215–230, June 2006.

[21] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, pages 1753–1760, 2008.

[22] L. Weng, L. Amsaleg, A. Morton, and S. Marchand-Maillet.
A privacy-preserving framework for large-scale
content-based information retrieval. IEEE Transactions on
Information Forensics and Security, 10(1):152–167, Jan.
2015.

[23] L. Weng, G. Braeckman, A. Dooms, and B. Preneel.
Robust image content authentication with tamper location.
In Proc. of IEEE International Conference on Multimedia
and Expo, pages 380–385, 2012.

[24] L. Weng, R. Darazi, B. Preneel, B. Macq, and A. Dooms.
Robust image content authentication using perceptual
hashing and watermarking. In Proc. of 13th Pacific-Rim

Conference on Multimedia (PCM), volume 7674 of LNCS,
pages 315–326, 2012.

[25] L. Weng and B. Preneel. On secure image hashing by
higher-order statistics. In Proc. of IEEE International
Conference on Signal Processing and Communications,
pages 1063–1066, 2007.

[26] L. Weng and B. Preneel. Shape-based features for image
hashing. In Proc. of IEEE International Conference on
Multimedia and Expo (ICME), pages 1074–1077, 2009.

[27] L. Weng and B. Preneel. A novel video hash algorithm. In
Proc. of ACM International Conference on Multimedia,
pages 739–742, October 2010.

[28] L. Weng and B. Preneel. A secure perceptual hash
algorithm for image content authentication. In Proc. of
International Conference on Communications and
Multimedia Security, volume 7025 of LNCS, pages 108–121,
2011.

266

